]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/futex.c
netfilter: ingress: translate 0 nf_hook_slow retval to -1
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
ab51fbab 67#include <linux/fault-inject.h>
b488893a 68
4732efbe 69#include <asm/futex.h>
1da177e4 70
1696a8be 71#include "locking/rtmutex_common.h"
c87e2837 72
99b60ce6 73/*
d7e8af1a
DB
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
99b60ce6
TG
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
99b60ce6
TG
85 *
86 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
99b60ce6 90 *
b0c29f79
DB
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 116 *
b0c29f79
DB
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
99b60ce6
TG
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
b0c29f79 125 *
d7e8af1a 126 * waiters++; (a)
8ad7b378
DB
127 * smp_mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `--------> smp_mb(); (B)
99b60ce6 137 * if (uval == val)
b0c29f79 138 * queue();
99b60ce6 139 * unlock(hash_bucket(futex));
b0c29f79
DB
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
d7e8af1a
DB
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 144 *
d7e8af1a
DB
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
784bdf3b
TG
182#ifdef CONFIG_MMU
183# define FLAGS_SHARED 0x01
184#else
185/*
186 * NOMMU does not have per process address space. Let the compiler optimize
187 * code away.
188 */
189# define FLAGS_SHARED 0x00
190#endif
b41277dc
DH
191#define FLAGS_CLOCKRT 0x02
192#define FLAGS_HAS_TIMEOUT 0x04
193
c87e2837
IM
194/*
195 * Priority Inheritance state:
196 */
197struct futex_pi_state {
198 /*
199 * list of 'owned' pi_state instances - these have to be
200 * cleaned up in do_exit() if the task exits prematurely:
201 */
202 struct list_head list;
203
204 /*
205 * The PI object:
206 */
207 struct rt_mutex pi_mutex;
208
209 struct task_struct *owner;
210 atomic_t refcount;
211
212 union futex_key key;
213};
214
d8d88fbb
DH
215/**
216 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 217 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
218 * @task: the task waiting on the futex
219 * @lock_ptr: the hash bucket lock
220 * @key: the key the futex is hashed on
221 * @pi_state: optional priority inheritance state
222 * @rt_waiter: rt_waiter storage for use with requeue_pi
223 * @requeue_pi_key: the requeue_pi target futex key
224 * @bitset: bitset for the optional bitmasked wakeup
225 *
226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
227 * we can wake only the relevant ones (hashed queues may be shared).
228 *
229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 231 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
232 * the second.
233 *
234 * PI futexes are typically woken before they are removed from the hash list via
235 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
236 */
237struct futex_q {
ec92d082 238 struct plist_node list;
1da177e4 239
d8d88fbb 240 struct task_struct *task;
1da177e4 241 spinlock_t *lock_ptr;
1da177e4 242 union futex_key key;
c87e2837 243 struct futex_pi_state *pi_state;
52400ba9 244 struct rt_mutex_waiter *rt_waiter;
84bc4af5 245 union futex_key *requeue_pi_key;
cd689985 246 u32 bitset;
1da177e4
LT
247};
248
5bdb05f9
DH
249static const struct futex_q futex_q_init = {
250 /* list gets initialized in queue_me()*/
251 .key = FUTEX_KEY_INIT,
252 .bitset = FUTEX_BITSET_MATCH_ANY
253};
254
1da177e4 255/*
b2d0994b
DH
256 * Hash buckets are shared by all the futex_keys that hash to the same
257 * location. Each key may have multiple futex_q structures, one for each task
258 * waiting on a futex.
1da177e4
LT
259 */
260struct futex_hash_bucket {
11d4616b 261 atomic_t waiters;
ec92d082
PP
262 spinlock_t lock;
263 struct plist_head chain;
a52b89eb 264} ____cacheline_aligned_in_smp;
1da177e4 265
ac742d37
RV
266/*
267 * The base of the bucket array and its size are always used together
268 * (after initialization only in hash_futex()), so ensure that they
269 * reside in the same cacheline.
270 */
271static struct {
272 struct futex_hash_bucket *queues;
273 unsigned long hashsize;
274} __futex_data __read_mostly __aligned(2*sizeof(long));
275#define futex_queues (__futex_data.queues)
276#define futex_hashsize (__futex_data.hashsize)
a52b89eb 277
1da177e4 278
ab51fbab
DB
279/*
280 * Fault injections for futexes.
281 */
282#ifdef CONFIG_FAIL_FUTEX
283
284static struct {
285 struct fault_attr attr;
286
621a5f7a 287 bool ignore_private;
ab51fbab
DB
288} fail_futex = {
289 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 290 .ignore_private = false,
ab51fbab
DB
291};
292
293static int __init setup_fail_futex(char *str)
294{
295 return setup_fault_attr(&fail_futex.attr, str);
296}
297__setup("fail_futex=", setup_fail_futex);
298
5d285a7f 299static bool should_fail_futex(bool fshared)
ab51fbab
DB
300{
301 if (fail_futex.ignore_private && !fshared)
302 return false;
303
304 return should_fail(&fail_futex.attr, 1);
305}
306
307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
308
309static int __init fail_futex_debugfs(void)
310{
311 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
312 struct dentry *dir;
313
314 dir = fault_create_debugfs_attr("fail_futex", NULL,
315 &fail_futex.attr);
316 if (IS_ERR(dir))
317 return PTR_ERR(dir);
318
319 if (!debugfs_create_bool("ignore-private", mode, dir,
320 &fail_futex.ignore_private)) {
321 debugfs_remove_recursive(dir);
322 return -ENOMEM;
323 }
324
325 return 0;
326}
327
328late_initcall(fail_futex_debugfs);
329
330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
331
332#else
333static inline bool should_fail_futex(bool fshared)
334{
335 return false;
336}
337#endif /* CONFIG_FAIL_FUTEX */
338
b0c29f79
DB
339static inline void futex_get_mm(union futex_key *key)
340{
341 atomic_inc(&key->private.mm->mm_count);
342 /*
343 * Ensure futex_get_mm() implies a full barrier such that
344 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 345 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 346 */
4e857c58 347 smp_mb__after_atomic();
b0c29f79
DB
348}
349
11d4616b
LT
350/*
351 * Reflects a new waiter being added to the waitqueue.
352 */
353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
354{
355#ifdef CONFIG_SMP
11d4616b 356 atomic_inc(&hb->waiters);
b0c29f79 357 /*
11d4616b 358 * Full barrier (A), see the ordering comment above.
b0c29f79 359 */
4e857c58 360 smp_mb__after_atomic();
11d4616b
LT
361#endif
362}
363
364/*
365 * Reflects a waiter being removed from the waitqueue by wakeup
366 * paths.
367 */
368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
369{
370#ifdef CONFIG_SMP
371 atomic_dec(&hb->waiters);
372#endif
373}
b0c29f79 374
11d4616b
LT
375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
376{
377#ifdef CONFIG_SMP
378 return atomic_read(&hb->waiters);
b0c29f79 379#else
11d4616b 380 return 1;
b0c29f79
DB
381#endif
382}
383
e8b61b3f
TG
384/**
385 * hash_futex - Return the hash bucket in the global hash
386 * @key: Pointer to the futex key for which the hash is calculated
387 *
388 * We hash on the keys returned from get_futex_key (see below) and return the
389 * corresponding hash bucket in the global hash.
1da177e4
LT
390 */
391static struct futex_hash_bucket *hash_futex(union futex_key *key)
392{
393 u32 hash = jhash2((u32*)&key->both.word,
394 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
395 key->both.offset);
a52b89eb 396 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
397}
398
e8b61b3f
TG
399
400/**
401 * match_futex - Check whether two futex keys are equal
402 * @key1: Pointer to key1
403 * @key2: Pointer to key2
404 *
1da177e4
LT
405 * Return 1 if two futex_keys are equal, 0 otherwise.
406 */
407static inline int match_futex(union futex_key *key1, union futex_key *key2)
408{
2bc87203
DH
409 return (key1 && key2
410 && key1->both.word == key2->both.word
1da177e4
LT
411 && key1->both.ptr == key2->both.ptr
412 && key1->both.offset == key2->both.offset);
413}
414
38d47c1b
PZ
415/*
416 * Take a reference to the resource addressed by a key.
417 * Can be called while holding spinlocks.
418 *
419 */
420static void get_futex_key_refs(union futex_key *key)
421{
422 if (!key->both.ptr)
423 return;
424
784bdf3b
TG
425 /*
426 * On MMU less systems futexes are always "private" as there is no per
427 * process address space. We need the smp wmb nevertheless - yes,
428 * arch/blackfin has MMU less SMP ...
429 */
430 if (!IS_ENABLED(CONFIG_MMU)) {
431 smp_mb(); /* explicit smp_mb(); (B) */
432 return;
433 }
434
38d47c1b
PZ
435 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
436 case FUT_OFF_INODE:
8ad7b378 437 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
438 break;
439 case FUT_OFF_MMSHARED:
8ad7b378 440 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 441 break;
76835b0e 442 default:
993b2ff2
DB
443 /*
444 * Private futexes do not hold reference on an inode or
445 * mm, therefore the only purpose of calling get_futex_key_refs
446 * is because we need the barrier for the lockless waiter check.
447 */
8ad7b378 448 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
449 }
450}
451
452/*
453 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
454 * The hash bucket spinlock must not be held. This is
455 * a no-op for private futexes, see comment in the get
456 * counterpart.
38d47c1b
PZ
457 */
458static void drop_futex_key_refs(union futex_key *key)
459{
90621c40
DH
460 if (!key->both.ptr) {
461 /* If we're here then we tried to put a key we failed to get */
462 WARN_ON_ONCE(1);
38d47c1b 463 return;
90621c40 464 }
38d47c1b 465
784bdf3b
TG
466 if (!IS_ENABLED(CONFIG_MMU))
467 return;
468
38d47c1b
PZ
469 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
470 case FUT_OFF_INODE:
471 iput(key->shared.inode);
472 break;
473 case FUT_OFF_MMSHARED:
474 mmdrop(key->private.mm);
475 break;
476 }
477}
478
34f01cc1 479/**
d96ee56c
DH
480 * get_futex_key() - Get parameters which are the keys for a futex
481 * @uaddr: virtual address of the futex
482 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
483 * @key: address where result is stored.
9ea71503
SB
484 * @rw: mapping needs to be read/write (values: VERIFY_READ,
485 * VERIFY_WRITE)
34f01cc1 486 *
6c23cbbd
RD
487 * Return: a negative error code or 0
488 *
34f01cc1 489 * The key words are stored in *key on success.
1da177e4 490 *
6131ffaa 491 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
492 * offset_within_page). For private mappings, it's (uaddr, current->mm).
493 * We can usually work out the index without swapping in the page.
494 *
b2d0994b 495 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 496 */
64d1304a 497static int
9ea71503 498get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 499{
e2970f2f 500 unsigned long address = (unsigned long)uaddr;
1da177e4 501 struct mm_struct *mm = current->mm;
077fa7ae 502 struct page *page, *tail;
14d27abd 503 struct address_space *mapping;
9ea71503 504 int err, ro = 0;
1da177e4
LT
505
506 /*
507 * The futex address must be "naturally" aligned.
508 */
e2970f2f 509 key->both.offset = address % PAGE_SIZE;
34f01cc1 510 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 511 return -EINVAL;
e2970f2f 512 address -= key->both.offset;
1da177e4 513
5cdec2d8
LT
514 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
515 return -EFAULT;
516
ab51fbab
DB
517 if (unlikely(should_fail_futex(fshared)))
518 return -EFAULT;
519
34f01cc1
ED
520 /*
521 * PROCESS_PRIVATE futexes are fast.
522 * As the mm cannot disappear under us and the 'key' only needs
523 * virtual address, we dont even have to find the underlying vma.
524 * Note : We do have to check 'uaddr' is a valid user address,
525 * but access_ok() should be faster than find_vma()
526 */
527 if (!fshared) {
34f01cc1
ED
528 key->private.mm = mm;
529 key->private.address = address;
8ad7b378 530 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
531 return 0;
532 }
1da177e4 533
38d47c1b 534again:
ab51fbab
DB
535 /* Ignore any VERIFY_READ mapping (futex common case) */
536 if (unlikely(should_fail_futex(fshared)))
537 return -EFAULT;
538
7485d0d3 539 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
540 /*
541 * If write access is not required (eg. FUTEX_WAIT), try
542 * and get read-only access.
543 */
544 if (err == -EFAULT && rw == VERIFY_READ) {
545 err = get_user_pages_fast(address, 1, 0, &page);
546 ro = 1;
547 }
38d47c1b
PZ
548 if (err < 0)
549 return err;
9ea71503
SB
550 else
551 err = 0;
38d47c1b 552
65d8fc77
MG
553 /*
554 * The treatment of mapping from this point on is critical. The page
555 * lock protects many things but in this context the page lock
556 * stabilizes mapping, prevents inode freeing in the shared
557 * file-backed region case and guards against movement to swap cache.
558 *
559 * Strictly speaking the page lock is not needed in all cases being
560 * considered here and page lock forces unnecessarily serialization
561 * From this point on, mapping will be re-verified if necessary and
562 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
563 *
564 * Mapping checks require the head page for any compound page so the
565 * head page and mapping is looked up now. For anonymous pages, it
566 * does not matter if the page splits in the future as the key is
567 * based on the address. For filesystem-backed pages, the tail is
568 * required as the index of the page determines the key. For
569 * base pages, there is no tail page and tail == page.
65d8fc77 570 */
077fa7ae 571 tail = page;
65d8fc77
MG
572 page = compound_head(page);
573 mapping = READ_ONCE(page->mapping);
574
e6780f72 575 /*
14d27abd 576 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
577 * page; but it might be the ZERO_PAGE or in the gate area or
578 * in a special mapping (all cases which we are happy to fail);
579 * or it may have been a good file page when get_user_pages_fast
580 * found it, but truncated or holepunched or subjected to
581 * invalidate_complete_page2 before we got the page lock (also
582 * cases which we are happy to fail). And we hold a reference,
583 * so refcount care in invalidate_complete_page's remove_mapping
584 * prevents drop_caches from setting mapping to NULL beneath us.
585 *
586 * The case we do have to guard against is when memory pressure made
587 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 588 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 589 */
65d8fc77
MG
590 if (unlikely(!mapping)) {
591 int shmem_swizzled;
592
593 /*
594 * Page lock is required to identify which special case above
595 * applies. If this is really a shmem page then the page lock
596 * will prevent unexpected transitions.
597 */
598 lock_page(page);
599 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
600 unlock_page(page);
601 put_page(page);
65d8fc77 602
e6780f72
HD
603 if (shmem_swizzled)
604 goto again;
65d8fc77 605
e6780f72 606 return -EFAULT;
38d47c1b 607 }
1da177e4
LT
608
609 /*
610 * Private mappings are handled in a simple way.
611 *
65d8fc77
MG
612 * If the futex key is stored on an anonymous page, then the associated
613 * object is the mm which is implicitly pinned by the calling process.
614 *
1da177e4
LT
615 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
616 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 617 * the object not the particular process.
1da177e4 618 */
14d27abd 619 if (PageAnon(page)) {
9ea71503
SB
620 /*
621 * A RO anonymous page will never change and thus doesn't make
622 * sense for futex operations.
623 */
ab51fbab 624 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
625 err = -EFAULT;
626 goto out;
627 }
628
38d47c1b 629 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 630 key->private.mm = mm;
e2970f2f 631 key->private.address = address;
65d8fc77
MG
632
633 get_futex_key_refs(key); /* implies smp_mb(); (B) */
634
38d47c1b 635 } else {
65d8fc77
MG
636 struct inode *inode;
637
638 /*
639 * The associated futex object in this case is the inode and
640 * the page->mapping must be traversed. Ordinarily this should
641 * be stabilised under page lock but it's not strictly
642 * necessary in this case as we just want to pin the inode, not
643 * update the radix tree or anything like that.
644 *
645 * The RCU read lock is taken as the inode is finally freed
646 * under RCU. If the mapping still matches expectations then the
647 * mapping->host can be safely accessed as being a valid inode.
648 */
649 rcu_read_lock();
650
651 if (READ_ONCE(page->mapping) != mapping) {
652 rcu_read_unlock();
653 put_page(page);
654
655 goto again;
656 }
657
658 inode = READ_ONCE(mapping->host);
659 if (!inode) {
660 rcu_read_unlock();
661 put_page(page);
662
663 goto again;
664 }
665
666 /*
667 * Take a reference unless it is about to be freed. Previously
668 * this reference was taken by ihold under the page lock
669 * pinning the inode in place so i_lock was unnecessary. The
670 * only way for this check to fail is if the inode was
671 * truncated in parallel so warn for now if this happens.
672 *
673 * We are not calling into get_futex_key_refs() in file-backed
674 * cases, therefore a successful atomic_inc return below will
675 * guarantee that get_futex_key() will still imply smp_mb(); (B).
676 */
677 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
678 rcu_read_unlock();
679 put_page(page);
680
681 goto again;
682 }
683
684 /* Should be impossible but lets be paranoid for now */
685 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
686 err = -EFAULT;
687 rcu_read_unlock();
688 iput(inode);
689
690 goto out;
691 }
692
38d47c1b 693 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 694 key->shared.inode = inode;
077fa7ae 695 key->shared.pgoff = basepage_index(tail);
65d8fc77 696 rcu_read_unlock();
1da177e4
LT
697 }
698
9ea71503 699out:
14d27abd 700 put_page(page);
9ea71503 701 return err;
1da177e4
LT
702}
703
ae791a2d 704static inline void put_futex_key(union futex_key *key)
1da177e4 705{
38d47c1b 706 drop_futex_key_refs(key);
1da177e4
LT
707}
708
d96ee56c
DH
709/**
710 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
711 * @uaddr: pointer to faulting user space address
712 *
713 * Slow path to fixup the fault we just took in the atomic write
714 * access to @uaddr.
715 *
fb62db2b 716 * We have no generic implementation of a non-destructive write to the
d0725992
TG
717 * user address. We know that we faulted in the atomic pagefault
718 * disabled section so we can as well avoid the #PF overhead by
719 * calling get_user_pages() right away.
720 */
721static int fault_in_user_writeable(u32 __user *uaddr)
722{
722d0172
AK
723 struct mm_struct *mm = current->mm;
724 int ret;
725
726 down_read(&mm->mmap_sem);
2efaca92 727 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 728 FAULT_FLAG_WRITE, NULL);
722d0172
AK
729 up_read(&mm->mmap_sem);
730
d0725992
TG
731 return ret < 0 ? ret : 0;
732}
733
4b1c486b
DH
734/**
735 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
736 * @hb: the hash bucket the futex_q's reside in
737 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
738 *
739 * Must be called with the hb lock held.
740 */
741static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
742 union futex_key *key)
743{
744 struct futex_q *this;
745
746 plist_for_each_entry(this, &hb->chain, list) {
747 if (match_futex(&this->key, key))
748 return this;
749 }
750 return NULL;
751}
752
37a9d912
ML
753static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
754 u32 uval, u32 newval)
36cf3b5c 755{
37a9d912 756 int ret;
36cf3b5c
TG
757
758 pagefault_disable();
37a9d912 759 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
760 pagefault_enable();
761
37a9d912 762 return ret;
36cf3b5c
TG
763}
764
765static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
766{
767 int ret;
768
a866374a 769 pagefault_disable();
bd28b145 770 ret = __get_user(*dest, from);
a866374a 771 pagefault_enable();
1da177e4
LT
772
773 return ret ? -EFAULT : 0;
774}
775
c87e2837
IM
776
777/*
778 * PI code:
779 */
780static int refill_pi_state_cache(void)
781{
782 struct futex_pi_state *pi_state;
783
784 if (likely(current->pi_state_cache))
785 return 0;
786
4668edc3 787 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
788
789 if (!pi_state)
790 return -ENOMEM;
791
c87e2837
IM
792 INIT_LIST_HEAD(&pi_state->list);
793 /* pi_mutex gets initialized later */
794 pi_state->owner = NULL;
795 atomic_set(&pi_state->refcount, 1);
38d47c1b 796 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
797
798 current->pi_state_cache = pi_state;
799
800 return 0;
801}
802
803static struct futex_pi_state * alloc_pi_state(void)
804{
805 struct futex_pi_state *pi_state = current->pi_state_cache;
806
807 WARN_ON(!pi_state);
808 current->pi_state_cache = NULL;
809
810 return pi_state;
811}
812
30a6b803 813/*
29e9ee5d
TG
814 * Drops a reference to the pi_state object and frees or caches it
815 * when the last reference is gone.
816 *
30a6b803
BS
817 * Must be called with the hb lock held.
818 */
29e9ee5d 819static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 820{
30a6b803
BS
821 if (!pi_state)
822 return;
823
c87e2837
IM
824 if (!atomic_dec_and_test(&pi_state->refcount))
825 return;
826
827 /*
828 * If pi_state->owner is NULL, the owner is most probably dying
829 * and has cleaned up the pi_state already
830 */
831 if (pi_state->owner) {
1d615482 832 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 833 list_del_init(&pi_state->list);
1d615482 834 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
835
836 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
837 }
838
839 if (current->pi_state_cache)
840 kfree(pi_state);
841 else {
842 /*
843 * pi_state->list is already empty.
844 * clear pi_state->owner.
845 * refcount is at 0 - put it back to 1.
846 */
847 pi_state->owner = NULL;
848 atomic_set(&pi_state->refcount, 1);
849 current->pi_state_cache = pi_state;
850 }
851}
852
853/*
854 * Look up the task based on what TID userspace gave us.
855 * We dont trust it.
856 */
857static struct task_struct * futex_find_get_task(pid_t pid)
858{
859 struct task_struct *p;
860
d359b549 861 rcu_read_lock();
228ebcbe 862 p = find_task_by_vpid(pid);
7a0ea09a
MH
863 if (p)
864 get_task_struct(p);
a06381fe 865
d359b549 866 rcu_read_unlock();
c87e2837
IM
867
868 return p;
869}
870
871/*
872 * This task is holding PI mutexes at exit time => bad.
873 * Kernel cleans up PI-state, but userspace is likely hosed.
874 * (Robust-futex cleanup is separate and might save the day for userspace.)
875 */
876void exit_pi_state_list(struct task_struct *curr)
877{
c87e2837
IM
878 struct list_head *next, *head = &curr->pi_state_list;
879 struct futex_pi_state *pi_state;
627371d7 880 struct futex_hash_bucket *hb;
38d47c1b 881 union futex_key key = FUTEX_KEY_INIT;
c87e2837 882
a0c1e907
TG
883 if (!futex_cmpxchg_enabled)
884 return;
c87e2837
IM
885 /*
886 * We are a ZOMBIE and nobody can enqueue itself on
887 * pi_state_list anymore, but we have to be careful
627371d7 888 * versus waiters unqueueing themselves:
c87e2837 889 */
1d615482 890 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
891 while (!list_empty(head)) {
892
893 next = head->next;
894 pi_state = list_entry(next, struct futex_pi_state, list);
895 key = pi_state->key;
627371d7 896 hb = hash_futex(&key);
1d615482 897 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 898
c87e2837
IM
899 spin_lock(&hb->lock);
900
1d615482 901 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
902 /*
903 * We dropped the pi-lock, so re-check whether this
904 * task still owns the PI-state:
905 */
c87e2837
IM
906 if (head->next != next) {
907 spin_unlock(&hb->lock);
908 continue;
909 }
910
c87e2837 911 WARN_ON(pi_state->owner != curr);
627371d7
IM
912 WARN_ON(list_empty(&pi_state->list));
913 list_del_init(&pi_state->list);
c87e2837 914 pi_state->owner = NULL;
1d615482 915 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
916
917 rt_mutex_unlock(&pi_state->pi_mutex);
918
919 spin_unlock(&hb->lock);
920
1d615482 921 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 922 }
1d615482 923 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
924}
925
54a21788
TG
926/*
927 * We need to check the following states:
928 *
929 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
930 *
931 * [1] NULL | --- | --- | 0 | 0/1 | Valid
932 * [2] NULL | --- | --- | >0 | 0/1 | Valid
933 *
934 * [3] Found | NULL | -- | Any | 0/1 | Invalid
935 *
936 * [4] Found | Found | NULL | 0 | 1 | Valid
937 * [5] Found | Found | NULL | >0 | 1 | Invalid
938 *
939 * [6] Found | Found | task | 0 | 1 | Valid
940 *
941 * [7] Found | Found | NULL | Any | 0 | Invalid
942 *
943 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
944 * [9] Found | Found | task | 0 | 0 | Invalid
945 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
946 *
947 * [1] Indicates that the kernel can acquire the futex atomically. We
948 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
949 *
950 * [2] Valid, if TID does not belong to a kernel thread. If no matching
951 * thread is found then it indicates that the owner TID has died.
952 *
953 * [3] Invalid. The waiter is queued on a non PI futex
954 *
955 * [4] Valid state after exit_robust_list(), which sets the user space
956 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
957 *
958 * [5] The user space value got manipulated between exit_robust_list()
959 * and exit_pi_state_list()
960 *
961 * [6] Valid state after exit_pi_state_list() which sets the new owner in
962 * the pi_state but cannot access the user space value.
963 *
964 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
965 *
966 * [8] Owner and user space value match
967 *
968 * [9] There is no transient state which sets the user space TID to 0
969 * except exit_robust_list(), but this is indicated by the
970 * FUTEX_OWNER_DIED bit. See [4]
971 *
972 * [10] There is no transient state which leaves owner and user space
973 * TID out of sync.
974 */
e60cbc5c
TG
975
976/*
977 * Validate that the existing waiter has a pi_state and sanity check
978 * the pi_state against the user space value. If correct, attach to
979 * it.
980 */
981static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
982 struct futex_pi_state **ps)
c87e2837 983{
778e9a9c 984 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 985
e60cbc5c
TG
986 /*
987 * Userspace might have messed up non-PI and PI futexes [3]
988 */
989 if (unlikely(!pi_state))
990 return -EINVAL;
06a9ec29 991
e60cbc5c 992 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 993
e60cbc5c
TG
994 /*
995 * Handle the owner died case:
996 */
997 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 998 /*
e60cbc5c
TG
999 * exit_pi_state_list sets owner to NULL and wakes the
1000 * topmost waiter. The task which acquires the
1001 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1002 */
e60cbc5c 1003 if (!pi_state->owner) {
59647b6a 1004 /*
e60cbc5c
TG
1005 * No pi state owner, but the user space TID
1006 * is not 0. Inconsistent state. [5]
59647b6a 1007 */
e60cbc5c
TG
1008 if (pid)
1009 return -EINVAL;
bd1dbcc6 1010 /*
e60cbc5c 1011 * Take a ref on the state and return success. [4]
866293ee 1012 */
e60cbc5c 1013 goto out_state;
c87e2837 1014 }
bd1dbcc6
TG
1015
1016 /*
e60cbc5c
TG
1017 * If TID is 0, then either the dying owner has not
1018 * yet executed exit_pi_state_list() or some waiter
1019 * acquired the rtmutex in the pi state, but did not
1020 * yet fixup the TID in user space.
1021 *
1022 * Take a ref on the state and return success. [6]
1023 */
1024 if (!pid)
1025 goto out_state;
1026 } else {
1027 /*
1028 * If the owner died bit is not set, then the pi_state
1029 * must have an owner. [7]
bd1dbcc6 1030 */
e60cbc5c 1031 if (!pi_state->owner)
bd1dbcc6 1032 return -EINVAL;
c87e2837
IM
1033 }
1034
e60cbc5c
TG
1035 /*
1036 * Bail out if user space manipulated the futex value. If pi
1037 * state exists then the owner TID must be the same as the
1038 * user space TID. [9/10]
1039 */
1040 if (pid != task_pid_vnr(pi_state->owner))
1041 return -EINVAL;
1042out_state:
1043 atomic_inc(&pi_state->refcount);
1044 *ps = pi_state;
1045 return 0;
1046}
1047
04e1b2e5
TG
1048/*
1049 * Lookup the task for the TID provided from user space and attach to
1050 * it after doing proper sanity checks.
1051 */
1052static int attach_to_pi_owner(u32 uval, union futex_key *key,
1053 struct futex_pi_state **ps)
e60cbc5c 1054{
e60cbc5c 1055 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1056 struct futex_pi_state *pi_state;
1057 struct task_struct *p;
e60cbc5c 1058
c87e2837 1059 /*
e3f2ddea 1060 * We are the first waiter - try to look up the real owner and attach
54a21788 1061 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1062 */
778e9a9c 1063 if (!pid)
e3f2ddea 1064 return -ESRCH;
c87e2837 1065 p = futex_find_get_task(pid);
7a0ea09a
MH
1066 if (!p)
1067 return -ESRCH;
778e9a9c 1068
a2129464 1069 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1070 put_task_struct(p);
1071 return -EPERM;
1072 }
1073
778e9a9c
AK
1074 /*
1075 * We need to look at the task state flags to figure out,
1076 * whether the task is exiting. To protect against the do_exit
1077 * change of the task flags, we do this protected by
1078 * p->pi_lock:
1079 */
1d615482 1080 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1081 if (unlikely(p->flags & PF_EXITING)) {
1082 /*
1083 * The task is on the way out. When PF_EXITPIDONE is
1084 * set, we know that the task has finished the
1085 * cleanup:
1086 */
1087 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1088
1d615482 1089 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1090 put_task_struct(p);
1091 return ret;
1092 }
c87e2837 1093
54a21788
TG
1094 /*
1095 * No existing pi state. First waiter. [2]
1096 */
c87e2837
IM
1097 pi_state = alloc_pi_state();
1098
1099 /*
04e1b2e5 1100 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1101 * the owner of it:
1102 */
1103 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1104
1105 /* Store the key for possible exit cleanups: */
d0aa7a70 1106 pi_state->key = *key;
c87e2837 1107
627371d7 1108 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1109 list_add(&pi_state->list, &p->pi_state_list);
1110 pi_state->owner = p;
1d615482 1111 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1112
1113 put_task_struct(p);
1114
d0aa7a70 1115 *ps = pi_state;
c87e2837
IM
1116
1117 return 0;
1118}
1119
04e1b2e5
TG
1120static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1121 union futex_key *key, struct futex_pi_state **ps)
1122{
1123 struct futex_q *match = futex_top_waiter(hb, key);
1124
1125 /*
1126 * If there is a waiter on that futex, validate it and
1127 * attach to the pi_state when the validation succeeds.
1128 */
1129 if (match)
1130 return attach_to_pi_state(uval, match->pi_state, ps);
1131
1132 /*
1133 * We are the first waiter - try to look up the owner based on
1134 * @uval and attach to it.
1135 */
1136 return attach_to_pi_owner(uval, key, ps);
1137}
1138
af54d6a1
TG
1139static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1140{
1141 u32 uninitialized_var(curval);
1142
ab51fbab
DB
1143 if (unlikely(should_fail_futex(true)))
1144 return -EFAULT;
1145
af54d6a1
TG
1146 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1147 return -EFAULT;
1148
1149 /*If user space value changed, let the caller retry */
1150 return curval != uval ? -EAGAIN : 0;
1151}
1152
1a52084d 1153/**
d96ee56c 1154 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1155 * @uaddr: the pi futex user address
1156 * @hb: the pi futex hash bucket
1157 * @key: the futex key associated with uaddr and hb
1158 * @ps: the pi_state pointer where we store the result of the
1159 * lookup
1160 * @task: the task to perform the atomic lock work for. This will
1161 * be "current" except in the case of requeue pi.
1162 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1163 *
6c23cbbd
RD
1164 * Return:
1165 * 0 - ready to wait;
1166 * 1 - acquired the lock;
1a52084d
DH
1167 * <0 - error
1168 *
1169 * The hb->lock and futex_key refs shall be held by the caller.
1170 */
1171static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1172 union futex_key *key,
1173 struct futex_pi_state **ps,
bab5bc9e 1174 struct task_struct *task, int set_waiters)
1a52084d 1175{
af54d6a1
TG
1176 u32 uval, newval, vpid = task_pid_vnr(task);
1177 struct futex_q *match;
1178 int ret;
1a52084d
DH
1179
1180 /*
af54d6a1
TG
1181 * Read the user space value first so we can validate a few
1182 * things before proceeding further.
1a52084d 1183 */
af54d6a1 1184 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1185 return -EFAULT;
1186
ab51fbab
DB
1187 if (unlikely(should_fail_futex(true)))
1188 return -EFAULT;
1189
1a52084d
DH
1190 /*
1191 * Detect deadlocks.
1192 */
af54d6a1 1193 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1194 return -EDEADLK;
1195
ab51fbab
DB
1196 if ((unlikely(should_fail_futex(true))))
1197 return -EDEADLK;
1198
1a52084d 1199 /*
af54d6a1
TG
1200 * Lookup existing state first. If it exists, try to attach to
1201 * its pi_state.
1a52084d 1202 */
af54d6a1
TG
1203 match = futex_top_waiter(hb, key);
1204 if (match)
1205 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1206
1207 /*
af54d6a1
TG
1208 * No waiter and user TID is 0. We are here because the
1209 * waiters or the owner died bit is set or called from
1210 * requeue_cmp_pi or for whatever reason something took the
1211 * syscall.
1a52084d 1212 */
af54d6a1 1213 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1214 /*
af54d6a1
TG
1215 * We take over the futex. No other waiters and the user space
1216 * TID is 0. We preserve the owner died bit.
59fa6245 1217 */
af54d6a1
TG
1218 newval = uval & FUTEX_OWNER_DIED;
1219 newval |= vpid;
1a52084d 1220
af54d6a1
TG
1221 /* The futex requeue_pi code can enforce the waiters bit */
1222 if (set_waiters)
1223 newval |= FUTEX_WAITERS;
1224
1225 ret = lock_pi_update_atomic(uaddr, uval, newval);
1226 /* If the take over worked, return 1 */
1227 return ret < 0 ? ret : 1;
1228 }
1a52084d
DH
1229
1230 /*
af54d6a1
TG
1231 * First waiter. Set the waiters bit before attaching ourself to
1232 * the owner. If owner tries to unlock, it will be forced into
1233 * the kernel and blocked on hb->lock.
1a52084d 1234 */
af54d6a1
TG
1235 newval = uval | FUTEX_WAITERS;
1236 ret = lock_pi_update_atomic(uaddr, uval, newval);
1237 if (ret)
1238 return ret;
1a52084d 1239 /*
af54d6a1
TG
1240 * If the update of the user space value succeeded, we try to
1241 * attach to the owner. If that fails, no harm done, we only
1242 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1243 */
af54d6a1 1244 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1245}
1246
2e12978a
LJ
1247/**
1248 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1249 * @q: The futex_q to unqueue
1250 *
1251 * The q->lock_ptr must not be NULL and must be held by the caller.
1252 */
1253static void __unqueue_futex(struct futex_q *q)
1254{
1255 struct futex_hash_bucket *hb;
1256
29096202
SR
1257 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1258 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1259 return;
1260
1261 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1262 plist_del(&q->list, &hb->chain);
11d4616b 1263 hb_waiters_dec(hb);
2e12978a
LJ
1264}
1265
1da177e4
LT
1266/*
1267 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1268 * Afterwards, the futex_q must not be accessed. Callers
1269 * must ensure to later call wake_up_q() for the actual
1270 * wakeups to occur.
1da177e4 1271 */
1d0dcb3a 1272static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1273{
f1a11e05
TG
1274 struct task_struct *p = q->task;
1275
aa10990e
DH
1276 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1277 return;
1278
1da177e4 1279 /*
1d0dcb3a
DB
1280 * Queue the task for later wakeup for after we've released
1281 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1282 */
1d0dcb3a 1283 wake_q_add(wake_q, p);
2e12978a 1284 __unqueue_futex(q);
1da177e4 1285 /*
f1a11e05
TG
1286 * The waiting task can free the futex_q as soon as
1287 * q->lock_ptr = NULL is written, without taking any locks. A
1288 * memory barrier is required here to prevent the following
1289 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1290 */
ccdea2f8 1291 smp_wmb();
1da177e4
LT
1292 q->lock_ptr = NULL;
1293}
1294
802ab58d
SAS
1295static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1296 struct futex_hash_bucket *hb)
c87e2837
IM
1297{
1298 struct task_struct *new_owner;
1299 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1300 u32 uninitialized_var(curval), newval;
802ab58d
SAS
1301 WAKE_Q(wake_q);
1302 bool deboost;
13fbca4c 1303 int ret = 0;
c87e2837
IM
1304
1305 if (!pi_state)
1306 return -EINVAL;
1307
51246bfd
TG
1308 /*
1309 * If current does not own the pi_state then the futex is
1310 * inconsistent and user space fiddled with the futex value.
1311 */
1312 if (pi_state->owner != current)
1313 return -EINVAL;
1314
b4abf910 1315 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1316 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1317
1318 /*
f123c98e
SR
1319 * It is possible that the next waiter (the one that brought
1320 * this owner to the kernel) timed out and is no longer
1321 * waiting on the lock.
c87e2837
IM
1322 */
1323 if (!new_owner)
1324 new_owner = this->task;
1325
1326 /*
13fbca4c
TG
1327 * We pass it to the next owner. The WAITERS bit is always
1328 * kept enabled while there is PI state around. We cleanup the
1329 * owner died bit, because we are the owner.
c87e2837 1330 */
13fbca4c 1331 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1332
ab51fbab
DB
1333 if (unlikely(should_fail_futex(true)))
1334 ret = -EFAULT;
1335
89e9e66b 1336 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1337 ret = -EFAULT;
89e9e66b
SAS
1338 } else if (curval != uval) {
1339 /*
1340 * If a unconditional UNLOCK_PI operation (user space did not
1341 * try the TID->0 transition) raced with a waiter setting the
1342 * FUTEX_WAITERS flag between get_user() and locking the hash
1343 * bucket lock, retry the operation.
1344 */
1345 if ((FUTEX_TID_MASK & curval) == uval)
1346 ret = -EAGAIN;
1347 else
1348 ret = -EINVAL;
1349 }
13fbca4c 1350 if (ret) {
b4abf910 1351 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
13fbca4c 1352 return ret;
e3f2ddea 1353 }
c87e2837 1354
b4abf910 1355 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1356 WARN_ON(list_empty(&pi_state->list));
1357 list_del_init(&pi_state->list);
b4abf910 1358 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1359
b4abf910 1360 raw_spin_lock(&new_owner->pi_lock);
627371d7 1361 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1362 list_add(&pi_state->list, &new_owner->pi_state_list);
1363 pi_state->owner = new_owner;
b4abf910 1364 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1365
b4abf910 1366 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1367
1368 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1369
1370 /*
1371 * First unlock HB so the waiter does not spin on it once he got woken
1372 * up. Second wake up the waiter before the priority is adjusted. If we
1373 * deboost first (and lose our higher priority), then the task might get
1374 * scheduled away before the wake up can take place.
1375 */
1376 spin_unlock(&hb->lock);
1377 wake_up_q(&wake_q);
1378 if (deboost)
1379 rt_mutex_adjust_prio(current);
c87e2837
IM
1380
1381 return 0;
1382}
1383
8b8f319f
IM
1384/*
1385 * Express the locking dependencies for lockdep:
1386 */
1387static inline void
1388double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1389{
1390 if (hb1 <= hb2) {
1391 spin_lock(&hb1->lock);
1392 if (hb1 < hb2)
1393 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1394 } else { /* hb1 > hb2 */
1395 spin_lock(&hb2->lock);
1396 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1397 }
1398}
1399
5eb3dc62
DH
1400static inline void
1401double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1402{
f061d351 1403 spin_unlock(&hb1->lock);
88f502fe
IM
1404 if (hb1 != hb2)
1405 spin_unlock(&hb2->lock);
5eb3dc62
DH
1406}
1407
1da177e4 1408/*
b2d0994b 1409 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1410 */
b41277dc
DH
1411static int
1412futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1413{
e2970f2f 1414 struct futex_hash_bucket *hb;
1da177e4 1415 struct futex_q *this, *next;
38d47c1b 1416 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1417 int ret;
1d0dcb3a 1418 WAKE_Q(wake_q);
1da177e4 1419
cd689985
TG
1420 if (!bitset)
1421 return -EINVAL;
1422
9ea71503 1423 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1424 if (unlikely(ret != 0))
1425 goto out;
1426
e2970f2f 1427 hb = hash_futex(&key);
b0c29f79
DB
1428
1429 /* Make sure we really have tasks to wakeup */
1430 if (!hb_waiters_pending(hb))
1431 goto out_put_key;
1432
e2970f2f 1433 spin_lock(&hb->lock);
1da177e4 1434
0d00c7b2 1435 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1436 if (match_futex (&this->key, &key)) {
52400ba9 1437 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1438 ret = -EINVAL;
1439 break;
1440 }
cd689985
TG
1441
1442 /* Check if one of the bits is set in both bitsets */
1443 if (!(this->bitset & bitset))
1444 continue;
1445
1d0dcb3a 1446 mark_wake_futex(&wake_q, this);
1da177e4
LT
1447 if (++ret >= nr_wake)
1448 break;
1449 }
1450 }
1451
e2970f2f 1452 spin_unlock(&hb->lock);
1d0dcb3a 1453 wake_up_q(&wake_q);
b0c29f79 1454out_put_key:
ae791a2d 1455 put_futex_key(&key);
42d35d48 1456out:
1da177e4
LT
1457 return ret;
1458}
1459
4732efbe
JJ
1460/*
1461 * Wake up all waiters hashed on the physical page that is mapped
1462 * to this virtual address:
1463 */
e2970f2f 1464static int
b41277dc 1465futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1466 int nr_wake, int nr_wake2, int op)
4732efbe 1467{
38d47c1b 1468 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1469 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1470 struct futex_q *this, *next;
e4dc5b7a 1471 int ret, op_ret;
1d0dcb3a 1472 WAKE_Q(wake_q);
4732efbe 1473
e4dc5b7a 1474retry:
9ea71503 1475 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1476 if (unlikely(ret != 0))
1477 goto out;
9ea71503 1478 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1479 if (unlikely(ret != 0))
42d35d48 1480 goto out_put_key1;
4732efbe 1481
e2970f2f
IM
1482 hb1 = hash_futex(&key1);
1483 hb2 = hash_futex(&key2);
4732efbe 1484
e4dc5b7a 1485retry_private:
eaaea803 1486 double_lock_hb(hb1, hb2);
e2970f2f 1487 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1488 if (unlikely(op_ret < 0)) {
4732efbe 1489
5eb3dc62 1490 double_unlock_hb(hb1, hb2);
4732efbe 1491
7ee1dd3f 1492#ifndef CONFIG_MMU
e2970f2f
IM
1493 /*
1494 * we don't get EFAULT from MMU faults if we don't have an MMU,
1495 * but we might get them from range checking
1496 */
7ee1dd3f 1497 ret = op_ret;
42d35d48 1498 goto out_put_keys;
7ee1dd3f
DH
1499#endif
1500
796f8d9b
DG
1501 if (unlikely(op_ret != -EFAULT)) {
1502 ret = op_ret;
42d35d48 1503 goto out_put_keys;
796f8d9b
DG
1504 }
1505
d0725992 1506 ret = fault_in_user_writeable(uaddr2);
4732efbe 1507 if (ret)
de87fcc1 1508 goto out_put_keys;
4732efbe 1509
b41277dc 1510 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1511 goto retry_private;
1512
ae791a2d
TG
1513 put_futex_key(&key2);
1514 put_futex_key(&key1);
e4dc5b7a 1515 goto retry;
4732efbe
JJ
1516 }
1517
0d00c7b2 1518 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1519 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1520 if (this->pi_state || this->rt_waiter) {
1521 ret = -EINVAL;
1522 goto out_unlock;
1523 }
1d0dcb3a 1524 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1525 if (++ret >= nr_wake)
1526 break;
1527 }
1528 }
1529
1530 if (op_ret > 0) {
4732efbe 1531 op_ret = 0;
0d00c7b2 1532 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1533 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1534 if (this->pi_state || this->rt_waiter) {
1535 ret = -EINVAL;
1536 goto out_unlock;
1537 }
1d0dcb3a 1538 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1539 if (++op_ret >= nr_wake2)
1540 break;
1541 }
1542 }
1543 ret += op_ret;
1544 }
1545
aa10990e 1546out_unlock:
5eb3dc62 1547 double_unlock_hb(hb1, hb2);
1d0dcb3a 1548 wake_up_q(&wake_q);
42d35d48 1549out_put_keys:
ae791a2d 1550 put_futex_key(&key2);
42d35d48 1551out_put_key1:
ae791a2d 1552 put_futex_key(&key1);
42d35d48 1553out:
4732efbe
JJ
1554 return ret;
1555}
1556
9121e478
DH
1557/**
1558 * requeue_futex() - Requeue a futex_q from one hb to another
1559 * @q: the futex_q to requeue
1560 * @hb1: the source hash_bucket
1561 * @hb2: the target hash_bucket
1562 * @key2: the new key for the requeued futex_q
1563 */
1564static inline
1565void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1566 struct futex_hash_bucket *hb2, union futex_key *key2)
1567{
1568
1569 /*
1570 * If key1 and key2 hash to the same bucket, no need to
1571 * requeue.
1572 */
1573 if (likely(&hb1->chain != &hb2->chain)) {
1574 plist_del(&q->list, &hb1->chain);
11d4616b 1575 hb_waiters_dec(hb1);
11d4616b 1576 hb_waiters_inc(hb2);
fe1bce9e 1577 plist_add(&q->list, &hb2->chain);
9121e478 1578 q->lock_ptr = &hb2->lock;
9121e478
DH
1579 }
1580 get_futex_key_refs(key2);
1581 q->key = *key2;
1582}
1583
52400ba9
DH
1584/**
1585 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1586 * @q: the futex_q
1587 * @key: the key of the requeue target futex
1588 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1589 *
1590 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1591 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1592 * to the requeue target futex so the waiter can detect the wakeup on the right
1593 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1594 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1595 * to protect access to the pi_state to fixup the owner later. Must be called
1596 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1597 */
1598static inline
beda2c7e
DH
1599void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1600 struct futex_hash_bucket *hb)
52400ba9 1601{
52400ba9
DH
1602 get_futex_key_refs(key);
1603 q->key = *key;
1604
2e12978a 1605 __unqueue_futex(q);
52400ba9
DH
1606
1607 WARN_ON(!q->rt_waiter);
1608 q->rt_waiter = NULL;
1609
beda2c7e 1610 q->lock_ptr = &hb->lock;
beda2c7e 1611
f1a11e05 1612 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1613}
1614
1615/**
1616 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1617 * @pifutex: the user address of the to futex
1618 * @hb1: the from futex hash bucket, must be locked by the caller
1619 * @hb2: the to futex hash bucket, must be locked by the caller
1620 * @key1: the from futex key
1621 * @key2: the to futex key
1622 * @ps: address to store the pi_state pointer
1623 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1624 *
1625 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1626 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1627 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1628 * hb1 and hb2 must be held by the caller.
52400ba9 1629 *
6c23cbbd
RD
1630 * Return:
1631 * 0 - failed to acquire the lock atomically;
866293ee 1632 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1633 * <0 - error
1634 */
1635static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1636 struct futex_hash_bucket *hb1,
1637 struct futex_hash_bucket *hb2,
1638 union futex_key *key1, union futex_key *key2,
bab5bc9e 1639 struct futex_pi_state **ps, int set_waiters)
52400ba9 1640{
bab5bc9e 1641 struct futex_q *top_waiter = NULL;
52400ba9 1642 u32 curval;
866293ee 1643 int ret, vpid;
52400ba9
DH
1644
1645 if (get_futex_value_locked(&curval, pifutex))
1646 return -EFAULT;
1647
ab51fbab
DB
1648 if (unlikely(should_fail_futex(true)))
1649 return -EFAULT;
1650
bab5bc9e
DH
1651 /*
1652 * Find the top_waiter and determine if there are additional waiters.
1653 * If the caller intends to requeue more than 1 waiter to pifutex,
1654 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1655 * as we have means to handle the possible fault. If not, don't set
1656 * the bit unecessarily as it will force the subsequent unlock to enter
1657 * the kernel.
1658 */
52400ba9
DH
1659 top_waiter = futex_top_waiter(hb1, key1);
1660
1661 /* There are no waiters, nothing for us to do. */
1662 if (!top_waiter)
1663 return 0;
1664
84bc4af5
DH
1665 /* Ensure we requeue to the expected futex. */
1666 if (!match_futex(top_waiter->requeue_pi_key, key2))
1667 return -EINVAL;
1668
52400ba9 1669 /*
bab5bc9e
DH
1670 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1671 * the contended case or if set_waiters is 1. The pi_state is returned
1672 * in ps in contended cases.
52400ba9 1673 */
866293ee 1674 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1675 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1676 set_waiters);
866293ee 1677 if (ret == 1) {
beda2c7e 1678 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1679 return vpid;
1680 }
52400ba9
DH
1681 return ret;
1682}
1683
1684/**
1685 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1686 * @uaddr1: source futex user address
b41277dc 1687 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1688 * @uaddr2: target futex user address
1689 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1690 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1691 * @cmpval: @uaddr1 expected value (or %NULL)
1692 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1693 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1694 *
1695 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1696 * uaddr2 atomically on behalf of the top waiter.
1697 *
6c23cbbd
RD
1698 * Return:
1699 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1700 * <0 - on error
1da177e4 1701 */
b41277dc
DH
1702static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1703 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1704 u32 *cmpval, int requeue_pi)
1da177e4 1705{
38d47c1b 1706 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1707 int drop_count = 0, task_count = 0, ret;
1708 struct futex_pi_state *pi_state = NULL;
e2970f2f 1709 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1710 struct futex_q *this, *next;
1d0dcb3a 1711 WAKE_Q(wake_q);
52400ba9
DH
1712
1713 if (requeue_pi) {
e9c243a5
TG
1714 /*
1715 * Requeue PI only works on two distinct uaddrs. This
1716 * check is only valid for private futexes. See below.
1717 */
1718 if (uaddr1 == uaddr2)
1719 return -EINVAL;
1720
52400ba9
DH
1721 /*
1722 * requeue_pi requires a pi_state, try to allocate it now
1723 * without any locks in case it fails.
1724 */
1725 if (refill_pi_state_cache())
1726 return -ENOMEM;
1727 /*
1728 * requeue_pi must wake as many tasks as it can, up to nr_wake
1729 * + nr_requeue, since it acquires the rt_mutex prior to
1730 * returning to userspace, so as to not leave the rt_mutex with
1731 * waiters and no owner. However, second and third wake-ups
1732 * cannot be predicted as they involve race conditions with the
1733 * first wake and a fault while looking up the pi_state. Both
1734 * pthread_cond_signal() and pthread_cond_broadcast() should
1735 * use nr_wake=1.
1736 */
1737 if (nr_wake != 1)
1738 return -EINVAL;
1739 }
1da177e4 1740
42d35d48 1741retry:
9ea71503 1742 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1743 if (unlikely(ret != 0))
1744 goto out;
9ea71503
SB
1745 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1746 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1747 if (unlikely(ret != 0))
42d35d48 1748 goto out_put_key1;
1da177e4 1749
e9c243a5
TG
1750 /*
1751 * The check above which compares uaddrs is not sufficient for
1752 * shared futexes. We need to compare the keys:
1753 */
1754 if (requeue_pi && match_futex(&key1, &key2)) {
1755 ret = -EINVAL;
1756 goto out_put_keys;
1757 }
1758
e2970f2f
IM
1759 hb1 = hash_futex(&key1);
1760 hb2 = hash_futex(&key2);
1da177e4 1761
e4dc5b7a 1762retry_private:
69cd9eba 1763 hb_waiters_inc(hb2);
8b8f319f 1764 double_lock_hb(hb1, hb2);
1da177e4 1765
e2970f2f
IM
1766 if (likely(cmpval != NULL)) {
1767 u32 curval;
1da177e4 1768
e2970f2f 1769 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1770
1771 if (unlikely(ret)) {
5eb3dc62 1772 double_unlock_hb(hb1, hb2);
69cd9eba 1773 hb_waiters_dec(hb2);
1da177e4 1774
e2970f2f 1775 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1776 if (ret)
1777 goto out_put_keys;
1da177e4 1778
b41277dc 1779 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1780 goto retry_private;
1da177e4 1781
ae791a2d
TG
1782 put_futex_key(&key2);
1783 put_futex_key(&key1);
e4dc5b7a 1784 goto retry;
1da177e4 1785 }
e2970f2f 1786 if (curval != *cmpval) {
1da177e4
LT
1787 ret = -EAGAIN;
1788 goto out_unlock;
1789 }
1790 }
1791
52400ba9 1792 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1793 /*
1794 * Attempt to acquire uaddr2 and wake the top waiter. If we
1795 * intend to requeue waiters, force setting the FUTEX_WAITERS
1796 * bit. We force this here where we are able to easily handle
1797 * faults rather in the requeue loop below.
1798 */
52400ba9 1799 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1800 &key2, &pi_state, nr_requeue);
52400ba9
DH
1801
1802 /*
1803 * At this point the top_waiter has either taken uaddr2 or is
1804 * waiting on it. If the former, then the pi_state will not
1805 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1806 * reference to it. If the lock was taken, ret contains the
1807 * vpid of the top waiter task.
ecb38b78
TG
1808 * If the lock was not taken, we have pi_state and an initial
1809 * refcount on it. In case of an error we have nothing.
52400ba9 1810 */
866293ee 1811 if (ret > 0) {
52400ba9 1812 WARN_ON(pi_state);
89061d3d 1813 drop_count++;
52400ba9 1814 task_count++;
866293ee 1815 /*
ecb38b78
TG
1816 * If we acquired the lock, then the user space value
1817 * of uaddr2 should be vpid. It cannot be changed by
1818 * the top waiter as it is blocked on hb2 lock if it
1819 * tries to do so. If something fiddled with it behind
1820 * our back the pi state lookup might unearth it. So
1821 * we rather use the known value than rereading and
1822 * handing potential crap to lookup_pi_state.
1823 *
1824 * If that call succeeds then we have pi_state and an
1825 * initial refcount on it.
866293ee 1826 */
54a21788 1827 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1828 }
1829
1830 switch (ret) {
1831 case 0:
ecb38b78 1832 /* We hold a reference on the pi state. */
52400ba9 1833 break;
4959f2de
TG
1834
1835 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1836 case -EFAULT:
1837 double_unlock_hb(hb1, hb2);
69cd9eba 1838 hb_waiters_dec(hb2);
ae791a2d
TG
1839 put_futex_key(&key2);
1840 put_futex_key(&key1);
d0725992 1841 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1842 if (!ret)
1843 goto retry;
1844 goto out;
1845 case -EAGAIN:
af54d6a1
TG
1846 /*
1847 * Two reasons for this:
1848 * - Owner is exiting and we just wait for the
1849 * exit to complete.
1850 * - The user space value changed.
1851 */
52400ba9 1852 double_unlock_hb(hb1, hb2);
69cd9eba 1853 hb_waiters_dec(hb2);
ae791a2d
TG
1854 put_futex_key(&key2);
1855 put_futex_key(&key1);
52400ba9
DH
1856 cond_resched();
1857 goto retry;
1858 default:
1859 goto out_unlock;
1860 }
1861 }
1862
0d00c7b2 1863 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1864 if (task_count - nr_wake >= nr_requeue)
1865 break;
1866
1867 if (!match_futex(&this->key, &key1))
1da177e4 1868 continue;
52400ba9 1869
392741e0
DH
1870 /*
1871 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1872 * be paired with each other and no other futex ops.
aa10990e
DH
1873 *
1874 * We should never be requeueing a futex_q with a pi_state,
1875 * which is awaiting a futex_unlock_pi().
392741e0
DH
1876 */
1877 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1878 (!requeue_pi && this->rt_waiter) ||
1879 this->pi_state) {
392741e0
DH
1880 ret = -EINVAL;
1881 break;
1882 }
52400ba9
DH
1883
1884 /*
1885 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1886 * lock, we already woke the top_waiter. If not, it will be
1887 * woken by futex_unlock_pi().
1888 */
1889 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1890 mark_wake_futex(&wake_q, this);
52400ba9
DH
1891 continue;
1892 }
1da177e4 1893
84bc4af5
DH
1894 /* Ensure we requeue to the expected futex for requeue_pi. */
1895 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1896 ret = -EINVAL;
1897 break;
1898 }
1899
52400ba9
DH
1900 /*
1901 * Requeue nr_requeue waiters and possibly one more in the case
1902 * of requeue_pi if we couldn't acquire the lock atomically.
1903 */
1904 if (requeue_pi) {
ecb38b78
TG
1905 /*
1906 * Prepare the waiter to take the rt_mutex. Take a
1907 * refcount on the pi_state and store the pointer in
1908 * the futex_q object of the waiter.
1909 */
52400ba9
DH
1910 atomic_inc(&pi_state->refcount);
1911 this->pi_state = pi_state;
1912 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1913 this->rt_waiter,
c051b21f 1914 this->task);
52400ba9 1915 if (ret == 1) {
ecb38b78
TG
1916 /*
1917 * We got the lock. We do neither drop the
1918 * refcount on pi_state nor clear
1919 * this->pi_state because the waiter needs the
1920 * pi_state for cleaning up the user space
1921 * value. It will drop the refcount after
1922 * doing so.
1923 */
beda2c7e 1924 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1925 drop_count++;
52400ba9
DH
1926 continue;
1927 } else if (ret) {
ecb38b78
TG
1928 /*
1929 * rt_mutex_start_proxy_lock() detected a
1930 * potential deadlock when we tried to queue
1931 * that waiter. Drop the pi_state reference
1932 * which we took above and remove the pointer
1933 * to the state from the waiters futex_q
1934 * object.
1935 */
52400ba9 1936 this->pi_state = NULL;
29e9ee5d 1937 put_pi_state(pi_state);
885c2cb7
TG
1938 /*
1939 * We stop queueing more waiters and let user
1940 * space deal with the mess.
1941 */
1942 break;
52400ba9 1943 }
1da177e4 1944 }
52400ba9
DH
1945 requeue_futex(this, hb1, hb2, &key2);
1946 drop_count++;
1da177e4
LT
1947 }
1948
ecb38b78
TG
1949 /*
1950 * We took an extra initial reference to the pi_state either
1951 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1952 * need to drop it here again.
1953 */
29e9ee5d 1954 put_pi_state(pi_state);
885c2cb7
TG
1955
1956out_unlock:
5eb3dc62 1957 double_unlock_hb(hb1, hb2);
1d0dcb3a 1958 wake_up_q(&wake_q);
69cd9eba 1959 hb_waiters_dec(hb2);
1da177e4 1960
cd84a42f
DH
1961 /*
1962 * drop_futex_key_refs() must be called outside the spinlocks. During
1963 * the requeue we moved futex_q's from the hash bucket at key1 to the
1964 * one at key2 and updated their key pointer. We no longer need to
1965 * hold the references to key1.
1966 */
1da177e4 1967 while (--drop_count >= 0)
9adef58b 1968 drop_futex_key_refs(&key1);
1da177e4 1969
42d35d48 1970out_put_keys:
ae791a2d 1971 put_futex_key(&key2);
42d35d48 1972out_put_key1:
ae791a2d 1973 put_futex_key(&key1);
42d35d48 1974out:
52400ba9 1975 return ret ? ret : task_count;
1da177e4
LT
1976}
1977
1978/* The key must be already stored in q->key. */
82af7aca 1979static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1980 __acquires(&hb->lock)
1da177e4 1981{
e2970f2f 1982 struct futex_hash_bucket *hb;
1da177e4 1983
e2970f2f 1984 hb = hash_futex(&q->key);
11d4616b
LT
1985
1986 /*
1987 * Increment the counter before taking the lock so that
1988 * a potential waker won't miss a to-be-slept task that is
1989 * waiting for the spinlock. This is safe as all queue_lock()
1990 * users end up calling queue_me(). Similarly, for housekeeping,
1991 * decrement the counter at queue_unlock() when some error has
1992 * occurred and we don't end up adding the task to the list.
1993 */
1994 hb_waiters_inc(hb);
1995
e2970f2f 1996 q->lock_ptr = &hb->lock;
1da177e4 1997
8ad7b378 1998 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 1999 return hb;
1da177e4
LT
2000}
2001
d40d65c8 2002static inline void
0d00c7b2 2003queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2004 __releases(&hb->lock)
d40d65c8
DH
2005{
2006 spin_unlock(&hb->lock);
11d4616b 2007 hb_waiters_dec(hb);
d40d65c8
DH
2008}
2009
2010/**
2011 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2012 * @q: The futex_q to enqueue
2013 * @hb: The destination hash bucket
2014 *
2015 * The hb->lock must be held by the caller, and is released here. A call to
2016 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2017 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2018 * or nothing if the unqueue is done as part of the wake process and the unqueue
2019 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2020 * an example).
2021 */
82af7aca 2022static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 2023 __releases(&hb->lock)
1da177e4 2024{
ec92d082
PP
2025 int prio;
2026
2027 /*
2028 * The priority used to register this element is
2029 * - either the real thread-priority for the real-time threads
2030 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2031 * - or MAX_RT_PRIO for non-RT threads.
2032 * Thus, all RT-threads are woken first in priority order, and
2033 * the others are woken last, in FIFO order.
2034 */
2035 prio = min(current->normal_prio, MAX_RT_PRIO);
2036
2037 plist_node_init(&q->list, prio);
ec92d082 2038 plist_add(&q->list, &hb->chain);
c87e2837 2039 q->task = current;
e2970f2f 2040 spin_unlock(&hb->lock);
1da177e4
LT
2041}
2042
d40d65c8
DH
2043/**
2044 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2045 * @q: The futex_q to unqueue
2046 *
2047 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2048 * be paired with exactly one earlier call to queue_me().
2049 *
6c23cbbd
RD
2050 * Return:
2051 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2052 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2053 */
1da177e4
LT
2054static int unqueue_me(struct futex_q *q)
2055{
1da177e4 2056 spinlock_t *lock_ptr;
e2970f2f 2057 int ret = 0;
1da177e4
LT
2058
2059 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2060retry:
29b75eb2
JZ
2061 /*
2062 * q->lock_ptr can change between this read and the following spin_lock.
2063 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2064 * optimizing lock_ptr out of the logic below.
2065 */
2066 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2067 if (lock_ptr != NULL) {
1da177e4
LT
2068 spin_lock(lock_ptr);
2069 /*
2070 * q->lock_ptr can change between reading it and
2071 * spin_lock(), causing us to take the wrong lock. This
2072 * corrects the race condition.
2073 *
2074 * Reasoning goes like this: if we have the wrong lock,
2075 * q->lock_ptr must have changed (maybe several times)
2076 * between reading it and the spin_lock(). It can
2077 * change again after the spin_lock() but only if it was
2078 * already changed before the spin_lock(). It cannot,
2079 * however, change back to the original value. Therefore
2080 * we can detect whether we acquired the correct lock.
2081 */
2082 if (unlikely(lock_ptr != q->lock_ptr)) {
2083 spin_unlock(lock_ptr);
2084 goto retry;
2085 }
2e12978a 2086 __unqueue_futex(q);
c87e2837
IM
2087
2088 BUG_ON(q->pi_state);
2089
1da177e4
LT
2090 spin_unlock(lock_ptr);
2091 ret = 1;
2092 }
2093
9adef58b 2094 drop_futex_key_refs(&q->key);
1da177e4
LT
2095 return ret;
2096}
2097
c87e2837
IM
2098/*
2099 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2100 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2101 * and dropped here.
c87e2837 2102 */
d0aa7a70 2103static void unqueue_me_pi(struct futex_q *q)
15e408cd 2104 __releases(q->lock_ptr)
c87e2837 2105{
2e12978a 2106 __unqueue_futex(q);
c87e2837
IM
2107
2108 BUG_ON(!q->pi_state);
29e9ee5d 2109 put_pi_state(q->pi_state);
c87e2837
IM
2110 q->pi_state = NULL;
2111
d0aa7a70 2112 spin_unlock(q->lock_ptr);
c87e2837
IM
2113}
2114
d0aa7a70 2115/*
cdf71a10 2116 * Fixup the pi_state owner with the new owner.
d0aa7a70 2117 *
778e9a9c
AK
2118 * Must be called with hash bucket lock held and mm->sem held for non
2119 * private futexes.
d0aa7a70 2120 */
778e9a9c 2121static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2122 struct task_struct *newowner)
d0aa7a70 2123{
cdf71a10 2124 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2125 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2126 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2127 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2128 int ret;
d0aa7a70
PP
2129
2130 /* Owner died? */
1b7558e4
TG
2131 if (!pi_state->owner)
2132 newtid |= FUTEX_OWNER_DIED;
2133
2134 /*
2135 * We are here either because we stole the rtmutex from the
8161239a
LJ
2136 * previous highest priority waiter or we are the highest priority
2137 * waiter but failed to get the rtmutex the first time.
2138 * We have to replace the newowner TID in the user space variable.
2139 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2140 *
b2d0994b
DH
2141 * Note: We write the user space value _before_ changing the pi_state
2142 * because we can fault here. Imagine swapped out pages or a fork
2143 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2144 *
2145 * Modifying pi_state _before_ the user space value would
2146 * leave the pi_state in an inconsistent state when we fault
2147 * here, because we need to drop the hash bucket lock to
2148 * handle the fault. This might be observed in the PID check
2149 * in lookup_pi_state.
2150 */
2151retry:
2152 if (get_futex_value_locked(&uval, uaddr))
2153 goto handle_fault;
2154
2155 while (1) {
2156 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2157
37a9d912 2158 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2159 goto handle_fault;
2160 if (curval == uval)
2161 break;
2162 uval = curval;
2163 }
2164
2165 /*
2166 * We fixed up user space. Now we need to fix the pi_state
2167 * itself.
2168 */
d0aa7a70 2169 if (pi_state->owner != NULL) {
1d615482 2170 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2171 WARN_ON(list_empty(&pi_state->list));
2172 list_del_init(&pi_state->list);
1d615482 2173 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2174 }
d0aa7a70 2175
cdf71a10 2176 pi_state->owner = newowner;
d0aa7a70 2177
1d615482 2178 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2179 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2180 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2181 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2182 return 0;
d0aa7a70 2183
d0aa7a70 2184 /*
1b7558e4 2185 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2186 * lock here. That gives the other task (either the highest priority
2187 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2188 * chance to try the fixup of the pi_state. So once we are
2189 * back from handling the fault we need to check the pi_state
2190 * after reacquiring the hash bucket lock and before trying to
2191 * do another fixup. When the fixup has been done already we
2192 * simply return.
d0aa7a70 2193 */
1b7558e4
TG
2194handle_fault:
2195 spin_unlock(q->lock_ptr);
778e9a9c 2196
d0725992 2197 ret = fault_in_user_writeable(uaddr);
778e9a9c 2198
1b7558e4 2199 spin_lock(q->lock_ptr);
778e9a9c 2200
1b7558e4
TG
2201 /*
2202 * Check if someone else fixed it for us:
2203 */
2204 if (pi_state->owner != oldowner)
2205 return 0;
2206
2207 if (ret)
2208 return ret;
2209
2210 goto retry;
d0aa7a70
PP
2211}
2212
72c1bbf3 2213static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2214
dd973998
DH
2215/**
2216 * fixup_owner() - Post lock pi_state and corner case management
2217 * @uaddr: user address of the futex
dd973998
DH
2218 * @q: futex_q (contains pi_state and access to the rt_mutex)
2219 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2220 *
2221 * After attempting to lock an rt_mutex, this function is called to cleanup
2222 * the pi_state owner as well as handle race conditions that may allow us to
2223 * acquire the lock. Must be called with the hb lock held.
2224 *
6c23cbbd
RD
2225 * Return:
2226 * 1 - success, lock taken;
2227 * 0 - success, lock not taken;
dd973998
DH
2228 * <0 - on error (-EFAULT)
2229 */
ae791a2d 2230static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2231{
2232 struct task_struct *owner;
2233 int ret = 0;
2234
2235 if (locked) {
2236 /*
2237 * Got the lock. We might not be the anticipated owner if we
2238 * did a lock-steal - fix up the PI-state in that case:
2239 */
2240 if (q->pi_state->owner != current)
ae791a2d 2241 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2242 goto out;
2243 }
2244
2245 /*
2246 * Catch the rare case, where the lock was released when we were on the
2247 * way back before we locked the hash bucket.
2248 */
2249 if (q->pi_state->owner == current) {
2250 /*
2251 * Try to get the rt_mutex now. This might fail as some other
2252 * task acquired the rt_mutex after we removed ourself from the
2253 * rt_mutex waiters list.
2254 */
2255 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2256 locked = 1;
2257 goto out;
2258 }
2259
2260 /*
2261 * pi_state is incorrect, some other task did a lock steal and
2262 * we returned due to timeout or signal without taking the
8161239a 2263 * rt_mutex. Too late.
dd973998 2264 */
b4abf910 2265 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
dd973998 2266 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2267 if (!owner)
2268 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
b4abf910 2269 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2270 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2271 goto out;
2272 }
2273
2274 /*
2275 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2276 * the owner of the rt_mutex.
dd973998
DH
2277 */
2278 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2279 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2280 "pi-state %p\n", ret,
2281 q->pi_state->pi_mutex.owner,
2282 q->pi_state->owner);
2283
2284out:
2285 return ret ? ret : locked;
2286}
2287
ca5f9524
DH
2288/**
2289 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2290 * @hb: the futex hash bucket, must be locked by the caller
2291 * @q: the futex_q to queue up on
2292 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2293 */
2294static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2295 struct hrtimer_sleeper *timeout)
ca5f9524 2296{
9beba3c5
DH
2297 /*
2298 * The task state is guaranteed to be set before another task can
b92b8b35 2299 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2300 * queue_me() calls spin_unlock() upon completion, both serializing
2301 * access to the hash list and forcing another memory barrier.
2302 */
f1a11e05 2303 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2304 queue_me(q, hb);
ca5f9524
DH
2305
2306 /* Arm the timer */
2e4b0d3f 2307 if (timeout)
ca5f9524 2308 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2309
2310 /*
0729e196
DH
2311 * If we have been removed from the hash list, then another task
2312 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2313 */
2314 if (likely(!plist_node_empty(&q->list))) {
2315 /*
2316 * If the timer has already expired, current will already be
2317 * flagged for rescheduling. Only call schedule if there
2318 * is no timeout, or if it has yet to expire.
2319 */
2320 if (!timeout || timeout->task)
88c8004f 2321 freezable_schedule();
ca5f9524
DH
2322 }
2323 __set_current_state(TASK_RUNNING);
2324}
2325
f801073f
DH
2326/**
2327 * futex_wait_setup() - Prepare to wait on a futex
2328 * @uaddr: the futex userspace address
2329 * @val: the expected value
b41277dc 2330 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2331 * @q: the associated futex_q
2332 * @hb: storage for hash_bucket pointer to be returned to caller
2333 *
2334 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2335 * compare it with the expected value. Handle atomic faults internally.
2336 * Return with the hb lock held and a q.key reference on success, and unlocked
2337 * with no q.key reference on failure.
2338 *
6c23cbbd
RD
2339 * Return:
2340 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2341 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2342 */
b41277dc 2343static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2344 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2345{
e2970f2f
IM
2346 u32 uval;
2347 int ret;
1da177e4 2348
1da177e4 2349 /*
b2d0994b 2350 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2351 * Order is important:
2352 *
2353 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2354 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2355 *
2356 * The basic logical guarantee of a futex is that it blocks ONLY
2357 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2358 * any cond. If we locked the hash-bucket after testing *uaddr, that
2359 * would open a race condition where we could block indefinitely with
1da177e4
LT
2360 * cond(var) false, which would violate the guarantee.
2361 *
8fe8f545
ML
2362 * On the other hand, we insert q and release the hash-bucket only
2363 * after testing *uaddr. This guarantees that futex_wait() will NOT
2364 * absorb a wakeup if *uaddr does not match the desired values
2365 * while the syscall executes.
1da177e4 2366 */
f801073f 2367retry:
9ea71503 2368 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2369 if (unlikely(ret != 0))
a5a2a0c7 2370 return ret;
f801073f
DH
2371
2372retry_private:
2373 *hb = queue_lock(q);
2374
e2970f2f 2375 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2376
f801073f 2377 if (ret) {
0d00c7b2 2378 queue_unlock(*hb);
1da177e4 2379
e2970f2f 2380 ret = get_user(uval, uaddr);
e4dc5b7a 2381 if (ret)
f801073f 2382 goto out;
1da177e4 2383
b41277dc 2384 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2385 goto retry_private;
2386
ae791a2d 2387 put_futex_key(&q->key);
e4dc5b7a 2388 goto retry;
1da177e4 2389 }
ca5f9524 2390
f801073f 2391 if (uval != val) {
0d00c7b2 2392 queue_unlock(*hb);
f801073f 2393 ret = -EWOULDBLOCK;
2fff78c7 2394 }
1da177e4 2395
f801073f
DH
2396out:
2397 if (ret)
ae791a2d 2398 put_futex_key(&q->key);
f801073f
DH
2399 return ret;
2400}
2401
b41277dc
DH
2402static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2403 ktime_t *abs_time, u32 bitset)
f801073f
DH
2404{
2405 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2406 struct restart_block *restart;
2407 struct futex_hash_bucket *hb;
5bdb05f9 2408 struct futex_q q = futex_q_init;
f801073f
DH
2409 int ret;
2410
2411 if (!bitset)
2412 return -EINVAL;
f801073f
DH
2413 q.bitset = bitset;
2414
2415 if (abs_time) {
2416 to = &timeout;
2417
b41277dc
DH
2418 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2419 CLOCK_REALTIME : CLOCK_MONOTONIC,
2420 HRTIMER_MODE_ABS);
f801073f
DH
2421 hrtimer_init_sleeper(to, current);
2422 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2423 current->timer_slack_ns);
2424 }
2425
d58e6576 2426retry:
7ada876a
DH
2427 /*
2428 * Prepare to wait on uaddr. On success, holds hb lock and increments
2429 * q.key refs.
2430 */
b41277dc 2431 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2432 if (ret)
2433 goto out;
2434
ca5f9524 2435 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2436 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2437
2438 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2439 ret = 0;
7ada876a 2440 /* unqueue_me() drops q.key ref */
1da177e4 2441 if (!unqueue_me(&q))
7ada876a 2442 goto out;
2fff78c7 2443 ret = -ETIMEDOUT;
ca5f9524 2444 if (to && !to->task)
7ada876a 2445 goto out;
72c1bbf3 2446
e2970f2f 2447 /*
d58e6576
TG
2448 * We expect signal_pending(current), but we might be the
2449 * victim of a spurious wakeup as well.
e2970f2f 2450 */
7ada876a 2451 if (!signal_pending(current))
d58e6576 2452 goto retry;
d58e6576 2453
2fff78c7 2454 ret = -ERESTARTSYS;
c19384b5 2455 if (!abs_time)
7ada876a 2456 goto out;
1da177e4 2457
f56141e3 2458 restart = &current->restart_block;
2fff78c7 2459 restart->fn = futex_wait_restart;
a3c74c52 2460 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2461 restart->futex.val = val;
2462 restart->futex.time = abs_time->tv64;
2463 restart->futex.bitset = bitset;
0cd9c649 2464 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2465
2fff78c7
PZ
2466 ret = -ERESTART_RESTARTBLOCK;
2467
42d35d48 2468out:
ca5f9524
DH
2469 if (to) {
2470 hrtimer_cancel(&to->timer);
2471 destroy_hrtimer_on_stack(&to->timer);
2472 }
c87e2837
IM
2473 return ret;
2474}
2475
72c1bbf3
NP
2476
2477static long futex_wait_restart(struct restart_block *restart)
2478{
a3c74c52 2479 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2480 ktime_t t, *tp = NULL;
72c1bbf3 2481
a72188d8
DH
2482 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2483 t.tv64 = restart->futex.time;
2484 tp = &t;
2485 }
72c1bbf3 2486 restart->fn = do_no_restart_syscall;
b41277dc
DH
2487
2488 return (long)futex_wait(uaddr, restart->futex.flags,
2489 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2490}
2491
2492
c87e2837
IM
2493/*
2494 * Userspace tried a 0 -> TID atomic transition of the futex value
2495 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2496 * if there are waiters then it will block as a consequence of relying
2497 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2498 * a 0 value of the futex too.).
2499 *
2500 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2501 */
996636dd 2502static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2503 ktime_t *time, int trylock)
c87e2837 2504{
c5780e97 2505 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2506 struct futex_hash_bucket *hb;
5bdb05f9 2507 struct futex_q q = futex_q_init;
dd973998 2508 int res, ret;
c87e2837
IM
2509
2510 if (refill_pi_state_cache())
2511 return -ENOMEM;
2512
c19384b5 2513 if (time) {
c5780e97 2514 to = &timeout;
237fc6e7
TG
2515 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2516 HRTIMER_MODE_ABS);
c5780e97 2517 hrtimer_init_sleeper(to, current);
cc584b21 2518 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2519 }
2520
42d35d48 2521retry:
9ea71503 2522 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2523 if (unlikely(ret != 0))
42d35d48 2524 goto out;
c87e2837 2525
e4dc5b7a 2526retry_private:
82af7aca 2527 hb = queue_lock(&q);
c87e2837 2528
bab5bc9e 2529 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2530 if (unlikely(ret)) {
767f509c
DB
2531 /*
2532 * Atomic work succeeded and we got the lock,
2533 * or failed. Either way, we do _not_ block.
2534 */
778e9a9c 2535 switch (ret) {
1a52084d
DH
2536 case 1:
2537 /* We got the lock. */
2538 ret = 0;
2539 goto out_unlock_put_key;
2540 case -EFAULT:
2541 goto uaddr_faulted;
778e9a9c
AK
2542 case -EAGAIN:
2543 /*
af54d6a1
TG
2544 * Two reasons for this:
2545 * - Task is exiting and we just wait for the
2546 * exit to complete.
2547 * - The user space value changed.
778e9a9c 2548 */
0d00c7b2 2549 queue_unlock(hb);
ae791a2d 2550 put_futex_key(&q.key);
778e9a9c
AK
2551 cond_resched();
2552 goto retry;
778e9a9c 2553 default:
42d35d48 2554 goto out_unlock_put_key;
c87e2837 2555 }
c87e2837
IM
2556 }
2557
2558 /*
2559 * Only actually queue now that the atomic ops are done:
2560 */
82af7aca 2561 queue_me(&q, hb);
c87e2837 2562
c87e2837
IM
2563 WARN_ON(!q.pi_state);
2564 /*
2565 * Block on the PI mutex:
2566 */
c051b21f
TG
2567 if (!trylock) {
2568 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2569 } else {
c87e2837
IM
2570 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2571 /* Fixup the trylock return value: */
2572 ret = ret ? 0 : -EWOULDBLOCK;
2573 }
2574
a99e4e41 2575 spin_lock(q.lock_ptr);
dd973998
DH
2576 /*
2577 * Fixup the pi_state owner and possibly acquire the lock if we
2578 * haven't already.
2579 */
ae791a2d 2580 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2581 /*
2582 * If fixup_owner() returned an error, proprogate that. If it acquired
2583 * the lock, clear our -ETIMEDOUT or -EINTR.
2584 */
2585 if (res)
2586 ret = (res < 0) ? res : 0;
c87e2837 2587
e8f6386c 2588 /*
dd973998
DH
2589 * If fixup_owner() faulted and was unable to handle the fault, unlock
2590 * it and return the fault to userspace.
e8f6386c
DH
2591 */
2592 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2593 rt_mutex_unlock(&q.pi_state->pi_mutex);
2594
778e9a9c
AK
2595 /* Unqueue and drop the lock */
2596 unqueue_me_pi(&q);
c87e2837 2597
5ecb01cf 2598 goto out_put_key;
c87e2837 2599
42d35d48 2600out_unlock_put_key:
0d00c7b2 2601 queue_unlock(hb);
c87e2837 2602
42d35d48 2603out_put_key:
ae791a2d 2604 put_futex_key(&q.key);
42d35d48 2605out:
237fc6e7
TG
2606 if (to)
2607 destroy_hrtimer_on_stack(&to->timer);
dd973998 2608 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2609
42d35d48 2610uaddr_faulted:
0d00c7b2 2611 queue_unlock(hb);
778e9a9c 2612
d0725992 2613 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2614 if (ret)
2615 goto out_put_key;
c87e2837 2616
b41277dc 2617 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2618 goto retry_private;
2619
ae791a2d 2620 put_futex_key(&q.key);
e4dc5b7a 2621 goto retry;
c87e2837
IM
2622}
2623
c87e2837
IM
2624/*
2625 * Userspace attempted a TID -> 0 atomic transition, and failed.
2626 * This is the in-kernel slowpath: we look up the PI state (if any),
2627 * and do the rt-mutex unlock.
2628 */
b41277dc 2629static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2630{
ccf9e6a8 2631 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2632 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2633 struct futex_hash_bucket *hb;
2634 struct futex_q *match;
e4dc5b7a 2635 int ret;
c87e2837
IM
2636
2637retry:
2638 if (get_user(uval, uaddr))
2639 return -EFAULT;
2640 /*
2641 * We release only a lock we actually own:
2642 */
c0c9ed15 2643 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2644 return -EPERM;
c87e2837 2645
9ea71503 2646 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2647 if (ret)
2648 return ret;
c87e2837
IM
2649
2650 hb = hash_futex(&key);
2651 spin_lock(&hb->lock);
2652
c87e2837 2653 /*
ccf9e6a8
TG
2654 * Check waiters first. We do not trust user space values at
2655 * all and we at least want to know if user space fiddled
2656 * with the futex value instead of blindly unlocking.
c87e2837 2657 */
ccf9e6a8
TG
2658 match = futex_top_waiter(hb, &key);
2659 if (match) {
802ab58d
SAS
2660 ret = wake_futex_pi(uaddr, uval, match, hb);
2661 /*
2662 * In case of success wake_futex_pi dropped the hash
2663 * bucket lock.
2664 */
2665 if (!ret)
2666 goto out_putkey;
c87e2837 2667 /*
ccf9e6a8
TG
2668 * The atomic access to the futex value generated a
2669 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2670 */
2671 if (ret == -EFAULT)
2672 goto pi_faulted;
89e9e66b
SAS
2673 /*
2674 * A unconditional UNLOCK_PI op raced against a waiter
2675 * setting the FUTEX_WAITERS bit. Try again.
2676 */
2677 if (ret == -EAGAIN) {
2678 spin_unlock(&hb->lock);
2679 put_futex_key(&key);
2680 goto retry;
2681 }
802ab58d
SAS
2682 /*
2683 * wake_futex_pi has detected invalid state. Tell user
2684 * space.
2685 */
c87e2837
IM
2686 goto out_unlock;
2687 }
ccf9e6a8 2688
c87e2837 2689 /*
ccf9e6a8
TG
2690 * We have no kernel internal state, i.e. no waiters in the
2691 * kernel. Waiters which are about to queue themselves are stuck
2692 * on hb->lock. So we can safely ignore them. We do neither
2693 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2694 * owner.
c87e2837 2695 */
ccf9e6a8 2696 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2697 goto pi_faulted;
c87e2837 2698
ccf9e6a8
TG
2699 /*
2700 * If uval has changed, let user space handle it.
2701 */
2702 ret = (curval == uval) ? 0 : -EAGAIN;
2703
c87e2837
IM
2704out_unlock:
2705 spin_unlock(&hb->lock);
802ab58d 2706out_putkey:
ae791a2d 2707 put_futex_key(&key);
c87e2837
IM
2708 return ret;
2709
2710pi_faulted:
778e9a9c 2711 spin_unlock(&hb->lock);
ae791a2d 2712 put_futex_key(&key);
c87e2837 2713
d0725992 2714 ret = fault_in_user_writeable(uaddr);
b5686363 2715 if (!ret)
c87e2837
IM
2716 goto retry;
2717
1da177e4
LT
2718 return ret;
2719}
2720
52400ba9
DH
2721/**
2722 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2723 * @hb: the hash_bucket futex_q was original enqueued on
2724 * @q: the futex_q woken while waiting to be requeued
2725 * @key2: the futex_key of the requeue target futex
2726 * @timeout: the timeout associated with the wait (NULL if none)
2727 *
2728 * Detect if the task was woken on the initial futex as opposed to the requeue
2729 * target futex. If so, determine if it was a timeout or a signal that caused
2730 * the wakeup and return the appropriate error code to the caller. Must be
2731 * called with the hb lock held.
2732 *
6c23cbbd
RD
2733 * Return:
2734 * 0 = no early wakeup detected;
2735 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2736 */
2737static inline
2738int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2739 struct futex_q *q, union futex_key *key2,
2740 struct hrtimer_sleeper *timeout)
2741{
2742 int ret = 0;
2743
2744 /*
2745 * With the hb lock held, we avoid races while we process the wakeup.
2746 * We only need to hold hb (and not hb2) to ensure atomicity as the
2747 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2748 * It can't be requeued from uaddr2 to something else since we don't
2749 * support a PI aware source futex for requeue.
2750 */
2751 if (!match_futex(&q->key, key2)) {
2752 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2753 /*
2754 * We were woken prior to requeue by a timeout or a signal.
2755 * Unqueue the futex_q and determine which it was.
2756 */
2e12978a 2757 plist_del(&q->list, &hb->chain);
11d4616b 2758 hb_waiters_dec(hb);
52400ba9 2759
d58e6576 2760 /* Handle spurious wakeups gracefully */
11df6ddd 2761 ret = -EWOULDBLOCK;
52400ba9
DH
2762 if (timeout && !timeout->task)
2763 ret = -ETIMEDOUT;
d58e6576 2764 else if (signal_pending(current))
1c840c14 2765 ret = -ERESTARTNOINTR;
52400ba9
DH
2766 }
2767 return ret;
2768}
2769
2770/**
2771 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2772 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2773 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2774 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2775 * @val: the expected value of uaddr
2776 * @abs_time: absolute timeout
56ec1607 2777 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2778 * @uaddr2: the pi futex we will take prior to returning to user-space
2779 *
2780 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2781 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2782 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2783 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2784 * without one, the pi logic would not know which task to boost/deboost, if
2785 * there was a need to.
52400ba9
DH
2786 *
2787 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2788 * via the following--
52400ba9 2789 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2790 * 2) wakeup on uaddr2 after a requeue
2791 * 3) signal
2792 * 4) timeout
52400ba9 2793 *
cc6db4e6 2794 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2795 *
2796 * If 2, we may then block on trying to take the rt_mutex and return via:
2797 * 5) successful lock
2798 * 6) signal
2799 * 7) timeout
2800 * 8) other lock acquisition failure
2801 *
cc6db4e6 2802 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2803 *
2804 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2805 *
6c23cbbd
RD
2806 * Return:
2807 * 0 - On success;
52400ba9
DH
2808 * <0 - On error
2809 */
b41277dc 2810static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2811 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2812 u32 __user *uaddr2)
52400ba9
DH
2813{
2814 struct hrtimer_sleeper timeout, *to = NULL;
2815 struct rt_mutex_waiter rt_waiter;
2816 struct rt_mutex *pi_mutex = NULL;
52400ba9 2817 struct futex_hash_bucket *hb;
5bdb05f9
DH
2818 union futex_key key2 = FUTEX_KEY_INIT;
2819 struct futex_q q = futex_q_init;
52400ba9 2820 int res, ret;
52400ba9 2821
6f7b0a2a
DH
2822 if (uaddr == uaddr2)
2823 return -EINVAL;
2824
52400ba9
DH
2825 if (!bitset)
2826 return -EINVAL;
2827
2828 if (abs_time) {
2829 to = &timeout;
b41277dc
DH
2830 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2831 CLOCK_REALTIME : CLOCK_MONOTONIC,
2832 HRTIMER_MODE_ABS);
52400ba9
DH
2833 hrtimer_init_sleeper(to, current);
2834 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2835 current->timer_slack_ns);
2836 }
2837
2838 /*
2839 * The waiter is allocated on our stack, manipulated by the requeue
2840 * code while we sleep on uaddr.
2841 */
2842 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2843 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2844 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2845 rt_waiter.task = NULL;
2846
9ea71503 2847 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2848 if (unlikely(ret != 0))
2849 goto out;
2850
84bc4af5
DH
2851 q.bitset = bitset;
2852 q.rt_waiter = &rt_waiter;
2853 q.requeue_pi_key = &key2;
2854
7ada876a
DH
2855 /*
2856 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2857 * count.
2858 */
b41277dc 2859 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2860 if (ret)
2861 goto out_key2;
52400ba9 2862
e9c243a5
TG
2863 /*
2864 * The check above which compares uaddrs is not sufficient for
2865 * shared futexes. We need to compare the keys:
2866 */
2867 if (match_futex(&q.key, &key2)) {
13c42c2f 2868 queue_unlock(hb);
e9c243a5
TG
2869 ret = -EINVAL;
2870 goto out_put_keys;
2871 }
2872
52400ba9 2873 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2874 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2875
2876 spin_lock(&hb->lock);
2877 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2878 spin_unlock(&hb->lock);
2879 if (ret)
2880 goto out_put_keys;
2881
2882 /*
2883 * In order for us to be here, we know our q.key == key2, and since
2884 * we took the hb->lock above, we also know that futex_requeue() has
2885 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2886 * race with the atomic proxy lock acquisition by the requeue code. The
2887 * futex_requeue dropped our key1 reference and incremented our key2
2888 * reference count.
52400ba9
DH
2889 */
2890
2891 /* Check if the requeue code acquired the second futex for us. */
2892 if (!q.rt_waiter) {
2893 /*
2894 * Got the lock. We might not be the anticipated owner if we
2895 * did a lock-steal - fix up the PI-state in that case.
2896 */
2897 if (q.pi_state && (q.pi_state->owner != current)) {
2898 spin_lock(q.lock_ptr);
ae791a2d 2899 ret = fixup_pi_state_owner(uaddr2, &q, current);
fb75a428
TG
2900 /*
2901 * Drop the reference to the pi state which
2902 * the requeue_pi() code acquired for us.
2903 */
29e9ee5d 2904 put_pi_state(q.pi_state);
52400ba9
DH
2905 spin_unlock(q.lock_ptr);
2906 }
2907 } else {
2908 /*
2909 * We have been woken up by futex_unlock_pi(), a timeout, or a
2910 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2911 * the pi_state.
2912 */
f27071cb 2913 WARN_ON(!q.pi_state);
52400ba9 2914 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2915 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2916 debug_rt_mutex_free_waiter(&rt_waiter);
2917
2918 spin_lock(q.lock_ptr);
2919 /*
2920 * Fixup the pi_state owner and possibly acquire the lock if we
2921 * haven't already.
2922 */
ae791a2d 2923 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2924 /*
2925 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2926 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2927 */
2928 if (res)
2929 ret = (res < 0) ? res : 0;
2930
2931 /* Unqueue and drop the lock. */
2932 unqueue_me_pi(&q);
2933 }
2934
2935 /*
2936 * If fixup_pi_state_owner() faulted and was unable to handle the
2937 * fault, unlock the rt_mutex and return the fault to userspace.
2938 */
2939 if (ret == -EFAULT) {
b6070a8d 2940 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2941 rt_mutex_unlock(pi_mutex);
2942 } else if (ret == -EINTR) {
52400ba9 2943 /*
cc6db4e6
DH
2944 * We've already been requeued, but cannot restart by calling
2945 * futex_lock_pi() directly. We could restart this syscall, but
2946 * it would detect that the user space "val" changed and return
2947 * -EWOULDBLOCK. Save the overhead of the restart and return
2948 * -EWOULDBLOCK directly.
52400ba9 2949 */
2070887f 2950 ret = -EWOULDBLOCK;
52400ba9
DH
2951 }
2952
2953out_put_keys:
ae791a2d 2954 put_futex_key(&q.key);
c8b15a70 2955out_key2:
ae791a2d 2956 put_futex_key(&key2);
52400ba9
DH
2957
2958out:
2959 if (to) {
2960 hrtimer_cancel(&to->timer);
2961 destroy_hrtimer_on_stack(&to->timer);
2962 }
2963 return ret;
2964}
2965
0771dfef
IM
2966/*
2967 * Support for robust futexes: the kernel cleans up held futexes at
2968 * thread exit time.
2969 *
2970 * Implementation: user-space maintains a per-thread list of locks it
2971 * is holding. Upon do_exit(), the kernel carefully walks this list,
2972 * and marks all locks that are owned by this thread with the
c87e2837 2973 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2974 * always manipulated with the lock held, so the list is private and
2975 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2976 * field, to allow the kernel to clean up if the thread dies after
2977 * acquiring the lock, but just before it could have added itself to
2978 * the list. There can only be one such pending lock.
2979 */
2980
2981/**
d96ee56c
DH
2982 * sys_set_robust_list() - Set the robust-futex list head of a task
2983 * @head: pointer to the list-head
2984 * @len: length of the list-head, as userspace expects
0771dfef 2985 */
836f92ad
HC
2986SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2987 size_t, len)
0771dfef 2988{
a0c1e907
TG
2989 if (!futex_cmpxchg_enabled)
2990 return -ENOSYS;
0771dfef
IM
2991 /*
2992 * The kernel knows only one size for now:
2993 */
2994 if (unlikely(len != sizeof(*head)))
2995 return -EINVAL;
2996
2997 current->robust_list = head;
2998
2999 return 0;
3000}
3001
3002/**
d96ee56c
DH
3003 * sys_get_robust_list() - Get the robust-futex list head of a task
3004 * @pid: pid of the process [zero for current task]
3005 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3006 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3007 */
836f92ad
HC
3008SYSCALL_DEFINE3(get_robust_list, int, pid,
3009 struct robust_list_head __user * __user *, head_ptr,
3010 size_t __user *, len_ptr)
0771dfef 3011{
ba46df98 3012 struct robust_list_head __user *head;
0771dfef 3013 unsigned long ret;
bdbb776f 3014 struct task_struct *p;
0771dfef 3015
a0c1e907
TG
3016 if (!futex_cmpxchg_enabled)
3017 return -ENOSYS;
3018
bdbb776f
KC
3019 rcu_read_lock();
3020
3021 ret = -ESRCH;
0771dfef 3022 if (!pid)
bdbb776f 3023 p = current;
0771dfef 3024 else {
228ebcbe 3025 p = find_task_by_vpid(pid);
0771dfef
IM
3026 if (!p)
3027 goto err_unlock;
0771dfef
IM
3028 }
3029
bdbb776f 3030 ret = -EPERM;
caaee623 3031 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3032 goto err_unlock;
3033
3034 head = p->robust_list;
3035 rcu_read_unlock();
3036
0771dfef
IM
3037 if (put_user(sizeof(*head), len_ptr))
3038 return -EFAULT;
3039 return put_user(head, head_ptr);
3040
3041err_unlock:
aaa2a97e 3042 rcu_read_unlock();
0771dfef
IM
3043
3044 return ret;
3045}
3046
3047/*
3048 * Process a futex-list entry, check whether it's owned by the
3049 * dying task, and do notification if so:
3050 */
e3f2ddea 3051int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3052{
7cfdaf38 3053 u32 uval, uninitialized_var(nval), mval;
0771dfef 3054
8f17d3a5
IM
3055retry:
3056 if (get_user(uval, uaddr))
0771dfef
IM
3057 return -1;
3058
b488893a 3059 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3060 /*
3061 * Ok, this dying thread is truly holding a futex
3062 * of interest. Set the OWNER_DIED bit atomically
3063 * via cmpxchg, and if the value had FUTEX_WAITERS
3064 * set, wake up a waiter (if any). (We have to do a
3065 * futex_wake() even if OWNER_DIED is already set -
3066 * to handle the rare but possible case of recursive
3067 * thread-death.) The rest of the cleanup is done in
3068 * userspace.
3069 */
e3f2ddea 3070 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3071 /*
3072 * We are not holding a lock here, but we want to have
3073 * the pagefault_disable/enable() protection because
3074 * we want to handle the fault gracefully. If the
3075 * access fails we try to fault in the futex with R/W
3076 * verification via get_user_pages. get_user() above
3077 * does not guarantee R/W access. If that fails we
3078 * give up and leave the futex locked.
3079 */
3080 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3081 if (fault_in_user_writeable(uaddr))
3082 return -1;
3083 goto retry;
3084 }
c87e2837 3085 if (nval != uval)
8f17d3a5 3086 goto retry;
0771dfef 3087
e3f2ddea
IM
3088 /*
3089 * Wake robust non-PI futexes here. The wakeup of
3090 * PI futexes happens in exit_pi_state():
3091 */
36cf3b5c 3092 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3093 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3094 }
3095 return 0;
3096}
3097
e3f2ddea
IM
3098/*
3099 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3100 */
3101static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3102 struct robust_list __user * __user *head,
1dcc41bb 3103 unsigned int *pi)
e3f2ddea
IM
3104{
3105 unsigned long uentry;
3106
ba46df98 3107 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3108 return -EFAULT;
3109
ba46df98 3110 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3111 *pi = uentry & 1;
3112
3113 return 0;
3114}
3115
0771dfef
IM
3116/*
3117 * Walk curr->robust_list (very carefully, it's a userspace list!)
3118 * and mark any locks found there dead, and notify any waiters.
3119 *
3120 * We silently return on any sign of list-walking problem.
3121 */
3122void exit_robust_list(struct task_struct *curr)
3123{
3124 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3125 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3126 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3127 unsigned int uninitialized_var(next_pi);
0771dfef 3128 unsigned long futex_offset;
9f96cb1e 3129 int rc;
0771dfef 3130
a0c1e907
TG
3131 if (!futex_cmpxchg_enabled)
3132 return;
3133
0771dfef
IM
3134 /*
3135 * Fetch the list head (which was registered earlier, via
3136 * sys_set_robust_list()):
3137 */
e3f2ddea 3138 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3139 return;
3140 /*
3141 * Fetch the relative futex offset:
3142 */
3143 if (get_user(futex_offset, &head->futex_offset))
3144 return;
3145 /*
3146 * Fetch any possibly pending lock-add first, and handle it
3147 * if it exists:
3148 */
e3f2ddea 3149 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3150 return;
e3f2ddea 3151
9f96cb1e 3152 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3153 while (entry != &head->list) {
9f96cb1e
MS
3154 /*
3155 * Fetch the next entry in the list before calling
3156 * handle_futex_death:
3157 */
3158 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3159 /*
3160 * A pending lock might already be on the list, so
c87e2837 3161 * don't process it twice:
0771dfef
IM
3162 */
3163 if (entry != pending)
ba46df98 3164 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3165 curr, pi))
0771dfef 3166 return;
9f96cb1e 3167 if (rc)
0771dfef 3168 return;
9f96cb1e
MS
3169 entry = next_entry;
3170 pi = next_pi;
0771dfef
IM
3171 /*
3172 * Avoid excessively long or circular lists:
3173 */
3174 if (!--limit)
3175 break;
3176
3177 cond_resched();
3178 }
9f96cb1e
MS
3179
3180 if (pending)
3181 handle_futex_death((void __user *)pending + futex_offset,
3182 curr, pip);
0771dfef
IM
3183}
3184
c19384b5 3185long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3186 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3187{
81b40539 3188 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3189 unsigned int flags = 0;
34f01cc1
ED
3190
3191 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3192 flags |= FLAGS_SHARED;
1da177e4 3193
b41277dc
DH
3194 if (op & FUTEX_CLOCK_REALTIME) {
3195 flags |= FLAGS_CLOCKRT;
337f1304
DH
3196 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3197 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3198 return -ENOSYS;
3199 }
1da177e4 3200
59263b51
TG
3201 switch (cmd) {
3202 case FUTEX_LOCK_PI:
3203 case FUTEX_UNLOCK_PI:
3204 case FUTEX_TRYLOCK_PI:
3205 case FUTEX_WAIT_REQUEUE_PI:
3206 case FUTEX_CMP_REQUEUE_PI:
3207 if (!futex_cmpxchg_enabled)
3208 return -ENOSYS;
3209 }
3210
34f01cc1 3211 switch (cmd) {
1da177e4 3212 case FUTEX_WAIT:
cd689985
TG
3213 val3 = FUTEX_BITSET_MATCH_ANY;
3214 case FUTEX_WAIT_BITSET:
81b40539 3215 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3216 case FUTEX_WAKE:
cd689985
TG
3217 val3 = FUTEX_BITSET_MATCH_ANY;
3218 case FUTEX_WAKE_BITSET:
81b40539 3219 return futex_wake(uaddr, flags, val, val3);
1da177e4 3220 case FUTEX_REQUEUE:
81b40539 3221 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3222 case FUTEX_CMP_REQUEUE:
81b40539 3223 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3224 case FUTEX_WAKE_OP:
81b40539 3225 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3226 case FUTEX_LOCK_PI:
996636dd 3227 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3228 case FUTEX_UNLOCK_PI:
81b40539 3229 return futex_unlock_pi(uaddr, flags);
c87e2837 3230 case FUTEX_TRYLOCK_PI:
996636dd 3231 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3232 case FUTEX_WAIT_REQUEUE_PI:
3233 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3234 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3235 uaddr2);
52400ba9 3236 case FUTEX_CMP_REQUEUE_PI:
81b40539 3237 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3238 }
81b40539 3239 return -ENOSYS;
1da177e4
LT
3240}
3241
3242
17da2bd9
HC
3243SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3244 struct timespec __user *, utime, u32 __user *, uaddr2,
3245 u32, val3)
1da177e4 3246{
c19384b5
PP
3247 struct timespec ts;
3248 ktime_t t, *tp = NULL;
e2970f2f 3249 u32 val2 = 0;
34f01cc1 3250 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3251
cd689985 3252 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3253 cmd == FUTEX_WAIT_BITSET ||
3254 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3255 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3256 return -EFAULT;
c19384b5 3257 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3258 return -EFAULT;
c19384b5 3259 if (!timespec_valid(&ts))
9741ef96 3260 return -EINVAL;
c19384b5
PP
3261
3262 t = timespec_to_ktime(ts);
34f01cc1 3263 if (cmd == FUTEX_WAIT)
5a7780e7 3264 t = ktime_add_safe(ktime_get(), t);
c19384b5 3265 tp = &t;
1da177e4
LT
3266 }
3267 /*
52400ba9 3268 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3269 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3270 */
f54f0986 3271 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3272 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3273 val2 = (u32) (unsigned long) utime;
1da177e4 3274
c19384b5 3275 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3276}
3277
03b8c7b6 3278static void __init futex_detect_cmpxchg(void)
1da177e4 3279{
03b8c7b6 3280#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3281 u32 curval;
03b8c7b6
HC
3282
3283 /*
3284 * This will fail and we want it. Some arch implementations do
3285 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3286 * functionality. We want to know that before we call in any
3287 * of the complex code paths. Also we want to prevent
3288 * registration of robust lists in that case. NULL is
3289 * guaranteed to fault and we get -EFAULT on functional
3290 * implementation, the non-functional ones will return
3291 * -ENOSYS.
3292 */
3293 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3294 futex_cmpxchg_enabled = 1;
3295#endif
3296}
3297
3298static int __init futex_init(void)
3299{
63b1a816 3300 unsigned int futex_shift;
a52b89eb
DB
3301 unsigned long i;
3302
3303#if CONFIG_BASE_SMALL
3304 futex_hashsize = 16;
3305#else
3306 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3307#endif
3308
3309 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3310 futex_hashsize, 0,
3311 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3312 &futex_shift, NULL,
3313 futex_hashsize, futex_hashsize);
3314 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3315
3316 futex_detect_cmpxchg();
a0c1e907 3317
a52b89eb 3318 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3319 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3320 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3321 spin_lock_init(&futex_queues[i].lock);
3322 }
3323
1da177e4
LT
3324 return 0;
3325}
f6d107fb 3326__initcall(futex_init);