]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/futex.c
ebtables: remove nf_hook_register usage
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
1da177e4
LT
249};
250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
34f01cc1 491 * The key words are stored in *key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
38d47c1b 695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 696 key->shared.inode = inode;
077fa7ae 697 key->shared.pgoff = basepage_index(tail);
65d8fc77 698 rcu_read_unlock();
1da177e4
LT
699 }
700
9ea71503 701out:
14d27abd 702 put_page(page);
9ea71503 703 return err;
1da177e4
LT
704}
705
ae791a2d 706static inline void put_futex_key(union futex_key *key)
1da177e4 707{
38d47c1b 708 drop_futex_key_refs(key);
1da177e4
LT
709}
710
d96ee56c
DH
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
fb62db2b 718 * We have no generic implementation of a non-destructive write to the
d0725992
TG
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
722d0172
AK
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
2efaca92 729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 730 FAULT_FLAG_WRITE, NULL);
722d0172
AK
731 up_read(&mm->mmap_sem);
732
d0725992
TG
733 return ret < 0 ? ret : 0;
734}
735
4b1c486b
DH
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
37a9d912
ML
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
36cf3b5c 757{
37a9d912 758 int ret;
36cf3b5c
TG
759
760 pagefault_disable();
37a9d912 761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
762 pagefault_enable();
763
37a9d912 764 return ret;
36cf3b5c
TG
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
768{
769 int ret;
770
a866374a 771 pagefault_disable();
bd28b145 772 ret = __get_user(*dest, from);
a866374a 773 pagefault_enable();
1da177e4
LT
774
775 return ret ? -EFAULT : 0;
776}
777
c87e2837
IM
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
4668edc3 789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
790
791 if (!pi_state)
792 return -ENOMEM;
793
c87e2837
IM
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
38d47c1b 798 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
805static struct futex_pi_state * alloc_pi_state(void)
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
30a6b803 815/*
29e9ee5d
TG
816 * Drops a reference to the pi_state object and frees or caches it
817 * when the last reference is gone.
818 *
30a6b803
BS
819 * Must be called with the hb lock held.
820 */
29e9ee5d 821static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 822{
30a6b803
BS
823 if (!pi_state)
824 return;
825
c87e2837
IM
826 if (!atomic_dec_and_test(&pi_state->refcount))
827 return;
828
829 /*
830 * If pi_state->owner is NULL, the owner is most probably dying
831 * and has cleaned up the pi_state already
832 */
833 if (pi_state->owner) {
1d615482 834 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 835 list_del_init(&pi_state->list);
1d615482 836 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
837
838 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
839 }
840
841 if (current->pi_state_cache)
842 kfree(pi_state);
843 else {
844 /*
845 * pi_state->list is already empty.
846 * clear pi_state->owner.
847 * refcount is at 0 - put it back to 1.
848 */
849 pi_state->owner = NULL;
850 atomic_set(&pi_state->refcount, 1);
851 current->pi_state_cache = pi_state;
852 }
853}
854
855/*
856 * Look up the task based on what TID userspace gave us.
857 * We dont trust it.
858 */
859static struct task_struct * futex_find_get_task(pid_t pid)
860{
861 struct task_struct *p;
862
d359b549 863 rcu_read_lock();
228ebcbe 864 p = find_task_by_vpid(pid);
7a0ea09a
MH
865 if (p)
866 get_task_struct(p);
a06381fe 867
d359b549 868 rcu_read_unlock();
c87e2837
IM
869
870 return p;
871}
872
873/*
874 * This task is holding PI mutexes at exit time => bad.
875 * Kernel cleans up PI-state, but userspace is likely hosed.
876 * (Robust-futex cleanup is separate and might save the day for userspace.)
877 */
878void exit_pi_state_list(struct task_struct *curr)
879{
c87e2837
IM
880 struct list_head *next, *head = &curr->pi_state_list;
881 struct futex_pi_state *pi_state;
627371d7 882 struct futex_hash_bucket *hb;
38d47c1b 883 union futex_key key = FUTEX_KEY_INIT;
c87e2837 884
a0c1e907
TG
885 if (!futex_cmpxchg_enabled)
886 return;
c87e2837
IM
887 /*
888 * We are a ZOMBIE and nobody can enqueue itself on
889 * pi_state_list anymore, but we have to be careful
627371d7 890 * versus waiters unqueueing themselves:
c87e2837 891 */
1d615482 892 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
893 while (!list_empty(head)) {
894
895 next = head->next;
896 pi_state = list_entry(next, struct futex_pi_state, list);
897 key = pi_state->key;
627371d7 898 hb = hash_futex(&key);
1d615482 899 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 900
c87e2837
IM
901 spin_lock(&hb->lock);
902
1d615482 903 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
904 /*
905 * We dropped the pi-lock, so re-check whether this
906 * task still owns the PI-state:
907 */
c87e2837
IM
908 if (head->next != next) {
909 spin_unlock(&hb->lock);
910 continue;
911 }
912
c87e2837 913 WARN_ON(pi_state->owner != curr);
627371d7
IM
914 WARN_ON(list_empty(&pi_state->list));
915 list_del_init(&pi_state->list);
c87e2837 916 pi_state->owner = NULL;
1d615482 917 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
918
919 rt_mutex_unlock(&pi_state->pi_mutex);
920
921 spin_unlock(&hb->lock);
922
1d615482 923 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 924 }
1d615482 925 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
926}
927
54a21788
TG
928/*
929 * We need to check the following states:
930 *
931 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
932 *
933 * [1] NULL | --- | --- | 0 | 0/1 | Valid
934 * [2] NULL | --- | --- | >0 | 0/1 | Valid
935 *
936 * [3] Found | NULL | -- | Any | 0/1 | Invalid
937 *
938 * [4] Found | Found | NULL | 0 | 1 | Valid
939 * [5] Found | Found | NULL | >0 | 1 | Invalid
940 *
941 * [6] Found | Found | task | 0 | 1 | Valid
942 *
943 * [7] Found | Found | NULL | Any | 0 | Invalid
944 *
945 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
946 * [9] Found | Found | task | 0 | 0 | Invalid
947 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
948 *
949 * [1] Indicates that the kernel can acquire the futex atomically. We
950 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
951 *
952 * [2] Valid, if TID does not belong to a kernel thread. If no matching
953 * thread is found then it indicates that the owner TID has died.
954 *
955 * [3] Invalid. The waiter is queued on a non PI futex
956 *
957 * [4] Valid state after exit_robust_list(), which sets the user space
958 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
959 *
960 * [5] The user space value got manipulated between exit_robust_list()
961 * and exit_pi_state_list()
962 *
963 * [6] Valid state after exit_pi_state_list() which sets the new owner in
964 * the pi_state but cannot access the user space value.
965 *
966 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
967 *
968 * [8] Owner and user space value match
969 *
970 * [9] There is no transient state which sets the user space TID to 0
971 * except exit_robust_list(), but this is indicated by the
972 * FUTEX_OWNER_DIED bit. See [4]
973 *
974 * [10] There is no transient state which leaves owner and user space
975 * TID out of sync.
976 */
e60cbc5c
TG
977
978/*
979 * Validate that the existing waiter has a pi_state and sanity check
980 * the pi_state against the user space value. If correct, attach to
981 * it.
982 */
983static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
984 struct futex_pi_state **ps)
c87e2837 985{
778e9a9c 986 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 987
e60cbc5c
TG
988 /*
989 * Userspace might have messed up non-PI and PI futexes [3]
990 */
991 if (unlikely(!pi_state))
992 return -EINVAL;
06a9ec29 993
e60cbc5c 994 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 995
e60cbc5c
TG
996 /*
997 * Handle the owner died case:
998 */
999 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1000 /*
e60cbc5c
TG
1001 * exit_pi_state_list sets owner to NULL and wakes the
1002 * topmost waiter. The task which acquires the
1003 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1004 */
e60cbc5c 1005 if (!pi_state->owner) {
59647b6a 1006 /*
e60cbc5c
TG
1007 * No pi state owner, but the user space TID
1008 * is not 0. Inconsistent state. [5]
59647b6a 1009 */
e60cbc5c
TG
1010 if (pid)
1011 return -EINVAL;
bd1dbcc6 1012 /*
e60cbc5c 1013 * Take a ref on the state and return success. [4]
866293ee 1014 */
e60cbc5c 1015 goto out_state;
c87e2837 1016 }
bd1dbcc6
TG
1017
1018 /*
e60cbc5c
TG
1019 * If TID is 0, then either the dying owner has not
1020 * yet executed exit_pi_state_list() or some waiter
1021 * acquired the rtmutex in the pi state, but did not
1022 * yet fixup the TID in user space.
1023 *
1024 * Take a ref on the state and return success. [6]
1025 */
1026 if (!pid)
1027 goto out_state;
1028 } else {
1029 /*
1030 * If the owner died bit is not set, then the pi_state
1031 * must have an owner. [7]
bd1dbcc6 1032 */
e60cbc5c 1033 if (!pi_state->owner)
bd1dbcc6 1034 return -EINVAL;
c87e2837
IM
1035 }
1036
e60cbc5c
TG
1037 /*
1038 * Bail out if user space manipulated the futex value. If pi
1039 * state exists then the owner TID must be the same as the
1040 * user space TID. [9/10]
1041 */
1042 if (pid != task_pid_vnr(pi_state->owner))
1043 return -EINVAL;
1044out_state:
1045 atomic_inc(&pi_state->refcount);
1046 *ps = pi_state;
1047 return 0;
1048}
1049
04e1b2e5
TG
1050/*
1051 * Lookup the task for the TID provided from user space and attach to
1052 * it after doing proper sanity checks.
1053 */
1054static int attach_to_pi_owner(u32 uval, union futex_key *key,
1055 struct futex_pi_state **ps)
e60cbc5c 1056{
e60cbc5c 1057 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1058 struct futex_pi_state *pi_state;
1059 struct task_struct *p;
e60cbc5c 1060
c87e2837 1061 /*
e3f2ddea 1062 * We are the first waiter - try to look up the real owner and attach
54a21788 1063 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1064 */
778e9a9c 1065 if (!pid)
e3f2ddea 1066 return -ESRCH;
c87e2837 1067 p = futex_find_get_task(pid);
7a0ea09a
MH
1068 if (!p)
1069 return -ESRCH;
778e9a9c 1070
a2129464 1071 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1072 put_task_struct(p);
1073 return -EPERM;
1074 }
1075
778e9a9c
AK
1076 /*
1077 * We need to look at the task state flags to figure out,
1078 * whether the task is exiting. To protect against the do_exit
1079 * change of the task flags, we do this protected by
1080 * p->pi_lock:
1081 */
1d615482 1082 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1083 if (unlikely(p->flags & PF_EXITING)) {
1084 /*
1085 * The task is on the way out. When PF_EXITPIDONE is
1086 * set, we know that the task has finished the
1087 * cleanup:
1088 */
1089 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1090
1d615482 1091 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1092 put_task_struct(p);
1093 return ret;
1094 }
c87e2837 1095
54a21788
TG
1096 /*
1097 * No existing pi state. First waiter. [2]
1098 */
c87e2837
IM
1099 pi_state = alloc_pi_state();
1100
1101 /*
04e1b2e5 1102 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1103 * the owner of it:
1104 */
1105 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1106
1107 /* Store the key for possible exit cleanups: */
d0aa7a70 1108 pi_state->key = *key;
c87e2837 1109
627371d7 1110 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1111 list_add(&pi_state->list, &p->pi_state_list);
1112 pi_state->owner = p;
1d615482 1113 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1114
1115 put_task_struct(p);
1116
d0aa7a70 1117 *ps = pi_state;
c87e2837
IM
1118
1119 return 0;
1120}
1121
04e1b2e5
TG
1122static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1123 union futex_key *key, struct futex_pi_state **ps)
1124{
1125 struct futex_q *match = futex_top_waiter(hb, key);
1126
1127 /*
1128 * If there is a waiter on that futex, validate it and
1129 * attach to the pi_state when the validation succeeds.
1130 */
1131 if (match)
1132 return attach_to_pi_state(uval, match->pi_state, ps);
1133
1134 /*
1135 * We are the first waiter - try to look up the owner based on
1136 * @uval and attach to it.
1137 */
1138 return attach_to_pi_owner(uval, key, ps);
1139}
1140
af54d6a1
TG
1141static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1142{
1143 u32 uninitialized_var(curval);
1144
ab51fbab
DB
1145 if (unlikely(should_fail_futex(true)))
1146 return -EFAULT;
1147
af54d6a1
TG
1148 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1149 return -EFAULT;
1150
1151 /*If user space value changed, let the caller retry */
1152 return curval != uval ? -EAGAIN : 0;
1153}
1154
1a52084d 1155/**
d96ee56c 1156 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1157 * @uaddr: the pi futex user address
1158 * @hb: the pi futex hash bucket
1159 * @key: the futex key associated with uaddr and hb
1160 * @ps: the pi_state pointer where we store the result of the
1161 * lookup
1162 * @task: the task to perform the atomic lock work for. This will
1163 * be "current" except in the case of requeue pi.
1164 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1165 *
6c23cbbd
RD
1166 * Return:
1167 * 0 - ready to wait;
1168 * 1 - acquired the lock;
1a52084d
DH
1169 * <0 - error
1170 *
1171 * The hb->lock and futex_key refs shall be held by the caller.
1172 */
1173static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1174 union futex_key *key,
1175 struct futex_pi_state **ps,
bab5bc9e 1176 struct task_struct *task, int set_waiters)
1a52084d 1177{
af54d6a1
TG
1178 u32 uval, newval, vpid = task_pid_vnr(task);
1179 struct futex_q *match;
1180 int ret;
1a52084d
DH
1181
1182 /*
af54d6a1
TG
1183 * Read the user space value first so we can validate a few
1184 * things before proceeding further.
1a52084d 1185 */
af54d6a1 1186 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1187 return -EFAULT;
1188
ab51fbab
DB
1189 if (unlikely(should_fail_futex(true)))
1190 return -EFAULT;
1191
1a52084d
DH
1192 /*
1193 * Detect deadlocks.
1194 */
af54d6a1 1195 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1196 return -EDEADLK;
1197
ab51fbab
DB
1198 if ((unlikely(should_fail_futex(true))))
1199 return -EDEADLK;
1200
1a52084d 1201 /*
af54d6a1
TG
1202 * Lookup existing state first. If it exists, try to attach to
1203 * its pi_state.
1a52084d 1204 */
af54d6a1
TG
1205 match = futex_top_waiter(hb, key);
1206 if (match)
1207 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1208
1209 /*
af54d6a1
TG
1210 * No waiter and user TID is 0. We are here because the
1211 * waiters or the owner died bit is set or called from
1212 * requeue_cmp_pi or for whatever reason something took the
1213 * syscall.
1a52084d 1214 */
af54d6a1 1215 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1216 /*
af54d6a1
TG
1217 * We take over the futex. No other waiters and the user space
1218 * TID is 0. We preserve the owner died bit.
59fa6245 1219 */
af54d6a1
TG
1220 newval = uval & FUTEX_OWNER_DIED;
1221 newval |= vpid;
1a52084d 1222
af54d6a1
TG
1223 /* The futex requeue_pi code can enforce the waiters bit */
1224 if (set_waiters)
1225 newval |= FUTEX_WAITERS;
1226
1227 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228 /* If the take over worked, return 1 */
1229 return ret < 0 ? ret : 1;
1230 }
1a52084d
DH
1231
1232 /*
af54d6a1
TG
1233 * First waiter. Set the waiters bit before attaching ourself to
1234 * the owner. If owner tries to unlock, it will be forced into
1235 * the kernel and blocked on hb->lock.
1a52084d 1236 */
af54d6a1
TG
1237 newval = uval | FUTEX_WAITERS;
1238 ret = lock_pi_update_atomic(uaddr, uval, newval);
1239 if (ret)
1240 return ret;
1a52084d 1241 /*
af54d6a1
TG
1242 * If the update of the user space value succeeded, we try to
1243 * attach to the owner. If that fails, no harm done, we only
1244 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1245 */
af54d6a1 1246 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1247}
1248
2e12978a
LJ
1249/**
1250 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1251 * @q: The futex_q to unqueue
1252 *
1253 * The q->lock_ptr must not be NULL and must be held by the caller.
1254 */
1255static void __unqueue_futex(struct futex_q *q)
1256{
1257 struct futex_hash_bucket *hb;
1258
29096202
SR
1259 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1260 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1261 return;
1262
1263 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1264 plist_del(&q->list, &hb->chain);
11d4616b 1265 hb_waiters_dec(hb);
2e12978a
LJ
1266}
1267
1da177e4
LT
1268/*
1269 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1270 * Afterwards, the futex_q must not be accessed. Callers
1271 * must ensure to later call wake_up_q() for the actual
1272 * wakeups to occur.
1da177e4 1273 */
1d0dcb3a 1274static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1275{
f1a11e05
TG
1276 struct task_struct *p = q->task;
1277
aa10990e
DH
1278 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1279 return;
1280
1da177e4 1281 /*
1d0dcb3a
DB
1282 * Queue the task for later wakeup for after we've released
1283 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1284 */
1d0dcb3a 1285 wake_q_add(wake_q, p);
2e12978a 1286 __unqueue_futex(q);
1da177e4 1287 /*
f1a11e05
TG
1288 * The waiting task can free the futex_q as soon as
1289 * q->lock_ptr = NULL is written, without taking any locks. A
1290 * memory barrier is required here to prevent the following
1291 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1292 */
ccdea2f8 1293 smp_wmb();
1da177e4
LT
1294 q->lock_ptr = NULL;
1295}
1296
802ab58d
SAS
1297static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1298 struct futex_hash_bucket *hb)
c87e2837
IM
1299{
1300 struct task_struct *new_owner;
1301 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1302 u32 uninitialized_var(curval), newval;
194a6b5b 1303 DEFINE_WAKE_Q(wake_q);
802ab58d 1304 bool deboost;
13fbca4c 1305 int ret = 0;
c87e2837
IM
1306
1307 if (!pi_state)
1308 return -EINVAL;
1309
51246bfd
TG
1310 /*
1311 * If current does not own the pi_state then the futex is
1312 * inconsistent and user space fiddled with the futex value.
1313 */
1314 if (pi_state->owner != current)
1315 return -EINVAL;
1316
b4abf910 1317 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1318 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1319
1320 /*
f123c98e
SR
1321 * It is possible that the next waiter (the one that brought
1322 * this owner to the kernel) timed out and is no longer
1323 * waiting on the lock.
c87e2837
IM
1324 */
1325 if (!new_owner)
1326 new_owner = this->task;
1327
1328 /*
13fbca4c
TG
1329 * We pass it to the next owner. The WAITERS bit is always
1330 * kept enabled while there is PI state around. We cleanup the
1331 * owner died bit, because we are the owner.
c87e2837 1332 */
13fbca4c 1333 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1334
ab51fbab
DB
1335 if (unlikely(should_fail_futex(true)))
1336 ret = -EFAULT;
1337
89e9e66b 1338 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1339 ret = -EFAULT;
89e9e66b
SAS
1340 } else if (curval != uval) {
1341 /*
1342 * If a unconditional UNLOCK_PI operation (user space did not
1343 * try the TID->0 transition) raced with a waiter setting the
1344 * FUTEX_WAITERS flag between get_user() and locking the hash
1345 * bucket lock, retry the operation.
1346 */
1347 if ((FUTEX_TID_MASK & curval) == uval)
1348 ret = -EAGAIN;
1349 else
1350 ret = -EINVAL;
1351 }
13fbca4c 1352 if (ret) {
b4abf910 1353 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
13fbca4c 1354 return ret;
e3f2ddea 1355 }
c87e2837 1356
b4abf910 1357 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1358 WARN_ON(list_empty(&pi_state->list));
1359 list_del_init(&pi_state->list);
b4abf910 1360 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1361
b4abf910 1362 raw_spin_lock(&new_owner->pi_lock);
627371d7 1363 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1364 list_add(&pi_state->list, &new_owner->pi_state_list);
1365 pi_state->owner = new_owner;
b4abf910 1366 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1367
b4abf910 1368 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1369
1370 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1371
1372 /*
1373 * First unlock HB so the waiter does not spin on it once he got woken
1374 * up. Second wake up the waiter before the priority is adjusted. If we
1375 * deboost first (and lose our higher priority), then the task might get
1376 * scheduled away before the wake up can take place.
1377 */
1378 spin_unlock(&hb->lock);
1379 wake_up_q(&wake_q);
1380 if (deboost)
1381 rt_mutex_adjust_prio(current);
c87e2837
IM
1382
1383 return 0;
1384}
1385
8b8f319f
IM
1386/*
1387 * Express the locking dependencies for lockdep:
1388 */
1389static inline void
1390double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1391{
1392 if (hb1 <= hb2) {
1393 spin_lock(&hb1->lock);
1394 if (hb1 < hb2)
1395 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1396 } else { /* hb1 > hb2 */
1397 spin_lock(&hb2->lock);
1398 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1399 }
1400}
1401
5eb3dc62
DH
1402static inline void
1403double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1404{
f061d351 1405 spin_unlock(&hb1->lock);
88f502fe
IM
1406 if (hb1 != hb2)
1407 spin_unlock(&hb2->lock);
5eb3dc62
DH
1408}
1409
1da177e4 1410/*
b2d0994b 1411 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1412 */
b41277dc
DH
1413static int
1414futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1415{
e2970f2f 1416 struct futex_hash_bucket *hb;
1da177e4 1417 struct futex_q *this, *next;
38d47c1b 1418 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1419 int ret;
194a6b5b 1420 DEFINE_WAKE_Q(wake_q);
1da177e4 1421
cd689985
TG
1422 if (!bitset)
1423 return -EINVAL;
1424
9ea71503 1425 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1426 if (unlikely(ret != 0))
1427 goto out;
1428
e2970f2f 1429 hb = hash_futex(&key);
b0c29f79
DB
1430
1431 /* Make sure we really have tasks to wakeup */
1432 if (!hb_waiters_pending(hb))
1433 goto out_put_key;
1434
e2970f2f 1435 spin_lock(&hb->lock);
1da177e4 1436
0d00c7b2 1437 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1438 if (match_futex (&this->key, &key)) {
52400ba9 1439 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1440 ret = -EINVAL;
1441 break;
1442 }
cd689985
TG
1443
1444 /* Check if one of the bits is set in both bitsets */
1445 if (!(this->bitset & bitset))
1446 continue;
1447
1d0dcb3a 1448 mark_wake_futex(&wake_q, this);
1da177e4
LT
1449 if (++ret >= nr_wake)
1450 break;
1451 }
1452 }
1453
e2970f2f 1454 spin_unlock(&hb->lock);
1d0dcb3a 1455 wake_up_q(&wake_q);
b0c29f79 1456out_put_key:
ae791a2d 1457 put_futex_key(&key);
42d35d48 1458out:
1da177e4
LT
1459 return ret;
1460}
1461
4732efbe
JJ
1462/*
1463 * Wake up all waiters hashed on the physical page that is mapped
1464 * to this virtual address:
1465 */
e2970f2f 1466static int
b41277dc 1467futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1468 int nr_wake, int nr_wake2, int op)
4732efbe 1469{
38d47c1b 1470 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1471 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1472 struct futex_q *this, *next;
e4dc5b7a 1473 int ret, op_ret;
194a6b5b 1474 DEFINE_WAKE_Q(wake_q);
4732efbe 1475
e4dc5b7a 1476retry:
9ea71503 1477 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1478 if (unlikely(ret != 0))
1479 goto out;
9ea71503 1480 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1481 if (unlikely(ret != 0))
42d35d48 1482 goto out_put_key1;
4732efbe 1483
e2970f2f
IM
1484 hb1 = hash_futex(&key1);
1485 hb2 = hash_futex(&key2);
4732efbe 1486
e4dc5b7a 1487retry_private:
eaaea803 1488 double_lock_hb(hb1, hb2);
e2970f2f 1489 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1490 if (unlikely(op_ret < 0)) {
4732efbe 1491
5eb3dc62 1492 double_unlock_hb(hb1, hb2);
4732efbe 1493
7ee1dd3f 1494#ifndef CONFIG_MMU
e2970f2f
IM
1495 /*
1496 * we don't get EFAULT from MMU faults if we don't have an MMU,
1497 * but we might get them from range checking
1498 */
7ee1dd3f 1499 ret = op_ret;
42d35d48 1500 goto out_put_keys;
7ee1dd3f
DH
1501#endif
1502
796f8d9b
DG
1503 if (unlikely(op_ret != -EFAULT)) {
1504 ret = op_ret;
42d35d48 1505 goto out_put_keys;
796f8d9b
DG
1506 }
1507
d0725992 1508 ret = fault_in_user_writeable(uaddr2);
4732efbe 1509 if (ret)
de87fcc1 1510 goto out_put_keys;
4732efbe 1511
b41277dc 1512 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1513 goto retry_private;
1514
ae791a2d
TG
1515 put_futex_key(&key2);
1516 put_futex_key(&key1);
e4dc5b7a 1517 goto retry;
4732efbe
JJ
1518 }
1519
0d00c7b2 1520 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1521 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1522 if (this->pi_state || this->rt_waiter) {
1523 ret = -EINVAL;
1524 goto out_unlock;
1525 }
1d0dcb3a 1526 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1527 if (++ret >= nr_wake)
1528 break;
1529 }
1530 }
1531
1532 if (op_ret > 0) {
4732efbe 1533 op_ret = 0;
0d00c7b2 1534 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1535 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1536 if (this->pi_state || this->rt_waiter) {
1537 ret = -EINVAL;
1538 goto out_unlock;
1539 }
1d0dcb3a 1540 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1541 if (++op_ret >= nr_wake2)
1542 break;
1543 }
1544 }
1545 ret += op_ret;
1546 }
1547
aa10990e 1548out_unlock:
5eb3dc62 1549 double_unlock_hb(hb1, hb2);
1d0dcb3a 1550 wake_up_q(&wake_q);
42d35d48 1551out_put_keys:
ae791a2d 1552 put_futex_key(&key2);
42d35d48 1553out_put_key1:
ae791a2d 1554 put_futex_key(&key1);
42d35d48 1555out:
4732efbe
JJ
1556 return ret;
1557}
1558
9121e478
DH
1559/**
1560 * requeue_futex() - Requeue a futex_q from one hb to another
1561 * @q: the futex_q to requeue
1562 * @hb1: the source hash_bucket
1563 * @hb2: the target hash_bucket
1564 * @key2: the new key for the requeued futex_q
1565 */
1566static inline
1567void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1568 struct futex_hash_bucket *hb2, union futex_key *key2)
1569{
1570
1571 /*
1572 * If key1 and key2 hash to the same bucket, no need to
1573 * requeue.
1574 */
1575 if (likely(&hb1->chain != &hb2->chain)) {
1576 plist_del(&q->list, &hb1->chain);
11d4616b 1577 hb_waiters_dec(hb1);
11d4616b 1578 hb_waiters_inc(hb2);
fe1bce9e 1579 plist_add(&q->list, &hb2->chain);
9121e478 1580 q->lock_ptr = &hb2->lock;
9121e478
DH
1581 }
1582 get_futex_key_refs(key2);
1583 q->key = *key2;
1584}
1585
52400ba9
DH
1586/**
1587 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1588 * @q: the futex_q
1589 * @key: the key of the requeue target futex
1590 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1591 *
1592 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1593 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1594 * to the requeue target futex so the waiter can detect the wakeup on the right
1595 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1596 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1597 * to protect access to the pi_state to fixup the owner later. Must be called
1598 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1599 */
1600static inline
beda2c7e
DH
1601void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1602 struct futex_hash_bucket *hb)
52400ba9 1603{
52400ba9
DH
1604 get_futex_key_refs(key);
1605 q->key = *key;
1606
2e12978a 1607 __unqueue_futex(q);
52400ba9
DH
1608
1609 WARN_ON(!q->rt_waiter);
1610 q->rt_waiter = NULL;
1611
beda2c7e 1612 q->lock_ptr = &hb->lock;
beda2c7e 1613
f1a11e05 1614 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1615}
1616
1617/**
1618 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1619 * @pifutex: the user address of the to futex
1620 * @hb1: the from futex hash bucket, must be locked by the caller
1621 * @hb2: the to futex hash bucket, must be locked by the caller
1622 * @key1: the from futex key
1623 * @key2: the to futex key
1624 * @ps: address to store the pi_state pointer
1625 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1626 *
1627 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1628 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1629 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1630 * hb1 and hb2 must be held by the caller.
52400ba9 1631 *
6c23cbbd
RD
1632 * Return:
1633 * 0 - failed to acquire the lock atomically;
866293ee 1634 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1635 * <0 - error
1636 */
1637static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1638 struct futex_hash_bucket *hb1,
1639 struct futex_hash_bucket *hb2,
1640 union futex_key *key1, union futex_key *key2,
bab5bc9e 1641 struct futex_pi_state **ps, int set_waiters)
52400ba9 1642{
bab5bc9e 1643 struct futex_q *top_waiter = NULL;
52400ba9 1644 u32 curval;
866293ee 1645 int ret, vpid;
52400ba9
DH
1646
1647 if (get_futex_value_locked(&curval, pifutex))
1648 return -EFAULT;
1649
ab51fbab
DB
1650 if (unlikely(should_fail_futex(true)))
1651 return -EFAULT;
1652
bab5bc9e
DH
1653 /*
1654 * Find the top_waiter and determine if there are additional waiters.
1655 * If the caller intends to requeue more than 1 waiter to pifutex,
1656 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1657 * as we have means to handle the possible fault. If not, don't set
1658 * the bit unecessarily as it will force the subsequent unlock to enter
1659 * the kernel.
1660 */
52400ba9
DH
1661 top_waiter = futex_top_waiter(hb1, key1);
1662
1663 /* There are no waiters, nothing for us to do. */
1664 if (!top_waiter)
1665 return 0;
1666
84bc4af5
DH
1667 /* Ensure we requeue to the expected futex. */
1668 if (!match_futex(top_waiter->requeue_pi_key, key2))
1669 return -EINVAL;
1670
52400ba9 1671 /*
bab5bc9e
DH
1672 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1673 * the contended case or if set_waiters is 1. The pi_state is returned
1674 * in ps in contended cases.
52400ba9 1675 */
866293ee 1676 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1677 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1678 set_waiters);
866293ee 1679 if (ret == 1) {
beda2c7e 1680 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1681 return vpid;
1682 }
52400ba9
DH
1683 return ret;
1684}
1685
1686/**
1687 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1688 * @uaddr1: source futex user address
b41277dc 1689 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1690 * @uaddr2: target futex user address
1691 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1692 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1693 * @cmpval: @uaddr1 expected value (or %NULL)
1694 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1695 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1696 *
1697 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1698 * uaddr2 atomically on behalf of the top waiter.
1699 *
6c23cbbd
RD
1700 * Return:
1701 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1702 * <0 - on error
1da177e4 1703 */
b41277dc
DH
1704static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1705 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1706 u32 *cmpval, int requeue_pi)
1da177e4 1707{
38d47c1b 1708 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1709 int drop_count = 0, task_count = 0, ret;
1710 struct futex_pi_state *pi_state = NULL;
e2970f2f 1711 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1712 struct futex_q *this, *next;
194a6b5b 1713 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1714
1715 if (requeue_pi) {
e9c243a5
TG
1716 /*
1717 * Requeue PI only works on two distinct uaddrs. This
1718 * check is only valid for private futexes. See below.
1719 */
1720 if (uaddr1 == uaddr2)
1721 return -EINVAL;
1722
52400ba9
DH
1723 /*
1724 * requeue_pi requires a pi_state, try to allocate it now
1725 * without any locks in case it fails.
1726 */
1727 if (refill_pi_state_cache())
1728 return -ENOMEM;
1729 /*
1730 * requeue_pi must wake as many tasks as it can, up to nr_wake
1731 * + nr_requeue, since it acquires the rt_mutex prior to
1732 * returning to userspace, so as to not leave the rt_mutex with
1733 * waiters and no owner. However, second and third wake-ups
1734 * cannot be predicted as they involve race conditions with the
1735 * first wake and a fault while looking up the pi_state. Both
1736 * pthread_cond_signal() and pthread_cond_broadcast() should
1737 * use nr_wake=1.
1738 */
1739 if (nr_wake != 1)
1740 return -EINVAL;
1741 }
1da177e4 1742
42d35d48 1743retry:
9ea71503 1744 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1745 if (unlikely(ret != 0))
1746 goto out;
9ea71503
SB
1747 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1748 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1749 if (unlikely(ret != 0))
42d35d48 1750 goto out_put_key1;
1da177e4 1751
e9c243a5
TG
1752 /*
1753 * The check above which compares uaddrs is not sufficient for
1754 * shared futexes. We need to compare the keys:
1755 */
1756 if (requeue_pi && match_futex(&key1, &key2)) {
1757 ret = -EINVAL;
1758 goto out_put_keys;
1759 }
1760
e2970f2f
IM
1761 hb1 = hash_futex(&key1);
1762 hb2 = hash_futex(&key2);
1da177e4 1763
e4dc5b7a 1764retry_private:
69cd9eba 1765 hb_waiters_inc(hb2);
8b8f319f 1766 double_lock_hb(hb1, hb2);
1da177e4 1767
e2970f2f
IM
1768 if (likely(cmpval != NULL)) {
1769 u32 curval;
1da177e4 1770
e2970f2f 1771 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1772
1773 if (unlikely(ret)) {
5eb3dc62 1774 double_unlock_hb(hb1, hb2);
69cd9eba 1775 hb_waiters_dec(hb2);
1da177e4 1776
e2970f2f 1777 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1778 if (ret)
1779 goto out_put_keys;
1da177e4 1780
b41277dc 1781 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1782 goto retry_private;
1da177e4 1783
ae791a2d
TG
1784 put_futex_key(&key2);
1785 put_futex_key(&key1);
e4dc5b7a 1786 goto retry;
1da177e4 1787 }
e2970f2f 1788 if (curval != *cmpval) {
1da177e4
LT
1789 ret = -EAGAIN;
1790 goto out_unlock;
1791 }
1792 }
1793
52400ba9 1794 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1795 /*
1796 * Attempt to acquire uaddr2 and wake the top waiter. If we
1797 * intend to requeue waiters, force setting the FUTEX_WAITERS
1798 * bit. We force this here where we are able to easily handle
1799 * faults rather in the requeue loop below.
1800 */
52400ba9 1801 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1802 &key2, &pi_state, nr_requeue);
52400ba9
DH
1803
1804 /*
1805 * At this point the top_waiter has either taken uaddr2 or is
1806 * waiting on it. If the former, then the pi_state will not
1807 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1808 * reference to it. If the lock was taken, ret contains the
1809 * vpid of the top waiter task.
ecb38b78
TG
1810 * If the lock was not taken, we have pi_state and an initial
1811 * refcount on it. In case of an error we have nothing.
52400ba9 1812 */
866293ee 1813 if (ret > 0) {
52400ba9 1814 WARN_ON(pi_state);
89061d3d 1815 drop_count++;
52400ba9 1816 task_count++;
866293ee 1817 /*
ecb38b78
TG
1818 * If we acquired the lock, then the user space value
1819 * of uaddr2 should be vpid. It cannot be changed by
1820 * the top waiter as it is blocked on hb2 lock if it
1821 * tries to do so. If something fiddled with it behind
1822 * our back the pi state lookup might unearth it. So
1823 * we rather use the known value than rereading and
1824 * handing potential crap to lookup_pi_state.
1825 *
1826 * If that call succeeds then we have pi_state and an
1827 * initial refcount on it.
866293ee 1828 */
54a21788 1829 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1830 }
1831
1832 switch (ret) {
1833 case 0:
ecb38b78 1834 /* We hold a reference on the pi state. */
52400ba9 1835 break;
4959f2de
TG
1836
1837 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1838 case -EFAULT:
1839 double_unlock_hb(hb1, hb2);
69cd9eba 1840 hb_waiters_dec(hb2);
ae791a2d
TG
1841 put_futex_key(&key2);
1842 put_futex_key(&key1);
d0725992 1843 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1844 if (!ret)
1845 goto retry;
1846 goto out;
1847 case -EAGAIN:
af54d6a1
TG
1848 /*
1849 * Two reasons for this:
1850 * - Owner is exiting and we just wait for the
1851 * exit to complete.
1852 * - The user space value changed.
1853 */
52400ba9 1854 double_unlock_hb(hb1, hb2);
69cd9eba 1855 hb_waiters_dec(hb2);
ae791a2d
TG
1856 put_futex_key(&key2);
1857 put_futex_key(&key1);
52400ba9
DH
1858 cond_resched();
1859 goto retry;
1860 default:
1861 goto out_unlock;
1862 }
1863 }
1864
0d00c7b2 1865 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1866 if (task_count - nr_wake >= nr_requeue)
1867 break;
1868
1869 if (!match_futex(&this->key, &key1))
1da177e4 1870 continue;
52400ba9 1871
392741e0
DH
1872 /*
1873 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1874 * be paired with each other and no other futex ops.
aa10990e
DH
1875 *
1876 * We should never be requeueing a futex_q with a pi_state,
1877 * which is awaiting a futex_unlock_pi().
392741e0
DH
1878 */
1879 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1880 (!requeue_pi && this->rt_waiter) ||
1881 this->pi_state) {
392741e0
DH
1882 ret = -EINVAL;
1883 break;
1884 }
52400ba9
DH
1885
1886 /*
1887 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1888 * lock, we already woke the top_waiter. If not, it will be
1889 * woken by futex_unlock_pi().
1890 */
1891 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1892 mark_wake_futex(&wake_q, this);
52400ba9
DH
1893 continue;
1894 }
1da177e4 1895
84bc4af5
DH
1896 /* Ensure we requeue to the expected futex for requeue_pi. */
1897 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1898 ret = -EINVAL;
1899 break;
1900 }
1901
52400ba9
DH
1902 /*
1903 * Requeue nr_requeue waiters and possibly one more in the case
1904 * of requeue_pi if we couldn't acquire the lock atomically.
1905 */
1906 if (requeue_pi) {
ecb38b78
TG
1907 /*
1908 * Prepare the waiter to take the rt_mutex. Take a
1909 * refcount on the pi_state and store the pointer in
1910 * the futex_q object of the waiter.
1911 */
52400ba9
DH
1912 atomic_inc(&pi_state->refcount);
1913 this->pi_state = pi_state;
1914 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1915 this->rt_waiter,
c051b21f 1916 this->task);
52400ba9 1917 if (ret == 1) {
ecb38b78
TG
1918 /*
1919 * We got the lock. We do neither drop the
1920 * refcount on pi_state nor clear
1921 * this->pi_state because the waiter needs the
1922 * pi_state for cleaning up the user space
1923 * value. It will drop the refcount after
1924 * doing so.
1925 */
beda2c7e 1926 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1927 drop_count++;
52400ba9
DH
1928 continue;
1929 } else if (ret) {
ecb38b78
TG
1930 /*
1931 * rt_mutex_start_proxy_lock() detected a
1932 * potential deadlock when we tried to queue
1933 * that waiter. Drop the pi_state reference
1934 * which we took above and remove the pointer
1935 * to the state from the waiters futex_q
1936 * object.
1937 */
52400ba9 1938 this->pi_state = NULL;
29e9ee5d 1939 put_pi_state(pi_state);
885c2cb7
TG
1940 /*
1941 * We stop queueing more waiters and let user
1942 * space deal with the mess.
1943 */
1944 break;
52400ba9 1945 }
1da177e4 1946 }
52400ba9
DH
1947 requeue_futex(this, hb1, hb2, &key2);
1948 drop_count++;
1da177e4
LT
1949 }
1950
ecb38b78
TG
1951 /*
1952 * We took an extra initial reference to the pi_state either
1953 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1954 * need to drop it here again.
1955 */
29e9ee5d 1956 put_pi_state(pi_state);
885c2cb7
TG
1957
1958out_unlock:
5eb3dc62 1959 double_unlock_hb(hb1, hb2);
1d0dcb3a 1960 wake_up_q(&wake_q);
69cd9eba 1961 hb_waiters_dec(hb2);
1da177e4 1962
cd84a42f
DH
1963 /*
1964 * drop_futex_key_refs() must be called outside the spinlocks. During
1965 * the requeue we moved futex_q's from the hash bucket at key1 to the
1966 * one at key2 and updated their key pointer. We no longer need to
1967 * hold the references to key1.
1968 */
1da177e4 1969 while (--drop_count >= 0)
9adef58b 1970 drop_futex_key_refs(&key1);
1da177e4 1971
42d35d48 1972out_put_keys:
ae791a2d 1973 put_futex_key(&key2);
42d35d48 1974out_put_key1:
ae791a2d 1975 put_futex_key(&key1);
42d35d48 1976out:
52400ba9 1977 return ret ? ret : task_count;
1da177e4
LT
1978}
1979
1980/* The key must be already stored in q->key. */
82af7aca 1981static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1982 __acquires(&hb->lock)
1da177e4 1983{
e2970f2f 1984 struct futex_hash_bucket *hb;
1da177e4 1985
e2970f2f 1986 hb = hash_futex(&q->key);
11d4616b
LT
1987
1988 /*
1989 * Increment the counter before taking the lock so that
1990 * a potential waker won't miss a to-be-slept task that is
1991 * waiting for the spinlock. This is safe as all queue_lock()
1992 * users end up calling queue_me(). Similarly, for housekeeping,
1993 * decrement the counter at queue_unlock() when some error has
1994 * occurred and we don't end up adding the task to the list.
1995 */
1996 hb_waiters_inc(hb);
1997
e2970f2f 1998 q->lock_ptr = &hb->lock;
1da177e4 1999
8ad7b378 2000 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2001 return hb;
1da177e4
LT
2002}
2003
d40d65c8 2004static inline void
0d00c7b2 2005queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2006 __releases(&hb->lock)
d40d65c8
DH
2007{
2008 spin_unlock(&hb->lock);
11d4616b 2009 hb_waiters_dec(hb);
d40d65c8
DH
2010}
2011
2012/**
2013 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2014 * @q: The futex_q to enqueue
2015 * @hb: The destination hash bucket
2016 *
2017 * The hb->lock must be held by the caller, and is released here. A call to
2018 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2019 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2020 * or nothing if the unqueue is done as part of the wake process and the unqueue
2021 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2022 * an example).
2023 */
82af7aca 2024static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 2025 __releases(&hb->lock)
1da177e4 2026{
ec92d082
PP
2027 int prio;
2028
2029 /*
2030 * The priority used to register this element is
2031 * - either the real thread-priority for the real-time threads
2032 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2033 * - or MAX_RT_PRIO for non-RT threads.
2034 * Thus, all RT-threads are woken first in priority order, and
2035 * the others are woken last, in FIFO order.
2036 */
2037 prio = min(current->normal_prio, MAX_RT_PRIO);
2038
2039 plist_node_init(&q->list, prio);
ec92d082 2040 plist_add(&q->list, &hb->chain);
c87e2837 2041 q->task = current;
e2970f2f 2042 spin_unlock(&hb->lock);
1da177e4
LT
2043}
2044
d40d65c8
DH
2045/**
2046 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2047 * @q: The futex_q to unqueue
2048 *
2049 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2050 * be paired with exactly one earlier call to queue_me().
2051 *
6c23cbbd
RD
2052 * Return:
2053 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2054 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2055 */
1da177e4
LT
2056static int unqueue_me(struct futex_q *q)
2057{
1da177e4 2058 spinlock_t *lock_ptr;
e2970f2f 2059 int ret = 0;
1da177e4
LT
2060
2061 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2062retry:
29b75eb2
JZ
2063 /*
2064 * q->lock_ptr can change between this read and the following spin_lock.
2065 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2066 * optimizing lock_ptr out of the logic below.
2067 */
2068 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2069 if (lock_ptr != NULL) {
1da177e4
LT
2070 spin_lock(lock_ptr);
2071 /*
2072 * q->lock_ptr can change between reading it and
2073 * spin_lock(), causing us to take the wrong lock. This
2074 * corrects the race condition.
2075 *
2076 * Reasoning goes like this: if we have the wrong lock,
2077 * q->lock_ptr must have changed (maybe several times)
2078 * between reading it and the spin_lock(). It can
2079 * change again after the spin_lock() but only if it was
2080 * already changed before the spin_lock(). It cannot,
2081 * however, change back to the original value. Therefore
2082 * we can detect whether we acquired the correct lock.
2083 */
2084 if (unlikely(lock_ptr != q->lock_ptr)) {
2085 spin_unlock(lock_ptr);
2086 goto retry;
2087 }
2e12978a 2088 __unqueue_futex(q);
c87e2837
IM
2089
2090 BUG_ON(q->pi_state);
2091
1da177e4
LT
2092 spin_unlock(lock_ptr);
2093 ret = 1;
2094 }
2095
9adef58b 2096 drop_futex_key_refs(&q->key);
1da177e4
LT
2097 return ret;
2098}
2099
c87e2837
IM
2100/*
2101 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2102 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2103 * and dropped here.
c87e2837 2104 */
d0aa7a70 2105static void unqueue_me_pi(struct futex_q *q)
15e408cd 2106 __releases(q->lock_ptr)
c87e2837 2107{
2e12978a 2108 __unqueue_futex(q);
c87e2837
IM
2109
2110 BUG_ON(!q->pi_state);
29e9ee5d 2111 put_pi_state(q->pi_state);
c87e2837
IM
2112 q->pi_state = NULL;
2113
d0aa7a70 2114 spin_unlock(q->lock_ptr);
c87e2837
IM
2115}
2116
d0aa7a70 2117/*
cdf71a10 2118 * Fixup the pi_state owner with the new owner.
d0aa7a70 2119 *
778e9a9c
AK
2120 * Must be called with hash bucket lock held and mm->sem held for non
2121 * private futexes.
d0aa7a70 2122 */
778e9a9c 2123static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2124 struct task_struct *newowner)
d0aa7a70 2125{
cdf71a10 2126 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2127 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2128 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2129 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2130 int ret;
d0aa7a70
PP
2131
2132 /* Owner died? */
1b7558e4
TG
2133 if (!pi_state->owner)
2134 newtid |= FUTEX_OWNER_DIED;
2135
2136 /*
2137 * We are here either because we stole the rtmutex from the
8161239a
LJ
2138 * previous highest priority waiter or we are the highest priority
2139 * waiter but failed to get the rtmutex the first time.
2140 * We have to replace the newowner TID in the user space variable.
2141 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2142 *
b2d0994b
DH
2143 * Note: We write the user space value _before_ changing the pi_state
2144 * because we can fault here. Imagine swapped out pages or a fork
2145 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2146 *
2147 * Modifying pi_state _before_ the user space value would
2148 * leave the pi_state in an inconsistent state when we fault
2149 * here, because we need to drop the hash bucket lock to
2150 * handle the fault. This might be observed in the PID check
2151 * in lookup_pi_state.
2152 */
2153retry:
2154 if (get_futex_value_locked(&uval, uaddr))
2155 goto handle_fault;
2156
2157 while (1) {
2158 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2159
37a9d912 2160 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2161 goto handle_fault;
2162 if (curval == uval)
2163 break;
2164 uval = curval;
2165 }
2166
2167 /*
2168 * We fixed up user space. Now we need to fix the pi_state
2169 * itself.
2170 */
d0aa7a70 2171 if (pi_state->owner != NULL) {
1d615482 2172 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2173 WARN_ON(list_empty(&pi_state->list));
2174 list_del_init(&pi_state->list);
1d615482 2175 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2176 }
d0aa7a70 2177
cdf71a10 2178 pi_state->owner = newowner;
d0aa7a70 2179
1d615482 2180 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2181 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2182 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2183 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2184 return 0;
d0aa7a70 2185
d0aa7a70 2186 /*
1b7558e4 2187 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2188 * lock here. That gives the other task (either the highest priority
2189 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2190 * chance to try the fixup of the pi_state. So once we are
2191 * back from handling the fault we need to check the pi_state
2192 * after reacquiring the hash bucket lock and before trying to
2193 * do another fixup. When the fixup has been done already we
2194 * simply return.
d0aa7a70 2195 */
1b7558e4
TG
2196handle_fault:
2197 spin_unlock(q->lock_ptr);
778e9a9c 2198
d0725992 2199 ret = fault_in_user_writeable(uaddr);
778e9a9c 2200
1b7558e4 2201 spin_lock(q->lock_ptr);
778e9a9c 2202
1b7558e4
TG
2203 /*
2204 * Check if someone else fixed it for us:
2205 */
2206 if (pi_state->owner != oldowner)
2207 return 0;
2208
2209 if (ret)
2210 return ret;
2211
2212 goto retry;
d0aa7a70
PP
2213}
2214
72c1bbf3 2215static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2216
dd973998
DH
2217/**
2218 * fixup_owner() - Post lock pi_state and corner case management
2219 * @uaddr: user address of the futex
dd973998
DH
2220 * @q: futex_q (contains pi_state and access to the rt_mutex)
2221 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2222 *
2223 * After attempting to lock an rt_mutex, this function is called to cleanup
2224 * the pi_state owner as well as handle race conditions that may allow us to
2225 * acquire the lock. Must be called with the hb lock held.
2226 *
6c23cbbd
RD
2227 * Return:
2228 * 1 - success, lock taken;
2229 * 0 - success, lock not taken;
dd973998
DH
2230 * <0 - on error (-EFAULT)
2231 */
ae791a2d 2232static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2233{
2234 struct task_struct *owner;
2235 int ret = 0;
2236
2237 if (locked) {
2238 /*
2239 * Got the lock. We might not be the anticipated owner if we
2240 * did a lock-steal - fix up the PI-state in that case:
2241 */
2242 if (q->pi_state->owner != current)
ae791a2d 2243 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2244 goto out;
2245 }
2246
2247 /*
2248 * Catch the rare case, where the lock was released when we were on the
2249 * way back before we locked the hash bucket.
2250 */
2251 if (q->pi_state->owner == current) {
2252 /*
2253 * Try to get the rt_mutex now. This might fail as some other
2254 * task acquired the rt_mutex after we removed ourself from the
2255 * rt_mutex waiters list.
2256 */
2257 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2258 locked = 1;
2259 goto out;
2260 }
2261
2262 /*
2263 * pi_state is incorrect, some other task did a lock steal and
2264 * we returned due to timeout or signal without taking the
8161239a 2265 * rt_mutex. Too late.
dd973998 2266 */
b4abf910 2267 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
dd973998 2268 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2269 if (!owner)
2270 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
b4abf910 2271 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2272 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2273 goto out;
2274 }
2275
2276 /*
2277 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2278 * the owner of the rt_mutex.
dd973998
DH
2279 */
2280 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2281 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2282 "pi-state %p\n", ret,
2283 q->pi_state->pi_mutex.owner,
2284 q->pi_state->owner);
2285
2286out:
2287 return ret ? ret : locked;
2288}
2289
ca5f9524
DH
2290/**
2291 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2292 * @hb: the futex hash bucket, must be locked by the caller
2293 * @q: the futex_q to queue up on
2294 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2295 */
2296static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2297 struct hrtimer_sleeper *timeout)
ca5f9524 2298{
9beba3c5
DH
2299 /*
2300 * The task state is guaranteed to be set before another task can
b92b8b35 2301 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2302 * queue_me() calls spin_unlock() upon completion, both serializing
2303 * access to the hash list and forcing another memory barrier.
2304 */
f1a11e05 2305 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2306 queue_me(q, hb);
ca5f9524
DH
2307
2308 /* Arm the timer */
2e4b0d3f 2309 if (timeout)
ca5f9524 2310 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2311
2312 /*
0729e196
DH
2313 * If we have been removed from the hash list, then another task
2314 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2315 */
2316 if (likely(!plist_node_empty(&q->list))) {
2317 /*
2318 * If the timer has already expired, current will already be
2319 * flagged for rescheduling. Only call schedule if there
2320 * is no timeout, or if it has yet to expire.
2321 */
2322 if (!timeout || timeout->task)
88c8004f 2323 freezable_schedule();
ca5f9524
DH
2324 }
2325 __set_current_state(TASK_RUNNING);
2326}
2327
f801073f
DH
2328/**
2329 * futex_wait_setup() - Prepare to wait on a futex
2330 * @uaddr: the futex userspace address
2331 * @val: the expected value
b41277dc 2332 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2333 * @q: the associated futex_q
2334 * @hb: storage for hash_bucket pointer to be returned to caller
2335 *
2336 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2337 * compare it with the expected value. Handle atomic faults internally.
2338 * Return with the hb lock held and a q.key reference on success, and unlocked
2339 * with no q.key reference on failure.
2340 *
6c23cbbd
RD
2341 * Return:
2342 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2343 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2344 */
b41277dc 2345static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2346 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2347{
e2970f2f
IM
2348 u32 uval;
2349 int ret;
1da177e4 2350
1da177e4 2351 /*
b2d0994b 2352 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2353 * Order is important:
2354 *
2355 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2356 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2357 *
2358 * The basic logical guarantee of a futex is that it blocks ONLY
2359 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2360 * any cond. If we locked the hash-bucket after testing *uaddr, that
2361 * would open a race condition where we could block indefinitely with
1da177e4
LT
2362 * cond(var) false, which would violate the guarantee.
2363 *
8fe8f545
ML
2364 * On the other hand, we insert q and release the hash-bucket only
2365 * after testing *uaddr. This guarantees that futex_wait() will NOT
2366 * absorb a wakeup if *uaddr does not match the desired values
2367 * while the syscall executes.
1da177e4 2368 */
f801073f 2369retry:
9ea71503 2370 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2371 if (unlikely(ret != 0))
a5a2a0c7 2372 return ret;
f801073f
DH
2373
2374retry_private:
2375 *hb = queue_lock(q);
2376
e2970f2f 2377 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2378
f801073f 2379 if (ret) {
0d00c7b2 2380 queue_unlock(*hb);
1da177e4 2381
e2970f2f 2382 ret = get_user(uval, uaddr);
e4dc5b7a 2383 if (ret)
f801073f 2384 goto out;
1da177e4 2385
b41277dc 2386 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2387 goto retry_private;
2388
ae791a2d 2389 put_futex_key(&q->key);
e4dc5b7a 2390 goto retry;
1da177e4 2391 }
ca5f9524 2392
f801073f 2393 if (uval != val) {
0d00c7b2 2394 queue_unlock(*hb);
f801073f 2395 ret = -EWOULDBLOCK;
2fff78c7 2396 }
1da177e4 2397
f801073f
DH
2398out:
2399 if (ret)
ae791a2d 2400 put_futex_key(&q->key);
f801073f
DH
2401 return ret;
2402}
2403
b41277dc
DH
2404static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2405 ktime_t *abs_time, u32 bitset)
f801073f
DH
2406{
2407 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2408 struct restart_block *restart;
2409 struct futex_hash_bucket *hb;
5bdb05f9 2410 struct futex_q q = futex_q_init;
f801073f
DH
2411 int ret;
2412
2413 if (!bitset)
2414 return -EINVAL;
f801073f
DH
2415 q.bitset = bitset;
2416
2417 if (abs_time) {
2418 to = &timeout;
2419
b41277dc
DH
2420 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2421 CLOCK_REALTIME : CLOCK_MONOTONIC,
2422 HRTIMER_MODE_ABS);
f801073f
DH
2423 hrtimer_init_sleeper(to, current);
2424 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2425 current->timer_slack_ns);
2426 }
2427
d58e6576 2428retry:
7ada876a
DH
2429 /*
2430 * Prepare to wait on uaddr. On success, holds hb lock and increments
2431 * q.key refs.
2432 */
b41277dc 2433 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2434 if (ret)
2435 goto out;
2436
ca5f9524 2437 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2438 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2439
2440 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2441 ret = 0;
7ada876a 2442 /* unqueue_me() drops q.key ref */
1da177e4 2443 if (!unqueue_me(&q))
7ada876a 2444 goto out;
2fff78c7 2445 ret = -ETIMEDOUT;
ca5f9524 2446 if (to && !to->task)
7ada876a 2447 goto out;
72c1bbf3 2448
e2970f2f 2449 /*
d58e6576
TG
2450 * We expect signal_pending(current), but we might be the
2451 * victim of a spurious wakeup as well.
e2970f2f 2452 */
7ada876a 2453 if (!signal_pending(current))
d58e6576 2454 goto retry;
d58e6576 2455
2fff78c7 2456 ret = -ERESTARTSYS;
c19384b5 2457 if (!abs_time)
7ada876a 2458 goto out;
1da177e4 2459
f56141e3 2460 restart = &current->restart_block;
2fff78c7 2461 restart->fn = futex_wait_restart;
a3c74c52 2462 restart->futex.uaddr = uaddr;
2fff78c7 2463 restart->futex.val = val;
2456e855 2464 restart->futex.time = *abs_time;
2fff78c7 2465 restart->futex.bitset = bitset;
0cd9c649 2466 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2467
2fff78c7
PZ
2468 ret = -ERESTART_RESTARTBLOCK;
2469
42d35d48 2470out:
ca5f9524
DH
2471 if (to) {
2472 hrtimer_cancel(&to->timer);
2473 destroy_hrtimer_on_stack(&to->timer);
2474 }
c87e2837
IM
2475 return ret;
2476}
2477
72c1bbf3
NP
2478
2479static long futex_wait_restart(struct restart_block *restart)
2480{
a3c74c52 2481 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2482 ktime_t t, *tp = NULL;
72c1bbf3 2483
a72188d8 2484 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2485 t = restart->futex.time;
a72188d8
DH
2486 tp = &t;
2487 }
72c1bbf3 2488 restart->fn = do_no_restart_syscall;
b41277dc
DH
2489
2490 return (long)futex_wait(uaddr, restart->futex.flags,
2491 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2492}
2493
2494
c87e2837
IM
2495/*
2496 * Userspace tried a 0 -> TID atomic transition of the futex value
2497 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2498 * if there are waiters then it will block as a consequence of relying
2499 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2500 * a 0 value of the futex too.).
2501 *
2502 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2503 */
996636dd 2504static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2505 ktime_t *time, int trylock)
c87e2837 2506{
c5780e97 2507 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2508 struct futex_hash_bucket *hb;
5bdb05f9 2509 struct futex_q q = futex_q_init;
dd973998 2510 int res, ret;
c87e2837
IM
2511
2512 if (refill_pi_state_cache())
2513 return -ENOMEM;
2514
c19384b5 2515 if (time) {
c5780e97 2516 to = &timeout;
237fc6e7
TG
2517 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2518 HRTIMER_MODE_ABS);
c5780e97 2519 hrtimer_init_sleeper(to, current);
cc584b21 2520 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2521 }
2522
42d35d48 2523retry:
9ea71503 2524 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2525 if (unlikely(ret != 0))
42d35d48 2526 goto out;
c87e2837 2527
e4dc5b7a 2528retry_private:
82af7aca 2529 hb = queue_lock(&q);
c87e2837 2530
bab5bc9e 2531 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2532 if (unlikely(ret)) {
767f509c
DB
2533 /*
2534 * Atomic work succeeded and we got the lock,
2535 * or failed. Either way, we do _not_ block.
2536 */
778e9a9c 2537 switch (ret) {
1a52084d
DH
2538 case 1:
2539 /* We got the lock. */
2540 ret = 0;
2541 goto out_unlock_put_key;
2542 case -EFAULT:
2543 goto uaddr_faulted;
778e9a9c
AK
2544 case -EAGAIN:
2545 /*
af54d6a1
TG
2546 * Two reasons for this:
2547 * - Task is exiting and we just wait for the
2548 * exit to complete.
2549 * - The user space value changed.
778e9a9c 2550 */
0d00c7b2 2551 queue_unlock(hb);
ae791a2d 2552 put_futex_key(&q.key);
778e9a9c
AK
2553 cond_resched();
2554 goto retry;
778e9a9c 2555 default:
42d35d48 2556 goto out_unlock_put_key;
c87e2837 2557 }
c87e2837
IM
2558 }
2559
2560 /*
2561 * Only actually queue now that the atomic ops are done:
2562 */
82af7aca 2563 queue_me(&q, hb);
c87e2837 2564
c87e2837
IM
2565 WARN_ON(!q.pi_state);
2566 /*
2567 * Block on the PI mutex:
2568 */
c051b21f
TG
2569 if (!trylock) {
2570 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2571 } else {
c87e2837
IM
2572 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2573 /* Fixup the trylock return value: */
2574 ret = ret ? 0 : -EWOULDBLOCK;
2575 }
2576
a99e4e41 2577 spin_lock(q.lock_ptr);
dd973998
DH
2578 /*
2579 * Fixup the pi_state owner and possibly acquire the lock if we
2580 * haven't already.
2581 */
ae791a2d 2582 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2583 /*
2584 * If fixup_owner() returned an error, proprogate that. If it acquired
2585 * the lock, clear our -ETIMEDOUT or -EINTR.
2586 */
2587 if (res)
2588 ret = (res < 0) ? res : 0;
c87e2837 2589
e8f6386c 2590 /*
dd973998
DH
2591 * If fixup_owner() faulted and was unable to handle the fault, unlock
2592 * it and return the fault to userspace.
e8f6386c
DH
2593 */
2594 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2595 rt_mutex_unlock(&q.pi_state->pi_mutex);
2596
778e9a9c
AK
2597 /* Unqueue and drop the lock */
2598 unqueue_me_pi(&q);
c87e2837 2599
5ecb01cf 2600 goto out_put_key;
c87e2837 2601
42d35d48 2602out_unlock_put_key:
0d00c7b2 2603 queue_unlock(hb);
c87e2837 2604
42d35d48 2605out_put_key:
ae791a2d 2606 put_futex_key(&q.key);
42d35d48 2607out:
237fc6e7
TG
2608 if (to)
2609 destroy_hrtimer_on_stack(&to->timer);
dd973998 2610 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2611
42d35d48 2612uaddr_faulted:
0d00c7b2 2613 queue_unlock(hb);
778e9a9c 2614
d0725992 2615 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2616 if (ret)
2617 goto out_put_key;
c87e2837 2618
b41277dc 2619 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2620 goto retry_private;
2621
ae791a2d 2622 put_futex_key(&q.key);
e4dc5b7a 2623 goto retry;
c87e2837
IM
2624}
2625
c87e2837
IM
2626/*
2627 * Userspace attempted a TID -> 0 atomic transition, and failed.
2628 * This is the in-kernel slowpath: we look up the PI state (if any),
2629 * and do the rt-mutex unlock.
2630 */
b41277dc 2631static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2632{
ccf9e6a8 2633 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2634 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2635 struct futex_hash_bucket *hb;
2636 struct futex_q *match;
e4dc5b7a 2637 int ret;
c87e2837
IM
2638
2639retry:
2640 if (get_user(uval, uaddr))
2641 return -EFAULT;
2642 /*
2643 * We release only a lock we actually own:
2644 */
c0c9ed15 2645 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2646 return -EPERM;
c87e2837 2647
9ea71503 2648 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2649 if (ret)
2650 return ret;
c87e2837
IM
2651
2652 hb = hash_futex(&key);
2653 spin_lock(&hb->lock);
2654
c87e2837 2655 /*
ccf9e6a8
TG
2656 * Check waiters first. We do not trust user space values at
2657 * all and we at least want to know if user space fiddled
2658 * with the futex value instead of blindly unlocking.
c87e2837 2659 */
ccf9e6a8
TG
2660 match = futex_top_waiter(hb, &key);
2661 if (match) {
802ab58d
SAS
2662 ret = wake_futex_pi(uaddr, uval, match, hb);
2663 /*
2664 * In case of success wake_futex_pi dropped the hash
2665 * bucket lock.
2666 */
2667 if (!ret)
2668 goto out_putkey;
c87e2837 2669 /*
ccf9e6a8
TG
2670 * The atomic access to the futex value generated a
2671 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2672 */
2673 if (ret == -EFAULT)
2674 goto pi_faulted;
89e9e66b
SAS
2675 /*
2676 * A unconditional UNLOCK_PI op raced against a waiter
2677 * setting the FUTEX_WAITERS bit. Try again.
2678 */
2679 if (ret == -EAGAIN) {
2680 spin_unlock(&hb->lock);
2681 put_futex_key(&key);
2682 goto retry;
2683 }
802ab58d
SAS
2684 /*
2685 * wake_futex_pi has detected invalid state. Tell user
2686 * space.
2687 */
c87e2837
IM
2688 goto out_unlock;
2689 }
ccf9e6a8 2690
c87e2837 2691 /*
ccf9e6a8
TG
2692 * We have no kernel internal state, i.e. no waiters in the
2693 * kernel. Waiters which are about to queue themselves are stuck
2694 * on hb->lock. So we can safely ignore them. We do neither
2695 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2696 * owner.
c87e2837 2697 */
ccf9e6a8 2698 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2699 goto pi_faulted;
c87e2837 2700
ccf9e6a8
TG
2701 /*
2702 * If uval has changed, let user space handle it.
2703 */
2704 ret = (curval == uval) ? 0 : -EAGAIN;
2705
c87e2837
IM
2706out_unlock:
2707 spin_unlock(&hb->lock);
802ab58d 2708out_putkey:
ae791a2d 2709 put_futex_key(&key);
c87e2837
IM
2710 return ret;
2711
2712pi_faulted:
778e9a9c 2713 spin_unlock(&hb->lock);
ae791a2d 2714 put_futex_key(&key);
c87e2837 2715
d0725992 2716 ret = fault_in_user_writeable(uaddr);
b5686363 2717 if (!ret)
c87e2837
IM
2718 goto retry;
2719
1da177e4
LT
2720 return ret;
2721}
2722
52400ba9
DH
2723/**
2724 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2725 * @hb: the hash_bucket futex_q was original enqueued on
2726 * @q: the futex_q woken while waiting to be requeued
2727 * @key2: the futex_key of the requeue target futex
2728 * @timeout: the timeout associated with the wait (NULL if none)
2729 *
2730 * Detect if the task was woken on the initial futex as opposed to the requeue
2731 * target futex. If so, determine if it was a timeout or a signal that caused
2732 * the wakeup and return the appropriate error code to the caller. Must be
2733 * called with the hb lock held.
2734 *
6c23cbbd
RD
2735 * Return:
2736 * 0 = no early wakeup detected;
2737 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2738 */
2739static inline
2740int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2741 struct futex_q *q, union futex_key *key2,
2742 struct hrtimer_sleeper *timeout)
2743{
2744 int ret = 0;
2745
2746 /*
2747 * With the hb lock held, we avoid races while we process the wakeup.
2748 * We only need to hold hb (and not hb2) to ensure atomicity as the
2749 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2750 * It can't be requeued from uaddr2 to something else since we don't
2751 * support a PI aware source futex for requeue.
2752 */
2753 if (!match_futex(&q->key, key2)) {
2754 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2755 /*
2756 * We were woken prior to requeue by a timeout or a signal.
2757 * Unqueue the futex_q and determine which it was.
2758 */
2e12978a 2759 plist_del(&q->list, &hb->chain);
11d4616b 2760 hb_waiters_dec(hb);
52400ba9 2761
d58e6576 2762 /* Handle spurious wakeups gracefully */
11df6ddd 2763 ret = -EWOULDBLOCK;
52400ba9
DH
2764 if (timeout && !timeout->task)
2765 ret = -ETIMEDOUT;
d58e6576 2766 else if (signal_pending(current))
1c840c14 2767 ret = -ERESTARTNOINTR;
52400ba9
DH
2768 }
2769 return ret;
2770}
2771
2772/**
2773 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2774 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2775 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2776 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2777 * @val: the expected value of uaddr
2778 * @abs_time: absolute timeout
56ec1607 2779 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2780 * @uaddr2: the pi futex we will take prior to returning to user-space
2781 *
2782 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2783 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2784 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2785 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2786 * without one, the pi logic would not know which task to boost/deboost, if
2787 * there was a need to.
52400ba9
DH
2788 *
2789 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2790 * via the following--
52400ba9 2791 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2792 * 2) wakeup on uaddr2 after a requeue
2793 * 3) signal
2794 * 4) timeout
52400ba9 2795 *
cc6db4e6 2796 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2797 *
2798 * If 2, we may then block on trying to take the rt_mutex and return via:
2799 * 5) successful lock
2800 * 6) signal
2801 * 7) timeout
2802 * 8) other lock acquisition failure
2803 *
cc6db4e6 2804 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2805 *
2806 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2807 *
6c23cbbd
RD
2808 * Return:
2809 * 0 - On success;
52400ba9
DH
2810 * <0 - On error
2811 */
b41277dc 2812static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2813 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2814 u32 __user *uaddr2)
52400ba9
DH
2815{
2816 struct hrtimer_sleeper timeout, *to = NULL;
2817 struct rt_mutex_waiter rt_waiter;
52400ba9 2818 struct futex_hash_bucket *hb;
5bdb05f9
DH
2819 union futex_key key2 = FUTEX_KEY_INIT;
2820 struct futex_q q = futex_q_init;
52400ba9 2821 int res, ret;
52400ba9 2822
6f7b0a2a
DH
2823 if (uaddr == uaddr2)
2824 return -EINVAL;
2825
52400ba9
DH
2826 if (!bitset)
2827 return -EINVAL;
2828
2829 if (abs_time) {
2830 to = &timeout;
b41277dc
DH
2831 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2832 CLOCK_REALTIME : CLOCK_MONOTONIC,
2833 HRTIMER_MODE_ABS);
52400ba9
DH
2834 hrtimer_init_sleeper(to, current);
2835 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2836 current->timer_slack_ns);
2837 }
2838
2839 /*
2840 * The waiter is allocated on our stack, manipulated by the requeue
2841 * code while we sleep on uaddr.
2842 */
2843 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2844 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2845 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2846 rt_waiter.task = NULL;
2847
9ea71503 2848 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2849 if (unlikely(ret != 0))
2850 goto out;
2851
84bc4af5
DH
2852 q.bitset = bitset;
2853 q.rt_waiter = &rt_waiter;
2854 q.requeue_pi_key = &key2;
2855
7ada876a
DH
2856 /*
2857 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2858 * count.
2859 */
b41277dc 2860 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2861 if (ret)
2862 goto out_key2;
52400ba9 2863
e9c243a5
TG
2864 /*
2865 * The check above which compares uaddrs is not sufficient for
2866 * shared futexes. We need to compare the keys:
2867 */
2868 if (match_futex(&q.key, &key2)) {
13c42c2f 2869 queue_unlock(hb);
e9c243a5
TG
2870 ret = -EINVAL;
2871 goto out_put_keys;
2872 }
2873
52400ba9 2874 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2875 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2876
2877 spin_lock(&hb->lock);
2878 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2879 spin_unlock(&hb->lock);
2880 if (ret)
2881 goto out_put_keys;
2882
2883 /*
2884 * In order for us to be here, we know our q.key == key2, and since
2885 * we took the hb->lock above, we also know that futex_requeue() has
2886 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2887 * race with the atomic proxy lock acquisition by the requeue code. The
2888 * futex_requeue dropped our key1 reference and incremented our key2
2889 * reference count.
52400ba9
DH
2890 */
2891
2892 /* Check if the requeue code acquired the second futex for us. */
2893 if (!q.rt_waiter) {
2894 /*
2895 * Got the lock. We might not be the anticipated owner if we
2896 * did a lock-steal - fix up the PI-state in that case.
2897 */
2898 if (q.pi_state && (q.pi_state->owner != current)) {
2899 spin_lock(q.lock_ptr);
ae791a2d 2900 ret = fixup_pi_state_owner(uaddr2, &q, current);
9bbb25af
PZ
2901 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2902 rt_mutex_unlock(&q.pi_state->pi_mutex);
fb75a428
TG
2903 /*
2904 * Drop the reference to the pi state which
2905 * the requeue_pi() code acquired for us.
2906 */
29e9ee5d 2907 put_pi_state(q.pi_state);
52400ba9
DH
2908 spin_unlock(q.lock_ptr);
2909 }
2910 } else {
c236c8e9
PZ
2911 struct rt_mutex *pi_mutex;
2912
52400ba9
DH
2913 /*
2914 * We have been woken up by futex_unlock_pi(), a timeout, or a
2915 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2916 * the pi_state.
2917 */
f27071cb 2918 WARN_ON(!q.pi_state);
52400ba9 2919 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2920 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2921 debug_rt_mutex_free_waiter(&rt_waiter);
2922
2923 spin_lock(q.lock_ptr);
2924 /*
2925 * Fixup the pi_state owner and possibly acquire the lock if we
2926 * haven't already.
2927 */
ae791a2d 2928 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2929 /*
2930 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2931 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2932 */
2933 if (res)
2934 ret = (res < 0) ? res : 0;
2935
c236c8e9
PZ
2936 /*
2937 * If fixup_pi_state_owner() faulted and was unable to handle
2938 * the fault, unlock the rt_mutex and return the fault to
2939 * userspace.
2940 */
2941 if (ret && rt_mutex_owner(pi_mutex) == current)
2942 rt_mutex_unlock(pi_mutex);
2943
52400ba9
DH
2944 /* Unqueue and drop the lock. */
2945 unqueue_me_pi(&q);
2946 }
2947
c236c8e9 2948 if (ret == -EINTR) {
52400ba9 2949 /*
cc6db4e6
DH
2950 * We've already been requeued, but cannot restart by calling
2951 * futex_lock_pi() directly. We could restart this syscall, but
2952 * it would detect that the user space "val" changed and return
2953 * -EWOULDBLOCK. Save the overhead of the restart and return
2954 * -EWOULDBLOCK directly.
52400ba9 2955 */
2070887f 2956 ret = -EWOULDBLOCK;
52400ba9
DH
2957 }
2958
2959out_put_keys:
ae791a2d 2960 put_futex_key(&q.key);
c8b15a70 2961out_key2:
ae791a2d 2962 put_futex_key(&key2);
52400ba9
DH
2963
2964out:
2965 if (to) {
2966 hrtimer_cancel(&to->timer);
2967 destroy_hrtimer_on_stack(&to->timer);
2968 }
2969 return ret;
2970}
2971
0771dfef
IM
2972/*
2973 * Support for robust futexes: the kernel cleans up held futexes at
2974 * thread exit time.
2975 *
2976 * Implementation: user-space maintains a per-thread list of locks it
2977 * is holding. Upon do_exit(), the kernel carefully walks this list,
2978 * and marks all locks that are owned by this thread with the
c87e2837 2979 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2980 * always manipulated with the lock held, so the list is private and
2981 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2982 * field, to allow the kernel to clean up if the thread dies after
2983 * acquiring the lock, but just before it could have added itself to
2984 * the list. There can only be one such pending lock.
2985 */
2986
2987/**
d96ee56c
DH
2988 * sys_set_robust_list() - Set the robust-futex list head of a task
2989 * @head: pointer to the list-head
2990 * @len: length of the list-head, as userspace expects
0771dfef 2991 */
836f92ad
HC
2992SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2993 size_t, len)
0771dfef 2994{
a0c1e907
TG
2995 if (!futex_cmpxchg_enabled)
2996 return -ENOSYS;
0771dfef
IM
2997 /*
2998 * The kernel knows only one size for now:
2999 */
3000 if (unlikely(len != sizeof(*head)))
3001 return -EINVAL;
3002
3003 current->robust_list = head;
3004
3005 return 0;
3006}
3007
3008/**
d96ee56c
DH
3009 * sys_get_robust_list() - Get the robust-futex list head of a task
3010 * @pid: pid of the process [zero for current task]
3011 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3012 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3013 */
836f92ad
HC
3014SYSCALL_DEFINE3(get_robust_list, int, pid,
3015 struct robust_list_head __user * __user *, head_ptr,
3016 size_t __user *, len_ptr)
0771dfef 3017{
ba46df98 3018 struct robust_list_head __user *head;
0771dfef 3019 unsigned long ret;
bdbb776f 3020 struct task_struct *p;
0771dfef 3021
a0c1e907
TG
3022 if (!futex_cmpxchg_enabled)
3023 return -ENOSYS;
3024
bdbb776f
KC
3025 rcu_read_lock();
3026
3027 ret = -ESRCH;
0771dfef 3028 if (!pid)
bdbb776f 3029 p = current;
0771dfef 3030 else {
228ebcbe 3031 p = find_task_by_vpid(pid);
0771dfef
IM
3032 if (!p)
3033 goto err_unlock;
0771dfef
IM
3034 }
3035
bdbb776f 3036 ret = -EPERM;
caaee623 3037 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3038 goto err_unlock;
3039
3040 head = p->robust_list;
3041 rcu_read_unlock();
3042
0771dfef
IM
3043 if (put_user(sizeof(*head), len_ptr))
3044 return -EFAULT;
3045 return put_user(head, head_ptr);
3046
3047err_unlock:
aaa2a97e 3048 rcu_read_unlock();
0771dfef
IM
3049
3050 return ret;
3051}
3052
3053/*
3054 * Process a futex-list entry, check whether it's owned by the
3055 * dying task, and do notification if so:
3056 */
e3f2ddea 3057int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3058{
7cfdaf38 3059 u32 uval, uninitialized_var(nval), mval;
0771dfef 3060
8f17d3a5
IM
3061retry:
3062 if (get_user(uval, uaddr))
0771dfef
IM
3063 return -1;
3064
b488893a 3065 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3066 /*
3067 * Ok, this dying thread is truly holding a futex
3068 * of interest. Set the OWNER_DIED bit atomically
3069 * via cmpxchg, and if the value had FUTEX_WAITERS
3070 * set, wake up a waiter (if any). (We have to do a
3071 * futex_wake() even if OWNER_DIED is already set -
3072 * to handle the rare but possible case of recursive
3073 * thread-death.) The rest of the cleanup is done in
3074 * userspace.
3075 */
e3f2ddea 3076 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3077 /*
3078 * We are not holding a lock here, but we want to have
3079 * the pagefault_disable/enable() protection because
3080 * we want to handle the fault gracefully. If the
3081 * access fails we try to fault in the futex with R/W
3082 * verification via get_user_pages. get_user() above
3083 * does not guarantee R/W access. If that fails we
3084 * give up and leave the futex locked.
3085 */
3086 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3087 if (fault_in_user_writeable(uaddr))
3088 return -1;
3089 goto retry;
3090 }
c87e2837 3091 if (nval != uval)
8f17d3a5 3092 goto retry;
0771dfef 3093
e3f2ddea
IM
3094 /*
3095 * Wake robust non-PI futexes here. The wakeup of
3096 * PI futexes happens in exit_pi_state():
3097 */
36cf3b5c 3098 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3099 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3100 }
3101 return 0;
3102}
3103
e3f2ddea
IM
3104/*
3105 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3106 */
3107static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3108 struct robust_list __user * __user *head,
1dcc41bb 3109 unsigned int *pi)
e3f2ddea
IM
3110{
3111 unsigned long uentry;
3112
ba46df98 3113 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3114 return -EFAULT;
3115
ba46df98 3116 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3117 *pi = uentry & 1;
3118
3119 return 0;
3120}
3121
0771dfef
IM
3122/*
3123 * Walk curr->robust_list (very carefully, it's a userspace list!)
3124 * and mark any locks found there dead, and notify any waiters.
3125 *
3126 * We silently return on any sign of list-walking problem.
3127 */
3128void exit_robust_list(struct task_struct *curr)
3129{
3130 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3131 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3132 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3133 unsigned int uninitialized_var(next_pi);
0771dfef 3134 unsigned long futex_offset;
9f96cb1e 3135 int rc;
0771dfef 3136
a0c1e907
TG
3137 if (!futex_cmpxchg_enabled)
3138 return;
3139
0771dfef
IM
3140 /*
3141 * Fetch the list head (which was registered earlier, via
3142 * sys_set_robust_list()):
3143 */
e3f2ddea 3144 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3145 return;
3146 /*
3147 * Fetch the relative futex offset:
3148 */
3149 if (get_user(futex_offset, &head->futex_offset))
3150 return;
3151 /*
3152 * Fetch any possibly pending lock-add first, and handle it
3153 * if it exists:
3154 */
e3f2ddea 3155 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3156 return;
e3f2ddea 3157
9f96cb1e 3158 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3159 while (entry != &head->list) {
9f96cb1e
MS
3160 /*
3161 * Fetch the next entry in the list before calling
3162 * handle_futex_death:
3163 */
3164 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3165 /*
3166 * A pending lock might already be on the list, so
c87e2837 3167 * don't process it twice:
0771dfef
IM
3168 */
3169 if (entry != pending)
ba46df98 3170 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3171 curr, pi))
0771dfef 3172 return;
9f96cb1e 3173 if (rc)
0771dfef 3174 return;
9f96cb1e
MS
3175 entry = next_entry;
3176 pi = next_pi;
0771dfef
IM
3177 /*
3178 * Avoid excessively long or circular lists:
3179 */
3180 if (!--limit)
3181 break;
3182
3183 cond_resched();
3184 }
9f96cb1e
MS
3185
3186 if (pending)
3187 handle_futex_death((void __user *)pending + futex_offset,
3188 curr, pip);
0771dfef
IM
3189}
3190
c19384b5 3191long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3192 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3193{
81b40539 3194 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3195 unsigned int flags = 0;
34f01cc1
ED
3196
3197 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3198 flags |= FLAGS_SHARED;
1da177e4 3199
b41277dc
DH
3200 if (op & FUTEX_CLOCK_REALTIME) {
3201 flags |= FLAGS_CLOCKRT;
337f1304
DH
3202 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3203 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3204 return -ENOSYS;
3205 }
1da177e4 3206
59263b51
TG
3207 switch (cmd) {
3208 case FUTEX_LOCK_PI:
3209 case FUTEX_UNLOCK_PI:
3210 case FUTEX_TRYLOCK_PI:
3211 case FUTEX_WAIT_REQUEUE_PI:
3212 case FUTEX_CMP_REQUEUE_PI:
3213 if (!futex_cmpxchg_enabled)
3214 return -ENOSYS;
3215 }
3216
34f01cc1 3217 switch (cmd) {
1da177e4 3218 case FUTEX_WAIT:
cd689985
TG
3219 val3 = FUTEX_BITSET_MATCH_ANY;
3220 case FUTEX_WAIT_BITSET:
81b40539 3221 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3222 case FUTEX_WAKE:
cd689985
TG
3223 val3 = FUTEX_BITSET_MATCH_ANY;
3224 case FUTEX_WAKE_BITSET:
81b40539 3225 return futex_wake(uaddr, flags, val, val3);
1da177e4 3226 case FUTEX_REQUEUE:
81b40539 3227 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3228 case FUTEX_CMP_REQUEUE:
81b40539 3229 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3230 case FUTEX_WAKE_OP:
81b40539 3231 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3232 case FUTEX_LOCK_PI:
996636dd 3233 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3234 case FUTEX_UNLOCK_PI:
81b40539 3235 return futex_unlock_pi(uaddr, flags);
c87e2837 3236 case FUTEX_TRYLOCK_PI:
996636dd 3237 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3238 case FUTEX_WAIT_REQUEUE_PI:
3239 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3240 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3241 uaddr2);
52400ba9 3242 case FUTEX_CMP_REQUEUE_PI:
81b40539 3243 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3244 }
81b40539 3245 return -ENOSYS;
1da177e4
LT
3246}
3247
3248
17da2bd9
HC
3249SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3250 struct timespec __user *, utime, u32 __user *, uaddr2,
3251 u32, val3)
1da177e4 3252{
c19384b5
PP
3253 struct timespec ts;
3254 ktime_t t, *tp = NULL;
e2970f2f 3255 u32 val2 = 0;
34f01cc1 3256 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3257
cd689985 3258 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3259 cmd == FUTEX_WAIT_BITSET ||
3260 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3261 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3262 return -EFAULT;
c19384b5 3263 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3264 return -EFAULT;
c19384b5 3265 if (!timespec_valid(&ts))
9741ef96 3266 return -EINVAL;
c19384b5
PP
3267
3268 t = timespec_to_ktime(ts);
34f01cc1 3269 if (cmd == FUTEX_WAIT)
5a7780e7 3270 t = ktime_add_safe(ktime_get(), t);
c19384b5 3271 tp = &t;
1da177e4
LT
3272 }
3273 /*
52400ba9 3274 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3275 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3276 */
f54f0986 3277 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3278 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3279 val2 = (u32) (unsigned long) utime;
1da177e4 3280
c19384b5 3281 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3282}
3283
03b8c7b6 3284static void __init futex_detect_cmpxchg(void)
1da177e4 3285{
03b8c7b6 3286#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3287 u32 curval;
03b8c7b6
HC
3288
3289 /*
3290 * This will fail and we want it. Some arch implementations do
3291 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3292 * functionality. We want to know that before we call in any
3293 * of the complex code paths. Also we want to prevent
3294 * registration of robust lists in that case. NULL is
3295 * guaranteed to fault and we get -EFAULT on functional
3296 * implementation, the non-functional ones will return
3297 * -ENOSYS.
3298 */
3299 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3300 futex_cmpxchg_enabled = 1;
3301#endif
3302}
3303
3304static int __init futex_init(void)
3305{
63b1a816 3306 unsigned int futex_shift;
a52b89eb
DB
3307 unsigned long i;
3308
3309#if CONFIG_BASE_SMALL
3310 futex_hashsize = 16;
3311#else
3312 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3313#endif
3314
3315 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3316 futex_hashsize, 0,
3317 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3318 &futex_shift, NULL,
3319 futex_hashsize, futex_hashsize);
3320 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3321
3322 futex_detect_cmpxchg();
a0c1e907 3323
a52b89eb 3324 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3325 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3326 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3327 spin_lock_init(&futex_queues[i].lock);
3328 }
3329
1da177e4
LT
3330 return 0;
3331}
25f71d1c 3332core_initcall(futex_init);