]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
bdbb776f | 62 | #include <linux/ptrace.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
13d60f4b | 64 | #include <linux/hugetlb.h> |
88c8004f | 65 | #include <linux/freezer.h> |
a52b89eb | 66 | #include <linux/bootmem.h> |
b488893a | 67 | |
4732efbe | 68 | #include <asm/futex.h> |
1da177e4 | 69 | |
1696a8be | 70 | #include "locking/rtmutex_common.h" |
c87e2837 | 71 | |
99b60ce6 TG |
72 | /* |
73 | * Basic futex operation and ordering guarantees: | |
74 | * | |
75 | * The waiter reads the futex value in user space and calls | |
76 | * futex_wait(). This function computes the hash bucket and acquires | |
77 | * the hash bucket lock. After that it reads the futex user space value | |
b0c29f79 DB |
78 | * again and verifies that the data has not changed. If it has not changed |
79 | * it enqueues itself into the hash bucket, releases the hash bucket lock | |
80 | * and schedules. | |
99b60ce6 TG |
81 | * |
82 | * The waker side modifies the user space value of the futex and calls | |
b0c29f79 DB |
83 | * futex_wake(). This function computes the hash bucket and acquires the |
84 | * hash bucket lock. Then it looks for waiters on that futex in the hash | |
85 | * bucket and wakes them. | |
99b60ce6 | 86 | * |
b0c29f79 DB |
87 | * In futex wake up scenarios where no tasks are blocked on a futex, taking |
88 | * the hb spinlock can be avoided and simply return. In order for this | |
89 | * optimization to work, ordering guarantees must exist so that the waiter | |
90 | * being added to the list is acknowledged when the list is concurrently being | |
91 | * checked by the waker, avoiding scenarios like the following: | |
99b60ce6 TG |
92 | * |
93 | * CPU 0 CPU 1 | |
94 | * val = *futex; | |
95 | * sys_futex(WAIT, futex, val); | |
96 | * futex_wait(futex, val); | |
97 | * uval = *futex; | |
98 | * *futex = newval; | |
99 | * sys_futex(WAKE, futex); | |
100 | * futex_wake(futex); | |
101 | * if (queue_empty()) | |
102 | * return; | |
103 | * if (uval == val) | |
104 | * lock(hash_bucket(futex)); | |
105 | * queue(); | |
106 | * unlock(hash_bucket(futex)); | |
107 | * schedule(); | |
108 | * | |
109 | * This would cause the waiter on CPU 0 to wait forever because it | |
110 | * missed the transition of the user space value from val to newval | |
111 | * and the waker did not find the waiter in the hash bucket queue. | |
99b60ce6 | 112 | * |
b0c29f79 DB |
113 | * The correct serialization ensures that a waiter either observes |
114 | * the changed user space value before blocking or is woken by a | |
115 | * concurrent waker: | |
116 | * | |
117 | * CPU 0 CPU 1 | |
99b60ce6 TG |
118 | * val = *futex; |
119 | * sys_futex(WAIT, futex, val); | |
120 | * futex_wait(futex, val); | |
b0c29f79 DB |
121 | * |
122 | * waiters++; | |
123 | * mb(); (A) <-- paired with -. | |
124 | * | | |
125 | * lock(hash_bucket(futex)); | | |
126 | * | | |
127 | * uval = *futex; | | |
128 | * | *futex = newval; | |
129 | * | sys_futex(WAKE, futex); | |
130 | * | futex_wake(futex); | |
131 | * | | |
132 | * `-------> mb(); (B) | |
99b60ce6 | 133 | * if (uval == val) |
b0c29f79 | 134 | * queue(); |
99b60ce6 | 135 | * unlock(hash_bucket(futex)); |
b0c29f79 DB |
136 | * schedule(); if (waiters) |
137 | * lock(hash_bucket(futex)); | |
138 | * wake_waiters(futex); | |
139 | * unlock(hash_bucket(futex)); | |
140 | * | |
141 | * Where (A) orders the waiters increment and the futex value read -- this | |
142 | * is guaranteed by the head counter in the hb spinlock; and where (B) | |
143 | * orders the write to futex and the waiters read -- this is done by the | |
144 | * barriers in get_futex_key_refs(), through either ihold or atomic_inc, | |
145 | * depending on the futex type. | |
146 | * | |
147 | * This yields the following case (where X:=waiters, Y:=futex): | |
148 | * | |
149 | * X = Y = 0 | |
150 | * | |
151 | * w[X]=1 w[Y]=1 | |
152 | * MB MB | |
153 | * r[Y]=y r[X]=x | |
154 | * | |
155 | * Which guarantees that x==0 && y==0 is impossible; which translates back into | |
156 | * the guarantee that we cannot both miss the futex variable change and the | |
157 | * enqueue. | |
99b60ce6 TG |
158 | */ |
159 | ||
a0c1e907 TG |
160 | int __read_mostly futex_cmpxchg_enabled; |
161 | ||
b41277dc DH |
162 | /* |
163 | * Futex flags used to encode options to functions and preserve them across | |
164 | * restarts. | |
165 | */ | |
166 | #define FLAGS_SHARED 0x01 | |
167 | #define FLAGS_CLOCKRT 0x02 | |
168 | #define FLAGS_HAS_TIMEOUT 0x04 | |
169 | ||
c87e2837 IM |
170 | /* |
171 | * Priority Inheritance state: | |
172 | */ | |
173 | struct futex_pi_state { | |
174 | /* | |
175 | * list of 'owned' pi_state instances - these have to be | |
176 | * cleaned up in do_exit() if the task exits prematurely: | |
177 | */ | |
178 | struct list_head list; | |
179 | ||
180 | /* | |
181 | * The PI object: | |
182 | */ | |
183 | struct rt_mutex pi_mutex; | |
184 | ||
185 | struct task_struct *owner; | |
186 | atomic_t refcount; | |
187 | ||
188 | union futex_key key; | |
189 | }; | |
190 | ||
d8d88fbb DH |
191 | /** |
192 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 193 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
194 | * @task: the task waiting on the futex |
195 | * @lock_ptr: the hash bucket lock | |
196 | * @key: the key the futex is hashed on | |
197 | * @pi_state: optional priority inheritance state | |
198 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
199 | * @requeue_pi_key: the requeue_pi target futex key | |
200 | * @bitset: bitset for the optional bitmasked wakeup | |
201 | * | |
202 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
203 | * we can wake only the relevant ones (hashed queues may be shared). |
204 | * | |
205 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 206 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 207 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
208 | * the second. |
209 | * | |
210 | * PI futexes are typically woken before they are removed from the hash list via | |
211 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
212 | */ |
213 | struct futex_q { | |
ec92d082 | 214 | struct plist_node list; |
1da177e4 | 215 | |
d8d88fbb | 216 | struct task_struct *task; |
1da177e4 | 217 | spinlock_t *lock_ptr; |
1da177e4 | 218 | union futex_key key; |
c87e2837 | 219 | struct futex_pi_state *pi_state; |
52400ba9 | 220 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 221 | union futex_key *requeue_pi_key; |
cd689985 | 222 | u32 bitset; |
1da177e4 LT |
223 | }; |
224 | ||
5bdb05f9 DH |
225 | static const struct futex_q futex_q_init = { |
226 | /* list gets initialized in queue_me()*/ | |
227 | .key = FUTEX_KEY_INIT, | |
228 | .bitset = FUTEX_BITSET_MATCH_ANY | |
229 | }; | |
230 | ||
1da177e4 | 231 | /* |
b2d0994b DH |
232 | * Hash buckets are shared by all the futex_keys that hash to the same |
233 | * location. Each key may have multiple futex_q structures, one for each task | |
234 | * waiting on a futex. | |
1da177e4 LT |
235 | */ |
236 | struct futex_hash_bucket { | |
ec92d082 PP |
237 | spinlock_t lock; |
238 | struct plist_head chain; | |
a52b89eb | 239 | } ____cacheline_aligned_in_smp; |
1da177e4 | 240 | |
a52b89eb DB |
241 | static unsigned long __read_mostly futex_hashsize; |
242 | ||
243 | static struct futex_hash_bucket *futex_queues; | |
1da177e4 | 244 | |
b0c29f79 DB |
245 | static inline void futex_get_mm(union futex_key *key) |
246 | { | |
247 | atomic_inc(&key->private.mm->mm_count); | |
248 | /* | |
249 | * Ensure futex_get_mm() implies a full barrier such that | |
250 | * get_futex_key() implies a full barrier. This is relied upon | |
251 | * as full barrier (B), see the ordering comment above. | |
252 | */ | |
253 | smp_mb__after_atomic_inc(); | |
254 | } | |
255 | ||
256 | static inline bool hb_waiters_pending(struct futex_hash_bucket *hb) | |
257 | { | |
258 | #ifdef CONFIG_SMP | |
259 | /* | |
260 | * Tasks trying to enter the critical region are most likely | |
261 | * potential waiters that will be added to the plist. Ensure | |
262 | * that wakers won't miss to-be-slept tasks in the window between | |
263 | * the wait call and the actual plist_add. | |
264 | */ | |
265 | if (spin_is_locked(&hb->lock)) | |
266 | return true; | |
267 | smp_rmb(); /* Make sure we check the lock state first */ | |
268 | ||
269 | return !plist_head_empty(&hb->chain); | |
270 | #else | |
271 | return true; | |
272 | #endif | |
273 | } | |
274 | ||
1da177e4 LT |
275 | /* |
276 | * We hash on the keys returned from get_futex_key (see below). | |
277 | */ | |
278 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
279 | { | |
280 | u32 hash = jhash2((u32*)&key->both.word, | |
281 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
282 | key->both.offset); | |
a52b89eb | 283 | return &futex_queues[hash & (futex_hashsize - 1)]; |
1da177e4 LT |
284 | } |
285 | ||
286 | /* | |
287 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
288 | */ | |
289 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
290 | { | |
2bc87203 DH |
291 | return (key1 && key2 |
292 | && key1->both.word == key2->both.word | |
1da177e4 LT |
293 | && key1->both.ptr == key2->both.ptr |
294 | && key1->both.offset == key2->both.offset); | |
295 | } | |
296 | ||
38d47c1b PZ |
297 | /* |
298 | * Take a reference to the resource addressed by a key. | |
299 | * Can be called while holding spinlocks. | |
300 | * | |
301 | */ | |
302 | static void get_futex_key_refs(union futex_key *key) | |
303 | { | |
304 | if (!key->both.ptr) | |
305 | return; | |
306 | ||
307 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
308 | case FUT_OFF_INODE: | |
b0c29f79 | 309 | ihold(key->shared.inode); /* implies MB (B) */ |
38d47c1b PZ |
310 | break; |
311 | case FUT_OFF_MMSHARED: | |
b0c29f79 | 312 | futex_get_mm(key); /* implies MB (B) */ |
38d47c1b PZ |
313 | break; |
314 | } | |
315 | } | |
316 | ||
317 | /* | |
318 | * Drop a reference to the resource addressed by a key. | |
319 | * The hash bucket spinlock must not be held. | |
320 | */ | |
321 | static void drop_futex_key_refs(union futex_key *key) | |
322 | { | |
90621c40 DH |
323 | if (!key->both.ptr) { |
324 | /* If we're here then we tried to put a key we failed to get */ | |
325 | WARN_ON_ONCE(1); | |
38d47c1b | 326 | return; |
90621c40 | 327 | } |
38d47c1b PZ |
328 | |
329 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
330 | case FUT_OFF_INODE: | |
331 | iput(key->shared.inode); | |
332 | break; | |
333 | case FUT_OFF_MMSHARED: | |
334 | mmdrop(key->private.mm); | |
335 | break; | |
336 | } | |
337 | } | |
338 | ||
34f01cc1 | 339 | /** |
d96ee56c DH |
340 | * get_futex_key() - Get parameters which are the keys for a futex |
341 | * @uaddr: virtual address of the futex | |
342 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
343 | * @key: address where result is stored. | |
9ea71503 SB |
344 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
345 | * VERIFY_WRITE) | |
34f01cc1 | 346 | * |
6c23cbbd RD |
347 | * Return: a negative error code or 0 |
348 | * | |
34f01cc1 | 349 | * The key words are stored in *key on success. |
1da177e4 | 350 | * |
6131ffaa | 351 | * For shared mappings, it's (page->index, file_inode(vma->vm_file), |
1da177e4 LT |
352 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
353 | * We can usually work out the index without swapping in the page. | |
354 | * | |
b2d0994b | 355 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 356 | */ |
64d1304a | 357 | static int |
9ea71503 | 358 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 359 | { |
e2970f2f | 360 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 361 | struct mm_struct *mm = current->mm; |
a5b338f2 | 362 | struct page *page, *page_head; |
9ea71503 | 363 | int err, ro = 0; |
1da177e4 LT |
364 | |
365 | /* | |
366 | * The futex address must be "naturally" aligned. | |
367 | */ | |
e2970f2f | 368 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 369 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 370 | return -EINVAL; |
e2970f2f | 371 | address -= key->both.offset; |
1da177e4 | 372 | |
5cdec2d8 LT |
373 | if (unlikely(!access_ok(rw, uaddr, sizeof(u32)))) |
374 | return -EFAULT; | |
375 | ||
34f01cc1 ED |
376 | /* |
377 | * PROCESS_PRIVATE futexes are fast. | |
378 | * As the mm cannot disappear under us and the 'key' only needs | |
379 | * virtual address, we dont even have to find the underlying vma. | |
380 | * Note : We do have to check 'uaddr' is a valid user address, | |
381 | * but access_ok() should be faster than find_vma() | |
382 | */ | |
383 | if (!fshared) { | |
34f01cc1 ED |
384 | key->private.mm = mm; |
385 | key->private.address = address; | |
b0c29f79 | 386 | get_futex_key_refs(key); /* implies MB (B) */ |
34f01cc1 ED |
387 | return 0; |
388 | } | |
1da177e4 | 389 | |
38d47c1b | 390 | again: |
7485d0d3 | 391 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
392 | /* |
393 | * If write access is not required (eg. FUTEX_WAIT), try | |
394 | * and get read-only access. | |
395 | */ | |
396 | if (err == -EFAULT && rw == VERIFY_READ) { | |
397 | err = get_user_pages_fast(address, 1, 0, &page); | |
398 | ro = 1; | |
399 | } | |
38d47c1b PZ |
400 | if (err < 0) |
401 | return err; | |
9ea71503 SB |
402 | else |
403 | err = 0; | |
38d47c1b | 404 | |
a5b338f2 AA |
405 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
406 | page_head = page; | |
407 | if (unlikely(PageTail(page))) { | |
38d47c1b | 408 | put_page(page); |
a5b338f2 AA |
409 | /* serialize against __split_huge_page_splitting() */ |
410 | local_irq_disable(); | |
f12d5bfc | 411 | if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) { |
a5b338f2 AA |
412 | page_head = compound_head(page); |
413 | /* | |
414 | * page_head is valid pointer but we must pin | |
415 | * it before taking the PG_lock and/or | |
416 | * PG_compound_lock. The moment we re-enable | |
417 | * irqs __split_huge_page_splitting() can | |
418 | * return and the head page can be freed from | |
419 | * under us. We can't take the PG_lock and/or | |
420 | * PG_compound_lock on a page that could be | |
421 | * freed from under us. | |
422 | */ | |
423 | if (page != page_head) { | |
424 | get_page(page_head); | |
425 | put_page(page); | |
426 | } | |
427 | local_irq_enable(); | |
428 | } else { | |
429 | local_irq_enable(); | |
430 | goto again; | |
431 | } | |
432 | } | |
433 | #else | |
434 | page_head = compound_head(page); | |
435 | if (page != page_head) { | |
436 | get_page(page_head); | |
437 | put_page(page); | |
438 | } | |
439 | #endif | |
440 | ||
441 | lock_page(page_head); | |
e6780f72 HD |
442 | |
443 | /* | |
444 | * If page_head->mapping is NULL, then it cannot be a PageAnon | |
445 | * page; but it might be the ZERO_PAGE or in the gate area or | |
446 | * in a special mapping (all cases which we are happy to fail); | |
447 | * or it may have been a good file page when get_user_pages_fast | |
448 | * found it, but truncated or holepunched or subjected to | |
449 | * invalidate_complete_page2 before we got the page lock (also | |
450 | * cases which we are happy to fail). And we hold a reference, | |
451 | * so refcount care in invalidate_complete_page's remove_mapping | |
452 | * prevents drop_caches from setting mapping to NULL beneath us. | |
453 | * | |
454 | * The case we do have to guard against is when memory pressure made | |
455 | * shmem_writepage move it from filecache to swapcache beneath us: | |
456 | * an unlikely race, but we do need to retry for page_head->mapping. | |
457 | */ | |
a5b338f2 | 458 | if (!page_head->mapping) { |
e6780f72 | 459 | int shmem_swizzled = PageSwapCache(page_head); |
a5b338f2 AA |
460 | unlock_page(page_head); |
461 | put_page(page_head); | |
e6780f72 HD |
462 | if (shmem_swizzled) |
463 | goto again; | |
464 | return -EFAULT; | |
38d47c1b | 465 | } |
1da177e4 LT |
466 | |
467 | /* | |
468 | * Private mappings are handled in a simple way. | |
469 | * | |
470 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
471 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 472 | * the object not the particular process. |
1da177e4 | 473 | */ |
a5b338f2 | 474 | if (PageAnon(page_head)) { |
9ea71503 SB |
475 | /* |
476 | * A RO anonymous page will never change and thus doesn't make | |
477 | * sense for futex operations. | |
478 | */ | |
479 | if (ro) { | |
480 | err = -EFAULT; | |
481 | goto out; | |
482 | } | |
483 | ||
38d47c1b | 484 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 485 | key->private.mm = mm; |
e2970f2f | 486 | key->private.address = address; |
38d47c1b PZ |
487 | } else { |
488 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | |
a5b338f2 | 489 | key->shared.inode = page_head->mapping->host; |
13d60f4b | 490 | key->shared.pgoff = basepage_index(page); |
1da177e4 LT |
491 | } |
492 | ||
b0c29f79 | 493 | get_futex_key_refs(key); /* implies MB (B) */ |
1da177e4 | 494 | |
9ea71503 | 495 | out: |
a5b338f2 AA |
496 | unlock_page(page_head); |
497 | put_page(page_head); | |
9ea71503 | 498 | return err; |
1da177e4 LT |
499 | } |
500 | ||
ae791a2d | 501 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 502 | { |
38d47c1b | 503 | drop_futex_key_refs(key); |
1da177e4 LT |
504 | } |
505 | ||
d96ee56c DH |
506 | /** |
507 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
508 | * @uaddr: pointer to faulting user space address |
509 | * | |
510 | * Slow path to fixup the fault we just took in the atomic write | |
511 | * access to @uaddr. | |
512 | * | |
fb62db2b | 513 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
514 | * user address. We know that we faulted in the atomic pagefault |
515 | * disabled section so we can as well avoid the #PF overhead by | |
516 | * calling get_user_pages() right away. | |
517 | */ | |
518 | static int fault_in_user_writeable(u32 __user *uaddr) | |
519 | { | |
722d0172 AK |
520 | struct mm_struct *mm = current->mm; |
521 | int ret; | |
522 | ||
523 | down_read(&mm->mmap_sem); | |
2efaca92 BH |
524 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
525 | FAULT_FLAG_WRITE); | |
722d0172 AK |
526 | up_read(&mm->mmap_sem); |
527 | ||
d0725992 TG |
528 | return ret < 0 ? ret : 0; |
529 | } | |
530 | ||
4b1c486b DH |
531 | /** |
532 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
533 | * @hb: the hash bucket the futex_q's reside in |
534 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
535 | * |
536 | * Must be called with the hb lock held. | |
537 | */ | |
538 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
539 | union futex_key *key) | |
540 | { | |
541 | struct futex_q *this; | |
542 | ||
543 | plist_for_each_entry(this, &hb->chain, list) { | |
544 | if (match_futex(&this->key, key)) | |
545 | return this; | |
546 | } | |
547 | return NULL; | |
548 | } | |
549 | ||
37a9d912 ML |
550 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
551 | u32 uval, u32 newval) | |
36cf3b5c | 552 | { |
37a9d912 | 553 | int ret; |
36cf3b5c TG |
554 | |
555 | pagefault_disable(); | |
37a9d912 | 556 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
557 | pagefault_enable(); |
558 | ||
37a9d912 | 559 | return ret; |
36cf3b5c TG |
560 | } |
561 | ||
562 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
563 | { |
564 | int ret; | |
565 | ||
a866374a | 566 | pagefault_disable(); |
e2970f2f | 567 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 568 | pagefault_enable(); |
1da177e4 LT |
569 | |
570 | return ret ? -EFAULT : 0; | |
571 | } | |
572 | ||
c87e2837 IM |
573 | |
574 | /* | |
575 | * PI code: | |
576 | */ | |
577 | static int refill_pi_state_cache(void) | |
578 | { | |
579 | struct futex_pi_state *pi_state; | |
580 | ||
581 | if (likely(current->pi_state_cache)) | |
582 | return 0; | |
583 | ||
4668edc3 | 584 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
585 | |
586 | if (!pi_state) | |
587 | return -ENOMEM; | |
588 | ||
c87e2837 IM |
589 | INIT_LIST_HEAD(&pi_state->list); |
590 | /* pi_mutex gets initialized later */ | |
591 | pi_state->owner = NULL; | |
592 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 593 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
594 | |
595 | current->pi_state_cache = pi_state; | |
596 | ||
597 | return 0; | |
598 | } | |
599 | ||
600 | static struct futex_pi_state * alloc_pi_state(void) | |
601 | { | |
602 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
603 | ||
604 | WARN_ON(!pi_state); | |
605 | current->pi_state_cache = NULL; | |
606 | ||
607 | return pi_state; | |
608 | } | |
609 | ||
610 | static void free_pi_state(struct futex_pi_state *pi_state) | |
611 | { | |
612 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
613 | return; | |
614 | ||
615 | /* | |
616 | * If pi_state->owner is NULL, the owner is most probably dying | |
617 | * and has cleaned up the pi_state already | |
618 | */ | |
619 | if (pi_state->owner) { | |
1d615482 | 620 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 621 | list_del_init(&pi_state->list); |
1d615482 | 622 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
623 | |
624 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
625 | } | |
626 | ||
627 | if (current->pi_state_cache) | |
628 | kfree(pi_state); | |
629 | else { | |
630 | /* | |
631 | * pi_state->list is already empty. | |
632 | * clear pi_state->owner. | |
633 | * refcount is at 0 - put it back to 1. | |
634 | */ | |
635 | pi_state->owner = NULL; | |
636 | atomic_set(&pi_state->refcount, 1); | |
637 | current->pi_state_cache = pi_state; | |
638 | } | |
639 | } | |
640 | ||
641 | /* | |
642 | * Look up the task based on what TID userspace gave us. | |
643 | * We dont trust it. | |
644 | */ | |
645 | static struct task_struct * futex_find_get_task(pid_t pid) | |
646 | { | |
647 | struct task_struct *p; | |
648 | ||
d359b549 | 649 | rcu_read_lock(); |
228ebcbe | 650 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
651 | if (p) |
652 | get_task_struct(p); | |
a06381fe | 653 | |
d359b549 | 654 | rcu_read_unlock(); |
c87e2837 IM |
655 | |
656 | return p; | |
657 | } | |
658 | ||
659 | /* | |
660 | * This task is holding PI mutexes at exit time => bad. | |
661 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
662 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
663 | */ | |
664 | void exit_pi_state_list(struct task_struct *curr) | |
665 | { | |
c87e2837 IM |
666 | struct list_head *next, *head = &curr->pi_state_list; |
667 | struct futex_pi_state *pi_state; | |
627371d7 | 668 | struct futex_hash_bucket *hb; |
38d47c1b | 669 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 670 | |
a0c1e907 TG |
671 | if (!futex_cmpxchg_enabled) |
672 | return; | |
c87e2837 IM |
673 | /* |
674 | * We are a ZOMBIE and nobody can enqueue itself on | |
675 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 676 | * versus waiters unqueueing themselves: |
c87e2837 | 677 | */ |
1d615482 | 678 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
679 | while (!list_empty(head)) { |
680 | ||
681 | next = head->next; | |
682 | pi_state = list_entry(next, struct futex_pi_state, list); | |
683 | key = pi_state->key; | |
627371d7 | 684 | hb = hash_futex(&key); |
1d615482 | 685 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 686 | |
c87e2837 IM |
687 | spin_lock(&hb->lock); |
688 | ||
1d615482 | 689 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
690 | /* |
691 | * We dropped the pi-lock, so re-check whether this | |
692 | * task still owns the PI-state: | |
693 | */ | |
c87e2837 IM |
694 | if (head->next != next) { |
695 | spin_unlock(&hb->lock); | |
696 | continue; | |
697 | } | |
698 | ||
c87e2837 | 699 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
700 | WARN_ON(list_empty(&pi_state->list)); |
701 | list_del_init(&pi_state->list); | |
c87e2837 | 702 | pi_state->owner = NULL; |
1d615482 | 703 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
704 | |
705 | rt_mutex_unlock(&pi_state->pi_mutex); | |
706 | ||
707 | spin_unlock(&hb->lock); | |
708 | ||
1d615482 | 709 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 710 | } |
1d615482 | 711 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
712 | } |
713 | ||
714 | static int | |
d0aa7a70 PP |
715 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
716 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
717 | { |
718 | struct futex_pi_state *pi_state = NULL; | |
719 | struct futex_q *this, *next; | |
c87e2837 | 720 | struct task_struct *p; |
778e9a9c | 721 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 | 722 | |
0d00c7b2 | 723 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
d0aa7a70 | 724 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
725 | /* |
726 | * Another waiter already exists - bump up | |
727 | * the refcount and return its pi_state: | |
728 | */ | |
729 | pi_state = this->pi_state; | |
06a9ec29 | 730 | /* |
fb62db2b | 731 | * Userspace might have messed up non-PI and PI futexes |
06a9ec29 TG |
732 | */ |
733 | if (unlikely(!pi_state)) | |
734 | return -EINVAL; | |
735 | ||
627371d7 | 736 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a TG |
737 | |
738 | /* | |
739 | * When pi_state->owner is NULL then the owner died | |
740 | * and another waiter is on the fly. pi_state->owner | |
741 | * is fixed up by the task which acquires | |
742 | * pi_state->rt_mutex. | |
743 | * | |
744 | * We do not check for pid == 0 which can happen when | |
745 | * the owner died and robust_list_exit() cleared the | |
746 | * TID. | |
747 | */ | |
748 | if (pid && pi_state->owner) { | |
749 | /* | |
750 | * Bail out if user space manipulated the | |
751 | * futex value. | |
752 | */ | |
753 | if (pid != task_pid_vnr(pi_state->owner)) | |
754 | return -EINVAL; | |
755 | } | |
627371d7 | 756 | |
c87e2837 | 757 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 758 | *ps = pi_state; |
c87e2837 IM |
759 | |
760 | return 0; | |
761 | } | |
762 | } | |
763 | ||
764 | /* | |
e3f2ddea | 765 | * We are the first waiter - try to look up the real owner and attach |
778e9a9c | 766 | * the new pi_state to it, but bail out when TID = 0 |
c87e2837 | 767 | */ |
778e9a9c | 768 | if (!pid) |
e3f2ddea | 769 | return -ESRCH; |
c87e2837 | 770 | p = futex_find_get_task(pid); |
7a0ea09a MH |
771 | if (!p) |
772 | return -ESRCH; | |
778e9a9c AK |
773 | |
774 | /* | |
775 | * We need to look at the task state flags to figure out, | |
776 | * whether the task is exiting. To protect against the do_exit | |
777 | * change of the task flags, we do this protected by | |
778 | * p->pi_lock: | |
779 | */ | |
1d615482 | 780 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
781 | if (unlikely(p->flags & PF_EXITING)) { |
782 | /* | |
783 | * The task is on the way out. When PF_EXITPIDONE is | |
784 | * set, we know that the task has finished the | |
785 | * cleanup: | |
786 | */ | |
787 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
788 | ||
1d615482 | 789 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
790 | put_task_struct(p); |
791 | return ret; | |
792 | } | |
c87e2837 IM |
793 | |
794 | pi_state = alloc_pi_state(); | |
795 | ||
796 | /* | |
797 | * Initialize the pi_mutex in locked state and make 'p' | |
798 | * the owner of it: | |
799 | */ | |
800 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
801 | ||
802 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 803 | pi_state->key = *key; |
c87e2837 | 804 | |
627371d7 | 805 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
806 | list_add(&pi_state->list, &p->pi_state_list); |
807 | pi_state->owner = p; | |
1d615482 | 808 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
809 | |
810 | put_task_struct(p); | |
811 | ||
d0aa7a70 | 812 | *ps = pi_state; |
c87e2837 IM |
813 | |
814 | return 0; | |
815 | } | |
816 | ||
1a52084d | 817 | /** |
d96ee56c | 818 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
819 | * @uaddr: the pi futex user address |
820 | * @hb: the pi futex hash bucket | |
821 | * @key: the futex key associated with uaddr and hb | |
822 | * @ps: the pi_state pointer where we store the result of the | |
823 | * lookup | |
824 | * @task: the task to perform the atomic lock work for. This will | |
825 | * be "current" except in the case of requeue pi. | |
826 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d | 827 | * |
6c23cbbd RD |
828 | * Return: |
829 | * 0 - ready to wait; | |
830 | * 1 - acquired the lock; | |
1a52084d DH |
831 | * <0 - error |
832 | * | |
833 | * The hb->lock and futex_key refs shall be held by the caller. | |
834 | */ | |
835 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
836 | union futex_key *key, | |
837 | struct futex_pi_state **ps, | |
bab5bc9e | 838 | struct task_struct *task, int set_waiters) |
1a52084d | 839 | { |
59fa6245 | 840 | int lock_taken, ret, force_take = 0; |
c0c9ed15 | 841 | u32 uval, newval, curval, vpid = task_pid_vnr(task); |
1a52084d DH |
842 | |
843 | retry: | |
844 | ret = lock_taken = 0; | |
845 | ||
846 | /* | |
847 | * To avoid races, we attempt to take the lock here again | |
848 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
849 | * the locks. It will most likely not succeed. | |
850 | */ | |
c0c9ed15 | 851 | newval = vpid; |
bab5bc9e DH |
852 | if (set_waiters) |
853 | newval |= FUTEX_WAITERS; | |
1a52084d | 854 | |
37a9d912 | 855 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval))) |
1a52084d DH |
856 | return -EFAULT; |
857 | ||
858 | /* | |
859 | * Detect deadlocks. | |
860 | */ | |
c0c9ed15 | 861 | if ((unlikely((curval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
862 | return -EDEADLK; |
863 | ||
864 | /* | |
865 | * Surprise - we got the lock. Just return to userspace: | |
866 | */ | |
867 | if (unlikely(!curval)) | |
868 | return 1; | |
869 | ||
870 | uval = curval; | |
871 | ||
872 | /* | |
873 | * Set the FUTEX_WAITERS flag, so the owner will know it has someone | |
874 | * to wake at the next unlock. | |
875 | */ | |
876 | newval = curval | FUTEX_WAITERS; | |
877 | ||
878 | /* | |
59fa6245 | 879 | * Should we force take the futex? See below. |
1a52084d | 880 | */ |
59fa6245 TG |
881 | if (unlikely(force_take)) { |
882 | /* | |
883 | * Keep the OWNER_DIED and the WAITERS bit and set the | |
884 | * new TID value. | |
885 | */ | |
c0c9ed15 | 886 | newval = (curval & ~FUTEX_TID_MASK) | vpid; |
59fa6245 | 887 | force_take = 0; |
1a52084d DH |
888 | lock_taken = 1; |
889 | } | |
890 | ||
37a9d912 | 891 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1a52084d DH |
892 | return -EFAULT; |
893 | if (unlikely(curval != uval)) | |
894 | goto retry; | |
895 | ||
896 | /* | |
59fa6245 | 897 | * We took the lock due to forced take over. |
1a52084d DH |
898 | */ |
899 | if (unlikely(lock_taken)) | |
900 | return 1; | |
901 | ||
902 | /* | |
903 | * We dont have the lock. Look up the PI state (or create it if | |
904 | * we are the first waiter): | |
905 | */ | |
906 | ret = lookup_pi_state(uval, hb, key, ps); | |
907 | ||
908 | if (unlikely(ret)) { | |
909 | switch (ret) { | |
910 | case -ESRCH: | |
911 | /* | |
59fa6245 TG |
912 | * We failed to find an owner for this |
913 | * futex. So we have no pi_state to block | |
914 | * on. This can happen in two cases: | |
915 | * | |
916 | * 1) The owner died | |
917 | * 2) A stale FUTEX_WAITERS bit | |
918 | * | |
919 | * Re-read the futex value. | |
1a52084d DH |
920 | */ |
921 | if (get_futex_value_locked(&curval, uaddr)) | |
922 | return -EFAULT; | |
923 | ||
924 | /* | |
59fa6245 TG |
925 | * If the owner died or we have a stale |
926 | * WAITERS bit the owner TID in the user space | |
927 | * futex is 0. | |
1a52084d | 928 | */ |
59fa6245 TG |
929 | if (!(curval & FUTEX_TID_MASK)) { |
930 | force_take = 1; | |
1a52084d DH |
931 | goto retry; |
932 | } | |
933 | default: | |
934 | break; | |
935 | } | |
936 | } | |
937 | ||
938 | return ret; | |
939 | } | |
940 | ||
2e12978a LJ |
941 | /** |
942 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
943 | * @q: The futex_q to unqueue | |
944 | * | |
945 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
946 | */ | |
947 | static void __unqueue_futex(struct futex_q *q) | |
948 | { | |
949 | struct futex_hash_bucket *hb; | |
950 | ||
29096202 SR |
951 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
952 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
953 | return; |
954 | ||
955 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
956 | plist_del(&q->list, &hb->chain); | |
957 | } | |
958 | ||
1da177e4 LT |
959 | /* |
960 | * The hash bucket lock must be held when this is called. | |
961 | * Afterwards, the futex_q must not be accessed. | |
962 | */ | |
963 | static void wake_futex(struct futex_q *q) | |
964 | { | |
f1a11e05 TG |
965 | struct task_struct *p = q->task; |
966 | ||
aa10990e DH |
967 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
968 | return; | |
969 | ||
1da177e4 | 970 | /* |
f1a11e05 | 971 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2b RD |
972 | * a non-futex wake up happens on another CPU then the task |
973 | * might exit and p would dereference a non-existing task | |
f1a11e05 TG |
974 | * struct. Prevent this by holding a reference on p across the |
975 | * wake up. | |
1da177e4 | 976 | */ |
f1a11e05 TG |
977 | get_task_struct(p); |
978 | ||
2e12978a | 979 | __unqueue_futex(q); |
1da177e4 | 980 | /* |
f1a11e05 TG |
981 | * The waiting task can free the futex_q as soon as |
982 | * q->lock_ptr = NULL is written, without taking any locks. A | |
983 | * memory barrier is required here to prevent the following | |
984 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 985 | */ |
ccdea2f8 | 986 | smp_wmb(); |
1da177e4 | 987 | q->lock_ptr = NULL; |
f1a11e05 TG |
988 | |
989 | wake_up_state(p, TASK_NORMAL); | |
990 | put_task_struct(p); | |
1da177e4 LT |
991 | } |
992 | ||
c87e2837 IM |
993 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
994 | { | |
995 | struct task_struct *new_owner; | |
996 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 997 | u32 uninitialized_var(curval), newval; |
c87e2837 IM |
998 | |
999 | if (!pi_state) | |
1000 | return -EINVAL; | |
1001 | ||
51246bfd TG |
1002 | /* |
1003 | * If current does not own the pi_state then the futex is | |
1004 | * inconsistent and user space fiddled with the futex value. | |
1005 | */ | |
1006 | if (pi_state->owner != current) | |
1007 | return -EINVAL; | |
1008 | ||
d209d74d | 1009 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
1010 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
1011 | ||
1012 | /* | |
f123c98e SR |
1013 | * It is possible that the next waiter (the one that brought |
1014 | * this owner to the kernel) timed out and is no longer | |
1015 | * waiting on the lock. | |
c87e2837 IM |
1016 | */ |
1017 | if (!new_owner) | |
1018 | new_owner = this->task; | |
1019 | ||
1020 | /* | |
1021 | * We pass it to the next owner. (The WAITERS bit is always | |
1022 | * kept enabled while there is PI state around. We must also | |
1023 | * preserve the owner died bit.) | |
1024 | */ | |
e3f2ddea | 1025 | if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c AK |
1026 | int ret = 0; |
1027 | ||
b488893a | 1028 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 1029 | |
37a9d912 | 1030 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
778e9a9c | 1031 | ret = -EFAULT; |
cde898fa | 1032 | else if (curval != uval) |
778e9a9c AK |
1033 | ret = -EINVAL; |
1034 | if (ret) { | |
d209d74d | 1035 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
778e9a9c AK |
1036 | return ret; |
1037 | } | |
e3f2ddea | 1038 | } |
c87e2837 | 1039 | |
1d615482 | 1040 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d7 IM |
1041 | WARN_ON(list_empty(&pi_state->list)); |
1042 | list_del_init(&pi_state->list); | |
1d615482 | 1043 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d7 | 1044 | |
1d615482 | 1045 | raw_spin_lock_irq(&new_owner->pi_lock); |
627371d7 | 1046 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
1047 | list_add(&pi_state->list, &new_owner->pi_state_list); |
1048 | pi_state->owner = new_owner; | |
1d615482 | 1049 | raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d7 | 1050 | |
d209d74d | 1051 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
1052 | rt_mutex_unlock(&pi_state->pi_mutex); |
1053 | ||
1054 | return 0; | |
1055 | } | |
1056 | ||
1057 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
1058 | { | |
7cfdaf38 | 1059 | u32 uninitialized_var(oldval); |
c87e2837 IM |
1060 | |
1061 | /* | |
1062 | * There is no waiter, so we unlock the futex. The owner died | |
1063 | * bit has not to be preserved here. We are the owner: | |
1064 | */ | |
37a9d912 ML |
1065 | if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0)) |
1066 | return -EFAULT; | |
c87e2837 IM |
1067 | if (oldval != uval) |
1068 | return -EAGAIN; | |
1069 | ||
1070 | return 0; | |
1071 | } | |
1072 | ||
8b8f319f IM |
1073 | /* |
1074 | * Express the locking dependencies for lockdep: | |
1075 | */ | |
1076 | static inline void | |
1077 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1078 | { | |
1079 | if (hb1 <= hb2) { | |
1080 | spin_lock(&hb1->lock); | |
1081 | if (hb1 < hb2) | |
1082 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
1083 | } else { /* hb1 > hb2 */ | |
1084 | spin_lock(&hb2->lock); | |
1085 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
1086 | } | |
1087 | } | |
1088 | ||
5eb3dc62 DH |
1089 | static inline void |
1090 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1091 | { | |
f061d351 | 1092 | spin_unlock(&hb1->lock); |
88f502fe IM |
1093 | if (hb1 != hb2) |
1094 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
1095 | } |
1096 | ||
1da177e4 | 1097 | /* |
b2d0994b | 1098 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 1099 | */ |
b41277dc DH |
1100 | static int |
1101 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 1102 | { |
e2970f2f | 1103 | struct futex_hash_bucket *hb; |
1da177e4 | 1104 | struct futex_q *this, *next; |
38d47c1b | 1105 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 LT |
1106 | int ret; |
1107 | ||
cd689985 TG |
1108 | if (!bitset) |
1109 | return -EINVAL; | |
1110 | ||
9ea71503 | 1111 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
1112 | if (unlikely(ret != 0)) |
1113 | goto out; | |
1114 | ||
e2970f2f | 1115 | hb = hash_futex(&key); |
b0c29f79 DB |
1116 | |
1117 | /* Make sure we really have tasks to wakeup */ | |
1118 | if (!hb_waiters_pending(hb)) | |
1119 | goto out_put_key; | |
1120 | ||
e2970f2f | 1121 | spin_lock(&hb->lock); |
1da177e4 | 1122 | |
0d00c7b2 | 1123 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
1da177e4 | 1124 | if (match_futex (&this->key, &key)) { |
52400ba9 | 1125 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
1126 | ret = -EINVAL; |
1127 | break; | |
1128 | } | |
cd689985 TG |
1129 | |
1130 | /* Check if one of the bits is set in both bitsets */ | |
1131 | if (!(this->bitset & bitset)) | |
1132 | continue; | |
1133 | ||
1da177e4 LT |
1134 | wake_futex(this); |
1135 | if (++ret >= nr_wake) | |
1136 | break; | |
1137 | } | |
1138 | } | |
1139 | ||
e2970f2f | 1140 | spin_unlock(&hb->lock); |
b0c29f79 | 1141 | out_put_key: |
ae791a2d | 1142 | put_futex_key(&key); |
42d35d48 | 1143 | out: |
1da177e4 LT |
1144 | return ret; |
1145 | } | |
1146 | ||
4732efbe JJ |
1147 | /* |
1148 | * Wake up all waiters hashed on the physical page that is mapped | |
1149 | * to this virtual address: | |
1150 | */ | |
e2970f2f | 1151 | static int |
b41277dc | 1152 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1153 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1154 | { |
38d47c1b | 1155 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1156 | struct futex_hash_bucket *hb1, *hb2; |
4732efbe | 1157 | struct futex_q *this, *next; |
e4dc5b7a | 1158 | int ret, op_ret; |
4732efbe | 1159 | |
e4dc5b7a | 1160 | retry: |
9ea71503 | 1161 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1162 | if (unlikely(ret != 0)) |
1163 | goto out; | |
9ea71503 | 1164 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1165 | if (unlikely(ret != 0)) |
42d35d48 | 1166 | goto out_put_key1; |
4732efbe | 1167 | |
e2970f2f IM |
1168 | hb1 = hash_futex(&key1); |
1169 | hb2 = hash_futex(&key2); | |
4732efbe | 1170 | |
e4dc5b7a | 1171 | retry_private: |
eaaea803 | 1172 | double_lock_hb(hb1, hb2); |
e2970f2f | 1173 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1174 | if (unlikely(op_ret < 0)) { |
4732efbe | 1175 | |
5eb3dc62 | 1176 | double_unlock_hb(hb1, hb2); |
4732efbe | 1177 | |
7ee1dd3f | 1178 | #ifndef CONFIG_MMU |
e2970f2f IM |
1179 | /* |
1180 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1181 | * but we might get them from range checking | |
1182 | */ | |
7ee1dd3f | 1183 | ret = op_ret; |
42d35d48 | 1184 | goto out_put_keys; |
7ee1dd3f DH |
1185 | #endif |
1186 | ||
796f8d9b DG |
1187 | if (unlikely(op_ret != -EFAULT)) { |
1188 | ret = op_ret; | |
42d35d48 | 1189 | goto out_put_keys; |
796f8d9b DG |
1190 | } |
1191 | ||
d0725992 | 1192 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1193 | if (ret) |
de87fcc1 | 1194 | goto out_put_keys; |
4732efbe | 1195 | |
b41277dc | 1196 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1197 | goto retry_private; |
1198 | ||
ae791a2d TG |
1199 | put_futex_key(&key2); |
1200 | put_futex_key(&key1); | |
e4dc5b7a | 1201 | goto retry; |
4732efbe JJ |
1202 | } |
1203 | ||
0d00c7b2 | 1204 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
4732efbe | 1205 | if (match_futex (&this->key, &key1)) { |
aa10990e DH |
1206 | if (this->pi_state || this->rt_waiter) { |
1207 | ret = -EINVAL; | |
1208 | goto out_unlock; | |
1209 | } | |
4732efbe JJ |
1210 | wake_futex(this); |
1211 | if (++ret >= nr_wake) | |
1212 | break; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | if (op_ret > 0) { | |
4732efbe | 1217 | op_ret = 0; |
0d00c7b2 | 1218 | plist_for_each_entry_safe(this, next, &hb2->chain, list) { |
4732efbe | 1219 | if (match_futex (&this->key, &key2)) { |
aa10990e DH |
1220 | if (this->pi_state || this->rt_waiter) { |
1221 | ret = -EINVAL; | |
1222 | goto out_unlock; | |
1223 | } | |
4732efbe JJ |
1224 | wake_futex(this); |
1225 | if (++op_ret >= nr_wake2) | |
1226 | break; | |
1227 | } | |
1228 | } | |
1229 | ret += op_ret; | |
1230 | } | |
1231 | ||
aa10990e | 1232 | out_unlock: |
5eb3dc62 | 1233 | double_unlock_hb(hb1, hb2); |
42d35d48 | 1234 | out_put_keys: |
ae791a2d | 1235 | put_futex_key(&key2); |
42d35d48 | 1236 | out_put_key1: |
ae791a2d | 1237 | put_futex_key(&key1); |
42d35d48 | 1238 | out: |
4732efbe JJ |
1239 | return ret; |
1240 | } | |
1241 | ||
9121e478 DH |
1242 | /** |
1243 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1244 | * @q: the futex_q to requeue | |
1245 | * @hb1: the source hash_bucket | |
1246 | * @hb2: the target hash_bucket | |
1247 | * @key2: the new key for the requeued futex_q | |
1248 | */ | |
1249 | static inline | |
1250 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1251 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1252 | { | |
1253 | ||
1254 | /* | |
1255 | * If key1 and key2 hash to the same bucket, no need to | |
1256 | * requeue. | |
1257 | */ | |
1258 | if (likely(&hb1->chain != &hb2->chain)) { | |
1259 | plist_del(&q->list, &hb1->chain); | |
1260 | plist_add(&q->list, &hb2->chain); | |
1261 | q->lock_ptr = &hb2->lock; | |
9121e478 DH |
1262 | } |
1263 | get_futex_key_refs(key2); | |
1264 | q->key = *key2; | |
1265 | } | |
1266 | ||
52400ba9 DH |
1267 | /** |
1268 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1269 | * @q: the futex_q |
1270 | * @key: the key of the requeue target futex | |
1271 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1272 | * |
1273 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1274 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1275 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1276 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1277 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1278 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1279 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1280 | */ |
1281 | static inline | |
beda2c7e DH |
1282 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1283 | struct futex_hash_bucket *hb) | |
52400ba9 | 1284 | { |
52400ba9 DH |
1285 | get_futex_key_refs(key); |
1286 | q->key = *key; | |
1287 | ||
2e12978a | 1288 | __unqueue_futex(q); |
52400ba9 DH |
1289 | |
1290 | WARN_ON(!q->rt_waiter); | |
1291 | q->rt_waiter = NULL; | |
1292 | ||
beda2c7e | 1293 | q->lock_ptr = &hb->lock; |
beda2c7e | 1294 | |
f1a11e05 | 1295 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1296 | } |
1297 | ||
1298 | /** | |
1299 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1300 | * @pifutex: the user address of the to futex |
1301 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1302 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1303 | * @key1: the from futex key | |
1304 | * @key2: the to futex key | |
1305 | * @ps: address to store the pi_state pointer | |
1306 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1307 | * |
1308 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1309 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1310 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1311 | * hb1 and hb2 must be held by the caller. | |
52400ba9 | 1312 | * |
6c23cbbd RD |
1313 | * Return: |
1314 | * 0 - failed to acquire the lock atomically; | |
1315 | * 1 - acquired the lock; | |
52400ba9 DH |
1316 | * <0 - error |
1317 | */ | |
1318 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1319 | struct futex_hash_bucket *hb1, | |
1320 | struct futex_hash_bucket *hb2, | |
1321 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1322 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1323 | { |
bab5bc9e | 1324 | struct futex_q *top_waiter = NULL; |
52400ba9 DH |
1325 | u32 curval; |
1326 | int ret; | |
1327 | ||
1328 | if (get_futex_value_locked(&curval, pifutex)) | |
1329 | return -EFAULT; | |
1330 | ||
bab5bc9e DH |
1331 | /* |
1332 | * Find the top_waiter and determine if there are additional waiters. | |
1333 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1334 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1335 | * as we have means to handle the possible fault. If not, don't set | |
1336 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1337 | * the kernel. | |
1338 | */ | |
52400ba9 DH |
1339 | top_waiter = futex_top_waiter(hb1, key1); |
1340 | ||
1341 | /* There are no waiters, nothing for us to do. */ | |
1342 | if (!top_waiter) | |
1343 | return 0; | |
1344 | ||
84bc4af5 DH |
1345 | /* Ensure we requeue to the expected futex. */ |
1346 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1347 | return -EINVAL; | |
1348 | ||
52400ba9 | 1349 | /* |
bab5bc9e DH |
1350 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1351 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1352 | * in ps in contended cases. | |
52400ba9 | 1353 | */ |
bab5bc9e DH |
1354 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1355 | set_waiters); | |
52400ba9 | 1356 | if (ret == 1) |
beda2c7e | 1357 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
52400ba9 DH |
1358 | |
1359 | return ret; | |
1360 | } | |
1361 | ||
1362 | /** | |
1363 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1364 | * @uaddr1: source futex user address |
b41277dc | 1365 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1366 | * @uaddr2: target futex user address |
1367 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1368 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1369 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1370 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1371 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1372 | * |
1373 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1374 | * uaddr2 atomically on behalf of the top waiter. | |
1375 | * | |
6c23cbbd RD |
1376 | * Return: |
1377 | * >=0 - on success, the number of tasks requeued or woken; | |
52400ba9 | 1378 | * <0 - on error |
1da177e4 | 1379 | */ |
b41277dc DH |
1380 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1381 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1382 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1383 | { |
38d47c1b | 1384 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1385 | int drop_count = 0, task_count = 0, ret; |
1386 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1387 | struct futex_hash_bucket *hb1, *hb2; |
1da177e4 | 1388 | struct futex_q *this, *next; |
52400ba9 DH |
1389 | u32 curval2; |
1390 | ||
1391 | if (requeue_pi) { | |
1392 | /* | |
1393 | * requeue_pi requires a pi_state, try to allocate it now | |
1394 | * without any locks in case it fails. | |
1395 | */ | |
1396 | if (refill_pi_state_cache()) | |
1397 | return -ENOMEM; | |
1398 | /* | |
1399 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1400 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1401 | * returning to userspace, so as to not leave the rt_mutex with | |
1402 | * waiters and no owner. However, second and third wake-ups | |
1403 | * cannot be predicted as they involve race conditions with the | |
1404 | * first wake and a fault while looking up the pi_state. Both | |
1405 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1406 | * use nr_wake=1. | |
1407 | */ | |
1408 | if (nr_wake != 1) | |
1409 | return -EINVAL; | |
1410 | } | |
1da177e4 | 1411 | |
42d35d48 | 1412 | retry: |
52400ba9 DH |
1413 | if (pi_state != NULL) { |
1414 | /* | |
1415 | * We will have to lookup the pi_state again, so free this one | |
1416 | * to keep the accounting correct. | |
1417 | */ | |
1418 | free_pi_state(pi_state); | |
1419 | pi_state = NULL; | |
1420 | } | |
1421 | ||
9ea71503 | 1422 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1423 | if (unlikely(ret != 0)) |
1424 | goto out; | |
9ea71503 SB |
1425 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1426 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1427 | if (unlikely(ret != 0)) |
42d35d48 | 1428 | goto out_put_key1; |
1da177e4 | 1429 | |
e2970f2f IM |
1430 | hb1 = hash_futex(&key1); |
1431 | hb2 = hash_futex(&key2); | |
1da177e4 | 1432 | |
e4dc5b7a | 1433 | retry_private: |
8b8f319f | 1434 | double_lock_hb(hb1, hb2); |
1da177e4 | 1435 | |
e2970f2f IM |
1436 | if (likely(cmpval != NULL)) { |
1437 | u32 curval; | |
1da177e4 | 1438 | |
e2970f2f | 1439 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1440 | |
1441 | if (unlikely(ret)) { | |
5eb3dc62 | 1442 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1443 | |
e2970f2f | 1444 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1445 | if (ret) |
1446 | goto out_put_keys; | |
1da177e4 | 1447 | |
b41277dc | 1448 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1449 | goto retry_private; |
1da177e4 | 1450 | |
ae791a2d TG |
1451 | put_futex_key(&key2); |
1452 | put_futex_key(&key1); | |
e4dc5b7a | 1453 | goto retry; |
1da177e4 | 1454 | } |
e2970f2f | 1455 | if (curval != *cmpval) { |
1da177e4 LT |
1456 | ret = -EAGAIN; |
1457 | goto out_unlock; | |
1458 | } | |
1459 | } | |
1460 | ||
52400ba9 | 1461 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1462 | /* |
1463 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1464 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1465 | * bit. We force this here where we are able to easily handle | |
1466 | * faults rather in the requeue loop below. | |
1467 | */ | |
52400ba9 | 1468 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1469 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1470 | |
1471 | /* | |
1472 | * At this point the top_waiter has either taken uaddr2 or is | |
1473 | * waiting on it. If the former, then the pi_state will not | |
1474 | * exist yet, look it up one more time to ensure we have a | |
1475 | * reference to it. | |
1476 | */ | |
1477 | if (ret == 1) { | |
1478 | WARN_ON(pi_state); | |
89061d3d | 1479 | drop_count++; |
52400ba9 DH |
1480 | task_count++; |
1481 | ret = get_futex_value_locked(&curval2, uaddr2); | |
1482 | if (!ret) | |
1483 | ret = lookup_pi_state(curval2, hb2, &key2, | |
1484 | &pi_state); | |
1485 | } | |
1486 | ||
1487 | switch (ret) { | |
1488 | case 0: | |
1489 | break; | |
1490 | case -EFAULT: | |
1491 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1492 | put_futex_key(&key2); |
1493 | put_futex_key(&key1); | |
d0725992 | 1494 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1495 | if (!ret) |
1496 | goto retry; | |
1497 | goto out; | |
1498 | case -EAGAIN: | |
1499 | /* The owner was exiting, try again. */ | |
1500 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1501 | put_futex_key(&key2); |
1502 | put_futex_key(&key1); | |
52400ba9 DH |
1503 | cond_resched(); |
1504 | goto retry; | |
1505 | default: | |
1506 | goto out_unlock; | |
1507 | } | |
1508 | } | |
1509 | ||
0d00c7b2 | 1510 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
52400ba9 DH |
1511 | if (task_count - nr_wake >= nr_requeue) |
1512 | break; | |
1513 | ||
1514 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1515 | continue; |
52400ba9 | 1516 | |
392741e0 DH |
1517 | /* |
1518 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1519 | * be paired with each other and no other futex ops. | |
aa10990e DH |
1520 | * |
1521 | * We should never be requeueing a futex_q with a pi_state, | |
1522 | * which is awaiting a futex_unlock_pi(). | |
392741e0 DH |
1523 | */ |
1524 | if ((requeue_pi && !this->rt_waiter) || | |
aa10990e DH |
1525 | (!requeue_pi && this->rt_waiter) || |
1526 | this->pi_state) { | |
392741e0 DH |
1527 | ret = -EINVAL; |
1528 | break; | |
1529 | } | |
52400ba9 DH |
1530 | |
1531 | /* | |
1532 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1533 | * lock, we already woke the top_waiter. If not, it will be | |
1534 | * woken by futex_unlock_pi(). | |
1535 | */ | |
1536 | if (++task_count <= nr_wake && !requeue_pi) { | |
1da177e4 | 1537 | wake_futex(this); |
52400ba9 DH |
1538 | continue; |
1539 | } | |
1da177e4 | 1540 | |
84bc4af5 DH |
1541 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1542 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1543 | ret = -EINVAL; | |
1544 | break; | |
1545 | } | |
1546 | ||
52400ba9 DH |
1547 | /* |
1548 | * Requeue nr_requeue waiters and possibly one more in the case | |
1549 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1550 | */ | |
1551 | if (requeue_pi) { | |
1552 | /* Prepare the waiter to take the rt_mutex. */ | |
1553 | atomic_inc(&pi_state->refcount); | |
1554 | this->pi_state = pi_state; | |
1555 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1556 | this->rt_waiter, | |
1557 | this->task, 1); | |
1558 | if (ret == 1) { | |
1559 | /* We got the lock. */ | |
beda2c7e | 1560 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1561 | drop_count++; |
52400ba9 DH |
1562 | continue; |
1563 | } else if (ret) { | |
1564 | /* -EDEADLK */ | |
1565 | this->pi_state = NULL; | |
1566 | free_pi_state(pi_state); | |
1567 | goto out_unlock; | |
1568 | } | |
1da177e4 | 1569 | } |
52400ba9 DH |
1570 | requeue_futex(this, hb1, hb2, &key2); |
1571 | drop_count++; | |
1da177e4 LT |
1572 | } |
1573 | ||
1574 | out_unlock: | |
5eb3dc62 | 1575 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1576 | |
cd84a42f DH |
1577 | /* |
1578 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1579 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1580 | * one at key2 and updated their key pointer. We no longer need to | |
1581 | * hold the references to key1. | |
1582 | */ | |
1da177e4 | 1583 | while (--drop_count >= 0) |
9adef58b | 1584 | drop_futex_key_refs(&key1); |
1da177e4 | 1585 | |
42d35d48 | 1586 | out_put_keys: |
ae791a2d | 1587 | put_futex_key(&key2); |
42d35d48 | 1588 | out_put_key1: |
ae791a2d | 1589 | put_futex_key(&key1); |
42d35d48 | 1590 | out: |
52400ba9 DH |
1591 | if (pi_state != NULL) |
1592 | free_pi_state(pi_state); | |
1593 | return ret ? ret : task_count; | |
1da177e4 LT |
1594 | } |
1595 | ||
1596 | /* The key must be already stored in q->key. */ | |
82af7aca | 1597 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1598 | __acquires(&hb->lock) |
1da177e4 | 1599 | { |
e2970f2f | 1600 | struct futex_hash_bucket *hb; |
1da177e4 | 1601 | |
e2970f2f IM |
1602 | hb = hash_futex(&q->key); |
1603 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1604 | |
b0c29f79 | 1605 | spin_lock(&hb->lock); /* implies MB (A) */ |
e2970f2f | 1606 | return hb; |
1da177e4 LT |
1607 | } |
1608 | ||
d40d65c8 | 1609 | static inline void |
0d00c7b2 | 1610 | queue_unlock(struct futex_hash_bucket *hb) |
15e408cd | 1611 | __releases(&hb->lock) |
d40d65c8 DH |
1612 | { |
1613 | spin_unlock(&hb->lock); | |
d40d65c8 DH |
1614 | } |
1615 | ||
1616 | /** | |
1617 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
1618 | * @q: The futex_q to enqueue | |
1619 | * @hb: The destination hash bucket | |
1620 | * | |
1621 | * The hb->lock must be held by the caller, and is released here. A call to | |
1622 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
1623 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
1624 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
1625 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
1626 | * an example). | |
1627 | */ | |
82af7aca | 1628 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 1629 | __releases(&hb->lock) |
1da177e4 | 1630 | { |
ec92d082 PP |
1631 | int prio; |
1632 | ||
1633 | /* | |
1634 | * The priority used to register this element is | |
1635 | * - either the real thread-priority for the real-time threads | |
1636 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1637 | * - or MAX_RT_PRIO for non-RT threads. | |
1638 | * Thus, all RT-threads are woken first in priority order, and | |
1639 | * the others are woken last, in FIFO order. | |
1640 | */ | |
1641 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1642 | ||
1643 | plist_node_init(&q->list, prio); | |
ec92d082 | 1644 | plist_add(&q->list, &hb->chain); |
c87e2837 | 1645 | q->task = current; |
e2970f2f | 1646 | spin_unlock(&hb->lock); |
1da177e4 LT |
1647 | } |
1648 | ||
d40d65c8 DH |
1649 | /** |
1650 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
1651 | * @q: The futex_q to unqueue | |
1652 | * | |
1653 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
1654 | * be paired with exactly one earlier call to queue_me(). | |
1655 | * | |
6c23cbbd RD |
1656 | * Return: |
1657 | * 1 - if the futex_q was still queued (and we removed unqueued it); | |
d40d65c8 | 1658 | * 0 - if the futex_q was already removed by the waking thread |
1da177e4 | 1659 | */ |
1da177e4 LT |
1660 | static int unqueue_me(struct futex_q *q) |
1661 | { | |
1da177e4 | 1662 | spinlock_t *lock_ptr; |
e2970f2f | 1663 | int ret = 0; |
1da177e4 LT |
1664 | |
1665 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 1666 | retry: |
1da177e4 | 1667 | lock_ptr = q->lock_ptr; |
e91467ec | 1668 | barrier(); |
c80544dc | 1669 | if (lock_ptr != NULL) { |
1da177e4 LT |
1670 | spin_lock(lock_ptr); |
1671 | /* | |
1672 | * q->lock_ptr can change between reading it and | |
1673 | * spin_lock(), causing us to take the wrong lock. This | |
1674 | * corrects the race condition. | |
1675 | * | |
1676 | * Reasoning goes like this: if we have the wrong lock, | |
1677 | * q->lock_ptr must have changed (maybe several times) | |
1678 | * between reading it and the spin_lock(). It can | |
1679 | * change again after the spin_lock() but only if it was | |
1680 | * already changed before the spin_lock(). It cannot, | |
1681 | * however, change back to the original value. Therefore | |
1682 | * we can detect whether we acquired the correct lock. | |
1683 | */ | |
1684 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1685 | spin_unlock(lock_ptr); | |
1686 | goto retry; | |
1687 | } | |
2e12978a | 1688 | __unqueue_futex(q); |
c87e2837 IM |
1689 | |
1690 | BUG_ON(q->pi_state); | |
1691 | ||
1da177e4 LT |
1692 | spin_unlock(lock_ptr); |
1693 | ret = 1; | |
1694 | } | |
1695 | ||
9adef58b | 1696 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1697 | return ret; |
1698 | } | |
1699 | ||
c87e2837 IM |
1700 | /* |
1701 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1702 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1703 | * and dropped here. | |
c87e2837 | 1704 | */ |
d0aa7a70 | 1705 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 1706 | __releases(q->lock_ptr) |
c87e2837 | 1707 | { |
2e12978a | 1708 | __unqueue_futex(q); |
c87e2837 IM |
1709 | |
1710 | BUG_ON(!q->pi_state); | |
1711 | free_pi_state(q->pi_state); | |
1712 | q->pi_state = NULL; | |
1713 | ||
d0aa7a70 | 1714 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
1715 | } |
1716 | ||
d0aa7a70 | 1717 | /* |
cdf71a10 | 1718 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1719 | * |
778e9a9c AK |
1720 | * Must be called with hash bucket lock held and mm->sem held for non |
1721 | * private futexes. | |
d0aa7a70 | 1722 | */ |
778e9a9c | 1723 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 1724 | struct task_struct *newowner) |
d0aa7a70 | 1725 | { |
cdf71a10 | 1726 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 1727 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 1728 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 1729 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 1730 | int ret; |
d0aa7a70 PP |
1731 | |
1732 | /* Owner died? */ | |
1b7558e4 TG |
1733 | if (!pi_state->owner) |
1734 | newtid |= FUTEX_OWNER_DIED; | |
1735 | ||
1736 | /* | |
1737 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
1738 | * previous highest priority waiter or we are the highest priority |
1739 | * waiter but failed to get the rtmutex the first time. | |
1740 | * We have to replace the newowner TID in the user space variable. | |
1741 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 1742 | * |
b2d0994b DH |
1743 | * Note: We write the user space value _before_ changing the pi_state |
1744 | * because we can fault here. Imagine swapped out pages or a fork | |
1745 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
1746 | * |
1747 | * Modifying pi_state _before_ the user space value would | |
1748 | * leave the pi_state in an inconsistent state when we fault | |
1749 | * here, because we need to drop the hash bucket lock to | |
1750 | * handle the fault. This might be observed in the PID check | |
1751 | * in lookup_pi_state. | |
1752 | */ | |
1753 | retry: | |
1754 | if (get_futex_value_locked(&uval, uaddr)) | |
1755 | goto handle_fault; | |
1756 | ||
1757 | while (1) { | |
1758 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1759 | ||
37a9d912 | 1760 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
1761 | goto handle_fault; |
1762 | if (curval == uval) | |
1763 | break; | |
1764 | uval = curval; | |
1765 | } | |
1766 | ||
1767 | /* | |
1768 | * We fixed up user space. Now we need to fix the pi_state | |
1769 | * itself. | |
1770 | */ | |
d0aa7a70 | 1771 | if (pi_state->owner != NULL) { |
1d615482 | 1772 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
1773 | WARN_ON(list_empty(&pi_state->list)); |
1774 | list_del_init(&pi_state->list); | |
1d615482 | 1775 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 1776 | } |
d0aa7a70 | 1777 | |
cdf71a10 | 1778 | pi_state->owner = newowner; |
d0aa7a70 | 1779 | |
1d615482 | 1780 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1781 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 1782 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 1783 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 1784 | return 0; |
d0aa7a70 | 1785 | |
d0aa7a70 | 1786 | /* |
1b7558e4 | 1787 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
1788 | * lock here. That gives the other task (either the highest priority |
1789 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
1790 | * chance to try the fixup of the pi_state. So once we are |
1791 | * back from handling the fault we need to check the pi_state | |
1792 | * after reacquiring the hash bucket lock and before trying to | |
1793 | * do another fixup. When the fixup has been done already we | |
1794 | * simply return. | |
d0aa7a70 | 1795 | */ |
1b7558e4 TG |
1796 | handle_fault: |
1797 | spin_unlock(q->lock_ptr); | |
778e9a9c | 1798 | |
d0725992 | 1799 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 1800 | |
1b7558e4 | 1801 | spin_lock(q->lock_ptr); |
778e9a9c | 1802 | |
1b7558e4 TG |
1803 | /* |
1804 | * Check if someone else fixed it for us: | |
1805 | */ | |
1806 | if (pi_state->owner != oldowner) | |
1807 | return 0; | |
1808 | ||
1809 | if (ret) | |
1810 | return ret; | |
1811 | ||
1812 | goto retry; | |
d0aa7a70 PP |
1813 | } |
1814 | ||
72c1bbf3 | 1815 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1816 | |
dd973998 DH |
1817 | /** |
1818 | * fixup_owner() - Post lock pi_state and corner case management | |
1819 | * @uaddr: user address of the futex | |
dd973998 DH |
1820 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
1821 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
1822 | * | |
1823 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
1824 | * the pi_state owner as well as handle race conditions that may allow us to | |
1825 | * acquire the lock. Must be called with the hb lock held. | |
1826 | * | |
6c23cbbd RD |
1827 | * Return: |
1828 | * 1 - success, lock taken; | |
1829 | * 0 - success, lock not taken; | |
dd973998 DH |
1830 | * <0 - on error (-EFAULT) |
1831 | */ | |
ae791a2d | 1832 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
1833 | { |
1834 | struct task_struct *owner; | |
1835 | int ret = 0; | |
1836 | ||
1837 | if (locked) { | |
1838 | /* | |
1839 | * Got the lock. We might not be the anticipated owner if we | |
1840 | * did a lock-steal - fix up the PI-state in that case: | |
1841 | */ | |
1842 | if (q->pi_state->owner != current) | |
ae791a2d | 1843 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
1844 | goto out; |
1845 | } | |
1846 | ||
1847 | /* | |
1848 | * Catch the rare case, where the lock was released when we were on the | |
1849 | * way back before we locked the hash bucket. | |
1850 | */ | |
1851 | if (q->pi_state->owner == current) { | |
1852 | /* | |
1853 | * Try to get the rt_mutex now. This might fail as some other | |
1854 | * task acquired the rt_mutex after we removed ourself from the | |
1855 | * rt_mutex waiters list. | |
1856 | */ | |
1857 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
1858 | locked = 1; | |
1859 | goto out; | |
1860 | } | |
1861 | ||
1862 | /* | |
1863 | * pi_state is incorrect, some other task did a lock steal and | |
1864 | * we returned due to timeout or signal without taking the | |
8161239a | 1865 | * rt_mutex. Too late. |
dd973998 | 1866 | */ |
8161239a | 1867 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 1868 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
1869 | if (!owner) |
1870 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
1871 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); | |
ae791a2d | 1872 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
1873 | goto out; |
1874 | } | |
1875 | ||
1876 | /* | |
1877 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 1878 | * the owner of the rt_mutex. |
dd973998 DH |
1879 | */ |
1880 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
1881 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
1882 | "pi-state %p\n", ret, | |
1883 | q->pi_state->pi_mutex.owner, | |
1884 | q->pi_state->owner); | |
1885 | ||
1886 | out: | |
1887 | return ret ? ret : locked; | |
1888 | } | |
1889 | ||
ca5f9524 DH |
1890 | /** |
1891 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
1892 | * @hb: the futex hash bucket, must be locked by the caller | |
1893 | * @q: the futex_q to queue up on | |
1894 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
1895 | */ |
1896 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 1897 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 1898 | { |
9beba3c5 DH |
1899 | /* |
1900 | * The task state is guaranteed to be set before another task can | |
1901 | * wake it. set_current_state() is implemented using set_mb() and | |
1902 | * queue_me() calls spin_unlock() upon completion, both serializing | |
1903 | * access to the hash list and forcing another memory barrier. | |
1904 | */ | |
f1a11e05 | 1905 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 1906 | queue_me(q, hb); |
ca5f9524 DH |
1907 | |
1908 | /* Arm the timer */ | |
1909 | if (timeout) { | |
1910 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); | |
1911 | if (!hrtimer_active(&timeout->timer)) | |
1912 | timeout->task = NULL; | |
1913 | } | |
1914 | ||
1915 | /* | |
0729e196 DH |
1916 | * If we have been removed from the hash list, then another task |
1917 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
1918 | */ |
1919 | if (likely(!plist_node_empty(&q->list))) { | |
1920 | /* | |
1921 | * If the timer has already expired, current will already be | |
1922 | * flagged for rescheduling. Only call schedule if there | |
1923 | * is no timeout, or if it has yet to expire. | |
1924 | */ | |
1925 | if (!timeout || timeout->task) | |
88c8004f | 1926 | freezable_schedule(); |
ca5f9524 DH |
1927 | } |
1928 | __set_current_state(TASK_RUNNING); | |
1929 | } | |
1930 | ||
f801073f DH |
1931 | /** |
1932 | * futex_wait_setup() - Prepare to wait on a futex | |
1933 | * @uaddr: the futex userspace address | |
1934 | * @val: the expected value | |
b41277dc | 1935 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
1936 | * @q: the associated futex_q |
1937 | * @hb: storage for hash_bucket pointer to be returned to caller | |
1938 | * | |
1939 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
1940 | * compare it with the expected value. Handle atomic faults internally. | |
1941 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
1942 | * with no q.key reference on failure. | |
1943 | * | |
6c23cbbd RD |
1944 | * Return: |
1945 | * 0 - uaddr contains val and hb has been locked; | |
ca4a04cf | 1946 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 1947 | */ |
b41277dc | 1948 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 1949 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 1950 | { |
e2970f2f IM |
1951 | u32 uval; |
1952 | int ret; | |
1da177e4 | 1953 | |
1da177e4 | 1954 | /* |
b2d0994b | 1955 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
1956 | * Order is important: |
1957 | * | |
1958 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1959 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1960 | * | |
1961 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1962 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
1963 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
1964 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
1965 | * cond(var) false, which would violate the guarantee. |
1966 | * | |
8fe8f545 ML |
1967 | * On the other hand, we insert q and release the hash-bucket only |
1968 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
1969 | * absorb a wakeup if *uaddr does not match the desired values | |
1970 | * while the syscall executes. | |
1da177e4 | 1971 | */ |
f801073f | 1972 | retry: |
9ea71503 | 1973 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 1974 | if (unlikely(ret != 0)) |
a5a2a0c7 | 1975 | return ret; |
f801073f DH |
1976 | |
1977 | retry_private: | |
1978 | *hb = queue_lock(q); | |
1979 | ||
e2970f2f | 1980 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 1981 | |
f801073f | 1982 | if (ret) { |
0d00c7b2 | 1983 | queue_unlock(*hb); |
1da177e4 | 1984 | |
e2970f2f | 1985 | ret = get_user(uval, uaddr); |
e4dc5b7a | 1986 | if (ret) |
f801073f | 1987 | goto out; |
1da177e4 | 1988 | |
b41277dc | 1989 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1990 | goto retry_private; |
1991 | ||
ae791a2d | 1992 | put_futex_key(&q->key); |
e4dc5b7a | 1993 | goto retry; |
1da177e4 | 1994 | } |
ca5f9524 | 1995 | |
f801073f | 1996 | if (uval != val) { |
0d00c7b2 | 1997 | queue_unlock(*hb); |
f801073f | 1998 | ret = -EWOULDBLOCK; |
2fff78c7 | 1999 | } |
1da177e4 | 2000 | |
f801073f DH |
2001 | out: |
2002 | if (ret) | |
ae791a2d | 2003 | put_futex_key(&q->key); |
f801073f DH |
2004 | return ret; |
2005 | } | |
2006 | ||
b41277dc DH |
2007 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
2008 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
2009 | { |
2010 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
2011 | struct restart_block *restart; |
2012 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 2013 | struct futex_q q = futex_q_init; |
f801073f DH |
2014 | int ret; |
2015 | ||
2016 | if (!bitset) | |
2017 | return -EINVAL; | |
f801073f DH |
2018 | q.bitset = bitset; |
2019 | ||
2020 | if (abs_time) { | |
2021 | to = &timeout; | |
2022 | ||
b41277dc DH |
2023 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2024 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2025 | HRTIMER_MODE_ABS); | |
f801073f DH |
2026 | hrtimer_init_sleeper(to, current); |
2027 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2028 | current->timer_slack_ns); | |
2029 | } | |
2030 | ||
d58e6576 | 2031 | retry: |
7ada876a DH |
2032 | /* |
2033 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
2034 | * q.key refs. | |
2035 | */ | |
b41277dc | 2036 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
2037 | if (ret) |
2038 | goto out; | |
2039 | ||
ca5f9524 | 2040 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 2041 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
2042 | |
2043 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 2044 | ret = 0; |
7ada876a | 2045 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 2046 | if (!unqueue_me(&q)) |
7ada876a | 2047 | goto out; |
2fff78c7 | 2048 | ret = -ETIMEDOUT; |
ca5f9524 | 2049 | if (to && !to->task) |
7ada876a | 2050 | goto out; |
72c1bbf3 | 2051 | |
e2970f2f | 2052 | /* |
d58e6576 TG |
2053 | * We expect signal_pending(current), but we might be the |
2054 | * victim of a spurious wakeup as well. | |
e2970f2f | 2055 | */ |
7ada876a | 2056 | if (!signal_pending(current)) |
d58e6576 | 2057 | goto retry; |
d58e6576 | 2058 | |
2fff78c7 | 2059 | ret = -ERESTARTSYS; |
c19384b5 | 2060 | if (!abs_time) |
7ada876a | 2061 | goto out; |
1da177e4 | 2062 | |
2fff78c7 PZ |
2063 | restart = ¤t_thread_info()->restart_block; |
2064 | restart->fn = futex_wait_restart; | |
a3c74c52 | 2065 | restart->futex.uaddr = uaddr; |
2fff78c7 PZ |
2066 | restart->futex.val = val; |
2067 | restart->futex.time = abs_time->tv64; | |
2068 | restart->futex.bitset = bitset; | |
0cd9c649 | 2069 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 2070 | |
2fff78c7 PZ |
2071 | ret = -ERESTART_RESTARTBLOCK; |
2072 | ||
42d35d48 | 2073 | out: |
ca5f9524 DH |
2074 | if (to) { |
2075 | hrtimer_cancel(&to->timer); | |
2076 | destroy_hrtimer_on_stack(&to->timer); | |
2077 | } | |
c87e2837 IM |
2078 | return ret; |
2079 | } | |
2080 | ||
72c1bbf3 NP |
2081 | |
2082 | static long futex_wait_restart(struct restart_block *restart) | |
2083 | { | |
a3c74c52 | 2084 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 2085 | ktime_t t, *tp = NULL; |
72c1bbf3 | 2086 | |
a72188d8 DH |
2087 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
2088 | t.tv64 = restart->futex.time; | |
2089 | tp = &t; | |
2090 | } | |
72c1bbf3 | 2091 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
2092 | |
2093 | return (long)futex_wait(uaddr, restart->futex.flags, | |
2094 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
2095 | } |
2096 | ||
2097 | ||
c87e2837 IM |
2098 | /* |
2099 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
2100 | * and failed. The kernel side here does the whole locking operation: | |
2101 | * if there are waiters then it will block, it does PI, etc. (Due to | |
2102 | * races the kernel might see a 0 value of the futex too.) | |
2103 | */ | |
b41277dc DH |
2104 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
2105 | ktime_t *time, int trylock) | |
c87e2837 | 2106 | { |
c5780e97 | 2107 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 2108 | struct futex_hash_bucket *hb; |
5bdb05f9 | 2109 | struct futex_q q = futex_q_init; |
dd973998 | 2110 | int res, ret; |
c87e2837 IM |
2111 | |
2112 | if (refill_pi_state_cache()) | |
2113 | return -ENOMEM; | |
2114 | ||
c19384b5 | 2115 | if (time) { |
c5780e97 | 2116 | to = &timeout; |
237fc6e7 TG |
2117 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
2118 | HRTIMER_MODE_ABS); | |
c5780e97 | 2119 | hrtimer_init_sleeper(to, current); |
cc584b21 | 2120 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
2121 | } |
2122 | ||
42d35d48 | 2123 | retry: |
9ea71503 | 2124 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 2125 | if (unlikely(ret != 0)) |
42d35d48 | 2126 | goto out; |
c87e2837 | 2127 | |
e4dc5b7a | 2128 | retry_private: |
82af7aca | 2129 | hb = queue_lock(&q); |
c87e2837 | 2130 | |
bab5bc9e | 2131 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 2132 | if (unlikely(ret)) { |
778e9a9c | 2133 | switch (ret) { |
1a52084d DH |
2134 | case 1: |
2135 | /* We got the lock. */ | |
2136 | ret = 0; | |
2137 | goto out_unlock_put_key; | |
2138 | case -EFAULT: | |
2139 | goto uaddr_faulted; | |
778e9a9c AK |
2140 | case -EAGAIN: |
2141 | /* | |
2142 | * Task is exiting and we just wait for the | |
2143 | * exit to complete. | |
2144 | */ | |
0d00c7b2 | 2145 | queue_unlock(hb); |
ae791a2d | 2146 | put_futex_key(&q.key); |
778e9a9c AK |
2147 | cond_resched(); |
2148 | goto retry; | |
778e9a9c | 2149 | default: |
42d35d48 | 2150 | goto out_unlock_put_key; |
c87e2837 | 2151 | } |
c87e2837 IM |
2152 | } |
2153 | ||
2154 | /* | |
2155 | * Only actually queue now that the atomic ops are done: | |
2156 | */ | |
82af7aca | 2157 | queue_me(&q, hb); |
c87e2837 | 2158 | |
c87e2837 IM |
2159 | WARN_ON(!q.pi_state); |
2160 | /* | |
2161 | * Block on the PI mutex: | |
2162 | */ | |
2163 | if (!trylock) | |
2164 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
2165 | else { | |
2166 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
2167 | /* Fixup the trylock return value: */ | |
2168 | ret = ret ? 0 : -EWOULDBLOCK; | |
2169 | } | |
2170 | ||
a99e4e41 | 2171 | spin_lock(q.lock_ptr); |
dd973998 DH |
2172 | /* |
2173 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2174 | * haven't already. | |
2175 | */ | |
ae791a2d | 2176 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2177 | /* |
2178 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2179 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2180 | */ | |
2181 | if (res) | |
2182 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2183 | |
e8f6386c | 2184 | /* |
dd973998 DH |
2185 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2186 | * it and return the fault to userspace. | |
e8f6386c DH |
2187 | */ |
2188 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2189 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2190 | ||
778e9a9c AK |
2191 | /* Unqueue and drop the lock */ |
2192 | unqueue_me_pi(&q); | |
c87e2837 | 2193 | |
5ecb01cf | 2194 | goto out_put_key; |
c87e2837 | 2195 | |
42d35d48 | 2196 | out_unlock_put_key: |
0d00c7b2 | 2197 | queue_unlock(hb); |
c87e2837 | 2198 | |
42d35d48 | 2199 | out_put_key: |
ae791a2d | 2200 | put_futex_key(&q.key); |
42d35d48 | 2201 | out: |
237fc6e7 TG |
2202 | if (to) |
2203 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2204 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2205 | |
42d35d48 | 2206 | uaddr_faulted: |
0d00c7b2 | 2207 | queue_unlock(hb); |
778e9a9c | 2208 | |
d0725992 | 2209 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2210 | if (ret) |
2211 | goto out_put_key; | |
c87e2837 | 2212 | |
b41277dc | 2213 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2214 | goto retry_private; |
2215 | ||
ae791a2d | 2216 | put_futex_key(&q.key); |
e4dc5b7a | 2217 | goto retry; |
c87e2837 IM |
2218 | } |
2219 | ||
c87e2837 IM |
2220 | /* |
2221 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2222 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2223 | * and do the rt-mutex unlock. | |
2224 | */ | |
b41277dc | 2225 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 IM |
2226 | { |
2227 | struct futex_hash_bucket *hb; | |
2228 | struct futex_q *this, *next; | |
38d47c1b | 2229 | union futex_key key = FUTEX_KEY_INIT; |
c0c9ed15 | 2230 | u32 uval, vpid = task_pid_vnr(current); |
e4dc5b7a | 2231 | int ret; |
c87e2837 IM |
2232 | |
2233 | retry: | |
2234 | if (get_user(uval, uaddr)) | |
2235 | return -EFAULT; | |
2236 | /* | |
2237 | * We release only a lock we actually own: | |
2238 | */ | |
c0c9ed15 | 2239 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2240 | return -EPERM; |
c87e2837 | 2241 | |
9ea71503 | 2242 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
c87e2837 IM |
2243 | if (unlikely(ret != 0)) |
2244 | goto out; | |
2245 | ||
2246 | hb = hash_futex(&key); | |
2247 | spin_lock(&hb->lock); | |
2248 | ||
c87e2837 IM |
2249 | /* |
2250 | * To avoid races, try to do the TID -> 0 atomic transition | |
2251 | * again. If it succeeds then we can return without waking | |
2252 | * anyone else up: | |
2253 | */ | |
37a9d912 ML |
2254 | if (!(uval & FUTEX_OWNER_DIED) && |
2255 | cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0)) | |
c87e2837 IM |
2256 | goto pi_faulted; |
2257 | /* | |
2258 | * Rare case: we managed to release the lock atomically, | |
2259 | * no need to wake anyone else up: | |
2260 | */ | |
c0c9ed15 | 2261 | if (unlikely(uval == vpid)) |
c87e2837 IM |
2262 | goto out_unlock; |
2263 | ||
2264 | /* | |
2265 | * Ok, other tasks may need to be woken up - check waiters | |
2266 | * and do the wakeup if necessary: | |
2267 | */ | |
0d00c7b2 | 2268 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
c87e2837 IM |
2269 | if (!match_futex (&this->key, &key)) |
2270 | continue; | |
2271 | ret = wake_futex_pi(uaddr, uval, this); | |
2272 | /* | |
2273 | * The atomic access to the futex value | |
2274 | * generated a pagefault, so retry the | |
2275 | * user-access and the wakeup: | |
2276 | */ | |
2277 | if (ret == -EFAULT) | |
2278 | goto pi_faulted; | |
2279 | goto out_unlock; | |
2280 | } | |
2281 | /* | |
2282 | * No waiters - kernel unlocks the futex: | |
2283 | */ | |
e3f2ddea IM |
2284 | if (!(uval & FUTEX_OWNER_DIED)) { |
2285 | ret = unlock_futex_pi(uaddr, uval); | |
2286 | if (ret == -EFAULT) | |
2287 | goto pi_faulted; | |
2288 | } | |
c87e2837 IM |
2289 | |
2290 | out_unlock: | |
2291 | spin_unlock(&hb->lock); | |
ae791a2d | 2292 | put_futex_key(&key); |
c87e2837 | 2293 | |
42d35d48 | 2294 | out: |
c87e2837 IM |
2295 | return ret; |
2296 | ||
2297 | pi_faulted: | |
778e9a9c | 2298 | spin_unlock(&hb->lock); |
ae791a2d | 2299 | put_futex_key(&key); |
c87e2837 | 2300 | |
d0725992 | 2301 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2302 | if (!ret) |
c87e2837 IM |
2303 | goto retry; |
2304 | ||
1da177e4 LT |
2305 | return ret; |
2306 | } | |
2307 | ||
52400ba9 DH |
2308 | /** |
2309 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2310 | * @hb: the hash_bucket futex_q was original enqueued on | |
2311 | * @q: the futex_q woken while waiting to be requeued | |
2312 | * @key2: the futex_key of the requeue target futex | |
2313 | * @timeout: the timeout associated with the wait (NULL if none) | |
2314 | * | |
2315 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2316 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2317 | * the wakeup and return the appropriate error code to the caller. Must be | |
2318 | * called with the hb lock held. | |
2319 | * | |
6c23cbbd RD |
2320 | * Return: |
2321 | * 0 = no early wakeup detected; | |
2322 | * <0 = -ETIMEDOUT or -ERESTARTNOINTR | |
52400ba9 DH |
2323 | */ |
2324 | static inline | |
2325 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2326 | struct futex_q *q, union futex_key *key2, | |
2327 | struct hrtimer_sleeper *timeout) | |
2328 | { | |
2329 | int ret = 0; | |
2330 | ||
2331 | /* | |
2332 | * With the hb lock held, we avoid races while we process the wakeup. | |
2333 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2334 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2335 | * It can't be requeued from uaddr2 to something else since we don't | |
2336 | * support a PI aware source futex for requeue. | |
2337 | */ | |
2338 | if (!match_futex(&q->key, key2)) { | |
2339 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2340 | /* | |
2341 | * We were woken prior to requeue by a timeout or a signal. | |
2342 | * Unqueue the futex_q and determine which it was. | |
2343 | */ | |
2e12978a | 2344 | plist_del(&q->list, &hb->chain); |
52400ba9 | 2345 | |
d58e6576 | 2346 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2347 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2348 | if (timeout && !timeout->task) |
2349 | ret = -ETIMEDOUT; | |
d58e6576 | 2350 | else if (signal_pending(current)) |
1c840c14 | 2351 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2352 | } |
2353 | return ret; | |
2354 | } | |
2355 | ||
2356 | /** | |
2357 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2358 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2359 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba9 DH |
2360 | * the same type, no requeueing from private to shared, etc. |
2361 | * @val: the expected value of uaddr | |
2362 | * @abs_time: absolute timeout | |
56ec1607 | 2363 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2364 | * @uaddr2: the pi futex we will take prior to returning to user-space |
2365 | * | |
2366 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
6f7b0a2a DH |
2367 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
2368 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to | |
2369 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; | |
2370 | * without one, the pi logic would not know which task to boost/deboost, if | |
2371 | * there was a need to. | |
52400ba9 DH |
2372 | * |
2373 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
6c23cbbd | 2374 | * via the following-- |
52400ba9 | 2375 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e6 DH |
2376 | * 2) wakeup on uaddr2 after a requeue |
2377 | * 3) signal | |
2378 | * 4) timeout | |
52400ba9 | 2379 | * |
cc6db4e6 | 2380 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2381 | * |
2382 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2383 | * 5) successful lock | |
2384 | * 6) signal | |
2385 | * 7) timeout | |
2386 | * 8) other lock acquisition failure | |
2387 | * | |
cc6db4e6 | 2388 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2389 | * |
2390 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2391 | * | |
6c23cbbd RD |
2392 | * Return: |
2393 | * 0 - On success; | |
52400ba9 DH |
2394 | * <0 - On error |
2395 | */ | |
b41277dc | 2396 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2397 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2398 | u32 __user *uaddr2) |
52400ba9 DH |
2399 | { |
2400 | struct hrtimer_sleeper timeout, *to = NULL; | |
2401 | struct rt_mutex_waiter rt_waiter; | |
2402 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2403 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2404 | union futex_key key2 = FUTEX_KEY_INIT; |
2405 | struct futex_q q = futex_q_init; | |
52400ba9 | 2406 | int res, ret; |
52400ba9 | 2407 | |
6f7b0a2a DH |
2408 | if (uaddr == uaddr2) |
2409 | return -EINVAL; | |
2410 | ||
52400ba9 DH |
2411 | if (!bitset) |
2412 | return -EINVAL; | |
2413 | ||
2414 | if (abs_time) { | |
2415 | to = &timeout; | |
b41277dc DH |
2416 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2417 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2418 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2419 | hrtimer_init_sleeper(to, current); |
2420 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2421 | current->timer_slack_ns); | |
2422 | } | |
2423 | ||
2424 | /* | |
2425 | * The waiter is allocated on our stack, manipulated by the requeue | |
2426 | * code while we sleep on uaddr. | |
2427 | */ | |
2428 | debug_rt_mutex_init_waiter(&rt_waiter); | |
fb00aca4 PZ |
2429 | RB_CLEAR_NODE(&rt_waiter.pi_tree_entry); |
2430 | RB_CLEAR_NODE(&rt_waiter.tree_entry); | |
52400ba9 DH |
2431 | rt_waiter.task = NULL; |
2432 | ||
9ea71503 | 2433 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2434 | if (unlikely(ret != 0)) |
2435 | goto out; | |
2436 | ||
84bc4af5 DH |
2437 | q.bitset = bitset; |
2438 | q.rt_waiter = &rt_waiter; | |
2439 | q.requeue_pi_key = &key2; | |
2440 | ||
7ada876a DH |
2441 | /* |
2442 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2443 | * count. | |
2444 | */ | |
b41277dc | 2445 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2446 | if (ret) |
2447 | goto out_key2; | |
52400ba9 DH |
2448 | |
2449 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ | |
f1a11e05 | 2450 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2451 | |
2452 | spin_lock(&hb->lock); | |
2453 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2454 | spin_unlock(&hb->lock); | |
2455 | if (ret) | |
2456 | goto out_put_keys; | |
2457 | ||
2458 | /* | |
2459 | * In order for us to be here, we know our q.key == key2, and since | |
2460 | * we took the hb->lock above, we also know that futex_requeue() has | |
2461 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2462 | * race with the atomic proxy lock acquisition by the requeue code. The |
2463 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2464 | * reference count. | |
52400ba9 DH |
2465 | */ |
2466 | ||
2467 | /* Check if the requeue code acquired the second futex for us. */ | |
2468 | if (!q.rt_waiter) { | |
2469 | /* | |
2470 | * Got the lock. We might not be the anticipated owner if we | |
2471 | * did a lock-steal - fix up the PI-state in that case. | |
2472 | */ | |
2473 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2474 | spin_lock(q.lock_ptr); | |
ae791a2d | 2475 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba9 DH |
2476 | spin_unlock(q.lock_ptr); |
2477 | } | |
2478 | } else { | |
2479 | /* | |
2480 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2481 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2482 | * the pi_state. | |
2483 | */ | |
f27071cb | 2484 | WARN_ON(!q.pi_state); |
52400ba9 DH |
2485 | pi_mutex = &q.pi_state->pi_mutex; |
2486 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1); | |
2487 | debug_rt_mutex_free_waiter(&rt_waiter); | |
2488 | ||
2489 | spin_lock(q.lock_ptr); | |
2490 | /* | |
2491 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2492 | * haven't already. | |
2493 | */ | |
ae791a2d | 2494 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2495 | /* |
2496 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2497 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2498 | */ |
2499 | if (res) | |
2500 | ret = (res < 0) ? res : 0; | |
2501 | ||
2502 | /* Unqueue and drop the lock. */ | |
2503 | unqueue_me_pi(&q); | |
2504 | } | |
2505 | ||
2506 | /* | |
2507 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2508 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2509 | */ | |
2510 | if (ret == -EFAULT) { | |
b6070a8d | 2511 | if (pi_mutex && rt_mutex_owner(pi_mutex) == current) |
52400ba9 DH |
2512 | rt_mutex_unlock(pi_mutex); |
2513 | } else if (ret == -EINTR) { | |
52400ba9 | 2514 | /* |
cc6db4e6 DH |
2515 | * We've already been requeued, but cannot restart by calling |
2516 | * futex_lock_pi() directly. We could restart this syscall, but | |
2517 | * it would detect that the user space "val" changed and return | |
2518 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2519 | * -EWOULDBLOCK directly. | |
52400ba9 | 2520 | */ |
2070887f | 2521 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2522 | } |
2523 | ||
2524 | out_put_keys: | |
ae791a2d | 2525 | put_futex_key(&q.key); |
c8b15a70 | 2526 | out_key2: |
ae791a2d | 2527 | put_futex_key(&key2); |
52400ba9 DH |
2528 | |
2529 | out: | |
2530 | if (to) { | |
2531 | hrtimer_cancel(&to->timer); | |
2532 | destroy_hrtimer_on_stack(&to->timer); | |
2533 | } | |
2534 | return ret; | |
2535 | } | |
2536 | ||
0771dfef IM |
2537 | /* |
2538 | * Support for robust futexes: the kernel cleans up held futexes at | |
2539 | * thread exit time. | |
2540 | * | |
2541 | * Implementation: user-space maintains a per-thread list of locks it | |
2542 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2543 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2544 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2545 | * always manipulated with the lock held, so the list is private and |
2546 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2547 | * field, to allow the kernel to clean up if the thread dies after | |
2548 | * acquiring the lock, but just before it could have added itself to | |
2549 | * the list. There can only be one such pending lock. | |
2550 | */ | |
2551 | ||
2552 | /** | |
d96ee56c DH |
2553 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2554 | * @head: pointer to the list-head | |
2555 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2556 | */ |
836f92ad HC |
2557 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2558 | size_t, len) | |
0771dfef | 2559 | { |
a0c1e907 TG |
2560 | if (!futex_cmpxchg_enabled) |
2561 | return -ENOSYS; | |
0771dfef IM |
2562 | /* |
2563 | * The kernel knows only one size for now: | |
2564 | */ | |
2565 | if (unlikely(len != sizeof(*head))) | |
2566 | return -EINVAL; | |
2567 | ||
2568 | current->robust_list = head; | |
2569 | ||
2570 | return 0; | |
2571 | } | |
2572 | ||
2573 | /** | |
d96ee56c DH |
2574 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2575 | * @pid: pid of the process [zero for current task] | |
2576 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2577 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 2578 | */ |
836f92ad HC |
2579 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2580 | struct robust_list_head __user * __user *, head_ptr, | |
2581 | size_t __user *, len_ptr) | |
0771dfef | 2582 | { |
ba46df98 | 2583 | struct robust_list_head __user *head; |
0771dfef | 2584 | unsigned long ret; |
bdbb776f | 2585 | struct task_struct *p; |
0771dfef | 2586 | |
a0c1e907 TG |
2587 | if (!futex_cmpxchg_enabled) |
2588 | return -ENOSYS; | |
2589 | ||
bdbb776f KC |
2590 | rcu_read_lock(); |
2591 | ||
2592 | ret = -ESRCH; | |
0771dfef | 2593 | if (!pid) |
bdbb776f | 2594 | p = current; |
0771dfef | 2595 | else { |
228ebcbe | 2596 | p = find_task_by_vpid(pid); |
0771dfef IM |
2597 | if (!p) |
2598 | goto err_unlock; | |
0771dfef IM |
2599 | } |
2600 | ||
bdbb776f KC |
2601 | ret = -EPERM; |
2602 | if (!ptrace_may_access(p, PTRACE_MODE_READ)) | |
2603 | goto err_unlock; | |
2604 | ||
2605 | head = p->robust_list; | |
2606 | rcu_read_unlock(); | |
2607 | ||
0771dfef IM |
2608 | if (put_user(sizeof(*head), len_ptr)) |
2609 | return -EFAULT; | |
2610 | return put_user(head, head_ptr); | |
2611 | ||
2612 | err_unlock: | |
aaa2a97e | 2613 | rcu_read_unlock(); |
0771dfef IM |
2614 | |
2615 | return ret; | |
2616 | } | |
2617 | ||
2618 | /* | |
2619 | * Process a futex-list entry, check whether it's owned by the | |
2620 | * dying task, and do notification if so: | |
2621 | */ | |
e3f2ddea | 2622 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2623 | { |
7cfdaf38 | 2624 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 2625 | |
8f17d3a5 IM |
2626 | retry: |
2627 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2628 | return -1; |
2629 | ||
b488893a | 2630 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
2631 | /* |
2632 | * Ok, this dying thread is truly holding a futex | |
2633 | * of interest. Set the OWNER_DIED bit atomically | |
2634 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2635 | * set, wake up a waiter (if any). (We have to do a | |
2636 | * futex_wake() even if OWNER_DIED is already set - | |
2637 | * to handle the rare but possible case of recursive | |
2638 | * thread-death.) The rest of the cleanup is done in | |
2639 | * userspace. | |
2640 | */ | |
e3f2ddea | 2641 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
2642 | /* |
2643 | * We are not holding a lock here, but we want to have | |
2644 | * the pagefault_disable/enable() protection because | |
2645 | * we want to handle the fault gracefully. If the | |
2646 | * access fails we try to fault in the futex with R/W | |
2647 | * verification via get_user_pages. get_user() above | |
2648 | * does not guarantee R/W access. If that fails we | |
2649 | * give up and leave the futex locked. | |
2650 | */ | |
2651 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
2652 | if (fault_in_user_writeable(uaddr)) | |
2653 | return -1; | |
2654 | goto retry; | |
2655 | } | |
c87e2837 | 2656 | if (nval != uval) |
8f17d3a5 | 2657 | goto retry; |
0771dfef | 2658 | |
e3f2ddea IM |
2659 | /* |
2660 | * Wake robust non-PI futexes here. The wakeup of | |
2661 | * PI futexes happens in exit_pi_state(): | |
2662 | */ | |
36cf3b5c | 2663 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 2664 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
2665 | } |
2666 | return 0; | |
2667 | } | |
2668 | ||
e3f2ddea IM |
2669 | /* |
2670 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2671 | */ | |
2672 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 2673 | struct robust_list __user * __user *head, |
1dcc41bb | 2674 | unsigned int *pi) |
e3f2ddea IM |
2675 | { |
2676 | unsigned long uentry; | |
2677 | ||
ba46df98 | 2678 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2679 | return -EFAULT; |
2680 | ||
ba46df98 | 2681 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2682 | *pi = uentry & 1; |
2683 | ||
2684 | return 0; | |
2685 | } | |
2686 | ||
0771dfef IM |
2687 | /* |
2688 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2689 | * and mark any locks found there dead, and notify any waiters. | |
2690 | * | |
2691 | * We silently return on any sign of list-walking problem. | |
2692 | */ | |
2693 | void exit_robust_list(struct task_struct *curr) | |
2694 | { | |
2695 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 2696 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
2697 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
2698 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 2699 | unsigned long futex_offset; |
9f96cb1e | 2700 | int rc; |
0771dfef | 2701 | |
a0c1e907 TG |
2702 | if (!futex_cmpxchg_enabled) |
2703 | return; | |
2704 | ||
0771dfef IM |
2705 | /* |
2706 | * Fetch the list head (which was registered earlier, via | |
2707 | * sys_set_robust_list()): | |
2708 | */ | |
e3f2ddea | 2709 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2710 | return; |
2711 | /* | |
2712 | * Fetch the relative futex offset: | |
2713 | */ | |
2714 | if (get_user(futex_offset, &head->futex_offset)) | |
2715 | return; | |
2716 | /* | |
2717 | * Fetch any possibly pending lock-add first, and handle it | |
2718 | * if it exists: | |
2719 | */ | |
e3f2ddea | 2720 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2721 | return; |
e3f2ddea | 2722 | |
9f96cb1e | 2723 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2724 | while (entry != &head->list) { |
9f96cb1e MS |
2725 | /* |
2726 | * Fetch the next entry in the list before calling | |
2727 | * handle_futex_death: | |
2728 | */ | |
2729 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2730 | /* |
2731 | * A pending lock might already be on the list, so | |
c87e2837 | 2732 | * don't process it twice: |
0771dfef IM |
2733 | */ |
2734 | if (entry != pending) | |
ba46df98 | 2735 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2736 | curr, pi)) |
0771dfef | 2737 | return; |
9f96cb1e | 2738 | if (rc) |
0771dfef | 2739 | return; |
9f96cb1e MS |
2740 | entry = next_entry; |
2741 | pi = next_pi; | |
0771dfef IM |
2742 | /* |
2743 | * Avoid excessively long or circular lists: | |
2744 | */ | |
2745 | if (!--limit) | |
2746 | break; | |
2747 | ||
2748 | cond_resched(); | |
2749 | } | |
9f96cb1e MS |
2750 | |
2751 | if (pending) | |
2752 | handle_futex_death((void __user *)pending + futex_offset, | |
2753 | curr, pip); | |
0771dfef IM |
2754 | } |
2755 | ||
c19384b5 | 2756 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2757 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 2758 | { |
81b40539 | 2759 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 2760 | unsigned int flags = 0; |
34f01cc1 ED |
2761 | |
2762 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 2763 | flags |= FLAGS_SHARED; |
1da177e4 | 2764 | |
b41277dc DH |
2765 | if (op & FUTEX_CLOCK_REALTIME) { |
2766 | flags |= FLAGS_CLOCKRT; | |
2767 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) | |
2768 | return -ENOSYS; | |
2769 | } | |
1da177e4 | 2770 | |
59263b51 TG |
2771 | switch (cmd) { |
2772 | case FUTEX_LOCK_PI: | |
2773 | case FUTEX_UNLOCK_PI: | |
2774 | case FUTEX_TRYLOCK_PI: | |
2775 | case FUTEX_WAIT_REQUEUE_PI: | |
2776 | case FUTEX_CMP_REQUEUE_PI: | |
2777 | if (!futex_cmpxchg_enabled) | |
2778 | return -ENOSYS; | |
2779 | } | |
2780 | ||
34f01cc1 | 2781 | switch (cmd) { |
1da177e4 | 2782 | case FUTEX_WAIT: |
cd689985 TG |
2783 | val3 = FUTEX_BITSET_MATCH_ANY; |
2784 | case FUTEX_WAIT_BITSET: | |
81b40539 | 2785 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 2786 | case FUTEX_WAKE: |
cd689985 TG |
2787 | val3 = FUTEX_BITSET_MATCH_ANY; |
2788 | case FUTEX_WAKE_BITSET: | |
81b40539 | 2789 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 2790 | case FUTEX_REQUEUE: |
81b40539 | 2791 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 2792 | case FUTEX_CMP_REQUEUE: |
81b40539 | 2793 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 2794 | case FUTEX_WAKE_OP: |
81b40539 | 2795 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 2796 | case FUTEX_LOCK_PI: |
81b40539 | 2797 | return futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837 | 2798 | case FUTEX_UNLOCK_PI: |
81b40539 | 2799 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 2800 | case FUTEX_TRYLOCK_PI: |
81b40539 | 2801 | return futex_lock_pi(uaddr, flags, 0, timeout, 1); |
52400ba9 DH |
2802 | case FUTEX_WAIT_REQUEUE_PI: |
2803 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
2804 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
2805 | uaddr2); | |
52400ba9 | 2806 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 2807 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 2808 | } |
81b40539 | 2809 | return -ENOSYS; |
1da177e4 LT |
2810 | } |
2811 | ||
2812 | ||
17da2bd9 HC |
2813 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
2814 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
2815 | u32, val3) | |
1da177e4 | 2816 | { |
c19384b5 PP |
2817 | struct timespec ts; |
2818 | ktime_t t, *tp = NULL; | |
e2970f2f | 2819 | u32 val2 = 0; |
34f01cc1 | 2820 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2821 | |
cd689985 | 2822 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
2823 | cmd == FUTEX_WAIT_BITSET || |
2824 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
c19384b5 | 2825 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2826 | return -EFAULT; |
c19384b5 | 2827 | if (!timespec_valid(&ts)) |
9741ef96 | 2828 | return -EINVAL; |
c19384b5 PP |
2829 | |
2830 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2831 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 2832 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 2833 | tp = &t; |
1da177e4 LT |
2834 | } |
2835 | /* | |
52400ba9 | 2836 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 2837 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2838 | */ |
f54f0986 | 2839 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 2840 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 2841 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2842 | |
c19384b5 | 2843 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2844 | } |
2845 | ||
f6d107fb | 2846 | static int __init futex_init(void) |
1da177e4 | 2847 | { |
a0c1e907 | 2848 | u32 curval; |
63b1a816 | 2849 | unsigned int futex_shift; |
a52b89eb DB |
2850 | unsigned long i; |
2851 | ||
2852 | #if CONFIG_BASE_SMALL | |
2853 | futex_hashsize = 16; | |
2854 | #else | |
2855 | futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); | |
2856 | #endif | |
2857 | ||
2858 | futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), | |
2859 | futex_hashsize, 0, | |
2860 | futex_hashsize < 256 ? HASH_SMALL : 0, | |
63b1a816 HC |
2861 | &futex_shift, NULL, |
2862 | futex_hashsize, futex_hashsize); | |
2863 | futex_hashsize = 1UL << futex_shift; | |
a0c1e907 TG |
2864 | /* |
2865 | * This will fail and we want it. Some arch implementations do | |
2866 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
2867 | * functionality. We want to know that before we call in any | |
2868 | * of the complex code paths. Also we want to prevent | |
2869 | * registration of robust lists in that case. NULL is | |
2870 | * guaranteed to fault and we get -EFAULT on functional | |
fb62db2b | 2871 | * implementation, the non-functional ones will return |
a0c1e907 TG |
2872 | * -ENOSYS. |
2873 | */ | |
37a9d912 | 2874 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
a0c1e907 TG |
2875 | futex_cmpxchg_enabled = 1; |
2876 | ||
a52b89eb | 2877 | for (i = 0; i < futex_hashsize; i++) { |
732375c6 | 2878 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
2879 | spin_lock_init(&futex_queues[i].lock); |
2880 | } | |
2881 | ||
1da177e4 LT |
2882 | return 0; |
2883 | } | |
f6d107fb | 2884 | __initcall(futex_init); |