]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
sched: add CFS debug sysctls
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
4732efbe 55#include <asm/futex.h>
1da177e4 56
c87e2837
IM
57#include "rtmutex_common.h"
58
1da177e4
LT
59#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
60
c87e2837
IM
61/*
62 * Priority Inheritance state:
63 */
64struct futex_pi_state {
65 /*
66 * list of 'owned' pi_state instances - these have to be
67 * cleaned up in do_exit() if the task exits prematurely:
68 */
69 struct list_head list;
70
71 /*
72 * The PI object:
73 */
74 struct rt_mutex pi_mutex;
75
76 struct task_struct *owner;
77 atomic_t refcount;
78
79 union futex_key key;
80};
81
1da177e4
LT
82/*
83 * We use this hashed waitqueue instead of a normal wait_queue_t, so
84 * we can wake only the relevant ones (hashed queues may be shared).
85 *
86 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 87 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
88 * The order of wakup is always to make the first condition true, then
89 * wake up q->waiters, then make the second condition true.
90 */
91struct futex_q {
ec92d082 92 struct plist_node list;
1da177e4
LT
93 wait_queue_head_t waiters;
94
e2970f2f 95 /* Which hash list lock to use: */
1da177e4
LT
96 spinlock_t *lock_ptr;
97
e2970f2f 98 /* Key which the futex is hashed on: */
1da177e4
LT
99 union futex_key key;
100
e2970f2f 101 /* For fd, sigio sent using these: */
1da177e4
LT
102 int fd;
103 struct file *filp;
c87e2837
IM
104
105 /* Optional priority inheritance state: */
106 struct futex_pi_state *pi_state;
107 struct task_struct *task;
1da177e4
LT
108};
109
110/*
111 * Split the global futex_lock into every hash list lock.
112 */
113struct futex_hash_bucket {
ec92d082
PP
114 spinlock_t lock;
115 struct plist_head chain;
1da177e4
LT
116};
117
118static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
119
120/* Futex-fs vfsmount entry: */
121static struct vfsmount *futex_mnt;
122
123/*
124 * We hash on the keys returned from get_futex_key (see below).
125 */
126static struct futex_hash_bucket *hash_futex(union futex_key *key)
127{
128 u32 hash = jhash2((u32*)&key->both.word,
129 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
130 key->both.offset);
131 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
132}
133
134/*
135 * Return 1 if two futex_keys are equal, 0 otherwise.
136 */
137static inline int match_futex(union futex_key *key1, union futex_key *key2)
138{
139 return (key1->both.word == key2->both.word
140 && key1->both.ptr == key2->both.ptr
141 && key1->both.offset == key2->both.offset);
142}
143
34f01cc1
ED
144/**
145 * get_futex_key - Get parameters which are the keys for a futex.
146 * @uaddr: virtual address of the futex
147 * @shared: NULL for a PROCESS_PRIVATE futex,
148 * &current->mm->mmap_sem for a PROCESS_SHARED futex
149 * @key: address where result is stored.
150 *
151 * Returns a negative error code or 0
152 * The key words are stored in *key on success.
1da177e4 153 *
f3a43f3f 154 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
155 * offset_within_page). For private mappings, it's (uaddr, current->mm).
156 * We can usually work out the index without swapping in the page.
157 *
34f01cc1
ED
158 * fshared is NULL for PROCESS_PRIVATE futexes
159 * For other futexes, it points to &current->mm->mmap_sem and
160 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 161 */
34f01cc1
ED
162int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
163 union futex_key *key)
1da177e4 164{
e2970f2f 165 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
166 struct mm_struct *mm = current->mm;
167 struct vm_area_struct *vma;
168 struct page *page;
169 int err;
170
171 /*
172 * The futex address must be "naturally" aligned.
173 */
e2970f2f 174 key->both.offset = address % PAGE_SIZE;
34f01cc1 175 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 176 return -EINVAL;
e2970f2f 177 address -= key->both.offset;
1da177e4 178
34f01cc1
ED
179 /*
180 * PROCESS_PRIVATE futexes are fast.
181 * As the mm cannot disappear under us and the 'key' only needs
182 * virtual address, we dont even have to find the underlying vma.
183 * Note : We do have to check 'uaddr' is a valid user address,
184 * but access_ok() should be faster than find_vma()
185 */
186 if (!fshared) {
187 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
188 return -EFAULT;
189 key->private.mm = mm;
190 key->private.address = address;
191 return 0;
192 }
1da177e4
LT
193 /*
194 * The futex is hashed differently depending on whether
195 * it's in a shared or private mapping. So check vma first.
196 */
e2970f2f 197 vma = find_extend_vma(mm, address);
1da177e4
LT
198 if (unlikely(!vma))
199 return -EFAULT;
200
201 /*
202 * Permissions.
203 */
204 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
205 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
206
207 /*
208 * Private mappings are handled in a simple way.
209 *
210 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
211 * it's a read-only handle, it's expected that futexes attach to
212 * the object not the particular process. Therefore we use
213 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
214 * mappings of _writable_ handles.
215 */
216 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
34f01cc1 217 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
1da177e4 218 key->private.mm = mm;
e2970f2f 219 key->private.address = address;
1da177e4
LT
220 return 0;
221 }
222
223 /*
224 * Linear file mappings are also simple.
225 */
f3a43f3f 226 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
34f01cc1 227 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
1da177e4 228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
230 + vma->vm_pgoff);
231 return 0;
232 }
233
234 /*
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
239 */
e2970f2f 240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
246 }
247 return err;
248}
9adef58b 249EXPORT_SYMBOL_GPL(get_futex_key);
1da177e4
LT
250
251/*
252 * Take a reference to the resource addressed by a key.
253 * Can be called while holding spinlocks.
254 *
1da177e4 255 */
9adef58b 256inline void get_futex_key_refs(union futex_key *key)
1da177e4 257{
34f01cc1
ED
258 if (key->both.ptr == 0)
259 return;
260 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
261 case FUT_OFF_INODE:
1da177e4 262 atomic_inc(&key->shared.inode->i_count);
34f01cc1
ED
263 break;
264 case FUT_OFF_MMSHARED:
1da177e4 265 atomic_inc(&key->private.mm->mm_count);
34f01cc1 266 break;
1da177e4
LT
267 }
268}
9adef58b 269EXPORT_SYMBOL_GPL(get_futex_key_refs);
1da177e4
LT
270
271/*
272 * Drop a reference to the resource addressed by a key.
273 * The hash bucket spinlock must not be held.
274 */
9adef58b 275void drop_futex_key_refs(union futex_key *key)
1da177e4 276{
34f01cc1
ED
277 if (key->both.ptr == 0)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
1da177e4 281 iput(key->shared.inode);
34f01cc1
ED
282 break;
283 case FUT_OFF_MMSHARED:
1da177e4 284 mmdrop(key->private.mm);
34f01cc1 285 break;
1da177e4
LT
286 }
287}
9adef58b 288EXPORT_SYMBOL_GPL(drop_futex_key_refs);
1da177e4 289
e2970f2f 290static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
291{
292 int ret;
293
a866374a 294 pagefault_disable();
e2970f2f 295 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 296 pagefault_enable();
1da177e4
LT
297
298 return ret ? -EFAULT : 0;
299}
300
c87e2837 301/*
34f01cc1
ED
302 * Fault handling.
303 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 304 */
34f01cc1
ED
305static int futex_handle_fault(unsigned long address,
306 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
307{
308 struct vm_area_struct * vma;
309 struct mm_struct *mm = current->mm;
34f01cc1 310 int ret = -EFAULT;
c87e2837 311
34f01cc1
ED
312 if (attempt > 2)
313 return ret;
c87e2837 314
34f01cc1
ED
315 if (!fshared)
316 down_read(&mm->mmap_sem);
317 vma = find_vma(mm, address);
318 if (vma && address >= vma->vm_start &&
319 (vma->vm_flags & VM_WRITE)) {
320 switch (handle_mm_fault(mm, vma, address, 1)) {
321 case VM_FAULT_MINOR:
322 ret = 0;
323 current->min_flt++;
324 break;
325 case VM_FAULT_MAJOR:
326 ret = 0;
327 current->maj_flt++;
328 break;
329 }
c87e2837 330 }
34f01cc1
ED
331 if (!fshared)
332 up_read(&mm->mmap_sem);
333 return ret;
c87e2837
IM
334}
335
336/*
337 * PI code:
338 */
339static int refill_pi_state_cache(void)
340{
341 struct futex_pi_state *pi_state;
342
343 if (likely(current->pi_state_cache))
344 return 0;
345
4668edc3 346 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
347
348 if (!pi_state)
349 return -ENOMEM;
350
c87e2837
IM
351 INIT_LIST_HEAD(&pi_state->list);
352 /* pi_mutex gets initialized later */
353 pi_state->owner = NULL;
354 atomic_set(&pi_state->refcount, 1);
355
356 current->pi_state_cache = pi_state;
357
358 return 0;
359}
360
361static struct futex_pi_state * alloc_pi_state(void)
362{
363 struct futex_pi_state *pi_state = current->pi_state_cache;
364
365 WARN_ON(!pi_state);
366 current->pi_state_cache = NULL;
367
368 return pi_state;
369}
370
371static void free_pi_state(struct futex_pi_state *pi_state)
372{
373 if (!atomic_dec_and_test(&pi_state->refcount))
374 return;
375
376 /*
377 * If pi_state->owner is NULL, the owner is most probably dying
378 * and has cleaned up the pi_state already
379 */
380 if (pi_state->owner) {
381 spin_lock_irq(&pi_state->owner->pi_lock);
382 list_del_init(&pi_state->list);
383 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386 }
387
388 if (current->pi_state_cache)
389 kfree(pi_state);
390 else {
391 /*
392 * pi_state->list is already empty.
393 * clear pi_state->owner.
394 * refcount is at 0 - put it back to 1.
395 */
396 pi_state->owner = NULL;
397 atomic_set(&pi_state->refcount, 1);
398 current->pi_state_cache = pi_state;
399 }
400}
401
402/*
403 * Look up the task based on what TID userspace gave us.
404 * We dont trust it.
405 */
406static struct task_struct * futex_find_get_task(pid_t pid)
407{
408 struct task_struct *p;
409
d359b549 410 rcu_read_lock();
c87e2837 411 p = find_task_by_pid(pid);
a06381fe
TG
412
413 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
414 p = ERR_PTR(-ESRCH);
415 else
416 get_task_struct(p);
417
d359b549 418 rcu_read_unlock();
c87e2837
IM
419
420 return p;
421}
422
423/*
424 * This task is holding PI mutexes at exit time => bad.
425 * Kernel cleans up PI-state, but userspace is likely hosed.
426 * (Robust-futex cleanup is separate and might save the day for userspace.)
427 */
428void exit_pi_state_list(struct task_struct *curr)
429{
c87e2837
IM
430 struct list_head *next, *head = &curr->pi_state_list;
431 struct futex_pi_state *pi_state;
627371d7 432 struct futex_hash_bucket *hb;
c87e2837
IM
433 union futex_key key;
434
435 /*
436 * We are a ZOMBIE and nobody can enqueue itself on
437 * pi_state_list anymore, but we have to be careful
627371d7 438 * versus waiters unqueueing themselves:
c87e2837
IM
439 */
440 spin_lock_irq(&curr->pi_lock);
441 while (!list_empty(head)) {
442
443 next = head->next;
444 pi_state = list_entry(next, struct futex_pi_state, list);
445 key = pi_state->key;
627371d7 446 hb = hash_futex(&key);
c87e2837
IM
447 spin_unlock_irq(&curr->pi_lock);
448
c87e2837
IM
449 spin_lock(&hb->lock);
450
451 spin_lock_irq(&curr->pi_lock);
627371d7
IM
452 /*
453 * We dropped the pi-lock, so re-check whether this
454 * task still owns the PI-state:
455 */
c87e2837
IM
456 if (head->next != next) {
457 spin_unlock(&hb->lock);
458 continue;
459 }
460
c87e2837 461 WARN_ON(pi_state->owner != curr);
627371d7
IM
462 WARN_ON(list_empty(&pi_state->list));
463 list_del_init(&pi_state->list);
c87e2837
IM
464 pi_state->owner = NULL;
465 spin_unlock_irq(&curr->pi_lock);
466
467 rt_mutex_unlock(&pi_state->pi_mutex);
468
469 spin_unlock(&hb->lock);
470
471 spin_lock_irq(&curr->pi_lock);
472 }
473 spin_unlock_irq(&curr->pi_lock);
474}
475
476static int
d0aa7a70
PP
477lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
478 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
479{
480 struct futex_pi_state *pi_state = NULL;
481 struct futex_q *this, *next;
ec92d082 482 struct plist_head *head;
c87e2837 483 struct task_struct *p;
778e9a9c 484 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
485
486 head = &hb->chain;
487
ec92d082 488 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 489 if (match_futex(&this->key, key)) {
c87e2837
IM
490 /*
491 * Another waiter already exists - bump up
492 * the refcount and return its pi_state:
493 */
494 pi_state = this->pi_state;
06a9ec29
TG
495 /*
496 * Userspace might have messed up non PI and PI futexes
497 */
498 if (unlikely(!pi_state))
499 return -EINVAL;
500
627371d7 501 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
502 WARN_ON(pid && pi_state->owner &&
503 pi_state->owner->pid != pid);
627371d7 504
c87e2837 505 atomic_inc(&pi_state->refcount);
d0aa7a70 506 *ps = pi_state;
c87e2837
IM
507
508 return 0;
509 }
510 }
511
512 /*
e3f2ddea 513 * We are the first waiter - try to look up the real owner and attach
778e9a9c 514 * the new pi_state to it, but bail out when TID = 0
c87e2837 515 */
778e9a9c 516 if (!pid)
e3f2ddea 517 return -ESRCH;
c87e2837 518 p = futex_find_get_task(pid);
778e9a9c
AK
519 if (IS_ERR(p))
520 return PTR_ERR(p);
521
522 /*
523 * We need to look at the task state flags to figure out,
524 * whether the task is exiting. To protect against the do_exit
525 * change of the task flags, we do this protected by
526 * p->pi_lock:
527 */
528 spin_lock_irq(&p->pi_lock);
529 if (unlikely(p->flags & PF_EXITING)) {
530 /*
531 * The task is on the way out. When PF_EXITPIDONE is
532 * set, we know that the task has finished the
533 * cleanup:
534 */
535 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
536
537 spin_unlock_irq(&p->pi_lock);
538 put_task_struct(p);
539 return ret;
540 }
c87e2837
IM
541
542 pi_state = alloc_pi_state();
543
544 /*
545 * Initialize the pi_mutex in locked state and make 'p'
546 * the owner of it:
547 */
548 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
549
550 /* Store the key for possible exit cleanups: */
d0aa7a70 551 pi_state->key = *key;
c87e2837 552
627371d7 553 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
554 list_add(&pi_state->list, &p->pi_state_list);
555 pi_state->owner = p;
556 spin_unlock_irq(&p->pi_lock);
557
558 put_task_struct(p);
559
d0aa7a70 560 *ps = pi_state;
c87e2837
IM
561
562 return 0;
563}
564
1da177e4
LT
565/*
566 * The hash bucket lock must be held when this is called.
567 * Afterwards, the futex_q must not be accessed.
568 */
569static void wake_futex(struct futex_q *q)
570{
ec92d082 571 plist_del(&q->list, &q->list.plist);
1da177e4
LT
572 if (q->filp)
573 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
574 /*
575 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 576 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
577 */
578 wake_up_all(&q->waiters);
579 /*
580 * The waiting task can free the futex_q as soon as this is written,
581 * without taking any locks. This must come last.
8e31108b
AM
582 *
583 * A memory barrier is required here to prevent the following store
584 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
585 * at the end of wake_up_all() does not prevent this store from
586 * moving.
1da177e4 587 */
ccdea2f8 588 smp_wmb();
1da177e4
LT
589 q->lock_ptr = NULL;
590}
591
c87e2837
IM
592static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
593{
594 struct task_struct *new_owner;
595 struct futex_pi_state *pi_state = this->pi_state;
596 u32 curval, newval;
597
598 if (!pi_state)
599 return -EINVAL;
600
21778867 601 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
602 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
603
604 /*
605 * This happens when we have stolen the lock and the original
606 * pending owner did not enqueue itself back on the rt_mutex.
607 * Thats not a tragedy. We know that way, that a lock waiter
608 * is on the fly. We make the futex_q waiter the pending owner.
609 */
610 if (!new_owner)
611 new_owner = this->task;
612
613 /*
614 * We pass it to the next owner. (The WAITERS bit is always
615 * kept enabled while there is PI state around. We must also
616 * preserve the owner died bit.)
617 */
e3f2ddea 618 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
619 int ret = 0;
620
e3f2ddea
IM
621 newval = FUTEX_WAITERS | new_owner->pid;
622
a866374a 623 pagefault_disable();
e3f2ddea 624 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 625 pagefault_enable();
778e9a9c 626
e3f2ddea 627 if (curval == -EFAULT)
778e9a9c 628 ret = -EFAULT;
e3f2ddea 629 if (curval != uval)
778e9a9c
AK
630 ret = -EINVAL;
631 if (ret) {
632 spin_unlock(&pi_state->pi_mutex.wait_lock);
633 return ret;
634 }
e3f2ddea 635 }
c87e2837 636
627371d7
IM
637 spin_lock_irq(&pi_state->owner->pi_lock);
638 WARN_ON(list_empty(&pi_state->list));
639 list_del_init(&pi_state->list);
640 spin_unlock_irq(&pi_state->owner->pi_lock);
641
642 spin_lock_irq(&new_owner->pi_lock);
643 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
644 list_add(&pi_state->list, &new_owner->pi_state_list);
645 pi_state->owner = new_owner;
627371d7
IM
646 spin_unlock_irq(&new_owner->pi_lock);
647
21778867 648 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
649 rt_mutex_unlock(&pi_state->pi_mutex);
650
651 return 0;
652}
653
654static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
655{
656 u32 oldval;
657
658 /*
659 * There is no waiter, so we unlock the futex. The owner died
660 * bit has not to be preserved here. We are the owner:
661 */
a866374a 662 pagefault_disable();
c87e2837 663 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
a866374a 664 pagefault_enable();
c87e2837
IM
665
666 if (oldval == -EFAULT)
667 return oldval;
668 if (oldval != uval)
669 return -EAGAIN;
670
671 return 0;
672}
673
8b8f319f
IM
674/*
675 * Express the locking dependencies for lockdep:
676 */
677static inline void
678double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
679{
680 if (hb1 <= hb2) {
681 spin_lock(&hb1->lock);
682 if (hb1 < hb2)
683 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
684 } else { /* hb1 > hb2 */
685 spin_lock(&hb2->lock);
686 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
687 }
688}
689
1da177e4
LT
690/*
691 * Wake up all waiters hashed on the physical page that is mapped
692 * to this virtual address:
693 */
34f01cc1
ED
694static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
695 int nr_wake)
1da177e4 696{
e2970f2f 697 struct futex_hash_bucket *hb;
1da177e4 698 struct futex_q *this, *next;
ec92d082 699 struct plist_head *head;
e2970f2f 700 union futex_key key;
1da177e4
LT
701 int ret;
702
34f01cc1
ED
703 if (fshared)
704 down_read(fshared);
1da177e4 705
34f01cc1 706 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
707 if (unlikely(ret != 0))
708 goto out;
709
e2970f2f
IM
710 hb = hash_futex(&key);
711 spin_lock(&hb->lock);
712 head = &hb->chain;
1da177e4 713
ec92d082 714 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 715 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
716 if (this->pi_state) {
717 ret = -EINVAL;
718 break;
719 }
1da177e4
LT
720 wake_futex(this);
721 if (++ret >= nr_wake)
722 break;
723 }
724 }
725
e2970f2f 726 spin_unlock(&hb->lock);
1da177e4 727out:
34f01cc1
ED
728 if (fshared)
729 up_read(fshared);
1da177e4
LT
730 return ret;
731}
732
4732efbe
JJ
733/*
734 * Wake up all waiters hashed on the physical page that is mapped
735 * to this virtual address:
736 */
e2970f2f 737static int
34f01cc1
ED
738futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
739 u32 __user *uaddr2,
e2970f2f 740 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
741{
742 union futex_key key1, key2;
e2970f2f 743 struct futex_hash_bucket *hb1, *hb2;
ec92d082 744 struct plist_head *head;
4732efbe
JJ
745 struct futex_q *this, *next;
746 int ret, op_ret, attempt = 0;
747
748retryfull:
34f01cc1
ED
749 if (fshared)
750 down_read(fshared);
4732efbe 751
34f01cc1 752 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
753 if (unlikely(ret != 0))
754 goto out;
34f01cc1 755 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
756 if (unlikely(ret != 0))
757 goto out;
758
e2970f2f
IM
759 hb1 = hash_futex(&key1);
760 hb2 = hash_futex(&key2);
4732efbe
JJ
761
762retry:
8b8f319f 763 double_lock_hb(hb1, hb2);
4732efbe 764
e2970f2f 765 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 766 if (unlikely(op_ret < 0)) {
e2970f2f 767 u32 dummy;
4732efbe 768
e2970f2f
IM
769 spin_unlock(&hb1->lock);
770 if (hb1 != hb2)
771 spin_unlock(&hb2->lock);
4732efbe 772
7ee1dd3f 773#ifndef CONFIG_MMU
e2970f2f
IM
774 /*
775 * we don't get EFAULT from MMU faults if we don't have an MMU,
776 * but we might get them from range checking
777 */
7ee1dd3f
DH
778 ret = op_ret;
779 goto out;
780#endif
781
796f8d9b
DG
782 if (unlikely(op_ret != -EFAULT)) {
783 ret = op_ret;
784 goto out;
785 }
786
e2970f2f
IM
787 /*
788 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
789 * *(int __user *)uaddr2, but we can't modify it
790 * non-atomically. Therefore, if get_user below is not
791 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
792 * still holding the mmap_sem.
793 */
4732efbe 794 if (attempt++) {
34f01cc1
ED
795 ret = futex_handle_fault((unsigned long)uaddr2,
796 fshared, attempt);
797 if (ret)
4732efbe 798 goto out;
4732efbe
JJ
799 goto retry;
800 }
801
e2970f2f
IM
802 /*
803 * If we would have faulted, release mmap_sem,
804 * fault it in and start all over again.
805 */
34f01cc1
ED
806 if (fshared)
807 up_read(fshared);
4732efbe 808
e2970f2f 809 ret = get_user(dummy, uaddr2);
4732efbe
JJ
810 if (ret)
811 return ret;
812
813 goto retryfull;
814 }
815
e2970f2f 816 head = &hb1->chain;
4732efbe 817
ec92d082 818 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
819 if (match_futex (&this->key, &key1)) {
820 wake_futex(this);
821 if (++ret >= nr_wake)
822 break;
823 }
824 }
825
826 if (op_ret > 0) {
e2970f2f 827 head = &hb2->chain;
4732efbe
JJ
828
829 op_ret = 0;
ec92d082 830 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
831 if (match_futex (&this->key, &key2)) {
832 wake_futex(this);
833 if (++op_ret >= nr_wake2)
834 break;
835 }
836 }
837 ret += op_ret;
838 }
839
e2970f2f
IM
840 spin_unlock(&hb1->lock);
841 if (hb1 != hb2)
842 spin_unlock(&hb2->lock);
4732efbe 843out:
34f01cc1
ED
844 if (fshared)
845 up_read(fshared);
4732efbe
JJ
846 return ret;
847}
848
1da177e4
LT
849/*
850 * Requeue all waiters hashed on one physical page to another
851 * physical page.
852 */
34f01cc1
ED
853static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
854 u32 __user *uaddr2,
e2970f2f 855 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
856{
857 union futex_key key1, key2;
e2970f2f 858 struct futex_hash_bucket *hb1, *hb2;
ec92d082 859 struct plist_head *head1;
1da177e4
LT
860 struct futex_q *this, *next;
861 int ret, drop_count = 0;
862
863 retry:
34f01cc1
ED
864 if (fshared)
865 down_read(fshared);
1da177e4 866
34f01cc1 867 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
868 if (unlikely(ret != 0))
869 goto out;
34f01cc1 870 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
871 if (unlikely(ret != 0))
872 goto out;
873
e2970f2f
IM
874 hb1 = hash_futex(&key1);
875 hb2 = hash_futex(&key2);
1da177e4 876
8b8f319f 877 double_lock_hb(hb1, hb2);
1da177e4 878
e2970f2f
IM
879 if (likely(cmpval != NULL)) {
880 u32 curval;
1da177e4 881
e2970f2f 882 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
883
884 if (unlikely(ret)) {
e2970f2f
IM
885 spin_unlock(&hb1->lock);
886 if (hb1 != hb2)
887 spin_unlock(&hb2->lock);
1da177e4 888
e2970f2f
IM
889 /*
890 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
891 * it in and start all over again.
892 */
34f01cc1
ED
893 if (fshared)
894 up_read(fshared);
1da177e4 895
e2970f2f 896 ret = get_user(curval, uaddr1);
1da177e4
LT
897
898 if (!ret)
899 goto retry;
900
901 return ret;
902 }
e2970f2f 903 if (curval != *cmpval) {
1da177e4
LT
904 ret = -EAGAIN;
905 goto out_unlock;
906 }
907 }
908
e2970f2f 909 head1 = &hb1->chain;
ec92d082 910 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
911 if (!match_futex (&this->key, &key1))
912 continue;
913 if (++ret <= nr_wake) {
914 wake_futex(this);
915 } else {
59e0e0ac
SD
916 /*
917 * If key1 and key2 hash to the same bucket, no need to
918 * requeue.
919 */
920 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
921 plist_del(&this->list, &hb1->chain);
922 plist_add(&this->list, &hb2->chain);
59e0e0ac 923 this->lock_ptr = &hb2->lock;
ec92d082
PP
924#ifdef CONFIG_DEBUG_PI_LIST
925 this->list.plist.lock = &hb2->lock;
926#endif
778e9a9c 927 }
1da177e4 928 this->key = key2;
9adef58b 929 get_futex_key_refs(&key2);
1da177e4
LT
930 drop_count++;
931
932 if (ret - nr_wake >= nr_requeue)
933 break;
1da177e4
LT
934 }
935 }
936
937out_unlock:
e2970f2f
IM
938 spin_unlock(&hb1->lock);
939 if (hb1 != hb2)
940 spin_unlock(&hb2->lock);
1da177e4 941
9adef58b 942 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 943 while (--drop_count >= 0)
9adef58b 944 drop_futex_key_refs(&key1);
1da177e4
LT
945
946out:
34f01cc1
ED
947 if (fshared)
948 up_read(fshared);
1da177e4
LT
949 return ret;
950}
951
952/* The key must be already stored in q->key. */
953static inline struct futex_hash_bucket *
954queue_lock(struct futex_q *q, int fd, struct file *filp)
955{
e2970f2f 956 struct futex_hash_bucket *hb;
1da177e4
LT
957
958 q->fd = fd;
959 q->filp = filp;
960
961 init_waitqueue_head(&q->waiters);
962
9adef58b 963 get_futex_key_refs(&q->key);
e2970f2f
IM
964 hb = hash_futex(&q->key);
965 q->lock_ptr = &hb->lock;
1da177e4 966
e2970f2f
IM
967 spin_lock(&hb->lock);
968 return hb;
1da177e4
LT
969}
970
e2970f2f 971static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 972{
ec92d082
PP
973 int prio;
974
975 /*
976 * The priority used to register this element is
977 * - either the real thread-priority for the real-time threads
978 * (i.e. threads with a priority lower than MAX_RT_PRIO)
979 * - or MAX_RT_PRIO for non-RT threads.
980 * Thus, all RT-threads are woken first in priority order, and
981 * the others are woken last, in FIFO order.
982 */
983 prio = min(current->normal_prio, MAX_RT_PRIO);
984
985 plist_node_init(&q->list, prio);
986#ifdef CONFIG_DEBUG_PI_LIST
987 q->list.plist.lock = &hb->lock;
988#endif
989 plist_add(&q->list, &hb->chain);
c87e2837 990 q->task = current;
e2970f2f 991 spin_unlock(&hb->lock);
1da177e4
LT
992}
993
994static inline void
e2970f2f 995queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 996{
e2970f2f 997 spin_unlock(&hb->lock);
9adef58b 998 drop_futex_key_refs(&q->key);
1da177e4
LT
999}
1000
1001/*
1002 * queue_me and unqueue_me must be called as a pair, each
1003 * exactly once. They are called with the hashed spinlock held.
1004 */
1005
1006/* The key must be already stored in q->key. */
1007static void queue_me(struct futex_q *q, int fd, struct file *filp)
1008{
e2970f2f
IM
1009 struct futex_hash_bucket *hb;
1010
1011 hb = queue_lock(q, fd, filp);
1012 __queue_me(q, hb);
1da177e4
LT
1013}
1014
1015/* Return 1 if we were still queued (ie. 0 means we were woken) */
1016static int unqueue_me(struct futex_q *q)
1017{
1da177e4 1018 spinlock_t *lock_ptr;
e2970f2f 1019 int ret = 0;
1da177e4
LT
1020
1021 /* In the common case we don't take the spinlock, which is nice. */
1022 retry:
1023 lock_ptr = q->lock_ptr;
e91467ec 1024 barrier();
1da177e4
LT
1025 if (lock_ptr != 0) {
1026 spin_lock(lock_ptr);
1027 /*
1028 * q->lock_ptr can change between reading it and
1029 * spin_lock(), causing us to take the wrong lock. This
1030 * corrects the race condition.
1031 *
1032 * Reasoning goes like this: if we have the wrong lock,
1033 * q->lock_ptr must have changed (maybe several times)
1034 * between reading it and the spin_lock(). It can
1035 * change again after the spin_lock() but only if it was
1036 * already changed before the spin_lock(). It cannot,
1037 * however, change back to the original value. Therefore
1038 * we can detect whether we acquired the correct lock.
1039 */
1040 if (unlikely(lock_ptr != q->lock_ptr)) {
1041 spin_unlock(lock_ptr);
1042 goto retry;
1043 }
ec92d082
PP
1044 WARN_ON(plist_node_empty(&q->list));
1045 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1046
1047 BUG_ON(q->pi_state);
1048
1da177e4
LT
1049 spin_unlock(lock_ptr);
1050 ret = 1;
1051 }
1052
9adef58b 1053 drop_futex_key_refs(&q->key);
1da177e4
LT
1054 return ret;
1055}
1056
c87e2837
IM
1057/*
1058 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1059 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1060 * and dropped here.
c87e2837 1061 */
d0aa7a70 1062static void unqueue_me_pi(struct futex_q *q)
c87e2837 1063{
ec92d082
PP
1064 WARN_ON(plist_node_empty(&q->list));
1065 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1066
1067 BUG_ON(!q->pi_state);
1068 free_pi_state(q->pi_state);
1069 q->pi_state = NULL;
1070
d0aa7a70 1071 spin_unlock(q->lock_ptr);
c87e2837 1072
9adef58b 1073 drop_futex_key_refs(&q->key);
c87e2837
IM
1074}
1075
d0aa7a70
PP
1076/*
1077 * Fixup the pi_state owner with current.
1078 *
778e9a9c
AK
1079 * Must be called with hash bucket lock held and mm->sem held for non
1080 * private futexes.
d0aa7a70 1081 */
778e9a9c 1082static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
d0aa7a70
PP
1083 struct task_struct *curr)
1084{
1085 u32 newtid = curr->pid | FUTEX_WAITERS;
1086 struct futex_pi_state *pi_state = q->pi_state;
1087 u32 uval, curval, newval;
1088 int ret;
1089
1090 /* Owner died? */
1091 if (pi_state->owner != NULL) {
1092 spin_lock_irq(&pi_state->owner->pi_lock);
1093 WARN_ON(list_empty(&pi_state->list));
1094 list_del_init(&pi_state->list);
1095 spin_unlock_irq(&pi_state->owner->pi_lock);
1096 } else
1097 newtid |= FUTEX_OWNER_DIED;
1098
1099 pi_state->owner = curr;
1100
1101 spin_lock_irq(&curr->pi_lock);
1102 WARN_ON(!list_empty(&pi_state->list));
1103 list_add(&pi_state->list, &curr->pi_state_list);
1104 spin_unlock_irq(&curr->pi_lock);
1105
d0aa7a70
PP
1106 /*
1107 * We own it, so we have to replace the pending owner
1108 * TID. This must be atomic as we have preserve the
1109 * owner died bit here.
1110 */
778e9a9c
AK
1111 ret = get_futex_value_locked(&uval, uaddr);
1112
d0aa7a70
PP
1113 while (!ret) {
1114 newval = (uval & FUTEX_OWNER_DIED) | newtid;
778e9a9c
AK
1115
1116 pagefault_disable();
d0aa7a70
PP
1117 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1118 uval, newval);
778e9a9c
AK
1119 pagefault_enable();
1120
d0aa7a70 1121 if (curval == -EFAULT)
778e9a9c 1122 ret = -EFAULT;
d0aa7a70
PP
1123 if (curval == uval)
1124 break;
1125 uval = curval;
1126 }
1127 return ret;
1128}
1129
34f01cc1
ED
1130/*
1131 * In case we must use restart_block to restart a futex_wait,
1132 * we encode in the 'arg3' shared capability
1133 */
1134#define ARG3_SHARED 1
1135
72c1bbf3 1136static long futex_wait_restart(struct restart_block *restart);
34f01cc1
ED
1137static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1138 u32 val, ktime_t *abs_time)
1da177e4 1139{
c87e2837
IM
1140 struct task_struct *curr = current;
1141 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1142 struct futex_hash_bucket *hb;
1da177e4 1143 struct futex_q q;
e2970f2f
IM
1144 u32 uval;
1145 int ret;
bd197234 1146 struct hrtimer_sleeper t;
c19384b5 1147 int rem = 0;
1da177e4 1148
c87e2837 1149 q.pi_state = NULL;
1da177e4 1150 retry:
34f01cc1
ED
1151 if (fshared)
1152 down_read(fshared);
1da177e4 1153
34f01cc1 1154 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1155 if (unlikely(ret != 0))
1156 goto out_release_sem;
1157
e2970f2f 1158 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1159
1160 /*
1161 * Access the page AFTER the futex is queued.
1162 * Order is important:
1163 *
1164 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1165 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1166 *
1167 * The basic logical guarantee of a futex is that it blocks ONLY
1168 * if cond(var) is known to be true at the time of blocking, for
1169 * any cond. If we queued after testing *uaddr, that would open
1170 * a race condition where we could block indefinitely with
1171 * cond(var) false, which would violate the guarantee.
1172 *
1173 * A consequence is that futex_wait() can return zero and absorb
1174 * a wakeup when *uaddr != val on entry to the syscall. This is
1175 * rare, but normal.
1176 *
34f01cc1
ED
1177 * for shared futexes, we hold the mmap semaphore, so the mapping
1178 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1179 */
e2970f2f 1180 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1181
1182 if (unlikely(ret)) {
e2970f2f 1183 queue_unlock(&q, hb);
1da177e4 1184
e2970f2f
IM
1185 /*
1186 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1187 * start all over again.
1188 */
34f01cc1
ED
1189 if (fshared)
1190 up_read(fshared);
1da177e4 1191
e2970f2f 1192 ret = get_user(uval, uaddr);
1da177e4
LT
1193
1194 if (!ret)
1195 goto retry;
1196 return ret;
1197 }
c87e2837
IM
1198 ret = -EWOULDBLOCK;
1199 if (uval != val)
1200 goto out_unlock_release_sem;
1da177e4
LT
1201
1202 /* Only actually queue if *uaddr contained val. */
e2970f2f 1203 __queue_me(&q, hb);
1da177e4
LT
1204
1205 /*
1206 * Now the futex is queued and we have checked the data, we
1207 * don't want to hold mmap_sem while we sleep.
c87e2837 1208 */
34f01cc1
ED
1209 if (fshared)
1210 up_read(fshared);
1da177e4
LT
1211
1212 /*
1213 * There might have been scheduling since the queue_me(), as we
1214 * cannot hold a spinlock across the get_user() in case it
1215 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1216 * queueing ourselves into the futex hash. This code thus has to
1217 * rely on the futex_wake() code removing us from hash when it
1218 * wakes us up.
1219 */
1220
1221 /* add_wait_queue is the barrier after __set_current_state. */
1222 __set_current_state(TASK_INTERRUPTIBLE);
1223 add_wait_queue(&q.waiters, &wait);
1224 /*
ec92d082 1225 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1226 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1227 */
ec92d082 1228 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1229 if (!abs_time)
1230 schedule();
1231 else {
1232 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1233 hrtimer_init_sleeper(&t, current);
1234 t.timer.expires = *abs_time;
1235
1236 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1237
1238 /*
1239 * the timer could have already expired, in which
1240 * case current would be flagged for rescheduling.
1241 * Don't bother calling schedule.
1242 */
1243 if (likely(t.task))
1244 schedule();
1245
1246 hrtimer_cancel(&t.timer);
72c1bbf3 1247
c19384b5
PP
1248 /* Flag if a timeout occured */
1249 rem = (t.task == NULL);
1250 }
72c1bbf3 1251 }
1da177e4
LT
1252 __set_current_state(TASK_RUNNING);
1253
1254 /*
1255 * NOTE: we don't remove ourselves from the waitqueue because
1256 * we are the only user of it.
1257 */
1258
1259 /* If we were woken (and unqueued), we succeeded, whatever. */
1260 if (!unqueue_me(&q))
1261 return 0;
c19384b5 1262 if (rem)
1da177e4 1263 return -ETIMEDOUT;
72c1bbf3 1264
e2970f2f
IM
1265 /*
1266 * We expect signal_pending(current), but another thread may
1267 * have handled it for us already.
1268 */
c19384b5 1269 if (!abs_time)
72c1bbf3
NP
1270 return -ERESTARTSYS;
1271 else {
1272 struct restart_block *restart;
1273 restart = &current_thread_info()->restart_block;
1274 restart->fn = futex_wait_restart;
1275 restart->arg0 = (unsigned long)uaddr;
1276 restart->arg1 = (unsigned long)val;
c19384b5 1277 restart->arg2 = (unsigned long)abs_time;
34f01cc1
ED
1278 restart->arg3 = 0;
1279 if (fshared)
1280 restart->arg3 |= ARG3_SHARED;
72c1bbf3
NP
1281 return -ERESTART_RESTARTBLOCK;
1282 }
1da177e4 1283
c87e2837
IM
1284 out_unlock_release_sem:
1285 queue_unlock(&q, hb);
1286
1da177e4 1287 out_release_sem:
34f01cc1
ED
1288 if (fshared)
1289 up_read(fshared);
c87e2837
IM
1290 return ret;
1291}
1292
72c1bbf3
NP
1293
1294static long futex_wait_restart(struct restart_block *restart)
1295{
1296 u32 __user *uaddr = (u32 __user *)restart->arg0;
1297 u32 val = (u32)restart->arg1;
c19384b5 1298 ktime_t *abs_time = (ktime_t *)restart->arg2;
34f01cc1 1299 struct rw_semaphore *fshared = NULL;
72c1bbf3
NP
1300
1301 restart->fn = do_no_restart_syscall;
34f01cc1
ED
1302 if (restart->arg3 & ARG3_SHARED)
1303 fshared = &current->mm->mmap_sem;
1304 return (long)futex_wait(uaddr, fshared, val, abs_time);
72c1bbf3
NP
1305}
1306
1307
c87e2837
IM
1308/*
1309 * Userspace tried a 0 -> TID atomic transition of the futex value
1310 * and failed. The kernel side here does the whole locking operation:
1311 * if there are waiters then it will block, it does PI, etc. (Due to
1312 * races the kernel might see a 0 value of the futex too.)
1313 */
34f01cc1
ED
1314static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1315 int detect, ktime_t *time, int trylock)
c87e2837 1316{
c5780e97 1317 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1318 struct task_struct *curr = current;
1319 struct futex_hash_bucket *hb;
1320 u32 uval, newval, curval;
1321 struct futex_q q;
778e9a9c 1322 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1323
1324 if (refill_pi_state_cache())
1325 return -ENOMEM;
1326
c19384b5 1327 if (time) {
c5780e97 1328 to = &timeout;
c9cb2e3d 1329 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
c5780e97 1330 hrtimer_init_sleeper(to, current);
c19384b5 1331 to->timer.expires = *time;
c5780e97
TG
1332 }
1333
c87e2837
IM
1334 q.pi_state = NULL;
1335 retry:
34f01cc1
ED
1336 if (fshared)
1337 down_read(fshared);
c87e2837 1338
34f01cc1 1339 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1340 if (unlikely(ret != 0))
1341 goto out_release_sem;
1342
778e9a9c 1343 retry_unlocked:
c87e2837
IM
1344 hb = queue_lock(&q, -1, NULL);
1345
1346 retry_locked:
778e9a9c 1347 ret = lock_taken = 0;
d0aa7a70 1348
c87e2837
IM
1349 /*
1350 * To avoid races, we attempt to take the lock here again
1351 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1352 * the locks. It will most likely not succeed.
1353 */
1354 newval = current->pid;
1355
a866374a 1356 pagefault_disable();
c87e2837 1357 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
a866374a 1358 pagefault_enable();
c87e2837
IM
1359
1360 if (unlikely(curval == -EFAULT))
1361 goto uaddr_faulted;
1362
778e9a9c
AK
1363 /*
1364 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1365 * situation and we return success to user space.
1366 */
c87e2837 1367 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
bd197234 1368 ret = -EDEADLK;
c87e2837
IM
1369 goto out_unlock_release_sem;
1370 }
1371
1372 /*
778e9a9c 1373 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1374 */
1375 if (unlikely(!curval))
1376 goto out_unlock_release_sem;
1377
1378 uval = curval;
778e9a9c 1379
d0aa7a70 1380 /*
778e9a9c
AK
1381 * Set the WAITERS flag, so the owner will know it has someone
1382 * to wake at next unlock
d0aa7a70 1383 */
778e9a9c
AK
1384 newval = curval | FUTEX_WAITERS;
1385
1386 /*
1387 * There are two cases, where a futex might have no owner (the
bd197234
TG
1388 * owner TID is 0): OWNER_DIED. We take over the futex in this
1389 * case. We also do an unconditional take over, when the owner
1390 * of the futex died.
778e9a9c
AK
1391 *
1392 * This is safe as we are protected by the hash bucket lock !
1393 */
1394 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1395 /* Keep the OWNER_DIED bit */
778e9a9c
AK
1396 newval = (curval & ~FUTEX_TID_MASK) | current->pid;
1397 ownerdied = 0;
1398 lock_taken = 1;
1399 }
c87e2837 1400
a866374a 1401 pagefault_disable();
c87e2837 1402 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 1403 pagefault_enable();
c87e2837
IM
1404
1405 if (unlikely(curval == -EFAULT))
1406 goto uaddr_faulted;
1407 if (unlikely(curval != uval))
1408 goto retry_locked;
1409
778e9a9c 1410 /*
bd197234 1411 * We took the lock due to owner died take over.
778e9a9c 1412 */
bd197234 1413 if (unlikely(lock_taken))
d0aa7a70 1414 goto out_unlock_release_sem;
d0aa7a70 1415
c87e2837
IM
1416 /*
1417 * We dont have the lock. Look up the PI state (or create it if
1418 * we are the first waiter):
1419 */
d0aa7a70 1420 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1421
1422 if (unlikely(ret)) {
778e9a9c 1423 switch (ret) {
c87e2837 1424
778e9a9c
AK
1425 case -EAGAIN:
1426 /*
1427 * Task is exiting and we just wait for the
1428 * exit to complete.
1429 */
1430 queue_unlock(&q, hb);
1431 if (fshared)
1432 up_read(fshared);
1433 cond_resched();
1434 goto retry;
c87e2837 1435
778e9a9c
AK
1436 case -ESRCH:
1437 /*
1438 * No owner found for this futex. Check if the
1439 * OWNER_DIED bit is set to figure out whether
1440 * this is a robust futex or not.
1441 */
1442 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1443 goto uaddr_faulted;
778e9a9c
AK
1444
1445 /*
1446 * We simply start over in case of a robust
1447 * futex. The code above will take the futex
1448 * and return happy.
1449 */
1450 if (curval & FUTEX_OWNER_DIED) {
1451 ownerdied = 1;
c87e2837 1452 goto retry_locked;
778e9a9c
AK
1453 }
1454 default:
1455 goto out_unlock_release_sem;
c87e2837 1456 }
c87e2837
IM
1457 }
1458
1459 /*
1460 * Only actually queue now that the atomic ops are done:
1461 */
1462 __queue_me(&q, hb);
1463
1464 /*
1465 * Now the futex is queued and we have checked the data, we
1466 * don't want to hold mmap_sem while we sleep.
1467 */
34f01cc1
ED
1468 if (fshared)
1469 up_read(fshared);
c87e2837
IM
1470
1471 WARN_ON(!q.pi_state);
1472 /*
1473 * Block on the PI mutex:
1474 */
1475 if (!trylock)
1476 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1477 else {
1478 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1479 /* Fixup the trylock return value: */
1480 ret = ret ? 0 : -EWOULDBLOCK;
1481 }
1482
34f01cc1
ED
1483 if (fshared)
1484 down_read(fshared);
a99e4e41 1485 spin_lock(q.lock_ptr);
c87e2837 1486
778e9a9c
AK
1487 if (!ret) {
1488 /*
1489 * Got the lock. We might not be the anticipated owner
1490 * if we did a lock-steal - fix up the PI-state in
1491 * that case:
1492 */
1493 if (q.pi_state->owner != curr)
1494 ret = fixup_pi_state_owner(uaddr, &q, curr);
1495 } else {
c87e2837
IM
1496 /*
1497 * Catch the rare case, where the lock was released
778e9a9c
AK
1498 * when we were on the way back before we locked the
1499 * hash bucket.
c87e2837 1500 */
778e9a9c
AK
1501 if (q.pi_state->owner == curr &&
1502 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1503 ret = 0;
1504 } else {
1505 /*
1506 * Paranoia check. If we did not take the lock
1507 * in the trylock above, then we should not be
1508 * the owner of the rtmutex, neither the real
1509 * nor the pending one:
1510 */
1511 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1512 printk(KERN_ERR "futex_lock_pi: ret = %d "
1513 "pi-mutex: %p pi-state %p\n", ret,
1514 q.pi_state->pi_mutex.owner,
1515 q.pi_state->owner);
c87e2837 1516 }
c87e2837
IM
1517 }
1518
778e9a9c
AK
1519 /* Unqueue and drop the lock */
1520 unqueue_me_pi(&q);
1521 if (fshared)
1522 up_read(fshared);
c87e2837 1523
c5780e97 1524 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1525
1526 out_unlock_release_sem:
1527 queue_unlock(&q, hb);
1528
1529 out_release_sem:
34f01cc1
ED
1530 if (fshared)
1531 up_read(fshared);
c87e2837
IM
1532 return ret;
1533
1534 uaddr_faulted:
1535 /*
1536 * We have to r/w *(int __user *)uaddr, but we can't modify it
1537 * non-atomically. Therefore, if get_user below is not
1538 * enough, we need to handle the fault ourselves, while
1539 * still holding the mmap_sem.
778e9a9c
AK
1540 *
1541 * ... and hb->lock. :-) --ANK
c87e2837 1542 */
778e9a9c
AK
1543 queue_unlock(&q, hb);
1544
c87e2837 1545 if (attempt++) {
34f01cc1
ED
1546 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1547 attempt);
1548 if (ret)
778e9a9c
AK
1549 goto out_release_sem;
1550 goto retry_unlocked;
c87e2837
IM
1551 }
1552
34f01cc1
ED
1553 if (fshared)
1554 up_read(fshared);
c87e2837
IM
1555
1556 ret = get_user(uval, uaddr);
1557 if (!ret && (uval != -EFAULT))
1558 goto retry;
1559
1560 return ret;
1561}
1562
c87e2837
IM
1563/*
1564 * Userspace attempted a TID -> 0 atomic transition, and failed.
1565 * This is the in-kernel slowpath: we look up the PI state (if any),
1566 * and do the rt-mutex unlock.
1567 */
34f01cc1 1568static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1569{
1570 struct futex_hash_bucket *hb;
1571 struct futex_q *this, *next;
1572 u32 uval;
ec92d082 1573 struct plist_head *head;
c87e2837
IM
1574 union futex_key key;
1575 int ret, attempt = 0;
1576
1577retry:
1578 if (get_user(uval, uaddr))
1579 return -EFAULT;
1580 /*
1581 * We release only a lock we actually own:
1582 */
1583 if ((uval & FUTEX_TID_MASK) != current->pid)
1584 return -EPERM;
1585 /*
1586 * First take all the futex related locks:
1587 */
34f01cc1
ED
1588 if (fshared)
1589 down_read(fshared);
c87e2837 1590
34f01cc1 1591 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1592 if (unlikely(ret != 0))
1593 goto out;
1594
1595 hb = hash_futex(&key);
778e9a9c 1596retry_unlocked:
c87e2837
IM
1597 spin_lock(&hb->lock);
1598
c87e2837
IM
1599 /*
1600 * To avoid races, try to do the TID -> 0 atomic transition
1601 * again. If it succeeds then we can return without waking
1602 * anyone else up:
1603 */
e3f2ddea 1604 if (!(uval & FUTEX_OWNER_DIED)) {
a866374a 1605 pagefault_disable();
e3f2ddea 1606 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
a866374a 1607 pagefault_enable();
e3f2ddea 1608 }
c87e2837
IM
1609
1610 if (unlikely(uval == -EFAULT))
1611 goto pi_faulted;
1612 /*
1613 * Rare case: we managed to release the lock atomically,
1614 * no need to wake anyone else up:
1615 */
1616 if (unlikely(uval == current->pid))
1617 goto out_unlock;
1618
1619 /*
1620 * Ok, other tasks may need to be woken up - check waiters
1621 * and do the wakeup if necessary:
1622 */
1623 head = &hb->chain;
1624
ec92d082 1625 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1626 if (!match_futex (&this->key, &key))
1627 continue;
1628 ret = wake_futex_pi(uaddr, uval, this);
1629 /*
1630 * The atomic access to the futex value
1631 * generated a pagefault, so retry the
1632 * user-access and the wakeup:
1633 */
1634 if (ret == -EFAULT)
1635 goto pi_faulted;
1636 goto out_unlock;
1637 }
1638 /*
1639 * No waiters - kernel unlocks the futex:
1640 */
e3f2ddea
IM
1641 if (!(uval & FUTEX_OWNER_DIED)) {
1642 ret = unlock_futex_pi(uaddr, uval);
1643 if (ret == -EFAULT)
1644 goto pi_faulted;
1645 }
c87e2837
IM
1646
1647out_unlock:
1648 spin_unlock(&hb->lock);
1649out:
34f01cc1
ED
1650 if (fshared)
1651 up_read(fshared);
c87e2837
IM
1652
1653 return ret;
1654
1655pi_faulted:
1656 /*
1657 * We have to r/w *(int __user *)uaddr, but we can't modify it
1658 * non-atomically. Therefore, if get_user below is not
1659 * enough, we need to handle the fault ourselves, while
1660 * still holding the mmap_sem.
778e9a9c
AK
1661 *
1662 * ... and hb->lock. --ANK
c87e2837 1663 */
778e9a9c
AK
1664 spin_unlock(&hb->lock);
1665
c87e2837 1666 if (attempt++) {
34f01cc1
ED
1667 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1668 attempt);
1669 if (ret)
778e9a9c
AK
1670 goto out;
1671 goto retry_unlocked;
c87e2837
IM
1672 }
1673
34f01cc1
ED
1674 if (fshared)
1675 up_read(fshared);
c87e2837
IM
1676
1677 ret = get_user(uval, uaddr);
1678 if (!ret && (uval != -EFAULT))
1679 goto retry;
1680
1da177e4
LT
1681 return ret;
1682}
1683
1684static int futex_close(struct inode *inode, struct file *filp)
1685{
1686 struct futex_q *q = filp->private_data;
1687
1688 unqueue_me(q);
1689 kfree(q);
e2970f2f 1690
1da177e4
LT
1691 return 0;
1692}
1693
1694/* This is one-shot: once it's gone off you need a new fd */
1695static unsigned int futex_poll(struct file *filp,
1696 struct poll_table_struct *wait)
1697{
1698 struct futex_q *q = filp->private_data;
1699 int ret = 0;
1700
1701 poll_wait(filp, &q->waiters, wait);
1702
1703 /*
ec92d082 1704 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1705 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1706 */
ec92d082 1707 if (plist_node_empty(&q->list))
1da177e4
LT
1708 ret = POLLIN | POLLRDNORM;
1709
1710 return ret;
1711}
1712
15ad7cdc 1713static const struct file_operations futex_fops = {
1da177e4
LT
1714 .release = futex_close,
1715 .poll = futex_poll,
1716};
1717
1718/*
1719 * Signal allows caller to avoid the race which would occur if they
1720 * set the sigio stuff up afterwards.
1721 */
e2970f2f 1722static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1723{
1724 struct futex_q *q;
1725 struct file *filp;
1726 int ret, err;
34f01cc1 1727 struct rw_semaphore *fshared;
19c6b6ed
AM
1728 static unsigned long printk_interval;
1729
1730 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1731 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1732 "will be removed from the kernel in June 2007\n",
1733 current->comm);
1734 }
1da177e4
LT
1735
1736 ret = -EINVAL;
7ed20e1a 1737 if (!valid_signal(signal))
1da177e4
LT
1738 goto out;
1739
1740 ret = get_unused_fd();
1741 if (ret < 0)
1742 goto out;
1743 filp = get_empty_filp();
1744 if (!filp) {
1745 put_unused_fd(ret);
1746 ret = -ENFILE;
1747 goto out;
1748 }
1749 filp->f_op = &futex_fops;
f3a43f3f
JJS
1750 filp->f_path.mnt = mntget(futex_mnt);
1751 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1752 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1753
1754 if (signal) {
609d7fa9 1755 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1756 if (err < 0) {
39ed3fde 1757 goto error;
1da177e4
LT
1758 }
1759 filp->f_owner.signum = signal;
1760 }
1761
1762 q = kmalloc(sizeof(*q), GFP_KERNEL);
1763 if (!q) {
39ed3fde
PE
1764 err = -ENOMEM;
1765 goto error;
1da177e4 1766 }
c87e2837 1767 q->pi_state = NULL;
1da177e4 1768
34f01cc1
ED
1769 fshared = &current->mm->mmap_sem;
1770 down_read(fshared);
1771 err = get_futex_key(uaddr, fshared, &q->key);
1da177e4
LT
1772
1773 if (unlikely(err != 0)) {
34f01cc1 1774 up_read(fshared);
1da177e4 1775 kfree(q);
39ed3fde 1776 goto error;
1da177e4
LT
1777 }
1778
1779 /*
1780 * queue_me() must be called before releasing mmap_sem, because
1781 * key->shared.inode needs to be referenced while holding it.
1782 */
1783 filp->private_data = q;
1784
1785 queue_me(q, ret, filp);
34f01cc1 1786 up_read(fshared);
1da177e4
LT
1787
1788 /* Now we map fd to filp, so userspace can access it */
1789 fd_install(ret, filp);
1790out:
1791 return ret;
39ed3fde
PE
1792error:
1793 put_unused_fd(ret);
1794 put_filp(filp);
1795 ret = err;
1796 goto out;
1da177e4
LT
1797}
1798
0771dfef
IM
1799/*
1800 * Support for robust futexes: the kernel cleans up held futexes at
1801 * thread exit time.
1802 *
1803 * Implementation: user-space maintains a per-thread list of locks it
1804 * is holding. Upon do_exit(), the kernel carefully walks this list,
1805 * and marks all locks that are owned by this thread with the
c87e2837 1806 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1807 * always manipulated with the lock held, so the list is private and
1808 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1809 * field, to allow the kernel to clean up if the thread dies after
1810 * acquiring the lock, but just before it could have added itself to
1811 * the list. There can only be one such pending lock.
1812 */
1813
1814/**
1815 * sys_set_robust_list - set the robust-futex list head of a task
1816 * @head: pointer to the list-head
1817 * @len: length of the list-head, as userspace expects
1818 */
1819asmlinkage long
1820sys_set_robust_list(struct robust_list_head __user *head,
1821 size_t len)
1822{
1823 /*
1824 * The kernel knows only one size for now:
1825 */
1826 if (unlikely(len != sizeof(*head)))
1827 return -EINVAL;
1828
1829 current->robust_list = head;
1830
1831 return 0;
1832}
1833
1834/**
1835 * sys_get_robust_list - get the robust-futex list head of a task
1836 * @pid: pid of the process [zero for current task]
1837 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1838 * @len_ptr: pointer to a length field, the kernel fills in the header size
1839 */
1840asmlinkage long
ba46df98 1841sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1842 size_t __user *len_ptr)
1843{
ba46df98 1844 struct robust_list_head __user *head;
0771dfef
IM
1845 unsigned long ret;
1846
1847 if (!pid)
1848 head = current->robust_list;
1849 else {
1850 struct task_struct *p;
1851
1852 ret = -ESRCH;
aaa2a97e 1853 rcu_read_lock();
0771dfef
IM
1854 p = find_task_by_pid(pid);
1855 if (!p)
1856 goto err_unlock;
1857 ret = -EPERM;
1858 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1859 !capable(CAP_SYS_PTRACE))
1860 goto err_unlock;
1861 head = p->robust_list;
aaa2a97e 1862 rcu_read_unlock();
0771dfef
IM
1863 }
1864
1865 if (put_user(sizeof(*head), len_ptr))
1866 return -EFAULT;
1867 return put_user(head, head_ptr);
1868
1869err_unlock:
aaa2a97e 1870 rcu_read_unlock();
0771dfef
IM
1871
1872 return ret;
1873}
1874
1875/*
1876 * Process a futex-list entry, check whether it's owned by the
1877 * dying task, and do notification if so:
1878 */
e3f2ddea 1879int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1880{
e3f2ddea 1881 u32 uval, nval, mval;
0771dfef 1882
8f17d3a5
IM
1883retry:
1884 if (get_user(uval, uaddr))
0771dfef
IM
1885 return -1;
1886
8f17d3a5 1887 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
1888 /*
1889 * Ok, this dying thread is truly holding a futex
1890 * of interest. Set the OWNER_DIED bit atomically
1891 * via cmpxchg, and if the value had FUTEX_WAITERS
1892 * set, wake up a waiter (if any). (We have to do a
1893 * futex_wake() even if OWNER_DIED is already set -
1894 * to handle the rare but possible case of recursive
1895 * thread-death.) The rest of the cleanup is done in
1896 * userspace.
1897 */
e3f2ddea
IM
1898 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1899 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1900
c87e2837
IM
1901 if (nval == -EFAULT)
1902 return -1;
1903
1904 if (nval != uval)
8f17d3a5 1905 goto retry;
0771dfef 1906
e3f2ddea
IM
1907 /*
1908 * Wake robust non-PI futexes here. The wakeup of
1909 * PI futexes happens in exit_pi_state():
1910 */
1911 if (!pi) {
1912 if (uval & FUTEX_WAITERS)
34f01cc1 1913 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
e3f2ddea 1914 }
0771dfef
IM
1915 }
1916 return 0;
1917}
1918
e3f2ddea
IM
1919/*
1920 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1921 */
1922static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1923 struct robust_list __user * __user *head,
1924 int *pi)
e3f2ddea
IM
1925{
1926 unsigned long uentry;
1927
ba46df98 1928 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1929 return -EFAULT;
1930
ba46df98 1931 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1932 *pi = uentry & 1;
1933
1934 return 0;
1935}
1936
0771dfef
IM
1937/*
1938 * Walk curr->robust_list (very carefully, it's a userspace list!)
1939 * and mark any locks found there dead, and notify any waiters.
1940 *
1941 * We silently return on any sign of list-walking problem.
1942 */
1943void exit_robust_list(struct task_struct *curr)
1944{
1945 struct robust_list_head __user *head = curr->robust_list;
1946 struct robust_list __user *entry, *pending;
e3f2ddea 1947 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
0771dfef
IM
1948 unsigned long futex_offset;
1949
1950 /*
1951 * Fetch the list head (which was registered earlier, via
1952 * sys_set_robust_list()):
1953 */
e3f2ddea 1954 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1955 return;
1956 /*
1957 * Fetch the relative futex offset:
1958 */
1959 if (get_user(futex_offset, &head->futex_offset))
1960 return;
1961 /*
1962 * Fetch any possibly pending lock-add first, and handle it
1963 * if it exists:
1964 */
e3f2ddea 1965 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1966 return;
e3f2ddea 1967
0771dfef 1968 if (pending)
34f01cc1
ED
1969 handle_futex_death((void __user *)pending + futex_offset,
1970 curr, pip);
0771dfef
IM
1971
1972 while (entry != &head->list) {
1973 /*
1974 * A pending lock might already be on the list, so
c87e2837 1975 * don't process it twice:
0771dfef
IM
1976 */
1977 if (entry != pending)
ba46df98 1978 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1979 curr, pi))
0771dfef 1980 return;
0771dfef
IM
1981 /*
1982 * Fetch the next entry in the list:
1983 */
e3f2ddea 1984 if (fetch_robust_entry(&entry, &entry->next, &pi))
0771dfef
IM
1985 return;
1986 /*
1987 * Avoid excessively long or circular lists:
1988 */
1989 if (!--limit)
1990 break;
1991
1992 cond_resched();
1993 }
1994}
1995
c19384b5 1996long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1997 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
1998{
1999 int ret;
34f01cc1
ED
2000 int cmd = op & FUTEX_CMD_MASK;
2001 struct rw_semaphore *fshared = NULL;
2002
2003 if (!(op & FUTEX_PRIVATE_FLAG))
2004 fshared = &current->mm->mmap_sem;
1da177e4 2005
34f01cc1 2006 switch (cmd) {
1da177e4 2007 case FUTEX_WAIT:
34f01cc1 2008 ret = futex_wait(uaddr, fshared, val, timeout);
1da177e4
LT
2009 break;
2010 case FUTEX_WAKE:
34f01cc1 2011 ret = futex_wake(uaddr, fshared, val);
1da177e4
LT
2012 break;
2013 case FUTEX_FD:
2014 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2015 ret = futex_fd(uaddr, val);
2016 break;
2017 case FUTEX_REQUEUE:
34f01cc1 2018 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
2019 break;
2020 case FUTEX_CMP_REQUEUE:
34f01cc1 2021 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2022 break;
4732efbe 2023 case FUTEX_WAKE_OP:
34f01cc1 2024 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2025 break;
c87e2837 2026 case FUTEX_LOCK_PI:
34f01cc1 2027 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2028 break;
2029 case FUTEX_UNLOCK_PI:
34f01cc1 2030 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2031 break;
2032 case FUTEX_TRYLOCK_PI:
34f01cc1 2033 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2034 break;
1da177e4
LT
2035 default:
2036 ret = -ENOSYS;
2037 }
2038 return ret;
2039}
2040
2041
e2970f2f 2042asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 2043 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 2044 u32 val3)
1da177e4 2045{
c19384b5
PP
2046 struct timespec ts;
2047 ktime_t t, *tp = NULL;
e2970f2f 2048 u32 val2 = 0;
34f01cc1 2049 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2050
34f01cc1 2051 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
c19384b5 2052 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2053 return -EFAULT;
c19384b5 2054 if (!timespec_valid(&ts))
9741ef96 2055 return -EINVAL;
c19384b5
PP
2056
2057 t = timespec_to_ktime(ts);
34f01cc1 2058 if (cmd == FUTEX_WAIT)
c19384b5
PP
2059 t = ktime_add(ktime_get(), t);
2060 tp = &t;
1da177e4
LT
2061 }
2062 /*
34f01cc1 2063 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1da177e4 2064 */
bd197234 2065 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE)
e2970f2f 2066 val2 = (u32) (unsigned long) utime;
1da177e4 2067
c19384b5 2068 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2069}
2070
454e2398
DH
2071static int futexfs_get_sb(struct file_system_type *fs_type,
2072 int flags, const char *dev_name, void *data,
2073 struct vfsmount *mnt)
1da177e4 2074{
454e2398 2075 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1da177e4
LT
2076}
2077
2078static struct file_system_type futex_fs_type = {
2079 .name = "futexfs",
2080 .get_sb = futexfs_get_sb,
2081 .kill_sb = kill_anon_super,
2082};
2083
2084static int __init init(void)
2085{
95362fa9
AM
2086 int i = register_filesystem(&futex_fs_type);
2087
2088 if (i)
2089 return i;
1da177e4 2090
1da177e4 2091 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
2092 if (IS_ERR(futex_mnt)) {
2093 unregister_filesystem(&futex_fs_type);
2094 return PTR_ERR(futex_mnt);
2095 }
1da177e4
LT
2096
2097 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
ec92d082 2098 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1da177e4
LT
2099 spin_lock_init(&futex_queues[i].lock);
2100 }
2101 return 0;
2102}
2103__initcall(init);