]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
Merge tag 'iommu-updates-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
04e7712f 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
57c8a661 69#include <linux/memblock.h>
ab51fbab 70#include <linux/fault-inject.h>
b488893a 71
4732efbe 72#include <asm/futex.h>
1da177e4 73
1696a8be 74#include "locking/rtmutex_common.h"
c87e2837 75
99b60ce6 76/*
d7e8af1a
DB
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
99b60ce6
TG
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
99b60ce6
TG
88 *
89 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
99b60ce6 93 *
b0c29f79
DB
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 119 *
b0c29f79
DB
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
99b60ce6
TG
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
b0c29f79 128 *
d7e8af1a 129 * waiters++; (a)
8ad7b378
DB
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
99b60ce6 140 * if (uval == val)
b0c29f79 141 * queue();
99b60ce6 142 * unlock(hash_bucket(futex));
b0c29f79
DB
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
d7e8af1a
DB
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 147 *
d7e8af1a
DB
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
d7e8af1a
DB
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
175 */
176
04e7712f
AB
177#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178#define futex_cmpxchg_enabled 1
179#else
180static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 181#endif
a0c1e907 182
b41277dc
DH
183/*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
784bdf3b
TG
187#ifdef CONFIG_MMU
188# define FLAGS_SHARED 0x01
189#else
190/*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194# define FLAGS_SHARED 0x00
195#endif
b41277dc
DH
196#define FLAGS_CLOCKRT 0x02
197#define FLAGS_HAS_TIMEOUT 0x04
198
c87e2837
IM
199/*
200 * Priority Inheritance state:
201 */
202struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
3859a271 218} __randomize_layout;
c87e2837 219
d8d88fbb
DH
220/**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 222 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
ac6424b9 231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 236 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
241 */
242struct futex_q {
ec92d082 243 struct plist_node list;
1da177e4 244
d8d88fbb 245 struct task_struct *task;
1da177e4 246 spinlock_t *lock_ptr;
1da177e4 247 union futex_key key;
c87e2837 248 struct futex_pi_state *pi_state;
52400ba9 249 struct rt_mutex_waiter *rt_waiter;
84bc4af5 250 union futex_key *requeue_pi_key;
cd689985 251 u32 bitset;
3859a271 252} __randomize_layout;
1da177e4 253
5bdb05f9
DH
254static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258};
259
1da177e4 260/*
b2d0994b
DH
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
1da177e4
LT
264 */
265struct futex_hash_bucket {
11d4616b 266 atomic_t waiters;
ec92d082
PP
267 spinlock_t lock;
268 struct plist_head chain;
a52b89eb 269} ____cacheline_aligned_in_smp;
1da177e4 270
ac742d37
RV
271/*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279} __futex_data __read_mostly __aligned(2*sizeof(long));
280#define futex_queues (__futex_data.queues)
281#define futex_hashsize (__futex_data.hashsize)
a52b89eb 282
1da177e4 283
ab51fbab
DB
284/*
285 * Fault injections for futexes.
286 */
287#ifdef CONFIG_FAIL_FUTEX
288
289static struct {
290 struct fault_attr attr;
291
621a5f7a 292 bool ignore_private;
ab51fbab
DB
293} fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 295 .ignore_private = false,
ab51fbab
DB
296};
297
298static int __init setup_fail_futex(char *str)
299{
300 return setup_fault_attr(&fail_futex.attr, str);
301}
302__setup("fail_futex=", setup_fail_futex);
303
5d285a7f 304static bool should_fail_futex(bool fshared)
ab51fbab
DB
305{
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310}
311
312#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314static int __init fail_futex_debugfs(void)
315{
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331}
332
333late_initcall(fail_futex_debugfs);
334
335#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337#else
338static inline bool should_fail_futex(bool fshared)
339{
340 return false;
341}
342#endif /* CONFIG_FAIL_FUTEX */
343
b0c29f79
DB
344static inline void futex_get_mm(union futex_key *key)
345{
f1f10076 346 mmgrab(key->private.mm);
b0c29f79
DB
347 /*
348 * Ensure futex_get_mm() implies a full barrier such that
349 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 350 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
b0c29f79
DB
353}
354
11d4616b
LT
355/*
356 * Reflects a new waiter being added to the waitqueue.
357 */
358static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
359{
360#ifdef CONFIG_SMP
11d4616b 361 atomic_inc(&hb->waiters);
b0c29f79 362 /*
11d4616b 363 * Full barrier (A), see the ordering comment above.
b0c29f79 364 */
4e857c58 365 smp_mb__after_atomic();
11d4616b
LT
366#endif
367}
368
369/*
370 * Reflects a waiter being removed from the waitqueue by wakeup
371 * paths.
372 */
373static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374{
375#ifdef CONFIG_SMP
376 atomic_dec(&hb->waiters);
377#endif
378}
b0c29f79 379
11d4616b
LT
380static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381{
382#ifdef CONFIG_SMP
383 return atomic_read(&hb->waiters);
b0c29f79 384#else
11d4616b 385 return 1;
b0c29f79
DB
386#endif
387}
388
e8b61b3f
TG
389/**
390 * hash_futex - Return the hash bucket in the global hash
391 * @key: Pointer to the futex key for which the hash is calculated
392 *
393 * We hash on the keys returned from get_futex_key (see below) and return the
394 * corresponding hash bucket in the global hash.
1da177e4
LT
395 */
396static struct futex_hash_bucket *hash_futex(union futex_key *key)
397{
398 u32 hash = jhash2((u32*)&key->both.word,
399 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400 key->both.offset);
a52b89eb 401 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
402}
403
e8b61b3f
TG
404
405/**
406 * match_futex - Check whether two futex keys are equal
407 * @key1: Pointer to key1
408 * @key2: Pointer to key2
409 *
1da177e4
LT
410 * Return 1 if two futex_keys are equal, 0 otherwise.
411 */
412static inline int match_futex(union futex_key *key1, union futex_key *key2)
413{
2bc87203
DH
414 return (key1 && key2
415 && key1->both.word == key2->both.word
1da177e4
LT
416 && key1->both.ptr == key2->both.ptr
417 && key1->both.offset == key2->both.offset);
418}
419
38d47c1b
PZ
420/*
421 * Take a reference to the resource addressed by a key.
422 * Can be called while holding spinlocks.
423 *
424 */
425static void get_futex_key_refs(union futex_key *key)
426{
427 if (!key->both.ptr)
428 return;
429
784bdf3b
TG
430 /*
431 * On MMU less systems futexes are always "private" as there is no per
432 * process address space. We need the smp wmb nevertheless - yes,
433 * arch/blackfin has MMU less SMP ...
434 */
435 if (!IS_ENABLED(CONFIG_MMU)) {
436 smp_mb(); /* explicit smp_mb(); (B) */
437 return;
438 }
439
38d47c1b
PZ
440 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441 case FUT_OFF_INODE:
8ad7b378 442 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
443 break;
444 case FUT_OFF_MMSHARED:
8ad7b378 445 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 446 break;
76835b0e 447 default:
993b2ff2
DB
448 /*
449 * Private futexes do not hold reference on an inode or
450 * mm, therefore the only purpose of calling get_futex_key_refs
451 * is because we need the barrier for the lockless waiter check.
452 */
8ad7b378 453 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
454 }
455}
456
457/*
458 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
459 * The hash bucket spinlock must not be held. This is
460 * a no-op for private futexes, see comment in the get
461 * counterpart.
38d47c1b
PZ
462 */
463static void drop_futex_key_refs(union futex_key *key)
464{
90621c40
DH
465 if (!key->both.ptr) {
466 /* If we're here then we tried to put a key we failed to get */
467 WARN_ON_ONCE(1);
38d47c1b 468 return;
90621c40 469 }
38d47c1b 470
784bdf3b
TG
471 if (!IS_ENABLED(CONFIG_MMU))
472 return;
473
38d47c1b
PZ
474 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475 case FUT_OFF_INODE:
476 iput(key->shared.inode);
477 break;
478 case FUT_OFF_MMSHARED:
479 mmdrop(key->private.mm);
480 break;
481 }
482}
483
34f01cc1 484/**
d96ee56c
DH
485 * get_futex_key() - Get parameters which are the keys for a futex
486 * @uaddr: virtual address of the futex
487 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
488 * @key: address where result is stored.
9ea71503
SB
489 * @rw: mapping needs to be read/write (values: VERIFY_READ,
490 * VERIFY_WRITE)
34f01cc1 491 *
6c23cbbd
RD
492 * Return: a negative error code or 0
493 *
7b4ff1ad 494 * The key words are stored in @key on success.
1da177e4 495 *
6131ffaa 496 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
497 * offset_within_page). For private mappings, it's (uaddr, current->mm).
498 * We can usually work out the index without swapping in the page.
499 *
b2d0994b 500 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 501 */
64d1304a 502static int
9ea71503 503get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 504{
e2970f2f 505 unsigned long address = (unsigned long)uaddr;
1da177e4 506 struct mm_struct *mm = current->mm;
077fa7ae 507 struct page *page, *tail;
14d27abd 508 struct address_space *mapping;
9ea71503 509 int err, ro = 0;
1da177e4
LT
510
511 /*
512 * The futex address must be "naturally" aligned.
513 */
e2970f2f 514 key->both.offset = address % PAGE_SIZE;
34f01cc1 515 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 516 return -EINVAL;
e2970f2f 517 address -= key->both.offset;
1da177e4 518
5cdec2d8
LT
519 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
520 return -EFAULT;
521
ab51fbab
DB
522 if (unlikely(should_fail_futex(fshared)))
523 return -EFAULT;
524
34f01cc1
ED
525 /*
526 * PROCESS_PRIVATE futexes are fast.
527 * As the mm cannot disappear under us and the 'key' only needs
528 * virtual address, we dont even have to find the underlying vma.
529 * Note : We do have to check 'uaddr' is a valid user address,
530 * but access_ok() should be faster than find_vma()
531 */
532 if (!fshared) {
34f01cc1
ED
533 key->private.mm = mm;
534 key->private.address = address;
8ad7b378 535 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
536 return 0;
537 }
1da177e4 538
38d47c1b 539again:
ab51fbab
DB
540 /* Ignore any VERIFY_READ mapping (futex common case) */
541 if (unlikely(should_fail_futex(fshared)))
542 return -EFAULT;
543
7485d0d3 544 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
545 /*
546 * If write access is not required (eg. FUTEX_WAIT), try
547 * and get read-only access.
548 */
549 if (err == -EFAULT && rw == VERIFY_READ) {
550 err = get_user_pages_fast(address, 1, 0, &page);
551 ro = 1;
552 }
38d47c1b
PZ
553 if (err < 0)
554 return err;
9ea71503
SB
555 else
556 err = 0;
38d47c1b 557
65d8fc77
MG
558 /*
559 * The treatment of mapping from this point on is critical. The page
560 * lock protects many things but in this context the page lock
561 * stabilizes mapping, prevents inode freeing in the shared
562 * file-backed region case and guards against movement to swap cache.
563 *
564 * Strictly speaking the page lock is not needed in all cases being
565 * considered here and page lock forces unnecessarily serialization
566 * From this point on, mapping will be re-verified if necessary and
567 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
568 *
569 * Mapping checks require the head page for any compound page so the
570 * head page and mapping is looked up now. For anonymous pages, it
571 * does not matter if the page splits in the future as the key is
572 * based on the address. For filesystem-backed pages, the tail is
573 * required as the index of the page determines the key. For
574 * base pages, there is no tail page and tail == page.
65d8fc77 575 */
077fa7ae 576 tail = page;
65d8fc77
MG
577 page = compound_head(page);
578 mapping = READ_ONCE(page->mapping);
579
e6780f72 580 /*
14d27abd 581 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
582 * page; but it might be the ZERO_PAGE or in the gate area or
583 * in a special mapping (all cases which we are happy to fail);
584 * or it may have been a good file page when get_user_pages_fast
585 * found it, but truncated or holepunched or subjected to
586 * invalidate_complete_page2 before we got the page lock (also
587 * cases which we are happy to fail). And we hold a reference,
588 * so refcount care in invalidate_complete_page's remove_mapping
589 * prevents drop_caches from setting mapping to NULL beneath us.
590 *
591 * The case we do have to guard against is when memory pressure made
592 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 593 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 594 */
65d8fc77
MG
595 if (unlikely(!mapping)) {
596 int shmem_swizzled;
597
598 /*
599 * Page lock is required to identify which special case above
600 * applies. If this is really a shmem page then the page lock
601 * will prevent unexpected transitions.
602 */
603 lock_page(page);
604 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
605 unlock_page(page);
606 put_page(page);
65d8fc77 607
e6780f72
HD
608 if (shmem_swizzled)
609 goto again;
65d8fc77 610
e6780f72 611 return -EFAULT;
38d47c1b 612 }
1da177e4
LT
613
614 /*
615 * Private mappings are handled in a simple way.
616 *
65d8fc77
MG
617 * If the futex key is stored on an anonymous page, then the associated
618 * object is the mm which is implicitly pinned by the calling process.
619 *
1da177e4
LT
620 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 622 * the object not the particular process.
1da177e4 623 */
14d27abd 624 if (PageAnon(page)) {
9ea71503
SB
625 /*
626 * A RO anonymous page will never change and thus doesn't make
627 * sense for futex operations.
628 */
ab51fbab 629 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
630 err = -EFAULT;
631 goto out;
632 }
633
38d47c1b 634 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 635 key->private.mm = mm;
e2970f2f 636 key->private.address = address;
65d8fc77
MG
637
638 get_futex_key_refs(key); /* implies smp_mb(); (B) */
639
38d47c1b 640 } else {
65d8fc77
MG
641 struct inode *inode;
642
643 /*
644 * The associated futex object in this case is the inode and
645 * the page->mapping must be traversed. Ordinarily this should
646 * be stabilised under page lock but it's not strictly
647 * necessary in this case as we just want to pin the inode, not
648 * update the radix tree or anything like that.
649 *
650 * The RCU read lock is taken as the inode is finally freed
651 * under RCU. If the mapping still matches expectations then the
652 * mapping->host can be safely accessed as being a valid inode.
653 */
654 rcu_read_lock();
655
656 if (READ_ONCE(page->mapping) != mapping) {
657 rcu_read_unlock();
658 put_page(page);
659
660 goto again;
661 }
662
663 inode = READ_ONCE(mapping->host);
664 if (!inode) {
665 rcu_read_unlock();
666 put_page(page);
667
668 goto again;
669 }
670
671 /*
672 * Take a reference unless it is about to be freed. Previously
673 * this reference was taken by ihold under the page lock
674 * pinning the inode in place so i_lock was unnecessary. The
675 * only way for this check to fail is if the inode was
48fb6f4d
MG
676 * truncated in parallel which is almost certainly an
677 * application bug. In such a case, just retry.
65d8fc77
MG
678 *
679 * We are not calling into get_futex_key_refs() in file-backed
680 * cases, therefore a successful atomic_inc return below will
681 * guarantee that get_futex_key() will still imply smp_mb(); (B).
682 */
48fb6f4d 683 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
684 rcu_read_unlock();
685 put_page(page);
686
687 goto again;
688 }
689
690 /* Should be impossible but lets be paranoid for now */
691 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
692 err = -EFAULT;
693 rcu_read_unlock();
694 iput(inode);
695
696 goto out;
697 }
698
38d47c1b 699 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 700 key->shared.inode = inode;
077fa7ae 701 key->shared.pgoff = basepage_index(tail);
65d8fc77 702 rcu_read_unlock();
1da177e4
LT
703 }
704
9ea71503 705out:
14d27abd 706 put_page(page);
9ea71503 707 return err;
1da177e4
LT
708}
709
ae791a2d 710static inline void put_futex_key(union futex_key *key)
1da177e4 711{
38d47c1b 712 drop_futex_key_refs(key);
1da177e4
LT
713}
714
d96ee56c
DH
715/**
716 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
717 * @uaddr: pointer to faulting user space address
718 *
719 * Slow path to fixup the fault we just took in the atomic write
720 * access to @uaddr.
721 *
fb62db2b 722 * We have no generic implementation of a non-destructive write to the
d0725992
TG
723 * user address. We know that we faulted in the atomic pagefault
724 * disabled section so we can as well avoid the #PF overhead by
725 * calling get_user_pages() right away.
726 */
727static int fault_in_user_writeable(u32 __user *uaddr)
728{
722d0172
AK
729 struct mm_struct *mm = current->mm;
730 int ret;
731
732 down_read(&mm->mmap_sem);
2efaca92 733 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 734 FAULT_FLAG_WRITE, NULL);
722d0172
AK
735 up_read(&mm->mmap_sem);
736
d0725992
TG
737 return ret < 0 ? ret : 0;
738}
739
4b1c486b
DH
740/**
741 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
742 * @hb: the hash bucket the futex_q's reside in
743 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
744 *
745 * Must be called with the hb lock held.
746 */
747static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
748 union futex_key *key)
749{
750 struct futex_q *this;
751
752 plist_for_each_entry(this, &hb->chain, list) {
753 if (match_futex(&this->key, key))
754 return this;
755 }
756 return NULL;
757}
758
37a9d912
ML
759static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
760 u32 uval, u32 newval)
36cf3b5c 761{
37a9d912 762 int ret;
36cf3b5c
TG
763
764 pagefault_disable();
37a9d912 765 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
766 pagefault_enable();
767
37a9d912 768 return ret;
36cf3b5c
TG
769}
770
771static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
772{
773 int ret;
774
a866374a 775 pagefault_disable();
bd28b145 776 ret = __get_user(*dest, from);
a866374a 777 pagefault_enable();
1da177e4
LT
778
779 return ret ? -EFAULT : 0;
780}
781
c87e2837
IM
782
783/*
784 * PI code:
785 */
786static int refill_pi_state_cache(void)
787{
788 struct futex_pi_state *pi_state;
789
790 if (likely(current->pi_state_cache))
791 return 0;
792
4668edc3 793 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
794
795 if (!pi_state)
796 return -ENOMEM;
797
c87e2837
IM
798 INIT_LIST_HEAD(&pi_state->list);
799 /* pi_mutex gets initialized later */
800 pi_state->owner = NULL;
801 atomic_set(&pi_state->refcount, 1);
38d47c1b 802 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
803
804 current->pi_state_cache = pi_state;
805
806 return 0;
807}
808
bf92cf3a 809static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
810{
811 struct futex_pi_state *pi_state = current->pi_state_cache;
812
813 WARN_ON(!pi_state);
814 current->pi_state_cache = NULL;
815
816 return pi_state;
817}
818
bf92cf3a
PZ
819static void get_pi_state(struct futex_pi_state *pi_state)
820{
821 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822}
823
30a6b803 824/*
29e9ee5d
TG
825 * Drops a reference to the pi_state object and frees or caches it
826 * when the last reference is gone.
30a6b803 827 */
29e9ee5d 828static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 829{
30a6b803
BS
830 if (!pi_state)
831 return;
832
c87e2837
IM
833 if (!atomic_dec_and_test(&pi_state->refcount))
834 return;
835
836 /*
837 * If pi_state->owner is NULL, the owner is most probably dying
838 * and has cleaned up the pi_state already
839 */
840 if (pi_state->owner) {
c74aef2d 841 struct task_struct *owner;
c87e2837 842
c74aef2d
PZ
843 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
844 owner = pi_state->owner;
845 if (owner) {
846 raw_spin_lock(&owner->pi_lock);
847 list_del_init(&pi_state->list);
848 raw_spin_unlock(&owner->pi_lock);
849 }
850 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
851 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
852 }
853
c74aef2d 854 if (current->pi_state_cache) {
c87e2837 855 kfree(pi_state);
c74aef2d 856 } else {
c87e2837
IM
857 /*
858 * pi_state->list is already empty.
859 * clear pi_state->owner.
860 * refcount is at 0 - put it back to 1.
861 */
862 pi_state->owner = NULL;
863 atomic_set(&pi_state->refcount, 1);
864 current->pi_state_cache = pi_state;
865 }
866}
867
bc2eecd7
NP
868#ifdef CONFIG_FUTEX_PI
869
c87e2837
IM
870/*
871 * This task is holding PI mutexes at exit time => bad.
872 * Kernel cleans up PI-state, but userspace is likely hosed.
873 * (Robust-futex cleanup is separate and might save the day for userspace.)
874 */
875void exit_pi_state_list(struct task_struct *curr)
876{
c87e2837
IM
877 struct list_head *next, *head = &curr->pi_state_list;
878 struct futex_pi_state *pi_state;
627371d7 879 struct futex_hash_bucket *hb;
38d47c1b 880 union futex_key key = FUTEX_KEY_INIT;
c87e2837 881
a0c1e907
TG
882 if (!futex_cmpxchg_enabled)
883 return;
c87e2837
IM
884 /*
885 * We are a ZOMBIE and nobody can enqueue itself on
886 * pi_state_list anymore, but we have to be careful
627371d7 887 * versus waiters unqueueing themselves:
c87e2837 888 */
1d615482 889 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 890 while (!list_empty(head)) {
c87e2837
IM
891 next = head->next;
892 pi_state = list_entry(next, struct futex_pi_state, list);
893 key = pi_state->key;
627371d7 894 hb = hash_futex(&key);
153fbd12
PZ
895
896 /*
897 * We can race against put_pi_state() removing itself from the
898 * list (a waiter going away). put_pi_state() will first
899 * decrement the reference count and then modify the list, so
900 * its possible to see the list entry but fail this reference
901 * acquire.
902 *
903 * In that case; drop the locks to let put_pi_state() make
904 * progress and retry the loop.
905 */
906 if (!atomic_inc_not_zero(&pi_state->refcount)) {
907 raw_spin_unlock_irq(&curr->pi_lock);
908 cpu_relax();
909 raw_spin_lock_irq(&curr->pi_lock);
910 continue;
911 }
1d615482 912 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 913
c87e2837 914 spin_lock(&hb->lock);
c74aef2d
PZ
915 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
916 raw_spin_lock(&curr->pi_lock);
627371d7
IM
917 /*
918 * We dropped the pi-lock, so re-check whether this
919 * task still owns the PI-state:
920 */
c87e2837 921 if (head->next != next) {
153fbd12 922 /* retain curr->pi_lock for the loop invariant */
c74aef2d 923 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 924 spin_unlock(&hb->lock);
153fbd12 925 put_pi_state(pi_state);
c87e2837
IM
926 continue;
927 }
928
c87e2837 929 WARN_ON(pi_state->owner != curr);
627371d7
IM
930 WARN_ON(list_empty(&pi_state->list));
931 list_del_init(&pi_state->list);
c87e2837 932 pi_state->owner = NULL;
c87e2837 933
153fbd12 934 raw_spin_unlock(&curr->pi_lock);
c74aef2d 935 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
936 spin_unlock(&hb->lock);
937
16ffa12d
PZ
938 rt_mutex_futex_unlock(&pi_state->pi_mutex);
939 put_pi_state(pi_state);
940
1d615482 941 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 942 }
1d615482 943 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
944}
945
bc2eecd7
NP
946#endif
947
54a21788
TG
948/*
949 * We need to check the following states:
950 *
951 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
952 *
953 * [1] NULL | --- | --- | 0 | 0/1 | Valid
954 * [2] NULL | --- | --- | >0 | 0/1 | Valid
955 *
956 * [3] Found | NULL | -- | Any | 0/1 | Invalid
957 *
958 * [4] Found | Found | NULL | 0 | 1 | Valid
959 * [5] Found | Found | NULL | >0 | 1 | Invalid
960 *
961 * [6] Found | Found | task | 0 | 1 | Valid
962 *
963 * [7] Found | Found | NULL | Any | 0 | Invalid
964 *
965 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
966 * [9] Found | Found | task | 0 | 0 | Invalid
967 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
968 *
969 * [1] Indicates that the kernel can acquire the futex atomically. We
970 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
971 *
972 * [2] Valid, if TID does not belong to a kernel thread. If no matching
973 * thread is found then it indicates that the owner TID has died.
974 *
975 * [3] Invalid. The waiter is queued on a non PI futex
976 *
977 * [4] Valid state after exit_robust_list(), which sets the user space
978 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
979 *
980 * [5] The user space value got manipulated between exit_robust_list()
981 * and exit_pi_state_list()
982 *
983 * [6] Valid state after exit_pi_state_list() which sets the new owner in
984 * the pi_state but cannot access the user space value.
985 *
986 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
987 *
988 * [8] Owner and user space value match
989 *
990 * [9] There is no transient state which sets the user space TID to 0
991 * except exit_robust_list(), but this is indicated by the
992 * FUTEX_OWNER_DIED bit. See [4]
993 *
994 * [10] There is no transient state which leaves owner and user space
995 * TID out of sync.
734009e9
PZ
996 *
997 *
998 * Serialization and lifetime rules:
999 *
1000 * hb->lock:
1001 *
1002 * hb -> futex_q, relation
1003 * futex_q -> pi_state, relation
1004 *
1005 * (cannot be raw because hb can contain arbitrary amount
1006 * of futex_q's)
1007 *
1008 * pi_mutex->wait_lock:
1009 *
1010 * {uval, pi_state}
1011 *
1012 * (and pi_mutex 'obviously')
1013 *
1014 * p->pi_lock:
1015 *
1016 * p->pi_state_list -> pi_state->list, relation
1017 *
1018 * pi_state->refcount:
1019 *
1020 * pi_state lifetime
1021 *
1022 *
1023 * Lock order:
1024 *
1025 * hb->lock
1026 * pi_mutex->wait_lock
1027 * p->pi_lock
1028 *
54a21788 1029 */
e60cbc5c
TG
1030
1031/*
1032 * Validate that the existing waiter has a pi_state and sanity check
1033 * the pi_state against the user space value. If correct, attach to
1034 * it.
1035 */
734009e9
PZ
1036static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1037 struct futex_pi_state *pi_state,
e60cbc5c 1038 struct futex_pi_state **ps)
c87e2837 1039{
778e9a9c 1040 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1041 u32 uval2;
1042 int ret;
c87e2837 1043
e60cbc5c
TG
1044 /*
1045 * Userspace might have messed up non-PI and PI futexes [3]
1046 */
1047 if (unlikely(!pi_state))
1048 return -EINVAL;
06a9ec29 1049
734009e9
PZ
1050 /*
1051 * We get here with hb->lock held, and having found a
1052 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1053 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1054 * which in turn means that futex_lock_pi() still has a reference on
1055 * our pi_state.
16ffa12d
PZ
1056 *
1057 * The waiter holding a reference on @pi_state also protects against
1058 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1059 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1060 * free pi_state before we can take a reference ourselves.
734009e9 1061 */
e60cbc5c 1062 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1063
734009e9
PZ
1064 /*
1065 * Now that we have a pi_state, we can acquire wait_lock
1066 * and do the state validation.
1067 */
1068 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1069
1070 /*
1071 * Since {uval, pi_state} is serialized by wait_lock, and our current
1072 * uval was read without holding it, it can have changed. Verify it
1073 * still is what we expect it to be, otherwise retry the entire
1074 * operation.
1075 */
1076 if (get_futex_value_locked(&uval2, uaddr))
1077 goto out_efault;
1078
1079 if (uval != uval2)
1080 goto out_eagain;
1081
e60cbc5c
TG
1082 /*
1083 * Handle the owner died case:
1084 */
1085 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1086 /*
e60cbc5c
TG
1087 * exit_pi_state_list sets owner to NULL and wakes the
1088 * topmost waiter. The task which acquires the
1089 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1090 */
e60cbc5c 1091 if (!pi_state->owner) {
59647b6a 1092 /*
e60cbc5c
TG
1093 * No pi state owner, but the user space TID
1094 * is not 0. Inconsistent state. [5]
59647b6a 1095 */
e60cbc5c 1096 if (pid)
734009e9 1097 goto out_einval;
bd1dbcc6 1098 /*
e60cbc5c 1099 * Take a ref on the state and return success. [4]
866293ee 1100 */
734009e9 1101 goto out_attach;
c87e2837 1102 }
bd1dbcc6
TG
1103
1104 /*
e60cbc5c
TG
1105 * If TID is 0, then either the dying owner has not
1106 * yet executed exit_pi_state_list() or some waiter
1107 * acquired the rtmutex in the pi state, but did not
1108 * yet fixup the TID in user space.
1109 *
1110 * Take a ref on the state and return success. [6]
1111 */
1112 if (!pid)
734009e9 1113 goto out_attach;
e60cbc5c
TG
1114 } else {
1115 /*
1116 * If the owner died bit is not set, then the pi_state
1117 * must have an owner. [7]
bd1dbcc6 1118 */
e60cbc5c 1119 if (!pi_state->owner)
734009e9 1120 goto out_einval;
c87e2837
IM
1121 }
1122
e60cbc5c
TG
1123 /*
1124 * Bail out if user space manipulated the futex value. If pi
1125 * state exists then the owner TID must be the same as the
1126 * user space TID. [9/10]
1127 */
1128 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1129 goto out_einval;
1130
1131out_attach:
bf92cf3a 1132 get_pi_state(pi_state);
734009e9 1133 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1134 *ps = pi_state;
1135 return 0;
734009e9
PZ
1136
1137out_einval:
1138 ret = -EINVAL;
1139 goto out_error;
1140
1141out_eagain:
1142 ret = -EAGAIN;
1143 goto out_error;
1144
1145out_efault:
1146 ret = -EFAULT;
1147 goto out_error;
1148
1149out_error:
1150 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1151 return ret;
e60cbc5c
TG
1152}
1153
da791a66
TG
1154static int handle_exit_race(u32 __user *uaddr, u32 uval,
1155 struct task_struct *tsk)
1156{
1157 u32 uval2;
1158
1159 /*
1160 * If PF_EXITPIDONE is not yet set, then try again.
1161 */
1162 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1163 return -EAGAIN;
1164
1165 /*
1166 * Reread the user space value to handle the following situation:
1167 *
1168 * CPU0 CPU1
1169 *
1170 * sys_exit() sys_futex()
1171 * do_exit() futex_lock_pi()
1172 * futex_lock_pi_atomic()
1173 * exit_signals(tsk) No waiters:
1174 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1175 * mm_release(tsk) Set waiter bit
1176 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1177 * Set owner died attach_to_pi_owner() {
1178 * *uaddr = 0xC0000000; tsk = get_task(PID);
1179 * } if (!tsk->flags & PF_EXITING) {
1180 * ... attach();
1181 * tsk->flags |= PF_EXITPIDONE; } else {
1182 * if (!(tsk->flags & PF_EXITPIDONE))
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206}
1207
04e1b2e5
TG
1208/*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
da791a66 1212static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1213 struct futex_pi_state **ps)
e60cbc5c 1214{
e60cbc5c 1215 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1216 struct futex_pi_state *pi_state;
1217 struct task_struct *p;
e60cbc5c 1218
c87e2837 1219 /*
e3f2ddea 1220 * We are the first waiter - try to look up the real owner and attach
54a21788 1221 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1222 *
1223 * The !pid check is paranoid. None of the call sites should end up
1224 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1225 */
778e9a9c 1226 if (!pid)
da791a66 1227 return -EAGAIN;
2ee08260 1228 p = find_get_task_by_vpid(pid);
7a0ea09a 1229 if (!p)
da791a66 1230 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1231
a2129464 1232 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1233 put_task_struct(p);
1234 return -EPERM;
1235 }
1236
778e9a9c
AK
1237 /*
1238 * We need to look at the task state flags to figure out,
1239 * whether the task is exiting. To protect against the do_exit
1240 * change of the task flags, we do this protected by
1241 * p->pi_lock:
1242 */
1d615482 1243 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1244 if (unlikely(p->flags & PF_EXITING)) {
1245 /*
1246 * The task is on the way out. When PF_EXITPIDONE is
1247 * set, we know that the task has finished the
1248 * cleanup:
1249 */
da791a66 1250 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1251
1d615482 1252 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1253 put_task_struct(p);
1254 return ret;
1255 }
c87e2837 1256
54a21788
TG
1257 /*
1258 * No existing pi state. First waiter. [2]
734009e9
PZ
1259 *
1260 * This creates pi_state, we have hb->lock held, this means nothing can
1261 * observe this state, wait_lock is irrelevant.
54a21788 1262 */
c87e2837
IM
1263 pi_state = alloc_pi_state();
1264
1265 /*
04e1b2e5 1266 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1267 * the owner of it:
1268 */
1269 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1270
1271 /* Store the key for possible exit cleanups: */
d0aa7a70 1272 pi_state->key = *key;
c87e2837 1273
627371d7 1274 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1275 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1276 /*
1277 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1278 * because there is no concurrency as the object is not published yet.
1279 */
c87e2837 1280 pi_state->owner = p;
1d615482 1281 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1282
1283 put_task_struct(p);
1284
d0aa7a70 1285 *ps = pi_state;
c87e2837
IM
1286
1287 return 0;
1288}
1289
734009e9
PZ
1290static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1291 struct futex_hash_bucket *hb,
04e1b2e5
TG
1292 union futex_key *key, struct futex_pi_state **ps)
1293{
499f5aca 1294 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1295
1296 /*
1297 * If there is a waiter on that futex, validate it and
1298 * attach to the pi_state when the validation succeeds.
1299 */
499f5aca 1300 if (top_waiter)
734009e9 1301 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1302
1303 /*
1304 * We are the first waiter - try to look up the owner based on
1305 * @uval and attach to it.
1306 */
da791a66 1307 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1308}
1309
af54d6a1
TG
1310static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1311{
1312 u32 uninitialized_var(curval);
1313
ab51fbab
DB
1314 if (unlikely(should_fail_futex(true)))
1315 return -EFAULT;
1316
af54d6a1
TG
1317 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1318 return -EFAULT;
1319
734009e9 1320 /* If user space value changed, let the caller retry */
af54d6a1
TG
1321 return curval != uval ? -EAGAIN : 0;
1322}
1323
1a52084d 1324/**
d96ee56c 1325 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1326 * @uaddr: the pi futex user address
1327 * @hb: the pi futex hash bucket
1328 * @key: the futex key associated with uaddr and hb
1329 * @ps: the pi_state pointer where we store the result of the
1330 * lookup
1331 * @task: the task to perform the atomic lock work for. This will
1332 * be "current" except in the case of requeue pi.
1333 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1334 *
6c23cbbd 1335 * Return:
7b4ff1ad
MCC
1336 * - 0 - ready to wait;
1337 * - 1 - acquired the lock;
1338 * - <0 - error
1a52084d
DH
1339 *
1340 * The hb->lock and futex_key refs shall be held by the caller.
1341 */
1342static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1343 union futex_key *key,
1344 struct futex_pi_state **ps,
bab5bc9e 1345 struct task_struct *task, int set_waiters)
1a52084d 1346{
af54d6a1 1347 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1348 struct futex_q *top_waiter;
af54d6a1 1349 int ret;
1a52084d
DH
1350
1351 /*
af54d6a1
TG
1352 * Read the user space value first so we can validate a few
1353 * things before proceeding further.
1a52084d 1354 */
af54d6a1 1355 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1356 return -EFAULT;
1357
ab51fbab
DB
1358 if (unlikely(should_fail_futex(true)))
1359 return -EFAULT;
1360
1a52084d
DH
1361 /*
1362 * Detect deadlocks.
1363 */
af54d6a1 1364 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1365 return -EDEADLK;
1366
ab51fbab
DB
1367 if ((unlikely(should_fail_futex(true))))
1368 return -EDEADLK;
1369
1a52084d 1370 /*
af54d6a1
TG
1371 * Lookup existing state first. If it exists, try to attach to
1372 * its pi_state.
1a52084d 1373 */
499f5aca
PZ
1374 top_waiter = futex_top_waiter(hb, key);
1375 if (top_waiter)
734009e9 1376 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1377
1378 /*
af54d6a1
TG
1379 * No waiter and user TID is 0. We are here because the
1380 * waiters or the owner died bit is set or called from
1381 * requeue_cmp_pi or for whatever reason something took the
1382 * syscall.
1a52084d 1383 */
af54d6a1 1384 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1385 /*
af54d6a1
TG
1386 * We take over the futex. No other waiters and the user space
1387 * TID is 0. We preserve the owner died bit.
59fa6245 1388 */
af54d6a1
TG
1389 newval = uval & FUTEX_OWNER_DIED;
1390 newval |= vpid;
1a52084d 1391
af54d6a1
TG
1392 /* The futex requeue_pi code can enforce the waiters bit */
1393 if (set_waiters)
1394 newval |= FUTEX_WAITERS;
1395
1396 ret = lock_pi_update_atomic(uaddr, uval, newval);
1397 /* If the take over worked, return 1 */
1398 return ret < 0 ? ret : 1;
1399 }
1a52084d
DH
1400
1401 /*
af54d6a1
TG
1402 * First waiter. Set the waiters bit before attaching ourself to
1403 * the owner. If owner tries to unlock, it will be forced into
1404 * the kernel and blocked on hb->lock.
1a52084d 1405 */
af54d6a1
TG
1406 newval = uval | FUTEX_WAITERS;
1407 ret = lock_pi_update_atomic(uaddr, uval, newval);
1408 if (ret)
1409 return ret;
1a52084d 1410 /*
af54d6a1
TG
1411 * If the update of the user space value succeeded, we try to
1412 * attach to the owner. If that fails, no harm done, we only
1413 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1414 */
da791a66 1415 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1416}
1417
2e12978a
LJ
1418/**
1419 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1420 * @q: The futex_q to unqueue
1421 *
1422 * The q->lock_ptr must not be NULL and must be held by the caller.
1423 */
1424static void __unqueue_futex(struct futex_q *q)
1425{
1426 struct futex_hash_bucket *hb;
1427
4de1a293 1428 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1429 return;
4de1a293 1430 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1431
1432 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1433 plist_del(&q->list, &hb->chain);
11d4616b 1434 hb_waiters_dec(hb);
2e12978a
LJ
1435}
1436
1da177e4
LT
1437/*
1438 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1439 * Afterwards, the futex_q must not be accessed. Callers
1440 * must ensure to later call wake_up_q() for the actual
1441 * wakeups to occur.
1da177e4 1442 */
1d0dcb3a 1443static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1444{
f1a11e05
TG
1445 struct task_struct *p = q->task;
1446
aa10990e
DH
1447 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1448 return;
1449
1da177e4 1450 /*
1d0dcb3a
DB
1451 * Queue the task for later wakeup for after we've released
1452 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1453 */
1d0dcb3a 1454 wake_q_add(wake_q, p);
2e12978a 1455 __unqueue_futex(q);
1da177e4 1456 /*
38fcd06e
DHV
1457 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1458 * is written, without taking any locks. This is possible in the event
1459 * of a spurious wakeup, for example. A memory barrier is required here
1460 * to prevent the following store to lock_ptr from getting ahead of the
1461 * plist_del in __unqueue_futex().
1da177e4 1462 */
1b367ece 1463 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1464}
1465
16ffa12d
PZ
1466/*
1467 * Caller must hold a reference on @pi_state.
1468 */
1469static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1470{
7cfdaf38 1471 u32 uninitialized_var(curval), newval;
16ffa12d 1472 struct task_struct *new_owner;
aa2bfe55 1473 bool postunlock = false;
194a6b5b 1474 DEFINE_WAKE_Q(wake_q);
13fbca4c 1475 int ret = 0;
c87e2837 1476
c87e2837 1477 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1478 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1479 /*
bebe5b51 1480 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1481 *
1482 * When this happens, give up our locks and try again, giving
1483 * the futex_lock_pi() instance time to complete, either by
1484 * waiting on the rtmutex or removing itself from the futex
1485 * queue.
1486 */
1487 ret = -EAGAIN;
1488 goto out_unlock;
73d786bd 1489 }
c87e2837
IM
1490
1491 /*
16ffa12d
PZ
1492 * We pass it to the next owner. The WAITERS bit is always kept
1493 * enabled while there is PI state around. We cleanup the owner
1494 * died bit, because we are the owner.
c87e2837 1495 */
13fbca4c 1496 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1497
ab51fbab
DB
1498 if (unlikely(should_fail_futex(true)))
1499 ret = -EFAULT;
1500
89e9e66b 1501 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1502 ret = -EFAULT;
734009e9 1503
89e9e66b
SAS
1504 } else if (curval != uval) {
1505 /*
1506 * If a unconditional UNLOCK_PI operation (user space did not
1507 * try the TID->0 transition) raced with a waiter setting the
1508 * FUTEX_WAITERS flag between get_user() and locking the hash
1509 * bucket lock, retry the operation.
1510 */
1511 if ((FUTEX_TID_MASK & curval) == uval)
1512 ret = -EAGAIN;
1513 else
1514 ret = -EINVAL;
1515 }
734009e9 1516
16ffa12d
PZ
1517 if (ret)
1518 goto out_unlock;
c87e2837 1519
94ffac5d
PZ
1520 /*
1521 * This is a point of no return; once we modify the uval there is no
1522 * going back and subsequent operations must not fail.
1523 */
1524
b4abf910 1525 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1526 WARN_ON(list_empty(&pi_state->list));
1527 list_del_init(&pi_state->list);
b4abf910 1528 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1529
b4abf910 1530 raw_spin_lock(&new_owner->pi_lock);
627371d7 1531 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1532 list_add(&pi_state->list, &new_owner->pi_state_list);
1533 pi_state->owner = new_owner;
b4abf910 1534 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1535
aa2bfe55 1536 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1537
16ffa12d 1538out_unlock:
5293c2ef 1539 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1540
aa2bfe55
PZ
1541 if (postunlock)
1542 rt_mutex_postunlock(&wake_q);
c87e2837 1543
16ffa12d 1544 return ret;
c87e2837
IM
1545}
1546
8b8f319f
IM
1547/*
1548 * Express the locking dependencies for lockdep:
1549 */
1550static inline void
1551double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1552{
1553 if (hb1 <= hb2) {
1554 spin_lock(&hb1->lock);
1555 if (hb1 < hb2)
1556 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1557 } else { /* hb1 > hb2 */
1558 spin_lock(&hb2->lock);
1559 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1560 }
1561}
1562
5eb3dc62
DH
1563static inline void
1564double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1565{
f061d351 1566 spin_unlock(&hb1->lock);
88f502fe
IM
1567 if (hb1 != hb2)
1568 spin_unlock(&hb2->lock);
5eb3dc62
DH
1569}
1570
1da177e4 1571/*
b2d0994b 1572 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1573 */
b41277dc
DH
1574static int
1575futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1576{
e2970f2f 1577 struct futex_hash_bucket *hb;
1da177e4 1578 struct futex_q *this, *next;
38d47c1b 1579 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1580 int ret;
194a6b5b 1581 DEFINE_WAKE_Q(wake_q);
1da177e4 1582
cd689985
TG
1583 if (!bitset)
1584 return -EINVAL;
1585
9ea71503 1586 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1587 if (unlikely(ret != 0))
1588 goto out;
1589
e2970f2f 1590 hb = hash_futex(&key);
b0c29f79
DB
1591
1592 /* Make sure we really have tasks to wakeup */
1593 if (!hb_waiters_pending(hb))
1594 goto out_put_key;
1595
e2970f2f 1596 spin_lock(&hb->lock);
1da177e4 1597
0d00c7b2 1598 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1599 if (match_futex (&this->key, &key)) {
52400ba9 1600 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1601 ret = -EINVAL;
1602 break;
1603 }
cd689985
TG
1604
1605 /* Check if one of the bits is set in both bitsets */
1606 if (!(this->bitset & bitset))
1607 continue;
1608
1d0dcb3a 1609 mark_wake_futex(&wake_q, this);
1da177e4
LT
1610 if (++ret >= nr_wake)
1611 break;
1612 }
1613 }
1614
e2970f2f 1615 spin_unlock(&hb->lock);
1d0dcb3a 1616 wake_up_q(&wake_q);
b0c29f79 1617out_put_key:
ae791a2d 1618 put_futex_key(&key);
42d35d48 1619out:
1da177e4
LT
1620 return ret;
1621}
1622
30d6e0a4
JS
1623static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1624{
1625 unsigned int op = (encoded_op & 0x70000000) >> 28;
1626 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1627 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1628 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1629 int oldval, ret;
1630
1631 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1632 if (oparg < 0 || oparg > 31) {
1633 char comm[sizeof(current->comm)];
1634 /*
1635 * kill this print and return -EINVAL when userspace
1636 * is sane again
1637 */
1638 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1639 get_task_comm(comm, current), oparg);
1640 oparg &= 31;
1641 }
30d6e0a4
JS
1642 oparg = 1 << oparg;
1643 }
1644
1645 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1646 return -EFAULT;
1647
1648 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1649 if (ret)
1650 return ret;
1651
1652 switch (cmp) {
1653 case FUTEX_OP_CMP_EQ:
1654 return oldval == cmparg;
1655 case FUTEX_OP_CMP_NE:
1656 return oldval != cmparg;
1657 case FUTEX_OP_CMP_LT:
1658 return oldval < cmparg;
1659 case FUTEX_OP_CMP_GE:
1660 return oldval >= cmparg;
1661 case FUTEX_OP_CMP_LE:
1662 return oldval <= cmparg;
1663 case FUTEX_OP_CMP_GT:
1664 return oldval > cmparg;
1665 default:
1666 return -ENOSYS;
1667 }
1668}
1669
4732efbe
JJ
1670/*
1671 * Wake up all waiters hashed on the physical page that is mapped
1672 * to this virtual address:
1673 */
e2970f2f 1674static int
b41277dc 1675futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1676 int nr_wake, int nr_wake2, int op)
4732efbe 1677{
38d47c1b 1678 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1679 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1680 struct futex_q *this, *next;
e4dc5b7a 1681 int ret, op_ret;
194a6b5b 1682 DEFINE_WAKE_Q(wake_q);
4732efbe 1683
e4dc5b7a 1684retry:
9ea71503 1685 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1686 if (unlikely(ret != 0))
1687 goto out;
9ea71503 1688 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1689 if (unlikely(ret != 0))
42d35d48 1690 goto out_put_key1;
4732efbe 1691
e2970f2f
IM
1692 hb1 = hash_futex(&key1);
1693 hb2 = hash_futex(&key2);
4732efbe 1694
e4dc5b7a 1695retry_private:
eaaea803 1696 double_lock_hb(hb1, hb2);
e2970f2f 1697 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1698 if (unlikely(op_ret < 0)) {
4732efbe 1699
5eb3dc62 1700 double_unlock_hb(hb1, hb2);
4732efbe 1701
7ee1dd3f 1702#ifndef CONFIG_MMU
e2970f2f
IM
1703 /*
1704 * we don't get EFAULT from MMU faults if we don't have an MMU,
1705 * but we might get them from range checking
1706 */
7ee1dd3f 1707 ret = op_ret;
42d35d48 1708 goto out_put_keys;
7ee1dd3f
DH
1709#endif
1710
796f8d9b
DG
1711 if (unlikely(op_ret != -EFAULT)) {
1712 ret = op_ret;
42d35d48 1713 goto out_put_keys;
796f8d9b
DG
1714 }
1715
d0725992 1716 ret = fault_in_user_writeable(uaddr2);
4732efbe 1717 if (ret)
de87fcc1 1718 goto out_put_keys;
4732efbe 1719
b41277dc 1720 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1721 goto retry_private;
1722
ae791a2d
TG
1723 put_futex_key(&key2);
1724 put_futex_key(&key1);
e4dc5b7a 1725 goto retry;
4732efbe
JJ
1726 }
1727
0d00c7b2 1728 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1729 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1730 if (this->pi_state || this->rt_waiter) {
1731 ret = -EINVAL;
1732 goto out_unlock;
1733 }
1d0dcb3a 1734 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1735 if (++ret >= nr_wake)
1736 break;
1737 }
1738 }
1739
1740 if (op_ret > 0) {
4732efbe 1741 op_ret = 0;
0d00c7b2 1742 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1743 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1744 if (this->pi_state || this->rt_waiter) {
1745 ret = -EINVAL;
1746 goto out_unlock;
1747 }
1d0dcb3a 1748 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1749 if (++op_ret >= nr_wake2)
1750 break;
1751 }
1752 }
1753 ret += op_ret;
1754 }
1755
aa10990e 1756out_unlock:
5eb3dc62 1757 double_unlock_hb(hb1, hb2);
1d0dcb3a 1758 wake_up_q(&wake_q);
42d35d48 1759out_put_keys:
ae791a2d 1760 put_futex_key(&key2);
42d35d48 1761out_put_key1:
ae791a2d 1762 put_futex_key(&key1);
42d35d48 1763out:
4732efbe
JJ
1764 return ret;
1765}
1766
9121e478
DH
1767/**
1768 * requeue_futex() - Requeue a futex_q from one hb to another
1769 * @q: the futex_q to requeue
1770 * @hb1: the source hash_bucket
1771 * @hb2: the target hash_bucket
1772 * @key2: the new key for the requeued futex_q
1773 */
1774static inline
1775void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1776 struct futex_hash_bucket *hb2, union futex_key *key2)
1777{
1778
1779 /*
1780 * If key1 and key2 hash to the same bucket, no need to
1781 * requeue.
1782 */
1783 if (likely(&hb1->chain != &hb2->chain)) {
1784 plist_del(&q->list, &hb1->chain);
11d4616b 1785 hb_waiters_dec(hb1);
11d4616b 1786 hb_waiters_inc(hb2);
fe1bce9e 1787 plist_add(&q->list, &hb2->chain);
9121e478 1788 q->lock_ptr = &hb2->lock;
9121e478
DH
1789 }
1790 get_futex_key_refs(key2);
1791 q->key = *key2;
1792}
1793
52400ba9
DH
1794/**
1795 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1796 * @q: the futex_q
1797 * @key: the key of the requeue target futex
1798 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1799 *
1800 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1801 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1802 * to the requeue target futex so the waiter can detect the wakeup on the right
1803 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1804 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1805 * to protect access to the pi_state to fixup the owner later. Must be called
1806 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1807 */
1808static inline
beda2c7e
DH
1809void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1810 struct futex_hash_bucket *hb)
52400ba9 1811{
52400ba9
DH
1812 get_futex_key_refs(key);
1813 q->key = *key;
1814
2e12978a 1815 __unqueue_futex(q);
52400ba9
DH
1816
1817 WARN_ON(!q->rt_waiter);
1818 q->rt_waiter = NULL;
1819
beda2c7e 1820 q->lock_ptr = &hb->lock;
beda2c7e 1821
f1a11e05 1822 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1823}
1824
1825/**
1826 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1827 * @pifutex: the user address of the to futex
1828 * @hb1: the from futex hash bucket, must be locked by the caller
1829 * @hb2: the to futex hash bucket, must be locked by the caller
1830 * @key1: the from futex key
1831 * @key2: the to futex key
1832 * @ps: address to store the pi_state pointer
1833 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1834 *
1835 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1836 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1837 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1838 * hb1 and hb2 must be held by the caller.
52400ba9 1839 *
6c23cbbd 1840 * Return:
7b4ff1ad
MCC
1841 * - 0 - failed to acquire the lock atomically;
1842 * - >0 - acquired the lock, return value is vpid of the top_waiter
1843 * - <0 - error
52400ba9
DH
1844 */
1845static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1846 struct futex_hash_bucket *hb1,
1847 struct futex_hash_bucket *hb2,
1848 union futex_key *key1, union futex_key *key2,
bab5bc9e 1849 struct futex_pi_state **ps, int set_waiters)
52400ba9 1850{
bab5bc9e 1851 struct futex_q *top_waiter = NULL;
52400ba9 1852 u32 curval;
866293ee 1853 int ret, vpid;
52400ba9
DH
1854
1855 if (get_futex_value_locked(&curval, pifutex))
1856 return -EFAULT;
1857
ab51fbab
DB
1858 if (unlikely(should_fail_futex(true)))
1859 return -EFAULT;
1860
bab5bc9e
DH
1861 /*
1862 * Find the top_waiter and determine if there are additional waiters.
1863 * If the caller intends to requeue more than 1 waiter to pifutex,
1864 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1865 * as we have means to handle the possible fault. If not, don't set
1866 * the bit unecessarily as it will force the subsequent unlock to enter
1867 * the kernel.
1868 */
52400ba9
DH
1869 top_waiter = futex_top_waiter(hb1, key1);
1870
1871 /* There are no waiters, nothing for us to do. */
1872 if (!top_waiter)
1873 return 0;
1874
84bc4af5
DH
1875 /* Ensure we requeue to the expected futex. */
1876 if (!match_futex(top_waiter->requeue_pi_key, key2))
1877 return -EINVAL;
1878
52400ba9 1879 /*
bab5bc9e
DH
1880 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1881 * the contended case or if set_waiters is 1. The pi_state is returned
1882 * in ps in contended cases.
52400ba9 1883 */
866293ee 1884 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1885 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1886 set_waiters);
866293ee 1887 if (ret == 1) {
beda2c7e 1888 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1889 return vpid;
1890 }
52400ba9
DH
1891 return ret;
1892}
1893
1894/**
1895 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1896 * @uaddr1: source futex user address
b41277dc 1897 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1898 * @uaddr2: target futex user address
1899 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1900 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1901 * @cmpval: @uaddr1 expected value (or %NULL)
1902 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1903 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1904 *
1905 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1906 * uaddr2 atomically on behalf of the top waiter.
1907 *
6c23cbbd 1908 * Return:
7b4ff1ad
MCC
1909 * - >=0 - on success, the number of tasks requeued or woken;
1910 * - <0 - on error
1da177e4 1911 */
b41277dc
DH
1912static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1913 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1914 u32 *cmpval, int requeue_pi)
1da177e4 1915{
38d47c1b 1916 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1917 int drop_count = 0, task_count = 0, ret;
1918 struct futex_pi_state *pi_state = NULL;
e2970f2f 1919 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1920 struct futex_q *this, *next;
194a6b5b 1921 DEFINE_WAKE_Q(wake_q);
52400ba9 1922
fbe0e839
LJ
1923 if (nr_wake < 0 || nr_requeue < 0)
1924 return -EINVAL;
1925
bc2eecd7
NP
1926 /*
1927 * When PI not supported: return -ENOSYS if requeue_pi is true,
1928 * consequently the compiler knows requeue_pi is always false past
1929 * this point which will optimize away all the conditional code
1930 * further down.
1931 */
1932 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1933 return -ENOSYS;
1934
52400ba9 1935 if (requeue_pi) {
e9c243a5
TG
1936 /*
1937 * Requeue PI only works on two distinct uaddrs. This
1938 * check is only valid for private futexes. See below.
1939 */
1940 if (uaddr1 == uaddr2)
1941 return -EINVAL;
1942
52400ba9
DH
1943 /*
1944 * requeue_pi requires a pi_state, try to allocate it now
1945 * without any locks in case it fails.
1946 */
1947 if (refill_pi_state_cache())
1948 return -ENOMEM;
1949 /*
1950 * requeue_pi must wake as many tasks as it can, up to nr_wake
1951 * + nr_requeue, since it acquires the rt_mutex prior to
1952 * returning to userspace, so as to not leave the rt_mutex with
1953 * waiters and no owner. However, second and third wake-ups
1954 * cannot be predicted as they involve race conditions with the
1955 * first wake and a fault while looking up the pi_state. Both
1956 * pthread_cond_signal() and pthread_cond_broadcast() should
1957 * use nr_wake=1.
1958 */
1959 if (nr_wake != 1)
1960 return -EINVAL;
1961 }
1da177e4 1962
42d35d48 1963retry:
9ea71503 1964 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1965 if (unlikely(ret != 0))
1966 goto out;
9ea71503
SB
1967 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1968 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1969 if (unlikely(ret != 0))
42d35d48 1970 goto out_put_key1;
1da177e4 1971
e9c243a5
TG
1972 /*
1973 * The check above which compares uaddrs is not sufficient for
1974 * shared futexes. We need to compare the keys:
1975 */
1976 if (requeue_pi && match_futex(&key1, &key2)) {
1977 ret = -EINVAL;
1978 goto out_put_keys;
1979 }
1980
e2970f2f
IM
1981 hb1 = hash_futex(&key1);
1982 hb2 = hash_futex(&key2);
1da177e4 1983
e4dc5b7a 1984retry_private:
69cd9eba 1985 hb_waiters_inc(hb2);
8b8f319f 1986 double_lock_hb(hb1, hb2);
1da177e4 1987
e2970f2f
IM
1988 if (likely(cmpval != NULL)) {
1989 u32 curval;
1da177e4 1990
e2970f2f 1991 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1992
1993 if (unlikely(ret)) {
5eb3dc62 1994 double_unlock_hb(hb1, hb2);
69cd9eba 1995 hb_waiters_dec(hb2);
1da177e4 1996
e2970f2f 1997 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1998 if (ret)
1999 goto out_put_keys;
1da177e4 2000
b41277dc 2001 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2002 goto retry_private;
1da177e4 2003
ae791a2d
TG
2004 put_futex_key(&key2);
2005 put_futex_key(&key1);
e4dc5b7a 2006 goto retry;
1da177e4 2007 }
e2970f2f 2008 if (curval != *cmpval) {
1da177e4
LT
2009 ret = -EAGAIN;
2010 goto out_unlock;
2011 }
2012 }
2013
52400ba9 2014 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2015 /*
2016 * Attempt to acquire uaddr2 and wake the top waiter. If we
2017 * intend to requeue waiters, force setting the FUTEX_WAITERS
2018 * bit. We force this here where we are able to easily handle
2019 * faults rather in the requeue loop below.
2020 */
52400ba9 2021 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2022 &key2, &pi_state, nr_requeue);
52400ba9
DH
2023
2024 /*
2025 * At this point the top_waiter has either taken uaddr2 or is
2026 * waiting on it. If the former, then the pi_state will not
2027 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2028 * reference to it. If the lock was taken, ret contains the
2029 * vpid of the top waiter task.
ecb38b78
TG
2030 * If the lock was not taken, we have pi_state and an initial
2031 * refcount on it. In case of an error we have nothing.
52400ba9 2032 */
866293ee 2033 if (ret > 0) {
52400ba9 2034 WARN_ON(pi_state);
89061d3d 2035 drop_count++;
52400ba9 2036 task_count++;
866293ee 2037 /*
ecb38b78
TG
2038 * If we acquired the lock, then the user space value
2039 * of uaddr2 should be vpid. It cannot be changed by
2040 * the top waiter as it is blocked on hb2 lock if it
2041 * tries to do so. If something fiddled with it behind
2042 * our back the pi state lookup might unearth it. So
2043 * we rather use the known value than rereading and
2044 * handing potential crap to lookup_pi_state.
2045 *
2046 * If that call succeeds then we have pi_state and an
2047 * initial refcount on it.
866293ee 2048 */
734009e9 2049 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2050 }
2051
2052 switch (ret) {
2053 case 0:
ecb38b78 2054 /* We hold a reference on the pi state. */
52400ba9 2055 break;
4959f2de
TG
2056
2057 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2058 case -EFAULT:
2059 double_unlock_hb(hb1, hb2);
69cd9eba 2060 hb_waiters_dec(hb2);
ae791a2d
TG
2061 put_futex_key(&key2);
2062 put_futex_key(&key1);
d0725992 2063 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2064 if (!ret)
2065 goto retry;
2066 goto out;
2067 case -EAGAIN:
af54d6a1
TG
2068 /*
2069 * Two reasons for this:
2070 * - Owner is exiting and we just wait for the
2071 * exit to complete.
2072 * - The user space value changed.
2073 */
52400ba9 2074 double_unlock_hb(hb1, hb2);
69cd9eba 2075 hb_waiters_dec(hb2);
ae791a2d
TG
2076 put_futex_key(&key2);
2077 put_futex_key(&key1);
52400ba9
DH
2078 cond_resched();
2079 goto retry;
2080 default:
2081 goto out_unlock;
2082 }
2083 }
2084
0d00c7b2 2085 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2086 if (task_count - nr_wake >= nr_requeue)
2087 break;
2088
2089 if (!match_futex(&this->key, &key1))
1da177e4 2090 continue;
52400ba9 2091
392741e0
DH
2092 /*
2093 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094 * be paired with each other and no other futex ops.
aa10990e
DH
2095 *
2096 * We should never be requeueing a futex_q with a pi_state,
2097 * which is awaiting a futex_unlock_pi().
392741e0
DH
2098 */
2099 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2100 (!requeue_pi && this->rt_waiter) ||
2101 this->pi_state) {
392741e0
DH
2102 ret = -EINVAL;
2103 break;
2104 }
52400ba9
DH
2105
2106 /*
2107 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2108 * lock, we already woke the top_waiter. If not, it will be
2109 * woken by futex_unlock_pi().
2110 */
2111 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2112 mark_wake_futex(&wake_q, this);
52400ba9
DH
2113 continue;
2114 }
1da177e4 2115
84bc4af5
DH
2116 /* Ensure we requeue to the expected futex for requeue_pi. */
2117 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118 ret = -EINVAL;
2119 break;
2120 }
2121
52400ba9
DH
2122 /*
2123 * Requeue nr_requeue waiters and possibly one more in the case
2124 * of requeue_pi if we couldn't acquire the lock atomically.
2125 */
2126 if (requeue_pi) {
ecb38b78
TG
2127 /*
2128 * Prepare the waiter to take the rt_mutex. Take a
2129 * refcount on the pi_state and store the pointer in
2130 * the futex_q object of the waiter.
2131 */
bf92cf3a 2132 get_pi_state(pi_state);
52400ba9
DH
2133 this->pi_state = pi_state;
2134 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135 this->rt_waiter,
c051b21f 2136 this->task);
52400ba9 2137 if (ret == 1) {
ecb38b78
TG
2138 /*
2139 * We got the lock. We do neither drop the
2140 * refcount on pi_state nor clear
2141 * this->pi_state because the waiter needs the
2142 * pi_state for cleaning up the user space
2143 * value. It will drop the refcount after
2144 * doing so.
2145 */
beda2c7e 2146 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2147 drop_count++;
52400ba9
DH
2148 continue;
2149 } else if (ret) {
ecb38b78
TG
2150 /*
2151 * rt_mutex_start_proxy_lock() detected a
2152 * potential deadlock when we tried to queue
2153 * that waiter. Drop the pi_state reference
2154 * which we took above and remove the pointer
2155 * to the state from the waiters futex_q
2156 * object.
2157 */
52400ba9 2158 this->pi_state = NULL;
29e9ee5d 2159 put_pi_state(pi_state);
885c2cb7
TG
2160 /*
2161 * We stop queueing more waiters and let user
2162 * space deal with the mess.
2163 */
2164 break;
52400ba9 2165 }
1da177e4 2166 }
52400ba9
DH
2167 requeue_futex(this, hb1, hb2, &key2);
2168 drop_count++;
1da177e4
LT
2169 }
2170
ecb38b78
TG
2171 /*
2172 * We took an extra initial reference to the pi_state either
2173 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2174 * need to drop it here again.
2175 */
29e9ee5d 2176 put_pi_state(pi_state);
885c2cb7
TG
2177
2178out_unlock:
5eb3dc62 2179 double_unlock_hb(hb1, hb2);
1d0dcb3a 2180 wake_up_q(&wake_q);
69cd9eba 2181 hb_waiters_dec(hb2);
1da177e4 2182
cd84a42f
DH
2183 /*
2184 * drop_futex_key_refs() must be called outside the spinlocks. During
2185 * the requeue we moved futex_q's from the hash bucket at key1 to the
2186 * one at key2 and updated their key pointer. We no longer need to
2187 * hold the references to key1.
2188 */
1da177e4 2189 while (--drop_count >= 0)
9adef58b 2190 drop_futex_key_refs(&key1);
1da177e4 2191
42d35d48 2192out_put_keys:
ae791a2d 2193 put_futex_key(&key2);
42d35d48 2194out_put_key1:
ae791a2d 2195 put_futex_key(&key1);
42d35d48 2196out:
52400ba9 2197 return ret ? ret : task_count;
1da177e4
LT
2198}
2199
2200/* The key must be already stored in q->key. */
82af7aca 2201static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2202 __acquires(&hb->lock)
1da177e4 2203{
e2970f2f 2204 struct futex_hash_bucket *hb;
1da177e4 2205
e2970f2f 2206 hb = hash_futex(&q->key);
11d4616b
LT
2207
2208 /*
2209 * Increment the counter before taking the lock so that
2210 * a potential waker won't miss a to-be-slept task that is
2211 * waiting for the spinlock. This is safe as all queue_lock()
2212 * users end up calling queue_me(). Similarly, for housekeeping,
2213 * decrement the counter at queue_unlock() when some error has
2214 * occurred and we don't end up adding the task to the list.
2215 */
2216 hb_waiters_inc(hb);
2217
e2970f2f 2218 q->lock_ptr = &hb->lock;
1da177e4 2219
8ad7b378 2220 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2221 return hb;
1da177e4
LT
2222}
2223
d40d65c8 2224static inline void
0d00c7b2 2225queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2226 __releases(&hb->lock)
d40d65c8
DH
2227{
2228 spin_unlock(&hb->lock);
11d4616b 2229 hb_waiters_dec(hb);
d40d65c8
DH
2230}
2231
cfafcd11 2232static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2233{
ec92d082
PP
2234 int prio;
2235
2236 /*
2237 * The priority used to register this element is
2238 * - either the real thread-priority for the real-time threads
2239 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2240 * - or MAX_RT_PRIO for non-RT threads.
2241 * Thus, all RT-threads are woken first in priority order, and
2242 * the others are woken last, in FIFO order.
2243 */
2244 prio = min(current->normal_prio, MAX_RT_PRIO);
2245
2246 plist_node_init(&q->list, prio);
ec92d082 2247 plist_add(&q->list, &hb->chain);
c87e2837 2248 q->task = current;
cfafcd11
PZ
2249}
2250
2251/**
2252 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2253 * @q: The futex_q to enqueue
2254 * @hb: The destination hash bucket
2255 *
2256 * The hb->lock must be held by the caller, and is released here. A call to
2257 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2258 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2259 * or nothing if the unqueue is done as part of the wake process and the unqueue
2260 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2261 * an example).
2262 */
2263static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2264 __releases(&hb->lock)
2265{
2266 __queue_me(q, hb);
e2970f2f 2267 spin_unlock(&hb->lock);
1da177e4
LT
2268}
2269
d40d65c8
DH
2270/**
2271 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2272 * @q: The futex_q to unqueue
2273 *
2274 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2275 * be paired with exactly one earlier call to queue_me().
2276 *
6c23cbbd 2277 * Return:
7b4ff1ad
MCC
2278 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2279 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2280 */
1da177e4
LT
2281static int unqueue_me(struct futex_q *q)
2282{
1da177e4 2283 spinlock_t *lock_ptr;
e2970f2f 2284 int ret = 0;
1da177e4
LT
2285
2286 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2287retry:
29b75eb2
JZ
2288 /*
2289 * q->lock_ptr can change between this read and the following spin_lock.
2290 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2291 * optimizing lock_ptr out of the logic below.
2292 */
2293 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2294 if (lock_ptr != NULL) {
1da177e4
LT
2295 spin_lock(lock_ptr);
2296 /*
2297 * q->lock_ptr can change between reading it and
2298 * spin_lock(), causing us to take the wrong lock. This
2299 * corrects the race condition.
2300 *
2301 * Reasoning goes like this: if we have the wrong lock,
2302 * q->lock_ptr must have changed (maybe several times)
2303 * between reading it and the spin_lock(). It can
2304 * change again after the spin_lock() but only if it was
2305 * already changed before the spin_lock(). It cannot,
2306 * however, change back to the original value. Therefore
2307 * we can detect whether we acquired the correct lock.
2308 */
2309 if (unlikely(lock_ptr != q->lock_ptr)) {
2310 spin_unlock(lock_ptr);
2311 goto retry;
2312 }
2e12978a 2313 __unqueue_futex(q);
c87e2837
IM
2314
2315 BUG_ON(q->pi_state);
2316
1da177e4
LT
2317 spin_unlock(lock_ptr);
2318 ret = 1;
2319 }
2320
9adef58b 2321 drop_futex_key_refs(&q->key);
1da177e4
LT
2322 return ret;
2323}
2324
c87e2837
IM
2325/*
2326 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2327 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2328 * and dropped here.
c87e2837 2329 */
d0aa7a70 2330static void unqueue_me_pi(struct futex_q *q)
15e408cd 2331 __releases(q->lock_ptr)
c87e2837 2332{
2e12978a 2333 __unqueue_futex(q);
c87e2837
IM
2334
2335 BUG_ON(!q->pi_state);
29e9ee5d 2336 put_pi_state(q->pi_state);
c87e2837
IM
2337 q->pi_state = NULL;
2338
d0aa7a70 2339 spin_unlock(q->lock_ptr);
c87e2837
IM
2340}
2341
778e9a9c 2342static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2343 struct task_struct *argowner)
d0aa7a70 2344{
d0aa7a70 2345 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2346 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2347 struct task_struct *oldowner, *newowner;
2348 u32 newtid;
e4dc5b7a 2349 int ret;
d0aa7a70 2350
c1e2f0ea
PZ
2351 lockdep_assert_held(q->lock_ptr);
2352
734009e9
PZ
2353 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2354
2355 oldowner = pi_state->owner;
1b7558e4
TG
2356
2357 /*
c1e2f0ea 2358 * We are here because either:
16ffa12d 2359 *
c1e2f0ea
PZ
2360 * - we stole the lock and pi_state->owner needs updating to reflect
2361 * that (@argowner == current),
2362 *
2363 * or:
2364 *
2365 * - someone stole our lock and we need to fix things to point to the
2366 * new owner (@argowner == NULL).
2367 *
2368 * Either way, we have to replace the TID in the user space variable.
8161239a 2369 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2370 *
b2d0994b
DH
2371 * Note: We write the user space value _before_ changing the pi_state
2372 * because we can fault here. Imagine swapped out pages or a fork
2373 * that marked all the anonymous memory readonly for cow.
1b7558e4 2374 *
734009e9
PZ
2375 * Modifying pi_state _before_ the user space value would leave the
2376 * pi_state in an inconsistent state when we fault here, because we
2377 * need to drop the locks to handle the fault. This might be observed
2378 * in the PID check in lookup_pi_state.
1b7558e4
TG
2379 */
2380retry:
c1e2f0ea
PZ
2381 if (!argowner) {
2382 if (oldowner != current) {
2383 /*
2384 * We raced against a concurrent self; things are
2385 * already fixed up. Nothing to do.
2386 */
2387 ret = 0;
2388 goto out_unlock;
2389 }
2390
2391 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2392 /* We got the lock after all, nothing to fix. */
2393 ret = 0;
2394 goto out_unlock;
2395 }
2396
2397 /*
2398 * Since we just failed the trylock; there must be an owner.
2399 */
2400 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2401 BUG_ON(!newowner);
2402 } else {
2403 WARN_ON_ONCE(argowner != current);
2404 if (oldowner == current) {
2405 /*
2406 * We raced against a concurrent self; things are
2407 * already fixed up. Nothing to do.
2408 */
2409 ret = 0;
2410 goto out_unlock;
2411 }
2412 newowner = argowner;
2413 }
2414
2415 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2416 /* Owner died? */
2417 if (!pi_state->owner)
2418 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2419
1b7558e4
TG
2420 if (get_futex_value_locked(&uval, uaddr))
2421 goto handle_fault;
2422
16ffa12d 2423 for (;;) {
1b7558e4
TG
2424 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2425
37a9d912 2426 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2427 goto handle_fault;
2428 if (curval == uval)
2429 break;
2430 uval = curval;
2431 }
2432
2433 /*
2434 * We fixed up user space. Now we need to fix the pi_state
2435 * itself.
2436 */
d0aa7a70 2437 if (pi_state->owner != NULL) {
734009e9 2438 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2439 WARN_ON(list_empty(&pi_state->list));
2440 list_del_init(&pi_state->list);
734009e9 2441 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2442 }
d0aa7a70 2443
cdf71a10 2444 pi_state->owner = newowner;
d0aa7a70 2445
734009e9 2446 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2447 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2448 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2449 raw_spin_unlock(&newowner->pi_lock);
2450 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2451
1b7558e4 2452 return 0;
d0aa7a70 2453
d0aa7a70 2454 /*
734009e9
PZ
2455 * To handle the page fault we need to drop the locks here. That gives
2456 * the other task (either the highest priority waiter itself or the
2457 * task which stole the rtmutex) the chance to try the fixup of the
2458 * pi_state. So once we are back from handling the fault we need to
2459 * check the pi_state after reacquiring the locks and before trying to
2460 * do another fixup. When the fixup has been done already we simply
2461 * return.
2462 *
2463 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2464 * drop hb->lock since the caller owns the hb -> futex_q relation.
2465 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2466 */
1b7558e4 2467handle_fault:
734009e9 2468 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2469 spin_unlock(q->lock_ptr);
778e9a9c 2470
d0725992 2471 ret = fault_in_user_writeable(uaddr);
778e9a9c 2472
1b7558e4 2473 spin_lock(q->lock_ptr);
734009e9 2474 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2475
1b7558e4
TG
2476 /*
2477 * Check if someone else fixed it for us:
2478 */
734009e9
PZ
2479 if (pi_state->owner != oldowner) {
2480 ret = 0;
2481 goto out_unlock;
2482 }
1b7558e4
TG
2483
2484 if (ret)
734009e9 2485 goto out_unlock;
1b7558e4
TG
2486
2487 goto retry;
734009e9
PZ
2488
2489out_unlock:
2490 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2491 return ret;
d0aa7a70
PP
2492}
2493
72c1bbf3 2494static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2495
dd973998
DH
2496/**
2497 * fixup_owner() - Post lock pi_state and corner case management
2498 * @uaddr: user address of the futex
dd973998
DH
2499 * @q: futex_q (contains pi_state and access to the rt_mutex)
2500 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2501 *
2502 * After attempting to lock an rt_mutex, this function is called to cleanup
2503 * the pi_state owner as well as handle race conditions that may allow us to
2504 * acquire the lock. Must be called with the hb lock held.
2505 *
6c23cbbd 2506 * Return:
7b4ff1ad
MCC
2507 * - 1 - success, lock taken;
2508 * - 0 - success, lock not taken;
2509 * - <0 - on error (-EFAULT)
dd973998 2510 */
ae791a2d 2511static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2512{
dd973998
DH
2513 int ret = 0;
2514
2515 if (locked) {
2516 /*
2517 * Got the lock. We might not be the anticipated owner if we
2518 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2519 *
c1e2f0ea
PZ
2520 * Speculative pi_state->owner read (we don't hold wait_lock);
2521 * since we own the lock pi_state->owner == current is the
2522 * stable state, anything else needs more attention.
dd973998
DH
2523 */
2524 if (q->pi_state->owner != current)
ae791a2d 2525 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2526 goto out;
2527 }
2528
c1e2f0ea
PZ
2529 /*
2530 * If we didn't get the lock; check if anybody stole it from us. In
2531 * that case, we need to fix up the uval to point to them instead of
2532 * us, otherwise bad things happen. [10]
2533 *
2534 * Another speculative read; pi_state->owner == current is unstable
2535 * but needs our attention.
2536 */
2537 if (q->pi_state->owner == current) {
2538 ret = fixup_pi_state_owner(uaddr, q, NULL);
2539 goto out;
2540 }
2541
dd973998
DH
2542 /*
2543 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2544 * the owner of the rt_mutex.
dd973998 2545 */
73d786bd 2546 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2547 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2548 "pi-state %p\n", ret,
2549 q->pi_state->pi_mutex.owner,
2550 q->pi_state->owner);
73d786bd 2551 }
dd973998
DH
2552
2553out:
2554 return ret ? ret : locked;
2555}
2556
ca5f9524
DH
2557/**
2558 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2559 * @hb: the futex hash bucket, must be locked by the caller
2560 * @q: the futex_q to queue up on
2561 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2562 */
2563static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2564 struct hrtimer_sleeper *timeout)
ca5f9524 2565{
9beba3c5
DH
2566 /*
2567 * The task state is guaranteed to be set before another task can
b92b8b35 2568 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2569 * queue_me() calls spin_unlock() upon completion, both serializing
2570 * access to the hash list and forcing another memory barrier.
2571 */
f1a11e05 2572 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2573 queue_me(q, hb);
ca5f9524
DH
2574
2575 /* Arm the timer */
2e4b0d3f 2576 if (timeout)
ca5f9524 2577 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2578
2579 /*
0729e196
DH
2580 * If we have been removed from the hash list, then another task
2581 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2582 */
2583 if (likely(!plist_node_empty(&q->list))) {
2584 /*
2585 * If the timer has already expired, current will already be
2586 * flagged for rescheduling. Only call schedule if there
2587 * is no timeout, or if it has yet to expire.
2588 */
2589 if (!timeout || timeout->task)
88c8004f 2590 freezable_schedule();
ca5f9524
DH
2591 }
2592 __set_current_state(TASK_RUNNING);
2593}
2594
f801073f
DH
2595/**
2596 * futex_wait_setup() - Prepare to wait on a futex
2597 * @uaddr: the futex userspace address
2598 * @val: the expected value
b41277dc 2599 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2600 * @q: the associated futex_q
2601 * @hb: storage for hash_bucket pointer to be returned to caller
2602 *
2603 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2604 * compare it with the expected value. Handle atomic faults internally.
2605 * Return with the hb lock held and a q.key reference on success, and unlocked
2606 * with no q.key reference on failure.
2607 *
6c23cbbd 2608 * Return:
7b4ff1ad
MCC
2609 * - 0 - uaddr contains val and hb has been locked;
2610 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2611 */
b41277dc 2612static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2613 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2614{
e2970f2f
IM
2615 u32 uval;
2616 int ret;
1da177e4 2617
1da177e4 2618 /*
b2d0994b 2619 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2620 * Order is important:
2621 *
2622 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2623 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2624 *
2625 * The basic logical guarantee of a futex is that it blocks ONLY
2626 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2627 * any cond. If we locked the hash-bucket after testing *uaddr, that
2628 * would open a race condition where we could block indefinitely with
1da177e4
LT
2629 * cond(var) false, which would violate the guarantee.
2630 *
8fe8f545
ML
2631 * On the other hand, we insert q and release the hash-bucket only
2632 * after testing *uaddr. This guarantees that futex_wait() will NOT
2633 * absorb a wakeup if *uaddr does not match the desired values
2634 * while the syscall executes.
1da177e4 2635 */
f801073f 2636retry:
9ea71503 2637 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2638 if (unlikely(ret != 0))
a5a2a0c7 2639 return ret;
f801073f
DH
2640
2641retry_private:
2642 *hb = queue_lock(q);
2643
e2970f2f 2644 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2645
f801073f 2646 if (ret) {
0d00c7b2 2647 queue_unlock(*hb);
1da177e4 2648
e2970f2f 2649 ret = get_user(uval, uaddr);
e4dc5b7a 2650 if (ret)
f801073f 2651 goto out;
1da177e4 2652
b41277dc 2653 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2654 goto retry_private;
2655
ae791a2d 2656 put_futex_key(&q->key);
e4dc5b7a 2657 goto retry;
1da177e4 2658 }
ca5f9524 2659
f801073f 2660 if (uval != val) {
0d00c7b2 2661 queue_unlock(*hb);
f801073f 2662 ret = -EWOULDBLOCK;
2fff78c7 2663 }
1da177e4 2664
f801073f
DH
2665out:
2666 if (ret)
ae791a2d 2667 put_futex_key(&q->key);
f801073f
DH
2668 return ret;
2669}
2670
b41277dc
DH
2671static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2672 ktime_t *abs_time, u32 bitset)
f801073f
DH
2673{
2674 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2675 struct restart_block *restart;
2676 struct futex_hash_bucket *hb;
5bdb05f9 2677 struct futex_q q = futex_q_init;
f801073f
DH
2678 int ret;
2679
2680 if (!bitset)
2681 return -EINVAL;
f801073f
DH
2682 q.bitset = bitset;
2683
2684 if (abs_time) {
2685 to = &timeout;
2686
b41277dc
DH
2687 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2688 CLOCK_REALTIME : CLOCK_MONOTONIC,
2689 HRTIMER_MODE_ABS);
f801073f
DH
2690 hrtimer_init_sleeper(to, current);
2691 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2692 current->timer_slack_ns);
2693 }
2694
d58e6576 2695retry:
7ada876a
DH
2696 /*
2697 * Prepare to wait on uaddr. On success, holds hb lock and increments
2698 * q.key refs.
2699 */
b41277dc 2700 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2701 if (ret)
2702 goto out;
2703
ca5f9524 2704 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2705 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2706
2707 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2708 ret = 0;
7ada876a 2709 /* unqueue_me() drops q.key ref */
1da177e4 2710 if (!unqueue_me(&q))
7ada876a 2711 goto out;
2fff78c7 2712 ret = -ETIMEDOUT;
ca5f9524 2713 if (to && !to->task)
7ada876a 2714 goto out;
72c1bbf3 2715
e2970f2f 2716 /*
d58e6576
TG
2717 * We expect signal_pending(current), but we might be the
2718 * victim of a spurious wakeup as well.
e2970f2f 2719 */
7ada876a 2720 if (!signal_pending(current))
d58e6576 2721 goto retry;
d58e6576 2722
2fff78c7 2723 ret = -ERESTARTSYS;
c19384b5 2724 if (!abs_time)
7ada876a 2725 goto out;
1da177e4 2726
f56141e3 2727 restart = &current->restart_block;
2fff78c7 2728 restart->fn = futex_wait_restart;
a3c74c52 2729 restart->futex.uaddr = uaddr;
2fff78c7 2730 restart->futex.val = val;
2456e855 2731 restart->futex.time = *abs_time;
2fff78c7 2732 restart->futex.bitset = bitset;
0cd9c649 2733 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2734
2fff78c7
PZ
2735 ret = -ERESTART_RESTARTBLOCK;
2736
42d35d48 2737out:
ca5f9524
DH
2738 if (to) {
2739 hrtimer_cancel(&to->timer);
2740 destroy_hrtimer_on_stack(&to->timer);
2741 }
c87e2837
IM
2742 return ret;
2743}
2744
72c1bbf3
NP
2745
2746static long futex_wait_restart(struct restart_block *restart)
2747{
a3c74c52 2748 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2749 ktime_t t, *tp = NULL;
72c1bbf3 2750
a72188d8 2751 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2752 t = restart->futex.time;
a72188d8
DH
2753 tp = &t;
2754 }
72c1bbf3 2755 restart->fn = do_no_restart_syscall;
b41277dc
DH
2756
2757 return (long)futex_wait(uaddr, restart->futex.flags,
2758 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2759}
2760
2761
c87e2837
IM
2762/*
2763 * Userspace tried a 0 -> TID atomic transition of the futex value
2764 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2765 * if there are waiters then it will block as a consequence of relying
2766 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2767 * a 0 value of the futex too.).
2768 *
2769 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2770 */
996636dd 2771static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2772 ktime_t *time, int trylock)
c87e2837 2773{
c5780e97 2774 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2775 struct futex_pi_state *pi_state = NULL;
cfafcd11 2776 struct rt_mutex_waiter rt_waiter;
c87e2837 2777 struct futex_hash_bucket *hb;
5bdb05f9 2778 struct futex_q q = futex_q_init;
dd973998 2779 int res, ret;
c87e2837 2780
bc2eecd7
NP
2781 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2782 return -ENOSYS;
2783
c87e2837
IM
2784 if (refill_pi_state_cache())
2785 return -ENOMEM;
2786
c19384b5 2787 if (time) {
c5780e97 2788 to = &timeout;
237fc6e7
TG
2789 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2790 HRTIMER_MODE_ABS);
c5780e97 2791 hrtimer_init_sleeper(to, current);
cc584b21 2792 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2793 }
2794
42d35d48 2795retry:
9ea71503 2796 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2797 if (unlikely(ret != 0))
42d35d48 2798 goto out;
c87e2837 2799
e4dc5b7a 2800retry_private:
82af7aca 2801 hb = queue_lock(&q);
c87e2837 2802
bab5bc9e 2803 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2804 if (unlikely(ret)) {
767f509c
DB
2805 /*
2806 * Atomic work succeeded and we got the lock,
2807 * or failed. Either way, we do _not_ block.
2808 */
778e9a9c 2809 switch (ret) {
1a52084d
DH
2810 case 1:
2811 /* We got the lock. */
2812 ret = 0;
2813 goto out_unlock_put_key;
2814 case -EFAULT:
2815 goto uaddr_faulted;
778e9a9c
AK
2816 case -EAGAIN:
2817 /*
af54d6a1
TG
2818 * Two reasons for this:
2819 * - Task is exiting and we just wait for the
2820 * exit to complete.
2821 * - The user space value changed.
778e9a9c 2822 */
0d00c7b2 2823 queue_unlock(hb);
ae791a2d 2824 put_futex_key(&q.key);
778e9a9c
AK
2825 cond_resched();
2826 goto retry;
778e9a9c 2827 default:
42d35d48 2828 goto out_unlock_put_key;
c87e2837 2829 }
c87e2837
IM
2830 }
2831
cfafcd11
PZ
2832 WARN_ON(!q.pi_state);
2833
c87e2837
IM
2834 /*
2835 * Only actually queue now that the atomic ops are done:
2836 */
cfafcd11 2837 __queue_me(&q, hb);
c87e2837 2838
cfafcd11 2839 if (trylock) {
5293c2ef 2840 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2841 /* Fixup the trylock return value: */
2842 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2843 goto no_block;
c87e2837
IM
2844 }
2845
56222b21
PZ
2846 rt_mutex_init_waiter(&rt_waiter);
2847
cfafcd11 2848 /*
56222b21
PZ
2849 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2850 * hold it while doing rt_mutex_start_proxy(), because then it will
2851 * include hb->lock in the blocking chain, even through we'll not in
2852 * fact hold it while blocking. This will lead it to report -EDEADLK
2853 * and BUG when futex_unlock_pi() interleaves with this.
2854 *
2855 * Therefore acquire wait_lock while holding hb->lock, but drop the
2856 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2857 * serializes against futex_unlock_pi() as that does the exact same
2858 * lock handoff sequence.
cfafcd11 2859 */
56222b21
PZ
2860 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2861 spin_unlock(q.lock_ptr);
2862 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2863 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2864
cfafcd11
PZ
2865 if (ret) {
2866 if (ret == 1)
2867 ret = 0;
2868
56222b21 2869 spin_lock(q.lock_ptr);
cfafcd11
PZ
2870 goto no_block;
2871 }
2872
cfafcd11
PZ
2873
2874 if (unlikely(to))
2875 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2876
2877 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2878
a99e4e41 2879 spin_lock(q.lock_ptr);
cfafcd11
PZ
2880 /*
2881 * If we failed to acquire the lock (signal/timeout), we must
2882 * first acquire the hb->lock before removing the lock from the
2883 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2884 * wait lists consistent.
56222b21
PZ
2885 *
2886 * In particular; it is important that futex_unlock_pi() can not
2887 * observe this inconsistency.
cfafcd11
PZ
2888 */
2889 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2890 ret = 0;
2891
2892no_block:
dd973998
DH
2893 /*
2894 * Fixup the pi_state owner and possibly acquire the lock if we
2895 * haven't already.
2896 */
ae791a2d 2897 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2898 /*
2899 * If fixup_owner() returned an error, proprogate that. If it acquired
2900 * the lock, clear our -ETIMEDOUT or -EINTR.
2901 */
2902 if (res)
2903 ret = (res < 0) ? res : 0;
c87e2837 2904
e8f6386c 2905 /*
dd973998
DH
2906 * If fixup_owner() faulted and was unable to handle the fault, unlock
2907 * it and return the fault to userspace.
e8f6386c 2908 */
16ffa12d
PZ
2909 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2910 pi_state = q.pi_state;
2911 get_pi_state(pi_state);
2912 }
e8f6386c 2913
778e9a9c
AK
2914 /* Unqueue and drop the lock */
2915 unqueue_me_pi(&q);
c87e2837 2916
16ffa12d
PZ
2917 if (pi_state) {
2918 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2919 put_pi_state(pi_state);
2920 }
2921
5ecb01cf 2922 goto out_put_key;
c87e2837 2923
42d35d48 2924out_unlock_put_key:
0d00c7b2 2925 queue_unlock(hb);
c87e2837 2926
42d35d48 2927out_put_key:
ae791a2d 2928 put_futex_key(&q.key);
42d35d48 2929out:
97181f9b
TG
2930 if (to) {
2931 hrtimer_cancel(&to->timer);
237fc6e7 2932 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2933 }
dd973998 2934 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2935
42d35d48 2936uaddr_faulted:
0d00c7b2 2937 queue_unlock(hb);
778e9a9c 2938
d0725992 2939 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2940 if (ret)
2941 goto out_put_key;
c87e2837 2942
b41277dc 2943 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2944 goto retry_private;
2945
ae791a2d 2946 put_futex_key(&q.key);
e4dc5b7a 2947 goto retry;
c87e2837
IM
2948}
2949
c87e2837
IM
2950/*
2951 * Userspace attempted a TID -> 0 atomic transition, and failed.
2952 * This is the in-kernel slowpath: we look up the PI state (if any),
2953 * and do the rt-mutex unlock.
2954 */
b41277dc 2955static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2956{
ccf9e6a8 2957 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2958 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2959 struct futex_hash_bucket *hb;
499f5aca 2960 struct futex_q *top_waiter;
e4dc5b7a 2961 int ret;
c87e2837 2962
bc2eecd7
NP
2963 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2964 return -ENOSYS;
2965
c87e2837
IM
2966retry:
2967 if (get_user(uval, uaddr))
2968 return -EFAULT;
2969 /*
2970 * We release only a lock we actually own:
2971 */
c0c9ed15 2972 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2973 return -EPERM;
c87e2837 2974
9ea71503 2975 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2976 if (ret)
2977 return ret;
c87e2837
IM
2978
2979 hb = hash_futex(&key);
2980 spin_lock(&hb->lock);
2981
c87e2837 2982 /*
ccf9e6a8
TG
2983 * Check waiters first. We do not trust user space values at
2984 * all and we at least want to know if user space fiddled
2985 * with the futex value instead of blindly unlocking.
c87e2837 2986 */
499f5aca
PZ
2987 top_waiter = futex_top_waiter(hb, &key);
2988 if (top_waiter) {
16ffa12d
PZ
2989 struct futex_pi_state *pi_state = top_waiter->pi_state;
2990
2991 ret = -EINVAL;
2992 if (!pi_state)
2993 goto out_unlock;
2994
2995 /*
2996 * If current does not own the pi_state then the futex is
2997 * inconsistent and user space fiddled with the futex value.
2998 */
2999 if (pi_state->owner != current)
3000 goto out_unlock;
3001
bebe5b51 3002 get_pi_state(pi_state);
802ab58d 3003 /*
bebe5b51
PZ
3004 * By taking wait_lock while still holding hb->lock, we ensure
3005 * there is no point where we hold neither; and therefore
3006 * wake_futex_pi() must observe a state consistent with what we
3007 * observed.
16ffa12d 3008 */
bebe5b51 3009 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3010 spin_unlock(&hb->lock);
3011
c74aef2d 3012 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3013 ret = wake_futex_pi(uaddr, uval, pi_state);
3014
3015 put_pi_state(pi_state);
3016
3017 /*
3018 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3019 */
3020 if (!ret)
3021 goto out_putkey;
c87e2837 3022 /*
ccf9e6a8
TG
3023 * The atomic access to the futex value generated a
3024 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3025 */
3026 if (ret == -EFAULT)
3027 goto pi_faulted;
89e9e66b
SAS
3028 /*
3029 * A unconditional UNLOCK_PI op raced against a waiter
3030 * setting the FUTEX_WAITERS bit. Try again.
3031 */
3032 if (ret == -EAGAIN) {
89e9e66b
SAS
3033 put_futex_key(&key);
3034 goto retry;
3035 }
802ab58d
SAS
3036 /*
3037 * wake_futex_pi has detected invalid state. Tell user
3038 * space.
3039 */
16ffa12d 3040 goto out_putkey;
c87e2837 3041 }
ccf9e6a8 3042
c87e2837 3043 /*
ccf9e6a8
TG
3044 * We have no kernel internal state, i.e. no waiters in the
3045 * kernel. Waiters which are about to queue themselves are stuck
3046 * on hb->lock. So we can safely ignore them. We do neither
3047 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3048 * owner.
c87e2837 3049 */
16ffa12d
PZ
3050 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3051 spin_unlock(&hb->lock);
13fbca4c 3052 goto pi_faulted;
16ffa12d 3053 }
c87e2837 3054
ccf9e6a8
TG
3055 /*
3056 * If uval has changed, let user space handle it.
3057 */
3058 ret = (curval == uval) ? 0 : -EAGAIN;
3059
c87e2837
IM
3060out_unlock:
3061 spin_unlock(&hb->lock);
802ab58d 3062out_putkey:
ae791a2d 3063 put_futex_key(&key);
c87e2837
IM
3064 return ret;
3065
3066pi_faulted:
ae791a2d 3067 put_futex_key(&key);
c87e2837 3068
d0725992 3069 ret = fault_in_user_writeable(uaddr);
b5686363 3070 if (!ret)
c87e2837
IM
3071 goto retry;
3072
1da177e4
LT
3073 return ret;
3074}
3075
52400ba9
DH
3076/**
3077 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3078 * @hb: the hash_bucket futex_q was original enqueued on
3079 * @q: the futex_q woken while waiting to be requeued
3080 * @key2: the futex_key of the requeue target futex
3081 * @timeout: the timeout associated with the wait (NULL if none)
3082 *
3083 * Detect if the task was woken on the initial futex as opposed to the requeue
3084 * target futex. If so, determine if it was a timeout or a signal that caused
3085 * the wakeup and return the appropriate error code to the caller. Must be
3086 * called with the hb lock held.
3087 *
6c23cbbd 3088 * Return:
7b4ff1ad
MCC
3089 * - 0 = no early wakeup detected;
3090 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3091 */
3092static inline
3093int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3094 struct futex_q *q, union futex_key *key2,
3095 struct hrtimer_sleeper *timeout)
3096{
3097 int ret = 0;
3098
3099 /*
3100 * With the hb lock held, we avoid races while we process the wakeup.
3101 * We only need to hold hb (and not hb2) to ensure atomicity as the
3102 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3103 * It can't be requeued from uaddr2 to something else since we don't
3104 * support a PI aware source futex for requeue.
3105 */
3106 if (!match_futex(&q->key, key2)) {
3107 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3108 /*
3109 * We were woken prior to requeue by a timeout or a signal.
3110 * Unqueue the futex_q and determine which it was.
3111 */
2e12978a 3112 plist_del(&q->list, &hb->chain);
11d4616b 3113 hb_waiters_dec(hb);
52400ba9 3114
d58e6576 3115 /* Handle spurious wakeups gracefully */
11df6ddd 3116 ret = -EWOULDBLOCK;
52400ba9
DH
3117 if (timeout && !timeout->task)
3118 ret = -ETIMEDOUT;
d58e6576 3119 else if (signal_pending(current))
1c840c14 3120 ret = -ERESTARTNOINTR;
52400ba9
DH
3121 }
3122 return ret;
3123}
3124
3125/**
3126 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3127 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3128 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3129 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3130 * @val: the expected value of uaddr
3131 * @abs_time: absolute timeout
56ec1607 3132 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3133 * @uaddr2: the pi futex we will take prior to returning to user-space
3134 *
3135 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3136 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3137 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3138 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3139 * without one, the pi logic would not know which task to boost/deboost, if
3140 * there was a need to.
52400ba9
DH
3141 *
3142 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3143 * via the following--
52400ba9 3144 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3145 * 2) wakeup on uaddr2 after a requeue
3146 * 3) signal
3147 * 4) timeout
52400ba9 3148 *
cc6db4e6 3149 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3150 *
3151 * If 2, we may then block on trying to take the rt_mutex and return via:
3152 * 5) successful lock
3153 * 6) signal
3154 * 7) timeout
3155 * 8) other lock acquisition failure
3156 *
cc6db4e6 3157 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3158 *
3159 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3160 *
6c23cbbd 3161 * Return:
7b4ff1ad
MCC
3162 * - 0 - On success;
3163 * - <0 - On error
52400ba9 3164 */
b41277dc 3165static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3166 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3167 u32 __user *uaddr2)
52400ba9
DH
3168{
3169 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3170 struct futex_pi_state *pi_state = NULL;
52400ba9 3171 struct rt_mutex_waiter rt_waiter;
52400ba9 3172 struct futex_hash_bucket *hb;
5bdb05f9
DH
3173 union futex_key key2 = FUTEX_KEY_INIT;
3174 struct futex_q q = futex_q_init;
52400ba9 3175 int res, ret;
52400ba9 3176
bc2eecd7
NP
3177 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3178 return -ENOSYS;
3179
6f7b0a2a
DH
3180 if (uaddr == uaddr2)
3181 return -EINVAL;
3182
52400ba9
DH
3183 if (!bitset)
3184 return -EINVAL;
3185
3186 if (abs_time) {
3187 to = &timeout;
b41277dc
DH
3188 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3189 CLOCK_REALTIME : CLOCK_MONOTONIC,
3190 HRTIMER_MODE_ABS);
52400ba9
DH
3191 hrtimer_init_sleeper(to, current);
3192 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3193 current->timer_slack_ns);
3194 }
3195
3196 /*
3197 * The waiter is allocated on our stack, manipulated by the requeue
3198 * code while we sleep on uaddr.
3199 */
50809358 3200 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3201
9ea71503 3202 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3203 if (unlikely(ret != 0))
3204 goto out;
3205
84bc4af5
DH
3206 q.bitset = bitset;
3207 q.rt_waiter = &rt_waiter;
3208 q.requeue_pi_key = &key2;
3209
7ada876a
DH
3210 /*
3211 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3212 * count.
3213 */
b41277dc 3214 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3215 if (ret)
3216 goto out_key2;
52400ba9 3217
e9c243a5
TG
3218 /*
3219 * The check above which compares uaddrs is not sufficient for
3220 * shared futexes. We need to compare the keys:
3221 */
3222 if (match_futex(&q.key, &key2)) {
13c42c2f 3223 queue_unlock(hb);
e9c243a5
TG
3224 ret = -EINVAL;
3225 goto out_put_keys;
3226 }
3227
52400ba9 3228 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3229 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3230
3231 spin_lock(&hb->lock);
3232 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3233 spin_unlock(&hb->lock);
3234 if (ret)
3235 goto out_put_keys;
3236
3237 /*
3238 * In order for us to be here, we know our q.key == key2, and since
3239 * we took the hb->lock above, we also know that futex_requeue() has
3240 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3241 * race with the atomic proxy lock acquisition by the requeue code. The
3242 * futex_requeue dropped our key1 reference and incremented our key2
3243 * reference count.
52400ba9
DH
3244 */
3245
3246 /* Check if the requeue code acquired the second futex for us. */
3247 if (!q.rt_waiter) {
3248 /*
3249 * Got the lock. We might not be the anticipated owner if we
3250 * did a lock-steal - fix up the PI-state in that case.
3251 */
3252 if (q.pi_state && (q.pi_state->owner != current)) {
3253 spin_lock(q.lock_ptr);
ae791a2d 3254 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3255 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3256 pi_state = q.pi_state;
3257 get_pi_state(pi_state);
3258 }
fb75a428
TG
3259 /*
3260 * Drop the reference to the pi state which
3261 * the requeue_pi() code acquired for us.
3262 */
29e9ee5d 3263 put_pi_state(q.pi_state);
52400ba9
DH
3264 spin_unlock(q.lock_ptr);
3265 }
3266 } else {
c236c8e9
PZ
3267 struct rt_mutex *pi_mutex;
3268
52400ba9
DH
3269 /*
3270 * We have been woken up by futex_unlock_pi(), a timeout, or a
3271 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3272 * the pi_state.
3273 */
f27071cb 3274 WARN_ON(!q.pi_state);
52400ba9 3275 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3276 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3277
3278 spin_lock(q.lock_ptr);
38d589f2
PZ
3279 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3280 ret = 0;
3281
3282 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3283 /*
3284 * Fixup the pi_state owner and possibly acquire the lock if we
3285 * haven't already.
3286 */
ae791a2d 3287 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3288 /*
3289 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3290 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3291 */
3292 if (res)
3293 ret = (res < 0) ? res : 0;
3294
c236c8e9
PZ
3295 /*
3296 * If fixup_pi_state_owner() faulted and was unable to handle
3297 * the fault, unlock the rt_mutex and return the fault to
3298 * userspace.
3299 */
16ffa12d
PZ
3300 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3301 pi_state = q.pi_state;
3302 get_pi_state(pi_state);
3303 }
c236c8e9 3304
52400ba9
DH
3305 /* Unqueue and drop the lock. */
3306 unqueue_me_pi(&q);
3307 }
3308
16ffa12d
PZ
3309 if (pi_state) {
3310 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3311 put_pi_state(pi_state);
3312 }
3313
c236c8e9 3314 if (ret == -EINTR) {
52400ba9 3315 /*
cc6db4e6
DH
3316 * We've already been requeued, but cannot restart by calling
3317 * futex_lock_pi() directly. We could restart this syscall, but
3318 * it would detect that the user space "val" changed and return
3319 * -EWOULDBLOCK. Save the overhead of the restart and return
3320 * -EWOULDBLOCK directly.
52400ba9 3321 */
2070887f 3322 ret = -EWOULDBLOCK;
52400ba9
DH
3323 }
3324
3325out_put_keys:
ae791a2d 3326 put_futex_key(&q.key);
c8b15a70 3327out_key2:
ae791a2d 3328 put_futex_key(&key2);
52400ba9
DH
3329
3330out:
3331 if (to) {
3332 hrtimer_cancel(&to->timer);
3333 destroy_hrtimer_on_stack(&to->timer);
3334 }
3335 return ret;
3336}
3337
0771dfef
IM
3338/*
3339 * Support for robust futexes: the kernel cleans up held futexes at
3340 * thread exit time.
3341 *
3342 * Implementation: user-space maintains a per-thread list of locks it
3343 * is holding. Upon do_exit(), the kernel carefully walks this list,
3344 * and marks all locks that are owned by this thread with the
c87e2837 3345 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3346 * always manipulated with the lock held, so the list is private and
3347 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3348 * field, to allow the kernel to clean up if the thread dies after
3349 * acquiring the lock, but just before it could have added itself to
3350 * the list. There can only be one such pending lock.
3351 */
3352
3353/**
d96ee56c
DH
3354 * sys_set_robust_list() - Set the robust-futex list head of a task
3355 * @head: pointer to the list-head
3356 * @len: length of the list-head, as userspace expects
0771dfef 3357 */
836f92ad
HC
3358SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3359 size_t, len)
0771dfef 3360{
a0c1e907
TG
3361 if (!futex_cmpxchg_enabled)
3362 return -ENOSYS;
0771dfef
IM
3363 /*
3364 * The kernel knows only one size for now:
3365 */
3366 if (unlikely(len != sizeof(*head)))
3367 return -EINVAL;
3368
3369 current->robust_list = head;
3370
3371 return 0;
3372}
3373
3374/**
d96ee56c
DH
3375 * sys_get_robust_list() - Get the robust-futex list head of a task
3376 * @pid: pid of the process [zero for current task]
3377 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3378 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3379 */
836f92ad
HC
3380SYSCALL_DEFINE3(get_robust_list, int, pid,
3381 struct robust_list_head __user * __user *, head_ptr,
3382 size_t __user *, len_ptr)
0771dfef 3383{
ba46df98 3384 struct robust_list_head __user *head;
0771dfef 3385 unsigned long ret;
bdbb776f 3386 struct task_struct *p;
0771dfef 3387
a0c1e907
TG
3388 if (!futex_cmpxchg_enabled)
3389 return -ENOSYS;
3390
bdbb776f
KC
3391 rcu_read_lock();
3392
3393 ret = -ESRCH;
0771dfef 3394 if (!pid)
bdbb776f 3395 p = current;
0771dfef 3396 else {
228ebcbe 3397 p = find_task_by_vpid(pid);
0771dfef
IM
3398 if (!p)
3399 goto err_unlock;
0771dfef
IM
3400 }
3401
bdbb776f 3402 ret = -EPERM;
caaee623 3403 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3404 goto err_unlock;
3405
3406 head = p->robust_list;
3407 rcu_read_unlock();
3408
0771dfef
IM
3409 if (put_user(sizeof(*head), len_ptr))
3410 return -EFAULT;
3411 return put_user(head, head_ptr);
3412
3413err_unlock:
aaa2a97e 3414 rcu_read_unlock();
0771dfef
IM
3415
3416 return ret;
3417}
3418
3419/*
3420 * Process a futex-list entry, check whether it's owned by the
3421 * dying task, and do notification if so:
3422 */
04e7712f 3423static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3424{
7cfdaf38 3425 u32 uval, uninitialized_var(nval), mval;
0771dfef 3426
8f17d3a5
IM
3427retry:
3428 if (get_user(uval, uaddr))
0771dfef
IM
3429 return -1;
3430
b488893a 3431 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3432 /*
3433 * Ok, this dying thread is truly holding a futex
3434 * of interest. Set the OWNER_DIED bit atomically
3435 * via cmpxchg, and if the value had FUTEX_WAITERS
3436 * set, wake up a waiter (if any). (We have to do a
3437 * futex_wake() even if OWNER_DIED is already set -
3438 * to handle the rare but possible case of recursive
3439 * thread-death.) The rest of the cleanup is done in
3440 * userspace.
3441 */
e3f2ddea 3442 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3443 /*
3444 * We are not holding a lock here, but we want to have
3445 * the pagefault_disable/enable() protection because
3446 * we want to handle the fault gracefully. If the
3447 * access fails we try to fault in the futex with R/W
3448 * verification via get_user_pages. get_user() above
3449 * does not guarantee R/W access. If that fails we
3450 * give up and leave the futex locked.
3451 */
3452 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3453 if (fault_in_user_writeable(uaddr))
3454 return -1;
3455 goto retry;
3456 }
c87e2837 3457 if (nval != uval)
8f17d3a5 3458 goto retry;
0771dfef 3459
e3f2ddea
IM
3460 /*
3461 * Wake robust non-PI futexes here. The wakeup of
3462 * PI futexes happens in exit_pi_state():
3463 */
36cf3b5c 3464 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3465 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3466 }
3467 return 0;
3468}
3469
e3f2ddea
IM
3470/*
3471 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3472 */
3473static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3474 struct robust_list __user * __user *head,
1dcc41bb 3475 unsigned int *pi)
e3f2ddea
IM
3476{
3477 unsigned long uentry;
3478
ba46df98 3479 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3480 return -EFAULT;
3481
ba46df98 3482 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3483 *pi = uentry & 1;
3484
3485 return 0;
3486}
3487
0771dfef
IM
3488/*
3489 * Walk curr->robust_list (very carefully, it's a userspace list!)
3490 * and mark any locks found there dead, and notify any waiters.
3491 *
3492 * We silently return on any sign of list-walking problem.
3493 */
3494void exit_robust_list(struct task_struct *curr)
3495{
3496 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3497 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3498 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3499 unsigned int uninitialized_var(next_pi);
0771dfef 3500 unsigned long futex_offset;
9f96cb1e 3501 int rc;
0771dfef 3502
a0c1e907
TG
3503 if (!futex_cmpxchg_enabled)
3504 return;
3505
0771dfef
IM
3506 /*
3507 * Fetch the list head (which was registered earlier, via
3508 * sys_set_robust_list()):
3509 */
e3f2ddea 3510 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3511 return;
3512 /*
3513 * Fetch the relative futex offset:
3514 */
3515 if (get_user(futex_offset, &head->futex_offset))
3516 return;
3517 /*
3518 * Fetch any possibly pending lock-add first, and handle it
3519 * if it exists:
3520 */
e3f2ddea 3521 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3522 return;
e3f2ddea 3523
9f96cb1e 3524 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3525 while (entry != &head->list) {
9f96cb1e
MS
3526 /*
3527 * Fetch the next entry in the list before calling
3528 * handle_futex_death:
3529 */
3530 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3531 /*
3532 * A pending lock might already be on the list, so
c87e2837 3533 * don't process it twice:
0771dfef
IM
3534 */
3535 if (entry != pending)
ba46df98 3536 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3537 curr, pi))
0771dfef 3538 return;
9f96cb1e 3539 if (rc)
0771dfef 3540 return;
9f96cb1e
MS
3541 entry = next_entry;
3542 pi = next_pi;
0771dfef
IM
3543 /*
3544 * Avoid excessively long or circular lists:
3545 */
3546 if (!--limit)
3547 break;
3548
3549 cond_resched();
3550 }
9f96cb1e
MS
3551
3552 if (pending)
3553 handle_futex_death((void __user *)pending + futex_offset,
3554 curr, pip);
0771dfef
IM
3555}
3556
c19384b5 3557long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3558 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3559{
81b40539 3560 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3561 unsigned int flags = 0;
34f01cc1
ED
3562
3563 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3564 flags |= FLAGS_SHARED;
1da177e4 3565
b41277dc
DH
3566 if (op & FUTEX_CLOCK_REALTIME) {
3567 flags |= FLAGS_CLOCKRT;
337f1304
DH
3568 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3569 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3570 return -ENOSYS;
3571 }
1da177e4 3572
59263b51
TG
3573 switch (cmd) {
3574 case FUTEX_LOCK_PI:
3575 case FUTEX_UNLOCK_PI:
3576 case FUTEX_TRYLOCK_PI:
3577 case FUTEX_WAIT_REQUEUE_PI:
3578 case FUTEX_CMP_REQUEUE_PI:
3579 if (!futex_cmpxchg_enabled)
3580 return -ENOSYS;
3581 }
3582
34f01cc1 3583 switch (cmd) {
1da177e4 3584 case FUTEX_WAIT:
cd689985 3585 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3586 /* fall through */
cd689985 3587 case FUTEX_WAIT_BITSET:
81b40539 3588 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3589 case FUTEX_WAKE:
cd689985 3590 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3591 /* fall through */
cd689985 3592 case FUTEX_WAKE_BITSET:
81b40539 3593 return futex_wake(uaddr, flags, val, val3);
1da177e4 3594 case FUTEX_REQUEUE:
81b40539 3595 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3596 case FUTEX_CMP_REQUEUE:
81b40539 3597 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3598 case FUTEX_WAKE_OP:
81b40539 3599 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3600 case FUTEX_LOCK_PI:
996636dd 3601 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3602 case FUTEX_UNLOCK_PI:
81b40539 3603 return futex_unlock_pi(uaddr, flags);
c87e2837 3604 case FUTEX_TRYLOCK_PI:
996636dd 3605 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3606 case FUTEX_WAIT_REQUEUE_PI:
3607 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3608 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3609 uaddr2);
52400ba9 3610 case FUTEX_CMP_REQUEUE_PI:
81b40539 3611 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3612 }
81b40539 3613 return -ENOSYS;
1da177e4
LT
3614}
3615
3616
17da2bd9 3617SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3618 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3619 u32, val3)
1da177e4 3620{
bec2f7cb 3621 struct timespec64 ts;
c19384b5 3622 ktime_t t, *tp = NULL;
e2970f2f 3623 u32 val2 = 0;
34f01cc1 3624 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3625
cd689985 3626 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3627 cmd == FUTEX_WAIT_BITSET ||
3628 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3629 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3630 return -EFAULT;
bec2f7cb 3631 if (get_timespec64(&ts, utime))
1da177e4 3632 return -EFAULT;
bec2f7cb 3633 if (!timespec64_valid(&ts))
9741ef96 3634 return -EINVAL;
c19384b5 3635
bec2f7cb 3636 t = timespec64_to_ktime(ts);
34f01cc1 3637 if (cmd == FUTEX_WAIT)
5a7780e7 3638 t = ktime_add_safe(ktime_get(), t);
c19384b5 3639 tp = &t;
1da177e4
LT
3640 }
3641 /*
52400ba9 3642 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3643 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3644 */
f54f0986 3645 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3646 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3647 val2 = (u32) (unsigned long) utime;
1da177e4 3648
c19384b5 3649 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3650}
3651
04e7712f
AB
3652#ifdef CONFIG_COMPAT
3653/*
3654 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3655 */
3656static inline int
3657compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3658 compat_uptr_t __user *head, unsigned int *pi)
3659{
3660 if (get_user(*uentry, head))
3661 return -EFAULT;
3662
3663 *entry = compat_ptr((*uentry) & ~1);
3664 *pi = (unsigned int)(*uentry) & 1;
3665
3666 return 0;
3667}
3668
3669static void __user *futex_uaddr(struct robust_list __user *entry,
3670 compat_long_t futex_offset)
3671{
3672 compat_uptr_t base = ptr_to_compat(entry);
3673 void __user *uaddr = compat_ptr(base + futex_offset);
3674
3675 return uaddr;
3676}
3677
3678/*
3679 * Walk curr->robust_list (very carefully, it's a userspace list!)
3680 * and mark any locks found there dead, and notify any waiters.
3681 *
3682 * We silently return on any sign of list-walking problem.
3683 */
3684void compat_exit_robust_list(struct task_struct *curr)
3685{
3686 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3687 struct robust_list __user *entry, *next_entry, *pending;
3688 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3689 unsigned int uninitialized_var(next_pi);
3690 compat_uptr_t uentry, next_uentry, upending;
3691 compat_long_t futex_offset;
3692 int rc;
3693
3694 if (!futex_cmpxchg_enabled)
3695 return;
3696
3697 /*
3698 * Fetch the list head (which was registered earlier, via
3699 * sys_set_robust_list()):
3700 */
3701 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3702 return;
3703 /*
3704 * Fetch the relative futex offset:
3705 */
3706 if (get_user(futex_offset, &head->futex_offset))
3707 return;
3708 /*
3709 * Fetch any possibly pending lock-add first, and handle it
3710 * if it exists:
3711 */
3712 if (compat_fetch_robust_entry(&upending, &pending,
3713 &head->list_op_pending, &pip))
3714 return;
3715
3716 next_entry = NULL; /* avoid warning with gcc */
3717 while (entry != (struct robust_list __user *) &head->list) {
3718 /*
3719 * Fetch the next entry in the list before calling
3720 * handle_futex_death:
3721 */
3722 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3723 (compat_uptr_t __user *)&entry->next, &next_pi);
3724 /*
3725 * A pending lock might already be on the list, so
3726 * dont process it twice:
3727 */
3728 if (entry != pending) {
3729 void __user *uaddr = futex_uaddr(entry, futex_offset);
3730
3731 if (handle_futex_death(uaddr, curr, pi))
3732 return;
3733 }
3734 if (rc)
3735 return;
3736 uentry = next_uentry;
3737 entry = next_entry;
3738 pi = next_pi;
3739 /*
3740 * Avoid excessively long or circular lists:
3741 */
3742 if (!--limit)
3743 break;
3744
3745 cond_resched();
3746 }
3747 if (pending) {
3748 void __user *uaddr = futex_uaddr(pending, futex_offset);
3749
3750 handle_futex_death(uaddr, curr, pip);
3751 }
3752}
3753
3754COMPAT_SYSCALL_DEFINE2(set_robust_list,
3755 struct compat_robust_list_head __user *, head,
3756 compat_size_t, len)
3757{
3758 if (!futex_cmpxchg_enabled)
3759 return -ENOSYS;
3760
3761 if (unlikely(len != sizeof(*head)))
3762 return -EINVAL;
3763
3764 current->compat_robust_list = head;
3765
3766 return 0;
3767}
3768
3769COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3770 compat_uptr_t __user *, head_ptr,
3771 compat_size_t __user *, len_ptr)
3772{
3773 struct compat_robust_list_head __user *head;
3774 unsigned long ret;
3775 struct task_struct *p;
3776
3777 if (!futex_cmpxchg_enabled)
3778 return -ENOSYS;
3779
3780 rcu_read_lock();
3781
3782 ret = -ESRCH;
3783 if (!pid)
3784 p = current;
3785 else {
3786 p = find_task_by_vpid(pid);
3787 if (!p)
3788 goto err_unlock;
3789 }
3790
3791 ret = -EPERM;
3792 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3793 goto err_unlock;
3794
3795 head = p->compat_robust_list;
3796 rcu_read_unlock();
3797
3798 if (put_user(sizeof(*head), len_ptr))
3799 return -EFAULT;
3800 return put_user(ptr_to_compat(head), head_ptr);
3801
3802err_unlock:
3803 rcu_read_unlock();
3804
3805 return ret;
3806}
bec2f7cb 3807#endif /* CONFIG_COMPAT */
04e7712f 3808
bec2f7cb 3809#ifdef CONFIG_COMPAT_32BIT_TIME
04e7712f
AB
3810COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3811 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3812 u32, val3)
3813{
bec2f7cb 3814 struct timespec64 ts;
04e7712f
AB
3815 ktime_t t, *tp = NULL;
3816 int val2 = 0;
3817 int cmd = op & FUTEX_CMD_MASK;
3818
3819 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3820 cmd == FUTEX_WAIT_BITSET ||
3821 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3822 if (get_old_timespec32(&ts, utime))
04e7712f 3823 return -EFAULT;
bec2f7cb 3824 if (!timespec64_valid(&ts))
04e7712f
AB
3825 return -EINVAL;
3826
bec2f7cb 3827 t = timespec64_to_ktime(ts);
04e7712f
AB
3828 if (cmd == FUTEX_WAIT)
3829 t = ktime_add_safe(ktime_get(), t);
3830 tp = &t;
3831 }
3832 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3833 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3834 val2 = (int) (unsigned long) utime;
3835
3836 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3837}
bec2f7cb 3838#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3839
03b8c7b6 3840static void __init futex_detect_cmpxchg(void)
1da177e4 3841{
03b8c7b6 3842#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3843 u32 curval;
03b8c7b6
HC
3844
3845 /*
3846 * This will fail and we want it. Some arch implementations do
3847 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3848 * functionality. We want to know that before we call in any
3849 * of the complex code paths. Also we want to prevent
3850 * registration of robust lists in that case. NULL is
3851 * guaranteed to fault and we get -EFAULT on functional
3852 * implementation, the non-functional ones will return
3853 * -ENOSYS.
3854 */
3855 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3856 futex_cmpxchg_enabled = 1;
3857#endif
3858}
3859
3860static int __init futex_init(void)
3861{
63b1a816 3862 unsigned int futex_shift;
a52b89eb
DB
3863 unsigned long i;
3864
3865#if CONFIG_BASE_SMALL
3866 futex_hashsize = 16;
3867#else
3868 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3869#endif
3870
3871 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3872 futex_hashsize, 0,
3873 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3874 &futex_shift, NULL,
3875 futex_hashsize, futex_hashsize);
3876 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3877
3878 futex_detect_cmpxchg();
a0c1e907 3879
a52b89eb 3880 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3881 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3882 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3883 spin_lock_init(&futex_queues[i].lock);
3884 }
3885
1da177e4
LT
3886 return 0;
3887}
25f71d1c 3888core_initcall(futex_init);