]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
spi: npcm-fiu: Disable clock in probe error path
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
13d60f4b 38#include <linux/hugetlb.h>
88c8004f 39#include <linux/freezer.h>
57c8a661 40#include <linux/memblock.h>
ab51fbab 41#include <linux/fault-inject.h>
c2f7d08c 42#include <linux/time_namespace.h>
b488893a 43
4732efbe 44#include <asm/futex.h>
1da177e4 45
1696a8be 46#include "locking/rtmutex_common.h"
c87e2837 47
99b60ce6 48/*
d7e8af1a
DB
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
99b60ce6
TG
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
99b60ce6
TG
60 *
61 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
99b60ce6 65 *
b0c29f79
DB
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 91 *
b0c29f79
DB
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
99b60ce6
TG
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
b0c29f79 100 *
d7e8af1a 101 * waiters++; (a)
8ad7b378
DB
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
99b60ce6 112 * if (uval == val)
b0c29f79 113 * queue();
99b60ce6 114 * unlock(hash_bucket(futex));
b0c29f79
DB
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
d7e8af1a
DB
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 119 *
d7e8af1a
DB
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 122 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
d7e8af1a
DB
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
146 */
147
04e7712f
AB
148#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149#define futex_cmpxchg_enabled 1
150#else
151static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 152#endif
a0c1e907 153
b41277dc
DH
154/*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
784bdf3b
TG
158#ifdef CONFIG_MMU
159# define FLAGS_SHARED 0x01
160#else
161/*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165# define FLAGS_SHARED 0x00
166#endif
b41277dc
DH
167#define FLAGS_CLOCKRT 0x02
168#define FLAGS_HAS_TIMEOUT 0x04
169
c87e2837
IM
170/*
171 * Priority Inheritance state:
172 */
173struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
49262de2 186 refcount_t refcount;
c87e2837
IM
187
188 union futex_key key;
3859a271 189} __randomize_layout;
c87e2837 190
d8d88fbb
DH
191/**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 193 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
ac6424b9 202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 207 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
212 */
213struct futex_q {
ec92d082 214 struct plist_node list;
1da177e4 215
d8d88fbb 216 struct task_struct *task;
1da177e4 217 spinlock_t *lock_ptr;
1da177e4 218 union futex_key key;
c87e2837 219 struct futex_pi_state *pi_state;
52400ba9 220 struct rt_mutex_waiter *rt_waiter;
84bc4af5 221 union futex_key *requeue_pi_key;
cd689985 222 u32 bitset;
3859a271 223} __randomize_layout;
1da177e4 224
5bdb05f9
DH
225static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229};
230
1da177e4 231/*
b2d0994b
DH
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
1da177e4
LT
235 */
236struct futex_hash_bucket {
11d4616b 237 atomic_t waiters;
ec92d082
PP
238 spinlock_t lock;
239 struct plist_head chain;
a52b89eb 240} ____cacheline_aligned_in_smp;
1da177e4 241
ac742d37
RV
242/*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250} __futex_data __read_mostly __aligned(2*sizeof(long));
251#define futex_queues (__futex_data.queues)
252#define futex_hashsize (__futex_data.hashsize)
a52b89eb 253
1da177e4 254
ab51fbab
DB
255/*
256 * Fault injections for futexes.
257 */
258#ifdef CONFIG_FAIL_FUTEX
259
260static struct {
261 struct fault_attr attr;
262
621a5f7a 263 bool ignore_private;
ab51fbab
DB
264} fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 266 .ignore_private = false,
ab51fbab
DB
267};
268
269static int __init setup_fail_futex(char *str)
270{
271 return setup_fault_attr(&fail_futex.attr, str);
272}
273__setup("fail_futex=", setup_fail_futex);
274
5d285a7f 275static bool should_fail_futex(bool fshared)
ab51fbab
DB
276{
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281}
282
283#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285static int __init fail_futex_debugfs(void)
286{
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
0365aeba
GKH
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
ab51fbab
DB
297 return 0;
298}
299
300late_initcall(fail_futex_debugfs);
301
302#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304#else
305static inline bool should_fail_futex(bool fshared)
306{
307 return false;
308}
309#endif /* CONFIG_FAIL_FUTEX */
310
ba31c1a4
TG
311#ifdef CONFIG_COMPAT
312static void compat_exit_robust_list(struct task_struct *curr);
313#else
314static inline void compat_exit_robust_list(struct task_struct *curr) { }
315#endif
316
11d4616b
LT
317/*
318 * Reflects a new waiter being added to the waitqueue.
319 */
320static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
321{
322#ifdef CONFIG_SMP
11d4616b 323 atomic_inc(&hb->waiters);
b0c29f79 324 /*
11d4616b 325 * Full barrier (A), see the ordering comment above.
b0c29f79 326 */
4e857c58 327 smp_mb__after_atomic();
11d4616b
LT
328#endif
329}
330
331/*
332 * Reflects a waiter being removed from the waitqueue by wakeup
333 * paths.
334 */
335static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336{
337#ifdef CONFIG_SMP
338 atomic_dec(&hb->waiters);
339#endif
340}
b0c29f79 341
11d4616b
LT
342static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343{
344#ifdef CONFIG_SMP
4b39f99c
PZ
345 /*
346 * Full barrier (B), see the ordering comment above.
347 */
348 smp_mb();
11d4616b 349 return atomic_read(&hb->waiters);
b0c29f79 350#else
11d4616b 351 return 1;
b0c29f79
DB
352#endif
353}
354
e8b61b3f
TG
355/**
356 * hash_futex - Return the hash bucket in the global hash
357 * @key: Pointer to the futex key for which the hash is calculated
358 *
359 * We hash on the keys returned from get_futex_key (see below) and return the
360 * corresponding hash bucket in the global hash.
1da177e4
LT
361 */
362static struct futex_hash_bucket *hash_futex(union futex_key *key)
363{
8d677436 364 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 365 key->both.offset);
8d677436 366
a52b89eb 367 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
368}
369
e8b61b3f
TG
370
371/**
372 * match_futex - Check whether two futex keys are equal
373 * @key1: Pointer to key1
374 * @key2: Pointer to key2
375 *
1da177e4
LT
376 * Return 1 if two futex_keys are equal, 0 otherwise.
377 */
378static inline int match_futex(union futex_key *key1, union futex_key *key2)
379{
2bc87203
DH
380 return (key1 && key2
381 && key1->both.word == key2->both.word
1da177e4
LT
382 && key1->both.ptr == key2->both.ptr
383 && key1->both.offset == key2->both.offset);
384}
385
96d4f267
LT
386enum futex_access {
387 FUTEX_READ,
388 FUTEX_WRITE
389};
390
5ca584d9
WL
391/**
392 * futex_setup_timer - set up the sleeping hrtimer.
393 * @time: ptr to the given timeout value
394 * @timeout: the hrtimer_sleeper structure to be set up
395 * @flags: futex flags
396 * @range_ns: optional range in ns
397 *
398 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399 * value given
400 */
401static inline struct hrtimer_sleeper *
402futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403 int flags, u64 range_ns)
404{
405 if (!time)
406 return NULL;
407
dbc1625f
SAS
408 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409 CLOCK_REALTIME : CLOCK_MONOTONIC,
410 HRTIMER_MODE_ABS);
5ca584d9
WL
411 /*
412 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413 * effectively the same as calling hrtimer_set_expires().
414 */
415 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416
417 return timeout;
418}
419
8019ad13
PZ
420/*
421 * Generate a machine wide unique identifier for this inode.
422 *
423 * This relies on u64 not wrapping in the life-time of the machine; which with
424 * 1ns resolution means almost 585 years.
425 *
426 * This further relies on the fact that a well formed program will not unmap
427 * the file while it has a (shared) futex waiting on it. This mapping will have
428 * a file reference which pins the mount and inode.
429 *
430 * If for some reason an inode gets evicted and read back in again, it will get
431 * a new sequence number and will _NOT_ match, even though it is the exact same
432 * file.
433 *
434 * It is important that match_futex() will never have a false-positive, esp.
435 * for PI futexes that can mess up the state. The above argues that false-negatives
436 * are only possible for malformed programs.
437 */
438static u64 get_inode_sequence_number(struct inode *inode)
439{
440 static atomic64_t i_seq;
441 u64 old;
442
443 /* Does the inode already have a sequence number? */
444 old = atomic64_read(&inode->i_sequence);
445 if (likely(old))
446 return old;
447
448 for (;;) {
449 u64 new = atomic64_add_return(1, &i_seq);
450 if (WARN_ON_ONCE(!new))
451 continue;
452
453 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454 if (old)
455 return old;
456 return new;
457 }
458}
459
34f01cc1 460/**
d96ee56c
DH
461 * get_futex_key() - Get parameters which are the keys for a futex
462 * @uaddr: virtual address of the futex
92613085 463 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 464 * @key: address where result is stored.
96d4f267
LT
465 * @rw: mapping needs to be read/write (values: FUTEX_READ,
466 * FUTEX_WRITE)
34f01cc1 467 *
6c23cbbd
RD
468 * Return: a negative error code or 0
469 *
7b4ff1ad 470 * The key words are stored in @key on success.
1da177e4 471 *
8019ad13 472 * For shared mappings (when @fshared), the key is:
03c109d6 473 *
8019ad13 474 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 475 *
8019ad13
PZ
476 * [ also see get_inode_sequence_number() ]
477 *
478 * For private mappings (or when !@fshared), the key is:
03c109d6 479 *
8019ad13
PZ
480 * ( current->mm, address, 0 )
481 *
482 * This allows (cross process, where applicable) identification of the futex
483 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 484 *
b2d0994b 485 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 486 */
92613085
AA
487static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488 enum futex_access rw)
1da177e4 489{
e2970f2f 490 unsigned long address = (unsigned long)uaddr;
1da177e4 491 struct mm_struct *mm = current->mm;
077fa7ae 492 struct page *page, *tail;
14d27abd 493 struct address_space *mapping;
9ea71503 494 int err, ro = 0;
1da177e4
LT
495
496 /*
497 * The futex address must be "naturally" aligned.
498 */
e2970f2f 499 key->both.offset = address % PAGE_SIZE;
34f01cc1 500 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 501 return -EINVAL;
e2970f2f 502 address -= key->both.offset;
1da177e4 503
96d4f267 504 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
505 return -EFAULT;
506
ab51fbab
DB
507 if (unlikely(should_fail_futex(fshared)))
508 return -EFAULT;
509
34f01cc1
ED
510 /*
511 * PROCESS_PRIVATE futexes are fast.
512 * As the mm cannot disappear under us and the 'key' only needs
513 * virtual address, we dont even have to find the underlying vma.
514 * Note : We do have to check 'uaddr' is a valid user address,
515 * but access_ok() should be faster than find_vma()
516 */
517 if (!fshared) {
34f01cc1
ED
518 key->private.mm = mm;
519 key->private.address = address;
520 return 0;
521 }
1da177e4 522
38d47c1b 523again:
ab51fbab 524 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 525 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
526 return -EFAULT;
527
73b0140b 528 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
529 /*
530 * If write access is not required (eg. FUTEX_WAIT), try
531 * and get read-only access.
532 */
96d4f267 533 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
534 err = get_user_pages_fast(address, 1, 0, &page);
535 ro = 1;
536 }
38d47c1b
PZ
537 if (err < 0)
538 return err;
9ea71503
SB
539 else
540 err = 0;
38d47c1b 541
65d8fc77
MG
542 /*
543 * The treatment of mapping from this point on is critical. The page
544 * lock protects many things but in this context the page lock
545 * stabilizes mapping, prevents inode freeing in the shared
546 * file-backed region case and guards against movement to swap cache.
547 *
548 * Strictly speaking the page lock is not needed in all cases being
549 * considered here and page lock forces unnecessarily serialization
550 * From this point on, mapping will be re-verified if necessary and
551 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
552 *
553 * Mapping checks require the head page for any compound page so the
554 * head page and mapping is looked up now. For anonymous pages, it
555 * does not matter if the page splits in the future as the key is
556 * based on the address. For filesystem-backed pages, the tail is
557 * required as the index of the page determines the key. For
558 * base pages, there is no tail page and tail == page.
65d8fc77 559 */
077fa7ae 560 tail = page;
65d8fc77
MG
561 page = compound_head(page);
562 mapping = READ_ONCE(page->mapping);
563
e6780f72 564 /*
14d27abd 565 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
566 * page; but it might be the ZERO_PAGE or in the gate area or
567 * in a special mapping (all cases which we are happy to fail);
568 * or it may have been a good file page when get_user_pages_fast
569 * found it, but truncated or holepunched or subjected to
570 * invalidate_complete_page2 before we got the page lock (also
571 * cases which we are happy to fail). And we hold a reference,
572 * so refcount care in invalidate_complete_page's remove_mapping
573 * prevents drop_caches from setting mapping to NULL beneath us.
574 *
575 * The case we do have to guard against is when memory pressure made
576 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 577 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 578 */
65d8fc77
MG
579 if (unlikely(!mapping)) {
580 int shmem_swizzled;
581
582 /*
583 * Page lock is required to identify which special case above
584 * applies. If this is really a shmem page then the page lock
585 * will prevent unexpected transitions.
586 */
587 lock_page(page);
588 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
589 unlock_page(page);
590 put_page(page);
65d8fc77 591
e6780f72
HD
592 if (shmem_swizzled)
593 goto again;
65d8fc77 594
e6780f72 595 return -EFAULT;
38d47c1b 596 }
1da177e4
LT
597
598 /*
599 * Private mappings are handled in a simple way.
600 *
65d8fc77
MG
601 * If the futex key is stored on an anonymous page, then the associated
602 * object is the mm which is implicitly pinned by the calling process.
603 *
1da177e4
LT
604 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 606 * the object not the particular process.
1da177e4 607 */
14d27abd 608 if (PageAnon(page)) {
9ea71503
SB
609 /*
610 * A RO anonymous page will never change and thus doesn't make
611 * sense for futex operations.
612 */
92613085 613 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
614 err = -EFAULT;
615 goto out;
616 }
617
38d47c1b 618 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 619 key->private.mm = mm;
e2970f2f 620 key->private.address = address;
65d8fc77 621
38d47c1b 622 } else {
65d8fc77
MG
623 struct inode *inode;
624
625 /*
626 * The associated futex object in this case is the inode and
627 * the page->mapping must be traversed. Ordinarily this should
628 * be stabilised under page lock but it's not strictly
629 * necessary in this case as we just want to pin the inode, not
630 * update the radix tree or anything like that.
631 *
632 * The RCU read lock is taken as the inode is finally freed
633 * under RCU. If the mapping still matches expectations then the
634 * mapping->host can be safely accessed as being a valid inode.
635 */
636 rcu_read_lock();
637
638 if (READ_ONCE(page->mapping) != mapping) {
639 rcu_read_unlock();
640 put_page(page);
641
642 goto again;
643 }
644
645 inode = READ_ONCE(mapping->host);
646 if (!inode) {
647 rcu_read_unlock();
648 put_page(page);
649
650 goto again;
651 }
652
38d47c1b 653 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 654 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 655 key->shared.pgoff = basepage_index(tail);
65d8fc77 656 rcu_read_unlock();
1da177e4
LT
657 }
658
9ea71503 659out:
14d27abd 660 put_page(page);
9ea71503 661 return err;
1da177e4
LT
662}
663
d96ee56c
DH
664/**
665 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
666 * @uaddr: pointer to faulting user space address
667 *
668 * Slow path to fixup the fault we just took in the atomic write
669 * access to @uaddr.
670 *
fb62db2b 671 * We have no generic implementation of a non-destructive write to the
d0725992
TG
672 * user address. We know that we faulted in the atomic pagefault
673 * disabled section so we can as well avoid the #PF overhead by
674 * calling get_user_pages() right away.
675 */
676static int fault_in_user_writeable(u32 __user *uaddr)
677{
722d0172
AK
678 struct mm_struct *mm = current->mm;
679 int ret;
680
d8ed45c5 681 mmap_read_lock(mm);
64019a2e 682 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 683 FAULT_FLAG_WRITE, NULL);
d8ed45c5 684 mmap_read_unlock(mm);
722d0172 685
d0725992
TG
686 return ret < 0 ? ret : 0;
687}
688
4b1c486b
DH
689/**
690 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
691 * @hb: the hash bucket the futex_q's reside in
692 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
693 *
694 * Must be called with the hb lock held.
695 */
696static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697 union futex_key *key)
698{
699 struct futex_q *this;
700
701 plist_for_each_entry(this, &hb->chain, list) {
702 if (match_futex(&this->key, key))
703 return this;
704 }
705 return NULL;
706}
707
37a9d912
ML
708static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709 u32 uval, u32 newval)
36cf3b5c 710{
37a9d912 711 int ret;
36cf3b5c
TG
712
713 pagefault_disable();
37a9d912 714 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
715 pagefault_enable();
716
37a9d912 717 return ret;
36cf3b5c
TG
718}
719
720static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
721{
722 int ret;
723
a866374a 724 pagefault_disable();
bd28b145 725 ret = __get_user(*dest, from);
a866374a 726 pagefault_enable();
1da177e4
LT
727
728 return ret ? -EFAULT : 0;
729}
730
c87e2837
IM
731
732/*
733 * PI code:
734 */
735static int refill_pi_state_cache(void)
736{
737 struct futex_pi_state *pi_state;
738
739 if (likely(current->pi_state_cache))
740 return 0;
741
4668edc3 742 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
743
744 if (!pi_state)
745 return -ENOMEM;
746
c87e2837
IM
747 INIT_LIST_HEAD(&pi_state->list);
748 /* pi_mutex gets initialized later */
749 pi_state->owner = NULL;
49262de2 750 refcount_set(&pi_state->refcount, 1);
38d47c1b 751 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
752
753 current->pi_state_cache = pi_state;
754
755 return 0;
756}
757
bf92cf3a 758static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
759{
760 struct futex_pi_state *pi_state = current->pi_state_cache;
761
762 WARN_ON(!pi_state);
763 current->pi_state_cache = NULL;
764
765 return pi_state;
766}
767
bf92cf3a
PZ
768static void get_pi_state(struct futex_pi_state *pi_state)
769{
49262de2 770 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
771}
772
30a6b803 773/*
29e9ee5d
TG
774 * Drops a reference to the pi_state object and frees or caches it
775 * when the last reference is gone.
30a6b803 776 */
29e9ee5d 777static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 778{
30a6b803
BS
779 if (!pi_state)
780 return;
781
49262de2 782 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
783 return;
784
785 /*
786 * If pi_state->owner is NULL, the owner is most probably dying
787 * and has cleaned up the pi_state already
788 */
789 if (pi_state->owner) {
c74aef2d 790 struct task_struct *owner;
c87e2837 791
c74aef2d
PZ
792 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
793 owner = pi_state->owner;
794 if (owner) {
795 raw_spin_lock(&owner->pi_lock);
796 list_del_init(&pi_state->list);
797 raw_spin_unlock(&owner->pi_lock);
798 }
799 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
800 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
801 }
802
c74aef2d 803 if (current->pi_state_cache) {
c87e2837 804 kfree(pi_state);
c74aef2d 805 } else {
c87e2837
IM
806 /*
807 * pi_state->list is already empty.
808 * clear pi_state->owner.
809 * refcount is at 0 - put it back to 1.
810 */
811 pi_state->owner = NULL;
49262de2 812 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
813 current->pi_state_cache = pi_state;
814 }
815}
816
bc2eecd7
NP
817#ifdef CONFIG_FUTEX_PI
818
c87e2837
IM
819/*
820 * This task is holding PI mutexes at exit time => bad.
821 * Kernel cleans up PI-state, but userspace is likely hosed.
822 * (Robust-futex cleanup is separate and might save the day for userspace.)
823 */
ba31c1a4 824static void exit_pi_state_list(struct task_struct *curr)
c87e2837 825{
c87e2837
IM
826 struct list_head *next, *head = &curr->pi_state_list;
827 struct futex_pi_state *pi_state;
627371d7 828 struct futex_hash_bucket *hb;
38d47c1b 829 union futex_key key = FUTEX_KEY_INIT;
c87e2837 830
a0c1e907
TG
831 if (!futex_cmpxchg_enabled)
832 return;
c87e2837
IM
833 /*
834 * We are a ZOMBIE and nobody can enqueue itself on
835 * pi_state_list anymore, but we have to be careful
627371d7 836 * versus waiters unqueueing themselves:
c87e2837 837 */
1d615482 838 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 839 while (!list_empty(head)) {
c87e2837
IM
840 next = head->next;
841 pi_state = list_entry(next, struct futex_pi_state, list);
842 key = pi_state->key;
627371d7 843 hb = hash_futex(&key);
153fbd12
PZ
844
845 /*
846 * We can race against put_pi_state() removing itself from the
847 * list (a waiter going away). put_pi_state() will first
848 * decrement the reference count and then modify the list, so
849 * its possible to see the list entry but fail this reference
850 * acquire.
851 *
852 * In that case; drop the locks to let put_pi_state() make
853 * progress and retry the loop.
854 */
49262de2 855 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
856 raw_spin_unlock_irq(&curr->pi_lock);
857 cpu_relax();
858 raw_spin_lock_irq(&curr->pi_lock);
859 continue;
860 }
1d615482 861 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 862
c87e2837 863 spin_lock(&hb->lock);
c74aef2d
PZ
864 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
865 raw_spin_lock(&curr->pi_lock);
627371d7
IM
866 /*
867 * We dropped the pi-lock, so re-check whether this
868 * task still owns the PI-state:
869 */
c87e2837 870 if (head->next != next) {
153fbd12 871 /* retain curr->pi_lock for the loop invariant */
c74aef2d 872 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 873 spin_unlock(&hb->lock);
153fbd12 874 put_pi_state(pi_state);
c87e2837
IM
875 continue;
876 }
877
c87e2837 878 WARN_ON(pi_state->owner != curr);
627371d7
IM
879 WARN_ON(list_empty(&pi_state->list));
880 list_del_init(&pi_state->list);
c87e2837 881 pi_state->owner = NULL;
c87e2837 882
153fbd12 883 raw_spin_unlock(&curr->pi_lock);
c74aef2d 884 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
885 spin_unlock(&hb->lock);
886
16ffa12d
PZ
887 rt_mutex_futex_unlock(&pi_state->pi_mutex);
888 put_pi_state(pi_state);
889
1d615482 890 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 891 }
1d615482 892 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 893}
ba31c1a4
TG
894#else
895static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
896#endif
897
54a21788
TG
898/*
899 * We need to check the following states:
900 *
901 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
902 *
903 * [1] NULL | --- | --- | 0 | 0/1 | Valid
904 * [2] NULL | --- | --- | >0 | 0/1 | Valid
905 *
906 * [3] Found | NULL | -- | Any | 0/1 | Invalid
907 *
908 * [4] Found | Found | NULL | 0 | 1 | Valid
909 * [5] Found | Found | NULL | >0 | 1 | Invalid
910 *
911 * [6] Found | Found | task | 0 | 1 | Valid
912 *
913 * [7] Found | Found | NULL | Any | 0 | Invalid
914 *
915 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
916 * [9] Found | Found | task | 0 | 0 | Invalid
917 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
918 *
919 * [1] Indicates that the kernel can acquire the futex atomically. We
7b7b8a2c 920 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
54a21788
TG
921 *
922 * [2] Valid, if TID does not belong to a kernel thread. If no matching
923 * thread is found then it indicates that the owner TID has died.
924 *
925 * [3] Invalid. The waiter is queued on a non PI futex
926 *
927 * [4] Valid state after exit_robust_list(), which sets the user space
928 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
929 *
930 * [5] The user space value got manipulated between exit_robust_list()
931 * and exit_pi_state_list()
932 *
933 * [6] Valid state after exit_pi_state_list() which sets the new owner in
934 * the pi_state but cannot access the user space value.
935 *
936 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
937 *
938 * [8] Owner and user space value match
939 *
940 * [9] There is no transient state which sets the user space TID to 0
941 * except exit_robust_list(), but this is indicated by the
942 * FUTEX_OWNER_DIED bit. See [4]
943 *
944 * [10] There is no transient state which leaves owner and user space
945 * TID out of sync.
734009e9
PZ
946 *
947 *
948 * Serialization and lifetime rules:
949 *
950 * hb->lock:
951 *
952 * hb -> futex_q, relation
953 * futex_q -> pi_state, relation
954 *
955 * (cannot be raw because hb can contain arbitrary amount
956 * of futex_q's)
957 *
958 * pi_mutex->wait_lock:
959 *
960 * {uval, pi_state}
961 *
962 * (and pi_mutex 'obviously')
963 *
964 * p->pi_lock:
965 *
966 * p->pi_state_list -> pi_state->list, relation
967 *
968 * pi_state->refcount:
969 *
970 * pi_state lifetime
971 *
972 *
973 * Lock order:
974 *
975 * hb->lock
976 * pi_mutex->wait_lock
977 * p->pi_lock
978 *
54a21788 979 */
e60cbc5c
TG
980
981/*
982 * Validate that the existing waiter has a pi_state and sanity check
983 * the pi_state against the user space value. If correct, attach to
984 * it.
985 */
734009e9
PZ
986static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
987 struct futex_pi_state *pi_state,
e60cbc5c 988 struct futex_pi_state **ps)
c87e2837 989{
778e9a9c 990 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
991 u32 uval2;
992 int ret;
c87e2837 993
e60cbc5c
TG
994 /*
995 * Userspace might have messed up non-PI and PI futexes [3]
996 */
997 if (unlikely(!pi_state))
998 return -EINVAL;
06a9ec29 999
734009e9
PZ
1000 /*
1001 * We get here with hb->lock held, and having found a
1002 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1003 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1004 * which in turn means that futex_lock_pi() still has a reference on
1005 * our pi_state.
16ffa12d
PZ
1006 *
1007 * The waiter holding a reference on @pi_state also protects against
1008 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1009 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1010 * free pi_state before we can take a reference ourselves.
734009e9 1011 */
49262de2 1012 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1013
734009e9
PZ
1014 /*
1015 * Now that we have a pi_state, we can acquire wait_lock
1016 * and do the state validation.
1017 */
1018 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1019
1020 /*
1021 * Since {uval, pi_state} is serialized by wait_lock, and our current
1022 * uval was read without holding it, it can have changed. Verify it
1023 * still is what we expect it to be, otherwise retry the entire
1024 * operation.
1025 */
1026 if (get_futex_value_locked(&uval2, uaddr))
1027 goto out_efault;
1028
1029 if (uval != uval2)
1030 goto out_eagain;
1031
e60cbc5c
TG
1032 /*
1033 * Handle the owner died case:
1034 */
1035 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1036 /*
e60cbc5c
TG
1037 * exit_pi_state_list sets owner to NULL and wakes the
1038 * topmost waiter. The task which acquires the
1039 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1040 */
e60cbc5c 1041 if (!pi_state->owner) {
59647b6a 1042 /*
e60cbc5c
TG
1043 * No pi state owner, but the user space TID
1044 * is not 0. Inconsistent state. [5]
59647b6a 1045 */
e60cbc5c 1046 if (pid)
734009e9 1047 goto out_einval;
bd1dbcc6 1048 /*
e60cbc5c 1049 * Take a ref on the state and return success. [4]
866293ee 1050 */
734009e9 1051 goto out_attach;
c87e2837 1052 }
bd1dbcc6
TG
1053
1054 /*
e60cbc5c
TG
1055 * If TID is 0, then either the dying owner has not
1056 * yet executed exit_pi_state_list() or some waiter
1057 * acquired the rtmutex in the pi state, but did not
1058 * yet fixup the TID in user space.
1059 *
1060 * Take a ref on the state and return success. [6]
1061 */
1062 if (!pid)
734009e9 1063 goto out_attach;
e60cbc5c
TG
1064 } else {
1065 /*
1066 * If the owner died bit is not set, then the pi_state
1067 * must have an owner. [7]
bd1dbcc6 1068 */
e60cbc5c 1069 if (!pi_state->owner)
734009e9 1070 goto out_einval;
c87e2837
IM
1071 }
1072
e60cbc5c
TG
1073 /*
1074 * Bail out if user space manipulated the futex value. If pi
1075 * state exists then the owner TID must be the same as the
1076 * user space TID. [9/10]
1077 */
1078 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1079 goto out_einval;
1080
1081out_attach:
bf92cf3a 1082 get_pi_state(pi_state);
734009e9 1083 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1084 *ps = pi_state;
1085 return 0;
734009e9
PZ
1086
1087out_einval:
1088 ret = -EINVAL;
1089 goto out_error;
1090
1091out_eagain:
1092 ret = -EAGAIN;
1093 goto out_error;
1094
1095out_efault:
1096 ret = -EFAULT;
1097 goto out_error;
1098
1099out_error:
1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101 return ret;
e60cbc5c
TG
1102}
1103
3ef240ea
TG
1104/**
1105 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1106 * @ret: owner's current futex lock status
3ef240ea
TG
1107 * @exiting: Pointer to the exiting task
1108 *
1109 * Caller must hold a refcount on @exiting.
1110 */
1111static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1112{
1113 if (ret != -EBUSY) {
1114 WARN_ON_ONCE(exiting);
1115 return;
1116 }
1117
1118 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1119 return;
1120
1121 mutex_lock(&exiting->futex_exit_mutex);
1122 /*
1123 * No point in doing state checking here. If the waiter got here
1124 * while the task was in exec()->exec_futex_release() then it can
1125 * have any FUTEX_STATE_* value when the waiter has acquired the
1126 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1127 * already. Highly unlikely and not a problem. Just one more round
1128 * through the futex maze.
1129 */
1130 mutex_unlock(&exiting->futex_exit_mutex);
1131
1132 put_task_struct(exiting);
1133}
1134
da791a66
TG
1135static int handle_exit_race(u32 __user *uaddr, u32 uval,
1136 struct task_struct *tsk)
1137{
1138 u32 uval2;
1139
1140 /*
ac31c7ff
TG
1141 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1142 * caller that the alleged owner is busy.
da791a66 1143 */
3d4775df 1144 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1145 return -EBUSY;
da791a66
TG
1146
1147 /*
1148 * Reread the user space value to handle the following situation:
1149 *
1150 * CPU0 CPU1
1151 *
1152 * sys_exit() sys_futex()
1153 * do_exit() futex_lock_pi()
1154 * futex_lock_pi_atomic()
1155 * exit_signals(tsk) No waiters:
1156 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1157 * mm_release(tsk) Set waiter bit
1158 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1159 * Set owner died attach_to_pi_owner() {
1160 * *uaddr = 0xC0000000; tsk = get_task(PID);
1161 * } if (!tsk->flags & PF_EXITING) {
1162 * ... attach();
3d4775df
TG
1163 * tsk->futex_state = } else {
1164 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1165 * FUTEX_STATE_DEAD)
da791a66
TG
1166 * return -EAGAIN;
1167 * return -ESRCH; <--- FAIL
1168 * }
1169 *
1170 * Returning ESRCH unconditionally is wrong here because the
1171 * user space value has been changed by the exiting task.
1172 *
1173 * The same logic applies to the case where the exiting task is
1174 * already gone.
1175 */
1176 if (get_futex_value_locked(&uval2, uaddr))
1177 return -EFAULT;
1178
1179 /* If the user space value has changed, try again. */
1180 if (uval2 != uval)
1181 return -EAGAIN;
1182
1183 /*
1184 * The exiting task did not have a robust list, the robust list was
1185 * corrupted or the user space value in *uaddr is simply bogus.
1186 * Give up and tell user space.
1187 */
1188 return -ESRCH;
1189}
1190
04e1b2e5
TG
1191/*
1192 * Lookup the task for the TID provided from user space and attach to
1193 * it after doing proper sanity checks.
1194 */
da791a66 1195static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1196 struct futex_pi_state **ps,
1197 struct task_struct **exiting)
e60cbc5c 1198{
e60cbc5c 1199 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1200 struct futex_pi_state *pi_state;
1201 struct task_struct *p;
e60cbc5c 1202
c87e2837 1203 /*
e3f2ddea 1204 * We are the first waiter - try to look up the real owner and attach
54a21788 1205 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1206 *
1207 * The !pid check is paranoid. None of the call sites should end up
1208 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1209 */
778e9a9c 1210 if (!pid)
da791a66 1211 return -EAGAIN;
2ee08260 1212 p = find_get_task_by_vpid(pid);
7a0ea09a 1213 if (!p)
da791a66 1214 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1215
a2129464 1216 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1217 put_task_struct(p);
1218 return -EPERM;
1219 }
1220
778e9a9c 1221 /*
3d4775df
TG
1222 * We need to look at the task state to figure out, whether the
1223 * task is exiting. To protect against the change of the task state
1224 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1225 */
1d615482 1226 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1227 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1228 /*
3d4775df
TG
1229 * The task is on the way out. When the futex state is
1230 * FUTEX_STATE_DEAD, we know that the task has finished
1231 * the cleanup:
778e9a9c 1232 */
da791a66 1233 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1234
1d615482 1235 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1236 /*
1237 * If the owner task is between FUTEX_STATE_EXITING and
1238 * FUTEX_STATE_DEAD then store the task pointer and keep
1239 * the reference on the task struct. The calling code will
1240 * drop all locks, wait for the task to reach
1241 * FUTEX_STATE_DEAD and then drop the refcount. This is
1242 * required to prevent a live lock when the current task
1243 * preempted the exiting task between the two states.
1244 */
1245 if (ret == -EBUSY)
1246 *exiting = p;
1247 else
1248 put_task_struct(p);
778e9a9c
AK
1249 return ret;
1250 }
c87e2837 1251
54a21788
TG
1252 /*
1253 * No existing pi state. First waiter. [2]
734009e9
PZ
1254 *
1255 * This creates pi_state, we have hb->lock held, this means nothing can
1256 * observe this state, wait_lock is irrelevant.
54a21788 1257 */
c87e2837
IM
1258 pi_state = alloc_pi_state();
1259
1260 /*
04e1b2e5 1261 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1262 * the owner of it:
1263 */
1264 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1265
1266 /* Store the key for possible exit cleanups: */
d0aa7a70 1267 pi_state->key = *key;
c87e2837 1268
627371d7 1269 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1270 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1271 /*
1272 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1273 * because there is no concurrency as the object is not published yet.
1274 */
c87e2837 1275 pi_state->owner = p;
1d615482 1276 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1277
1278 put_task_struct(p);
1279
d0aa7a70 1280 *ps = pi_state;
c87e2837
IM
1281
1282 return 0;
1283}
1284
734009e9
PZ
1285static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1286 struct futex_hash_bucket *hb,
3ef240ea
TG
1287 union futex_key *key, struct futex_pi_state **ps,
1288 struct task_struct **exiting)
04e1b2e5 1289{
499f5aca 1290 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1291
1292 /*
1293 * If there is a waiter on that futex, validate it and
1294 * attach to the pi_state when the validation succeeds.
1295 */
499f5aca 1296 if (top_waiter)
734009e9 1297 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1298
1299 /*
1300 * We are the first waiter - try to look up the owner based on
1301 * @uval and attach to it.
1302 */
3ef240ea 1303 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1304}
1305
af54d6a1
TG
1306static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1307{
6b4f4bc9 1308 int err;
3f649ab7 1309 u32 curval;
af54d6a1 1310
ab51fbab
DB
1311 if (unlikely(should_fail_futex(true)))
1312 return -EFAULT;
1313
6b4f4bc9
WD
1314 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1315 if (unlikely(err))
1316 return err;
af54d6a1 1317
734009e9 1318 /* If user space value changed, let the caller retry */
af54d6a1
TG
1319 return curval != uval ? -EAGAIN : 0;
1320}
1321
1a52084d 1322/**
d96ee56c 1323 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1324 * @uaddr: the pi futex user address
1325 * @hb: the pi futex hash bucket
1326 * @key: the futex key associated with uaddr and hb
1327 * @ps: the pi_state pointer where we store the result of the
1328 * lookup
1329 * @task: the task to perform the atomic lock work for. This will
1330 * be "current" except in the case of requeue pi.
3ef240ea
TG
1331 * @exiting: Pointer to store the task pointer of the owner task
1332 * which is in the middle of exiting
bab5bc9e 1333 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1334 *
6c23cbbd 1335 * Return:
7b4ff1ad
MCC
1336 * - 0 - ready to wait;
1337 * - 1 - acquired the lock;
1338 * - <0 - error
1a52084d
DH
1339 *
1340 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1341 *
1342 * @exiting is only set when the return value is -EBUSY. If so, this holds
1343 * a refcount on the exiting task on return and the caller needs to drop it
1344 * after waiting for the exit to complete.
1a52084d
DH
1345 */
1346static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1347 union futex_key *key,
1348 struct futex_pi_state **ps,
3ef240ea
TG
1349 struct task_struct *task,
1350 struct task_struct **exiting,
1351 int set_waiters)
1a52084d 1352{
af54d6a1 1353 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1354 struct futex_q *top_waiter;
af54d6a1 1355 int ret;
1a52084d
DH
1356
1357 /*
af54d6a1
TG
1358 * Read the user space value first so we can validate a few
1359 * things before proceeding further.
1a52084d 1360 */
af54d6a1 1361 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1362 return -EFAULT;
1363
ab51fbab
DB
1364 if (unlikely(should_fail_futex(true)))
1365 return -EFAULT;
1366
1a52084d
DH
1367 /*
1368 * Detect deadlocks.
1369 */
af54d6a1 1370 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1371 return -EDEADLK;
1372
ab51fbab
DB
1373 if ((unlikely(should_fail_futex(true))))
1374 return -EDEADLK;
1375
1a52084d 1376 /*
af54d6a1
TG
1377 * Lookup existing state first. If it exists, try to attach to
1378 * its pi_state.
1a52084d 1379 */
499f5aca
PZ
1380 top_waiter = futex_top_waiter(hb, key);
1381 if (top_waiter)
734009e9 1382 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1383
1384 /*
af54d6a1
TG
1385 * No waiter and user TID is 0. We are here because the
1386 * waiters or the owner died bit is set or called from
1387 * requeue_cmp_pi or for whatever reason something took the
1388 * syscall.
1a52084d 1389 */
af54d6a1 1390 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1391 /*
af54d6a1
TG
1392 * We take over the futex. No other waiters and the user space
1393 * TID is 0. We preserve the owner died bit.
59fa6245 1394 */
af54d6a1
TG
1395 newval = uval & FUTEX_OWNER_DIED;
1396 newval |= vpid;
1a52084d 1397
af54d6a1
TG
1398 /* The futex requeue_pi code can enforce the waiters bit */
1399 if (set_waiters)
1400 newval |= FUTEX_WAITERS;
1401
1402 ret = lock_pi_update_atomic(uaddr, uval, newval);
1403 /* If the take over worked, return 1 */
1404 return ret < 0 ? ret : 1;
1405 }
1a52084d
DH
1406
1407 /*
af54d6a1
TG
1408 * First waiter. Set the waiters bit before attaching ourself to
1409 * the owner. If owner tries to unlock, it will be forced into
1410 * the kernel and blocked on hb->lock.
1a52084d 1411 */
af54d6a1
TG
1412 newval = uval | FUTEX_WAITERS;
1413 ret = lock_pi_update_atomic(uaddr, uval, newval);
1414 if (ret)
1415 return ret;
1a52084d 1416 /*
af54d6a1
TG
1417 * If the update of the user space value succeeded, we try to
1418 * attach to the owner. If that fails, no harm done, we only
1419 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1420 */
3ef240ea 1421 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1422}
1423
2e12978a
LJ
1424/**
1425 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1426 * @q: The futex_q to unqueue
1427 *
1428 * The q->lock_ptr must not be NULL and must be held by the caller.
1429 */
1430static void __unqueue_futex(struct futex_q *q)
1431{
1432 struct futex_hash_bucket *hb;
1433
4de1a293 1434 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1435 return;
4de1a293 1436 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1437
1438 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1439 plist_del(&q->list, &hb->chain);
11d4616b 1440 hb_waiters_dec(hb);
2e12978a
LJ
1441}
1442
1da177e4
LT
1443/*
1444 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1445 * Afterwards, the futex_q must not be accessed. Callers
1446 * must ensure to later call wake_up_q() for the actual
1447 * wakeups to occur.
1da177e4 1448 */
1d0dcb3a 1449static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1450{
f1a11e05
TG
1451 struct task_struct *p = q->task;
1452
aa10990e
DH
1453 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1454 return;
1455
b061c38b 1456 get_task_struct(p);
2e12978a 1457 __unqueue_futex(q);
1da177e4 1458 /*
38fcd06e
DHV
1459 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1460 * is written, without taking any locks. This is possible in the event
1461 * of a spurious wakeup, for example. A memory barrier is required here
1462 * to prevent the following store to lock_ptr from getting ahead of the
1463 * plist_del in __unqueue_futex().
1da177e4 1464 */
1b367ece 1465 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1466
1467 /*
1468 * Queue the task for later wakeup for after we've released
75145904 1469 * the hb->lock.
b061c38b 1470 */
07879c6a 1471 wake_q_add_safe(wake_q, p);
1da177e4
LT
1472}
1473
16ffa12d
PZ
1474/*
1475 * Caller must hold a reference on @pi_state.
1476 */
1477static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1478{
3f649ab7 1479 u32 curval, newval;
16ffa12d 1480 struct task_struct *new_owner;
aa2bfe55 1481 bool postunlock = false;
194a6b5b 1482 DEFINE_WAKE_Q(wake_q);
13fbca4c 1483 int ret = 0;
c87e2837 1484
c87e2837 1485 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1486 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1487 /*
bebe5b51 1488 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1489 *
1490 * When this happens, give up our locks and try again, giving
1491 * the futex_lock_pi() instance time to complete, either by
1492 * waiting on the rtmutex or removing itself from the futex
1493 * queue.
1494 */
1495 ret = -EAGAIN;
1496 goto out_unlock;
73d786bd 1497 }
c87e2837
IM
1498
1499 /*
16ffa12d
PZ
1500 * We pass it to the next owner. The WAITERS bit is always kept
1501 * enabled while there is PI state around. We cleanup the owner
1502 * died bit, because we are the owner.
c87e2837 1503 */
13fbca4c 1504 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1505
ab51fbab
DB
1506 if (unlikely(should_fail_futex(true)))
1507 ret = -EFAULT;
1508
6b4f4bc9
WD
1509 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1510 if (!ret && (curval != uval)) {
89e9e66b
SAS
1511 /*
1512 * If a unconditional UNLOCK_PI operation (user space did not
1513 * try the TID->0 transition) raced with a waiter setting the
1514 * FUTEX_WAITERS flag between get_user() and locking the hash
1515 * bucket lock, retry the operation.
1516 */
1517 if ((FUTEX_TID_MASK & curval) == uval)
1518 ret = -EAGAIN;
1519 else
1520 ret = -EINVAL;
1521 }
734009e9 1522
16ffa12d
PZ
1523 if (ret)
1524 goto out_unlock;
c87e2837 1525
94ffac5d
PZ
1526 /*
1527 * This is a point of no return; once we modify the uval there is no
1528 * going back and subsequent operations must not fail.
1529 */
1530
b4abf910 1531 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1532 WARN_ON(list_empty(&pi_state->list));
1533 list_del_init(&pi_state->list);
b4abf910 1534 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1535
b4abf910 1536 raw_spin_lock(&new_owner->pi_lock);
627371d7 1537 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1538 list_add(&pi_state->list, &new_owner->pi_state_list);
1539 pi_state->owner = new_owner;
b4abf910 1540 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1541
aa2bfe55 1542 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1543
16ffa12d 1544out_unlock:
5293c2ef 1545 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1546
aa2bfe55
PZ
1547 if (postunlock)
1548 rt_mutex_postunlock(&wake_q);
c87e2837 1549
16ffa12d 1550 return ret;
c87e2837
IM
1551}
1552
8b8f319f
IM
1553/*
1554 * Express the locking dependencies for lockdep:
1555 */
1556static inline void
1557double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1558{
1559 if (hb1 <= hb2) {
1560 spin_lock(&hb1->lock);
1561 if (hb1 < hb2)
1562 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1563 } else { /* hb1 > hb2 */
1564 spin_lock(&hb2->lock);
1565 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1566 }
1567}
1568
5eb3dc62
DH
1569static inline void
1570double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1571{
f061d351 1572 spin_unlock(&hb1->lock);
88f502fe
IM
1573 if (hb1 != hb2)
1574 spin_unlock(&hb2->lock);
5eb3dc62
DH
1575}
1576
1da177e4 1577/*
b2d0994b 1578 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1579 */
b41277dc
DH
1580static int
1581futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1582{
e2970f2f 1583 struct futex_hash_bucket *hb;
1da177e4 1584 struct futex_q *this, *next;
38d47c1b 1585 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1586 int ret;
194a6b5b 1587 DEFINE_WAKE_Q(wake_q);
1da177e4 1588
cd689985
TG
1589 if (!bitset)
1590 return -EINVAL;
1591
96d4f267 1592 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1593 if (unlikely(ret != 0))
d7c5ed73 1594 return ret;
1da177e4 1595
e2970f2f 1596 hb = hash_futex(&key);
b0c29f79
DB
1597
1598 /* Make sure we really have tasks to wakeup */
1599 if (!hb_waiters_pending(hb))
d7c5ed73 1600 return ret;
b0c29f79 1601
e2970f2f 1602 spin_lock(&hb->lock);
1da177e4 1603
0d00c7b2 1604 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1605 if (match_futex (&this->key, &key)) {
52400ba9 1606 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1607 ret = -EINVAL;
1608 break;
1609 }
cd689985
TG
1610
1611 /* Check if one of the bits is set in both bitsets */
1612 if (!(this->bitset & bitset))
1613 continue;
1614
1d0dcb3a 1615 mark_wake_futex(&wake_q, this);
1da177e4
LT
1616 if (++ret >= nr_wake)
1617 break;
1618 }
1619 }
1620
e2970f2f 1621 spin_unlock(&hb->lock);
1d0dcb3a 1622 wake_up_q(&wake_q);
1da177e4
LT
1623 return ret;
1624}
1625
30d6e0a4
JS
1626static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1627{
1628 unsigned int op = (encoded_op & 0x70000000) >> 28;
1629 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1630 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1631 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1632 int oldval, ret;
1633
1634 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1635 if (oparg < 0 || oparg > 31) {
1636 char comm[sizeof(current->comm)];
1637 /*
1638 * kill this print and return -EINVAL when userspace
1639 * is sane again
1640 */
1641 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1642 get_task_comm(comm, current), oparg);
1643 oparg &= 31;
1644 }
30d6e0a4
JS
1645 oparg = 1 << oparg;
1646 }
1647
a08971e9 1648 pagefault_disable();
30d6e0a4 1649 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1650 pagefault_enable();
30d6e0a4
JS
1651 if (ret)
1652 return ret;
1653
1654 switch (cmp) {
1655 case FUTEX_OP_CMP_EQ:
1656 return oldval == cmparg;
1657 case FUTEX_OP_CMP_NE:
1658 return oldval != cmparg;
1659 case FUTEX_OP_CMP_LT:
1660 return oldval < cmparg;
1661 case FUTEX_OP_CMP_GE:
1662 return oldval >= cmparg;
1663 case FUTEX_OP_CMP_LE:
1664 return oldval <= cmparg;
1665 case FUTEX_OP_CMP_GT:
1666 return oldval > cmparg;
1667 default:
1668 return -ENOSYS;
1669 }
1670}
1671
4732efbe
JJ
1672/*
1673 * Wake up all waiters hashed on the physical page that is mapped
1674 * to this virtual address:
1675 */
e2970f2f 1676static int
b41277dc 1677futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1678 int nr_wake, int nr_wake2, int op)
4732efbe 1679{
38d47c1b 1680 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1681 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1682 struct futex_q *this, *next;
e4dc5b7a 1683 int ret, op_ret;
194a6b5b 1684 DEFINE_WAKE_Q(wake_q);
4732efbe 1685
e4dc5b7a 1686retry:
96d4f267 1687 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1688 if (unlikely(ret != 0))
d7c5ed73 1689 return ret;
96d4f267 1690 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1691 if (unlikely(ret != 0))
d7c5ed73 1692 return ret;
4732efbe 1693
e2970f2f
IM
1694 hb1 = hash_futex(&key1);
1695 hb2 = hash_futex(&key2);
4732efbe 1696
e4dc5b7a 1697retry_private:
eaaea803 1698 double_lock_hb(hb1, hb2);
e2970f2f 1699 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1700 if (unlikely(op_ret < 0)) {
5eb3dc62 1701 double_unlock_hb(hb1, hb2);
4732efbe 1702
6b4f4bc9
WD
1703 if (!IS_ENABLED(CONFIG_MMU) ||
1704 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1705 /*
1706 * we don't get EFAULT from MMU faults if we don't have
1707 * an MMU, but we might get them from range checking
1708 */
796f8d9b 1709 ret = op_ret;
d7c5ed73 1710 return ret;
796f8d9b
DG
1711 }
1712
6b4f4bc9
WD
1713 if (op_ret == -EFAULT) {
1714 ret = fault_in_user_writeable(uaddr2);
1715 if (ret)
d7c5ed73 1716 return ret;
6b4f4bc9 1717 }
4732efbe 1718
6b4f4bc9
WD
1719 if (!(flags & FLAGS_SHARED)) {
1720 cond_resched();
e4dc5b7a 1721 goto retry_private;
6b4f4bc9 1722 }
e4dc5b7a 1723
6b4f4bc9 1724 cond_resched();
e4dc5b7a 1725 goto retry;
4732efbe
JJ
1726 }
1727
0d00c7b2 1728 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1729 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1730 if (this->pi_state || this->rt_waiter) {
1731 ret = -EINVAL;
1732 goto out_unlock;
1733 }
1d0dcb3a 1734 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1735 if (++ret >= nr_wake)
1736 break;
1737 }
1738 }
1739
1740 if (op_ret > 0) {
4732efbe 1741 op_ret = 0;
0d00c7b2 1742 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1743 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1744 if (this->pi_state || this->rt_waiter) {
1745 ret = -EINVAL;
1746 goto out_unlock;
1747 }
1d0dcb3a 1748 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1749 if (++op_ret >= nr_wake2)
1750 break;
1751 }
1752 }
1753 ret += op_ret;
1754 }
1755
aa10990e 1756out_unlock:
5eb3dc62 1757 double_unlock_hb(hb1, hb2);
1d0dcb3a 1758 wake_up_q(&wake_q);
4732efbe
JJ
1759 return ret;
1760}
1761
9121e478
DH
1762/**
1763 * requeue_futex() - Requeue a futex_q from one hb to another
1764 * @q: the futex_q to requeue
1765 * @hb1: the source hash_bucket
1766 * @hb2: the target hash_bucket
1767 * @key2: the new key for the requeued futex_q
1768 */
1769static inline
1770void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1771 struct futex_hash_bucket *hb2, union futex_key *key2)
1772{
1773
1774 /*
1775 * If key1 and key2 hash to the same bucket, no need to
1776 * requeue.
1777 */
1778 if (likely(&hb1->chain != &hb2->chain)) {
1779 plist_del(&q->list, &hb1->chain);
11d4616b 1780 hb_waiters_dec(hb1);
11d4616b 1781 hb_waiters_inc(hb2);
fe1bce9e 1782 plist_add(&q->list, &hb2->chain);
9121e478 1783 q->lock_ptr = &hb2->lock;
9121e478 1784 }
9121e478
DH
1785 q->key = *key2;
1786}
1787
52400ba9
DH
1788/**
1789 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1790 * @q: the futex_q
1791 * @key: the key of the requeue target futex
1792 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1793 *
1794 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1795 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1796 * to the requeue target futex so the waiter can detect the wakeup on the right
1797 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1798 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1799 * to protect access to the pi_state to fixup the owner later. Must be called
1800 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1801 */
1802static inline
beda2c7e
DH
1803void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1804 struct futex_hash_bucket *hb)
52400ba9 1805{
52400ba9
DH
1806 q->key = *key;
1807
2e12978a 1808 __unqueue_futex(q);
52400ba9
DH
1809
1810 WARN_ON(!q->rt_waiter);
1811 q->rt_waiter = NULL;
1812
beda2c7e 1813 q->lock_ptr = &hb->lock;
beda2c7e 1814
f1a11e05 1815 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1816}
1817
1818/**
1819 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1820 * @pifutex: the user address of the to futex
1821 * @hb1: the from futex hash bucket, must be locked by the caller
1822 * @hb2: the to futex hash bucket, must be locked by the caller
1823 * @key1: the from futex key
1824 * @key2: the to futex key
1825 * @ps: address to store the pi_state pointer
3ef240ea
TG
1826 * @exiting: Pointer to store the task pointer of the owner task
1827 * which is in the middle of exiting
bab5bc9e 1828 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1829 *
1830 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1831 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1832 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1833 * hb1 and hb2 must be held by the caller.
52400ba9 1834 *
3ef240ea
TG
1835 * @exiting is only set when the return value is -EBUSY. If so, this holds
1836 * a refcount on the exiting task on return and the caller needs to drop it
1837 * after waiting for the exit to complete.
1838 *
6c23cbbd 1839 * Return:
7b4ff1ad
MCC
1840 * - 0 - failed to acquire the lock atomically;
1841 * - >0 - acquired the lock, return value is vpid of the top_waiter
1842 * - <0 - error
52400ba9 1843 */
3ef240ea
TG
1844static int
1845futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1846 struct futex_hash_bucket *hb2, union futex_key *key1,
1847 union futex_key *key2, struct futex_pi_state **ps,
1848 struct task_struct **exiting, int set_waiters)
52400ba9 1849{
bab5bc9e 1850 struct futex_q *top_waiter = NULL;
52400ba9 1851 u32 curval;
866293ee 1852 int ret, vpid;
52400ba9
DH
1853
1854 if (get_futex_value_locked(&curval, pifutex))
1855 return -EFAULT;
1856
ab51fbab
DB
1857 if (unlikely(should_fail_futex(true)))
1858 return -EFAULT;
1859
bab5bc9e
DH
1860 /*
1861 * Find the top_waiter and determine if there are additional waiters.
1862 * If the caller intends to requeue more than 1 waiter to pifutex,
1863 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1864 * as we have means to handle the possible fault. If not, don't set
1865 * the bit unecessarily as it will force the subsequent unlock to enter
1866 * the kernel.
1867 */
52400ba9
DH
1868 top_waiter = futex_top_waiter(hb1, key1);
1869
1870 /* There are no waiters, nothing for us to do. */
1871 if (!top_waiter)
1872 return 0;
1873
84bc4af5
DH
1874 /* Ensure we requeue to the expected futex. */
1875 if (!match_futex(top_waiter->requeue_pi_key, key2))
1876 return -EINVAL;
1877
52400ba9 1878 /*
bab5bc9e
DH
1879 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1880 * the contended case or if set_waiters is 1. The pi_state is returned
1881 * in ps in contended cases.
52400ba9 1882 */
866293ee 1883 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1884 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1885 exiting, set_waiters);
866293ee 1886 if (ret == 1) {
beda2c7e 1887 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1888 return vpid;
1889 }
52400ba9
DH
1890 return ret;
1891}
1892
1893/**
1894 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1895 * @uaddr1: source futex user address
b41277dc 1896 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1897 * @uaddr2: target futex user address
1898 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1899 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1900 * @cmpval: @uaddr1 expected value (or %NULL)
1901 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1902 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1903 *
1904 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1905 * uaddr2 atomically on behalf of the top waiter.
1906 *
6c23cbbd 1907 * Return:
7b4ff1ad
MCC
1908 * - >=0 - on success, the number of tasks requeued or woken;
1909 * - <0 - on error
1da177e4 1910 */
b41277dc
DH
1911static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1912 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1913 u32 *cmpval, int requeue_pi)
1da177e4 1914{
38d47c1b 1915 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1916 int task_count = 0, ret;
52400ba9 1917 struct futex_pi_state *pi_state = NULL;
e2970f2f 1918 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1919 struct futex_q *this, *next;
194a6b5b 1920 DEFINE_WAKE_Q(wake_q);
52400ba9 1921
fbe0e839
LJ
1922 if (nr_wake < 0 || nr_requeue < 0)
1923 return -EINVAL;
1924
bc2eecd7
NP
1925 /*
1926 * When PI not supported: return -ENOSYS if requeue_pi is true,
1927 * consequently the compiler knows requeue_pi is always false past
1928 * this point which will optimize away all the conditional code
1929 * further down.
1930 */
1931 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1932 return -ENOSYS;
1933
52400ba9 1934 if (requeue_pi) {
e9c243a5
TG
1935 /*
1936 * Requeue PI only works on two distinct uaddrs. This
1937 * check is only valid for private futexes. See below.
1938 */
1939 if (uaddr1 == uaddr2)
1940 return -EINVAL;
1941
52400ba9
DH
1942 /*
1943 * requeue_pi requires a pi_state, try to allocate it now
1944 * without any locks in case it fails.
1945 */
1946 if (refill_pi_state_cache())
1947 return -ENOMEM;
1948 /*
1949 * requeue_pi must wake as many tasks as it can, up to nr_wake
1950 * + nr_requeue, since it acquires the rt_mutex prior to
1951 * returning to userspace, so as to not leave the rt_mutex with
1952 * waiters and no owner. However, second and third wake-ups
1953 * cannot be predicted as they involve race conditions with the
1954 * first wake and a fault while looking up the pi_state. Both
1955 * pthread_cond_signal() and pthread_cond_broadcast() should
1956 * use nr_wake=1.
1957 */
1958 if (nr_wake != 1)
1959 return -EINVAL;
1960 }
1da177e4 1961
42d35d48 1962retry:
96d4f267 1963 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1964 if (unlikely(ret != 0))
d7c5ed73 1965 return ret;
9ea71503 1966 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1967 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1968 if (unlikely(ret != 0))
d7c5ed73 1969 return ret;
1da177e4 1970
e9c243a5
TG
1971 /*
1972 * The check above which compares uaddrs is not sufficient for
1973 * shared futexes. We need to compare the keys:
1974 */
d7c5ed73
AA
1975 if (requeue_pi && match_futex(&key1, &key2))
1976 return -EINVAL;
e9c243a5 1977
e2970f2f
IM
1978 hb1 = hash_futex(&key1);
1979 hb2 = hash_futex(&key2);
1da177e4 1980
e4dc5b7a 1981retry_private:
69cd9eba 1982 hb_waiters_inc(hb2);
8b8f319f 1983 double_lock_hb(hb1, hb2);
1da177e4 1984
e2970f2f
IM
1985 if (likely(cmpval != NULL)) {
1986 u32 curval;
1da177e4 1987
e2970f2f 1988 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1989
1990 if (unlikely(ret)) {
5eb3dc62 1991 double_unlock_hb(hb1, hb2);
69cd9eba 1992 hb_waiters_dec(hb2);
1da177e4 1993
e2970f2f 1994 ret = get_user(curval, uaddr1);
e4dc5b7a 1995 if (ret)
d7c5ed73 1996 return ret;
1da177e4 1997
b41277dc 1998 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1999 goto retry_private;
1da177e4 2000
e4dc5b7a 2001 goto retry;
1da177e4 2002 }
e2970f2f 2003 if (curval != *cmpval) {
1da177e4
LT
2004 ret = -EAGAIN;
2005 goto out_unlock;
2006 }
2007 }
2008
52400ba9 2009 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2010 struct task_struct *exiting = NULL;
2011
bab5bc9e
DH
2012 /*
2013 * Attempt to acquire uaddr2 and wake the top waiter. If we
2014 * intend to requeue waiters, force setting the FUTEX_WAITERS
2015 * bit. We force this here where we are able to easily handle
2016 * faults rather in the requeue loop below.
2017 */
52400ba9 2018 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2019 &key2, &pi_state,
2020 &exiting, nr_requeue);
52400ba9
DH
2021
2022 /*
2023 * At this point the top_waiter has either taken uaddr2 or is
2024 * waiting on it. If the former, then the pi_state will not
2025 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2026 * reference to it. If the lock was taken, ret contains the
2027 * vpid of the top waiter task.
ecb38b78
TG
2028 * If the lock was not taken, we have pi_state and an initial
2029 * refcount on it. In case of an error we have nothing.
52400ba9 2030 */
866293ee 2031 if (ret > 0) {
52400ba9
DH
2032 WARN_ON(pi_state);
2033 task_count++;
866293ee 2034 /*
ecb38b78
TG
2035 * If we acquired the lock, then the user space value
2036 * of uaddr2 should be vpid. It cannot be changed by
2037 * the top waiter as it is blocked on hb2 lock if it
2038 * tries to do so. If something fiddled with it behind
2039 * our back the pi state lookup might unearth it. So
2040 * we rather use the known value than rereading and
2041 * handing potential crap to lookup_pi_state.
2042 *
2043 * If that call succeeds then we have pi_state and an
2044 * initial refcount on it.
866293ee 2045 */
3ef240ea
TG
2046 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2047 &pi_state, &exiting);
52400ba9
DH
2048 }
2049
2050 switch (ret) {
2051 case 0:
ecb38b78 2052 /* We hold a reference on the pi state. */
52400ba9 2053 break;
4959f2de
TG
2054
2055 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2056 case -EFAULT:
2057 double_unlock_hb(hb1, hb2);
69cd9eba 2058 hb_waiters_dec(hb2);
d0725992 2059 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2060 if (!ret)
2061 goto retry;
d7c5ed73 2062 return ret;
ac31c7ff 2063 case -EBUSY:
52400ba9 2064 case -EAGAIN:
af54d6a1
TG
2065 /*
2066 * Two reasons for this:
ac31c7ff 2067 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2068 * exit to complete.
ac31c7ff 2069 * - EAGAIN: The user space value changed.
af54d6a1 2070 */
52400ba9 2071 double_unlock_hb(hb1, hb2);
69cd9eba 2072 hb_waiters_dec(hb2);
3ef240ea
TG
2073 /*
2074 * Handle the case where the owner is in the middle of
2075 * exiting. Wait for the exit to complete otherwise
2076 * this task might loop forever, aka. live lock.
2077 */
2078 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2079 cond_resched();
2080 goto retry;
2081 default:
2082 goto out_unlock;
2083 }
2084 }
2085
0d00c7b2 2086 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2087 if (task_count - nr_wake >= nr_requeue)
2088 break;
2089
2090 if (!match_futex(&this->key, &key1))
1da177e4 2091 continue;
52400ba9 2092
392741e0
DH
2093 /*
2094 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2095 * be paired with each other and no other futex ops.
aa10990e
DH
2096 *
2097 * We should never be requeueing a futex_q with a pi_state,
2098 * which is awaiting a futex_unlock_pi().
392741e0
DH
2099 */
2100 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2101 (!requeue_pi && this->rt_waiter) ||
2102 this->pi_state) {
392741e0
DH
2103 ret = -EINVAL;
2104 break;
2105 }
52400ba9
DH
2106
2107 /*
2108 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2109 * lock, we already woke the top_waiter. If not, it will be
2110 * woken by futex_unlock_pi().
2111 */
2112 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2113 mark_wake_futex(&wake_q, this);
52400ba9
DH
2114 continue;
2115 }
1da177e4 2116
84bc4af5
DH
2117 /* Ensure we requeue to the expected futex for requeue_pi. */
2118 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2119 ret = -EINVAL;
2120 break;
2121 }
2122
52400ba9
DH
2123 /*
2124 * Requeue nr_requeue waiters and possibly one more in the case
2125 * of requeue_pi if we couldn't acquire the lock atomically.
2126 */
2127 if (requeue_pi) {
ecb38b78
TG
2128 /*
2129 * Prepare the waiter to take the rt_mutex. Take a
2130 * refcount on the pi_state and store the pointer in
2131 * the futex_q object of the waiter.
2132 */
bf92cf3a 2133 get_pi_state(pi_state);
52400ba9
DH
2134 this->pi_state = pi_state;
2135 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2136 this->rt_waiter,
c051b21f 2137 this->task);
52400ba9 2138 if (ret == 1) {
ecb38b78
TG
2139 /*
2140 * We got the lock. We do neither drop the
2141 * refcount on pi_state nor clear
2142 * this->pi_state because the waiter needs the
2143 * pi_state for cleaning up the user space
2144 * value. It will drop the refcount after
2145 * doing so.
2146 */
beda2c7e 2147 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2148 continue;
2149 } else if (ret) {
ecb38b78
TG
2150 /*
2151 * rt_mutex_start_proxy_lock() detected a
2152 * potential deadlock when we tried to queue
2153 * that waiter. Drop the pi_state reference
2154 * which we took above and remove the pointer
2155 * to the state from the waiters futex_q
2156 * object.
2157 */
52400ba9 2158 this->pi_state = NULL;
29e9ee5d 2159 put_pi_state(pi_state);
885c2cb7
TG
2160 /*
2161 * We stop queueing more waiters and let user
2162 * space deal with the mess.
2163 */
2164 break;
52400ba9 2165 }
1da177e4 2166 }
52400ba9 2167 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2168 }
2169
ecb38b78
TG
2170 /*
2171 * We took an extra initial reference to the pi_state either
2172 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2173 * need to drop it here again.
2174 */
29e9ee5d 2175 put_pi_state(pi_state);
885c2cb7
TG
2176
2177out_unlock:
5eb3dc62 2178 double_unlock_hb(hb1, hb2);
1d0dcb3a 2179 wake_up_q(&wake_q);
69cd9eba 2180 hb_waiters_dec(hb2);
52400ba9 2181 return ret ? ret : task_count;
1da177e4
LT
2182}
2183
2184/* The key must be already stored in q->key. */
82af7aca 2185static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2186 __acquires(&hb->lock)
1da177e4 2187{
e2970f2f 2188 struct futex_hash_bucket *hb;
1da177e4 2189
e2970f2f 2190 hb = hash_futex(&q->key);
11d4616b
LT
2191
2192 /*
2193 * Increment the counter before taking the lock so that
2194 * a potential waker won't miss a to-be-slept task that is
2195 * waiting for the spinlock. This is safe as all queue_lock()
2196 * users end up calling queue_me(). Similarly, for housekeeping,
2197 * decrement the counter at queue_unlock() when some error has
2198 * occurred and we don't end up adding the task to the list.
2199 */
6f568ebe 2200 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2201
e2970f2f 2202 q->lock_ptr = &hb->lock;
1da177e4 2203
6f568ebe 2204 spin_lock(&hb->lock);
e2970f2f 2205 return hb;
1da177e4
LT
2206}
2207
d40d65c8 2208static inline void
0d00c7b2 2209queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2210 __releases(&hb->lock)
d40d65c8
DH
2211{
2212 spin_unlock(&hb->lock);
11d4616b 2213 hb_waiters_dec(hb);
d40d65c8
DH
2214}
2215
cfafcd11 2216static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2217{
ec92d082
PP
2218 int prio;
2219
2220 /*
2221 * The priority used to register this element is
2222 * - either the real thread-priority for the real-time threads
2223 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2224 * - or MAX_RT_PRIO for non-RT threads.
2225 * Thus, all RT-threads are woken first in priority order, and
2226 * the others are woken last, in FIFO order.
2227 */
2228 prio = min(current->normal_prio, MAX_RT_PRIO);
2229
2230 plist_node_init(&q->list, prio);
ec92d082 2231 plist_add(&q->list, &hb->chain);
c87e2837 2232 q->task = current;
cfafcd11
PZ
2233}
2234
2235/**
2236 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2237 * @q: The futex_q to enqueue
2238 * @hb: The destination hash bucket
2239 *
2240 * The hb->lock must be held by the caller, and is released here. A call to
2241 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2242 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2243 * or nothing if the unqueue is done as part of the wake process and the unqueue
2244 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2245 * an example).
2246 */
2247static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2248 __releases(&hb->lock)
2249{
2250 __queue_me(q, hb);
e2970f2f 2251 spin_unlock(&hb->lock);
1da177e4
LT
2252}
2253
d40d65c8
DH
2254/**
2255 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2256 * @q: The futex_q to unqueue
2257 *
2258 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2259 * be paired with exactly one earlier call to queue_me().
2260 *
6c23cbbd 2261 * Return:
7b4ff1ad
MCC
2262 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2263 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2264 */
1da177e4
LT
2265static int unqueue_me(struct futex_q *q)
2266{
1da177e4 2267 spinlock_t *lock_ptr;
e2970f2f 2268 int ret = 0;
1da177e4
LT
2269
2270 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2271retry:
29b75eb2
JZ
2272 /*
2273 * q->lock_ptr can change between this read and the following spin_lock.
2274 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2275 * optimizing lock_ptr out of the logic below.
2276 */
2277 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2278 if (lock_ptr != NULL) {
1da177e4
LT
2279 spin_lock(lock_ptr);
2280 /*
2281 * q->lock_ptr can change between reading it and
2282 * spin_lock(), causing us to take the wrong lock. This
2283 * corrects the race condition.
2284 *
2285 * Reasoning goes like this: if we have the wrong lock,
2286 * q->lock_ptr must have changed (maybe several times)
2287 * between reading it and the spin_lock(). It can
2288 * change again after the spin_lock() but only if it was
2289 * already changed before the spin_lock(). It cannot,
2290 * however, change back to the original value. Therefore
2291 * we can detect whether we acquired the correct lock.
2292 */
2293 if (unlikely(lock_ptr != q->lock_ptr)) {
2294 spin_unlock(lock_ptr);
2295 goto retry;
2296 }
2e12978a 2297 __unqueue_futex(q);
c87e2837
IM
2298
2299 BUG_ON(q->pi_state);
2300
1da177e4
LT
2301 spin_unlock(lock_ptr);
2302 ret = 1;
2303 }
2304
1da177e4
LT
2305 return ret;
2306}
2307
c87e2837
IM
2308/*
2309 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2310 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2311 * and dropped here.
c87e2837 2312 */
d0aa7a70 2313static void unqueue_me_pi(struct futex_q *q)
15e408cd 2314 __releases(q->lock_ptr)
c87e2837 2315{
2e12978a 2316 __unqueue_futex(q);
c87e2837
IM
2317
2318 BUG_ON(!q->pi_state);
29e9ee5d 2319 put_pi_state(q->pi_state);
c87e2837
IM
2320 q->pi_state = NULL;
2321
d0aa7a70 2322 spin_unlock(q->lock_ptr);
c87e2837
IM
2323}
2324
778e9a9c 2325static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2326 struct task_struct *argowner)
d0aa7a70 2327{
d0aa7a70 2328 struct futex_pi_state *pi_state = q->pi_state;
3f649ab7 2329 u32 uval, curval, newval;
c1e2f0ea
PZ
2330 struct task_struct *oldowner, *newowner;
2331 u32 newtid;
6b4f4bc9 2332 int ret, err = 0;
d0aa7a70 2333
c1e2f0ea
PZ
2334 lockdep_assert_held(q->lock_ptr);
2335
734009e9
PZ
2336 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2337
2338 oldowner = pi_state->owner;
1b7558e4
TG
2339
2340 /*
c1e2f0ea 2341 * We are here because either:
16ffa12d 2342 *
c1e2f0ea
PZ
2343 * - we stole the lock and pi_state->owner needs updating to reflect
2344 * that (@argowner == current),
2345 *
2346 * or:
2347 *
2348 * - someone stole our lock and we need to fix things to point to the
2349 * new owner (@argowner == NULL).
2350 *
2351 * Either way, we have to replace the TID in the user space variable.
8161239a 2352 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2353 *
b2d0994b
DH
2354 * Note: We write the user space value _before_ changing the pi_state
2355 * because we can fault here. Imagine swapped out pages or a fork
2356 * that marked all the anonymous memory readonly for cow.
1b7558e4 2357 *
734009e9
PZ
2358 * Modifying pi_state _before_ the user space value would leave the
2359 * pi_state in an inconsistent state when we fault here, because we
2360 * need to drop the locks to handle the fault. This might be observed
2361 * in the PID check in lookup_pi_state.
1b7558e4
TG
2362 */
2363retry:
c1e2f0ea
PZ
2364 if (!argowner) {
2365 if (oldowner != current) {
2366 /*
2367 * We raced against a concurrent self; things are
2368 * already fixed up. Nothing to do.
2369 */
2370 ret = 0;
2371 goto out_unlock;
2372 }
2373
2374 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2375 /* We got the lock after all, nothing to fix. */
2376 ret = 0;
2377 goto out_unlock;
2378 }
2379
2380 /*
2381 * Since we just failed the trylock; there must be an owner.
2382 */
2383 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2384 BUG_ON(!newowner);
2385 } else {
2386 WARN_ON_ONCE(argowner != current);
2387 if (oldowner == current) {
2388 /*
2389 * We raced against a concurrent self; things are
2390 * already fixed up. Nothing to do.
2391 */
2392 ret = 0;
2393 goto out_unlock;
2394 }
2395 newowner = argowner;
2396 }
2397
2398 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2399 /* Owner died? */
2400 if (!pi_state->owner)
2401 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2402
6b4f4bc9
WD
2403 err = get_futex_value_locked(&uval, uaddr);
2404 if (err)
2405 goto handle_err;
1b7558e4 2406
16ffa12d 2407 for (;;) {
1b7558e4
TG
2408 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2409
6b4f4bc9
WD
2410 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2411 if (err)
2412 goto handle_err;
2413
1b7558e4
TG
2414 if (curval == uval)
2415 break;
2416 uval = curval;
2417 }
2418
2419 /*
2420 * We fixed up user space. Now we need to fix the pi_state
2421 * itself.
2422 */
d0aa7a70 2423 if (pi_state->owner != NULL) {
734009e9 2424 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2425 WARN_ON(list_empty(&pi_state->list));
2426 list_del_init(&pi_state->list);
734009e9 2427 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2428 }
d0aa7a70 2429
cdf71a10 2430 pi_state->owner = newowner;
d0aa7a70 2431
734009e9 2432 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2433 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2434 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2435 raw_spin_unlock(&newowner->pi_lock);
2436 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2437
1b7558e4 2438 return 0;
d0aa7a70 2439
d0aa7a70 2440 /*
6b4f4bc9
WD
2441 * In order to reschedule or handle a page fault, we need to drop the
2442 * locks here. In the case of a fault, this gives the other task
2443 * (either the highest priority waiter itself or the task which stole
2444 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2445 * are back from handling the fault we need to check the pi_state after
2446 * reacquiring the locks and before trying to do another fixup. When
2447 * the fixup has been done already we simply return.
734009e9
PZ
2448 *
2449 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2450 * drop hb->lock since the caller owns the hb -> futex_q relation.
2451 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2452 */
6b4f4bc9 2453handle_err:
734009e9 2454 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2455 spin_unlock(q->lock_ptr);
778e9a9c 2456
6b4f4bc9
WD
2457 switch (err) {
2458 case -EFAULT:
2459 ret = fault_in_user_writeable(uaddr);
2460 break;
2461
2462 case -EAGAIN:
2463 cond_resched();
2464 ret = 0;
2465 break;
2466
2467 default:
2468 WARN_ON_ONCE(1);
2469 ret = err;
2470 break;
2471 }
778e9a9c 2472
1b7558e4 2473 spin_lock(q->lock_ptr);
734009e9 2474 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2475
1b7558e4
TG
2476 /*
2477 * Check if someone else fixed it for us:
2478 */
734009e9
PZ
2479 if (pi_state->owner != oldowner) {
2480 ret = 0;
2481 goto out_unlock;
2482 }
1b7558e4
TG
2483
2484 if (ret)
734009e9 2485 goto out_unlock;
1b7558e4
TG
2486
2487 goto retry;
734009e9
PZ
2488
2489out_unlock:
2490 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2491 return ret;
d0aa7a70
PP
2492}
2493
72c1bbf3 2494static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2495
dd973998
DH
2496/**
2497 * fixup_owner() - Post lock pi_state and corner case management
2498 * @uaddr: user address of the futex
dd973998
DH
2499 * @q: futex_q (contains pi_state and access to the rt_mutex)
2500 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2501 *
2502 * After attempting to lock an rt_mutex, this function is called to cleanup
2503 * the pi_state owner as well as handle race conditions that may allow us to
2504 * acquire the lock. Must be called with the hb lock held.
2505 *
6c23cbbd 2506 * Return:
7b4ff1ad
MCC
2507 * - 1 - success, lock taken;
2508 * - 0 - success, lock not taken;
2509 * - <0 - on error (-EFAULT)
dd973998 2510 */
ae791a2d 2511static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2512{
dd973998
DH
2513 int ret = 0;
2514
2515 if (locked) {
2516 /*
2517 * Got the lock. We might not be the anticipated owner if we
2518 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2519 *
c1e2f0ea
PZ
2520 * Speculative pi_state->owner read (we don't hold wait_lock);
2521 * since we own the lock pi_state->owner == current is the
2522 * stable state, anything else needs more attention.
dd973998
DH
2523 */
2524 if (q->pi_state->owner != current)
ae791a2d 2525 ret = fixup_pi_state_owner(uaddr, q, current);
d7c5ed73 2526 return ret ? ret : locked;
dd973998
DH
2527 }
2528
c1e2f0ea
PZ
2529 /*
2530 * If we didn't get the lock; check if anybody stole it from us. In
2531 * that case, we need to fix up the uval to point to them instead of
2532 * us, otherwise bad things happen. [10]
2533 *
2534 * Another speculative read; pi_state->owner == current is unstable
2535 * but needs our attention.
2536 */
2537 if (q->pi_state->owner == current) {
2538 ret = fixup_pi_state_owner(uaddr, q, NULL);
d7c5ed73 2539 return ret;
c1e2f0ea
PZ
2540 }
2541
dd973998
DH
2542 /*
2543 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2544 * the owner of the rt_mutex.
dd973998 2545 */
73d786bd 2546 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2547 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2548 "pi-state %p\n", ret,
2549 q->pi_state->pi_mutex.owner,
2550 q->pi_state->owner);
73d786bd 2551 }
dd973998 2552
d7c5ed73 2553 return ret;
dd973998
DH
2554}
2555
ca5f9524
DH
2556/**
2557 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2558 * @hb: the futex hash bucket, must be locked by the caller
2559 * @q: the futex_q to queue up on
2560 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2561 */
2562static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2563 struct hrtimer_sleeper *timeout)
ca5f9524 2564{
9beba3c5
DH
2565 /*
2566 * The task state is guaranteed to be set before another task can
b92b8b35 2567 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2568 * queue_me() calls spin_unlock() upon completion, both serializing
2569 * access to the hash list and forcing another memory barrier.
2570 */
f1a11e05 2571 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2572 queue_me(q, hb);
ca5f9524
DH
2573
2574 /* Arm the timer */
2e4b0d3f 2575 if (timeout)
9dd8813e 2576 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2577
2578 /*
0729e196
DH
2579 * If we have been removed from the hash list, then another task
2580 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2581 */
2582 if (likely(!plist_node_empty(&q->list))) {
2583 /*
2584 * If the timer has already expired, current will already be
2585 * flagged for rescheduling. Only call schedule if there
2586 * is no timeout, or if it has yet to expire.
2587 */
2588 if (!timeout || timeout->task)
88c8004f 2589 freezable_schedule();
ca5f9524
DH
2590 }
2591 __set_current_state(TASK_RUNNING);
2592}
2593
f801073f
DH
2594/**
2595 * futex_wait_setup() - Prepare to wait on a futex
2596 * @uaddr: the futex userspace address
2597 * @val: the expected value
b41277dc 2598 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2599 * @q: the associated futex_q
2600 * @hb: storage for hash_bucket pointer to be returned to caller
2601 *
2602 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2603 * compare it with the expected value. Handle atomic faults internally.
2604 * Return with the hb lock held and a q.key reference on success, and unlocked
2605 * with no q.key reference on failure.
2606 *
6c23cbbd 2607 * Return:
7b4ff1ad
MCC
2608 * - 0 - uaddr contains val and hb has been locked;
2609 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2610 */
b41277dc 2611static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2612 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2613{
e2970f2f
IM
2614 u32 uval;
2615 int ret;
1da177e4 2616
1da177e4 2617 /*
b2d0994b 2618 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2619 * Order is important:
2620 *
2621 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2622 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2623 *
2624 * The basic logical guarantee of a futex is that it blocks ONLY
2625 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2626 * any cond. If we locked the hash-bucket after testing *uaddr, that
2627 * would open a race condition where we could block indefinitely with
1da177e4
LT
2628 * cond(var) false, which would violate the guarantee.
2629 *
8fe8f545
ML
2630 * On the other hand, we insert q and release the hash-bucket only
2631 * after testing *uaddr. This guarantees that futex_wait() will NOT
2632 * absorb a wakeup if *uaddr does not match the desired values
2633 * while the syscall executes.
1da177e4 2634 */
f801073f 2635retry:
96d4f267 2636 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2637 if (unlikely(ret != 0))
a5a2a0c7 2638 return ret;
f801073f
DH
2639
2640retry_private:
2641 *hb = queue_lock(q);
2642
e2970f2f 2643 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2644
f801073f 2645 if (ret) {
0d00c7b2 2646 queue_unlock(*hb);
1da177e4 2647
e2970f2f 2648 ret = get_user(uval, uaddr);
e4dc5b7a 2649 if (ret)
d7c5ed73 2650 return ret;
1da177e4 2651
b41277dc 2652 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2653 goto retry_private;
2654
e4dc5b7a 2655 goto retry;
1da177e4 2656 }
ca5f9524 2657
f801073f 2658 if (uval != val) {
0d00c7b2 2659 queue_unlock(*hb);
f801073f 2660 ret = -EWOULDBLOCK;
2fff78c7 2661 }
1da177e4 2662
f801073f
DH
2663 return ret;
2664}
2665
b41277dc
DH
2666static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2667 ktime_t *abs_time, u32 bitset)
f801073f 2668{
5ca584d9 2669 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2670 struct restart_block *restart;
2671 struct futex_hash_bucket *hb;
5bdb05f9 2672 struct futex_q q = futex_q_init;
f801073f
DH
2673 int ret;
2674
2675 if (!bitset)
2676 return -EINVAL;
f801073f
DH
2677 q.bitset = bitset;
2678
5ca584d9
WL
2679 to = futex_setup_timer(abs_time, &timeout, flags,
2680 current->timer_slack_ns);
d58e6576 2681retry:
7ada876a
DH
2682 /*
2683 * Prepare to wait on uaddr. On success, holds hb lock and increments
2684 * q.key refs.
2685 */
b41277dc 2686 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2687 if (ret)
2688 goto out;
2689
ca5f9524 2690 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2691 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2692
2693 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2694 ret = 0;
7ada876a 2695 /* unqueue_me() drops q.key ref */
1da177e4 2696 if (!unqueue_me(&q))
7ada876a 2697 goto out;
2fff78c7 2698 ret = -ETIMEDOUT;
ca5f9524 2699 if (to && !to->task)
7ada876a 2700 goto out;
72c1bbf3 2701
e2970f2f 2702 /*
d58e6576
TG
2703 * We expect signal_pending(current), but we might be the
2704 * victim of a spurious wakeup as well.
e2970f2f 2705 */
7ada876a 2706 if (!signal_pending(current))
d58e6576 2707 goto retry;
d58e6576 2708
2fff78c7 2709 ret = -ERESTARTSYS;
c19384b5 2710 if (!abs_time)
7ada876a 2711 goto out;
1da177e4 2712
f56141e3 2713 restart = &current->restart_block;
2fff78c7 2714 restart->fn = futex_wait_restart;
a3c74c52 2715 restart->futex.uaddr = uaddr;
2fff78c7 2716 restart->futex.val = val;
2456e855 2717 restart->futex.time = *abs_time;
2fff78c7 2718 restart->futex.bitset = bitset;
0cd9c649 2719 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2720
2fff78c7
PZ
2721 ret = -ERESTART_RESTARTBLOCK;
2722
42d35d48 2723out:
ca5f9524
DH
2724 if (to) {
2725 hrtimer_cancel(&to->timer);
2726 destroy_hrtimer_on_stack(&to->timer);
2727 }
c87e2837
IM
2728 return ret;
2729}
2730
72c1bbf3
NP
2731
2732static long futex_wait_restart(struct restart_block *restart)
2733{
a3c74c52 2734 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2735 ktime_t t, *tp = NULL;
72c1bbf3 2736
a72188d8 2737 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2738 t = restart->futex.time;
a72188d8
DH
2739 tp = &t;
2740 }
72c1bbf3 2741 restart->fn = do_no_restart_syscall;
b41277dc
DH
2742
2743 return (long)futex_wait(uaddr, restart->futex.flags,
2744 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2745}
2746
2747
c87e2837
IM
2748/*
2749 * Userspace tried a 0 -> TID atomic transition of the futex value
2750 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2751 * if there are waiters then it will block as a consequence of relying
2752 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2753 * a 0 value of the futex too.).
2754 *
2755 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2756 */
996636dd 2757static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2758 ktime_t *time, int trylock)
c87e2837 2759{
5ca584d9 2760 struct hrtimer_sleeper timeout, *to;
16ffa12d 2761 struct futex_pi_state *pi_state = NULL;
3ef240ea 2762 struct task_struct *exiting = NULL;
cfafcd11 2763 struct rt_mutex_waiter rt_waiter;
c87e2837 2764 struct futex_hash_bucket *hb;
5bdb05f9 2765 struct futex_q q = futex_q_init;
dd973998 2766 int res, ret;
c87e2837 2767
bc2eecd7
NP
2768 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2769 return -ENOSYS;
2770
c87e2837
IM
2771 if (refill_pi_state_cache())
2772 return -ENOMEM;
2773
5ca584d9 2774 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2775
42d35d48 2776retry:
96d4f267 2777 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2778 if (unlikely(ret != 0))
42d35d48 2779 goto out;
c87e2837 2780
e4dc5b7a 2781retry_private:
82af7aca 2782 hb = queue_lock(&q);
c87e2837 2783
3ef240ea
TG
2784 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2785 &exiting, 0);
c87e2837 2786 if (unlikely(ret)) {
767f509c
DB
2787 /*
2788 * Atomic work succeeded and we got the lock,
2789 * or failed. Either way, we do _not_ block.
2790 */
778e9a9c 2791 switch (ret) {
1a52084d
DH
2792 case 1:
2793 /* We got the lock. */
2794 ret = 0;
2795 goto out_unlock_put_key;
2796 case -EFAULT:
2797 goto uaddr_faulted;
ac31c7ff 2798 case -EBUSY:
778e9a9c
AK
2799 case -EAGAIN:
2800 /*
af54d6a1 2801 * Two reasons for this:
ac31c7ff 2802 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2803 * exit to complete.
ac31c7ff 2804 * - EAGAIN: The user space value changed.
778e9a9c 2805 */
0d00c7b2 2806 queue_unlock(hb);
3ef240ea
TG
2807 /*
2808 * Handle the case where the owner is in the middle of
2809 * exiting. Wait for the exit to complete otherwise
2810 * this task might loop forever, aka. live lock.
2811 */
2812 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2813 cond_resched();
2814 goto retry;
778e9a9c 2815 default:
42d35d48 2816 goto out_unlock_put_key;
c87e2837 2817 }
c87e2837
IM
2818 }
2819
cfafcd11
PZ
2820 WARN_ON(!q.pi_state);
2821
c87e2837
IM
2822 /*
2823 * Only actually queue now that the atomic ops are done:
2824 */
cfafcd11 2825 __queue_me(&q, hb);
c87e2837 2826
cfafcd11 2827 if (trylock) {
5293c2ef 2828 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2829 /* Fixup the trylock return value: */
2830 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2831 goto no_block;
c87e2837
IM
2832 }
2833
56222b21
PZ
2834 rt_mutex_init_waiter(&rt_waiter);
2835
cfafcd11 2836 /*
56222b21
PZ
2837 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2838 * hold it while doing rt_mutex_start_proxy(), because then it will
2839 * include hb->lock in the blocking chain, even through we'll not in
2840 * fact hold it while blocking. This will lead it to report -EDEADLK
2841 * and BUG when futex_unlock_pi() interleaves with this.
2842 *
2843 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2844 * latter before calling __rt_mutex_start_proxy_lock(). This
2845 * interleaves with futex_unlock_pi() -- which does a similar lock
2846 * handoff -- such that the latter can observe the futex_q::pi_state
2847 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2848 */
56222b21
PZ
2849 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2850 spin_unlock(q.lock_ptr);
1a1fb985
TG
2851 /*
2852 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2853 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2854 * it sees the futex_q::pi_state.
2855 */
56222b21
PZ
2856 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2857 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2858
cfafcd11
PZ
2859 if (ret) {
2860 if (ret == 1)
2861 ret = 0;
1a1fb985 2862 goto cleanup;
cfafcd11
PZ
2863 }
2864
cfafcd11 2865 if (unlikely(to))
9dd8813e 2866 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2867
2868 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2869
1a1fb985 2870cleanup:
a99e4e41 2871 spin_lock(q.lock_ptr);
cfafcd11 2872 /*
1a1fb985 2873 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2874 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2875 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2876 * lists consistent.
56222b21
PZ
2877 *
2878 * In particular; it is important that futex_unlock_pi() can not
2879 * observe this inconsistency.
cfafcd11
PZ
2880 */
2881 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2882 ret = 0;
2883
2884no_block:
dd973998
DH
2885 /*
2886 * Fixup the pi_state owner and possibly acquire the lock if we
2887 * haven't already.
2888 */
ae791a2d 2889 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2890 /*
2891 * If fixup_owner() returned an error, proprogate that. If it acquired
2892 * the lock, clear our -ETIMEDOUT or -EINTR.
2893 */
2894 if (res)
2895 ret = (res < 0) ? res : 0;
c87e2837 2896
e8f6386c 2897 /*
dd973998
DH
2898 * If fixup_owner() faulted and was unable to handle the fault, unlock
2899 * it and return the fault to userspace.
e8f6386c 2900 */
16ffa12d
PZ
2901 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2902 pi_state = q.pi_state;
2903 get_pi_state(pi_state);
2904 }
e8f6386c 2905
778e9a9c
AK
2906 /* Unqueue and drop the lock */
2907 unqueue_me_pi(&q);
c87e2837 2908
16ffa12d
PZ
2909 if (pi_state) {
2910 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2911 put_pi_state(pi_state);
2912 }
2913
9180bd46 2914 goto out;
c87e2837 2915
42d35d48 2916out_unlock_put_key:
0d00c7b2 2917 queue_unlock(hb);
c87e2837 2918
42d35d48 2919out:
97181f9b
TG
2920 if (to) {
2921 hrtimer_cancel(&to->timer);
237fc6e7 2922 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2923 }
dd973998 2924 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2925
42d35d48 2926uaddr_faulted:
0d00c7b2 2927 queue_unlock(hb);
778e9a9c 2928
d0725992 2929 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2930 if (ret)
9180bd46 2931 goto out;
c87e2837 2932
b41277dc 2933 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2934 goto retry_private;
2935
e4dc5b7a 2936 goto retry;
c87e2837
IM
2937}
2938
c87e2837
IM
2939/*
2940 * Userspace attempted a TID -> 0 atomic transition, and failed.
2941 * This is the in-kernel slowpath: we look up the PI state (if any),
2942 * and do the rt-mutex unlock.
2943 */
b41277dc 2944static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2945{
3f649ab7 2946 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2947 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2948 struct futex_hash_bucket *hb;
499f5aca 2949 struct futex_q *top_waiter;
e4dc5b7a 2950 int ret;
c87e2837 2951
bc2eecd7
NP
2952 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2953 return -ENOSYS;
2954
c87e2837
IM
2955retry:
2956 if (get_user(uval, uaddr))
2957 return -EFAULT;
2958 /*
2959 * We release only a lock we actually own:
2960 */
c0c9ed15 2961 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2962 return -EPERM;
c87e2837 2963
96d4f267 2964 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2965 if (ret)
2966 return ret;
c87e2837
IM
2967
2968 hb = hash_futex(&key);
2969 spin_lock(&hb->lock);
2970
c87e2837 2971 /*
ccf9e6a8
TG
2972 * Check waiters first. We do not trust user space values at
2973 * all and we at least want to know if user space fiddled
2974 * with the futex value instead of blindly unlocking.
c87e2837 2975 */
499f5aca
PZ
2976 top_waiter = futex_top_waiter(hb, &key);
2977 if (top_waiter) {
16ffa12d
PZ
2978 struct futex_pi_state *pi_state = top_waiter->pi_state;
2979
2980 ret = -EINVAL;
2981 if (!pi_state)
2982 goto out_unlock;
2983
2984 /*
2985 * If current does not own the pi_state then the futex is
2986 * inconsistent and user space fiddled with the futex value.
2987 */
2988 if (pi_state->owner != current)
2989 goto out_unlock;
2990
bebe5b51 2991 get_pi_state(pi_state);
802ab58d 2992 /*
bebe5b51
PZ
2993 * By taking wait_lock while still holding hb->lock, we ensure
2994 * there is no point where we hold neither; and therefore
2995 * wake_futex_pi() must observe a state consistent with what we
2996 * observed.
1a1fb985
TG
2997 *
2998 * In particular; this forces __rt_mutex_start_proxy() to
2999 * complete such that we're guaranteed to observe the
3000 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3001 */
bebe5b51 3002 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3003 spin_unlock(&hb->lock);
3004
c74aef2d 3005 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3006 ret = wake_futex_pi(uaddr, uval, pi_state);
3007
3008 put_pi_state(pi_state);
3009
3010 /*
3011 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3012 */
3013 if (!ret)
3014 goto out_putkey;
c87e2837 3015 /*
ccf9e6a8
TG
3016 * The atomic access to the futex value generated a
3017 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3018 */
3019 if (ret == -EFAULT)
3020 goto pi_faulted;
89e9e66b
SAS
3021 /*
3022 * A unconditional UNLOCK_PI op raced against a waiter
3023 * setting the FUTEX_WAITERS bit. Try again.
3024 */
6b4f4bc9
WD
3025 if (ret == -EAGAIN)
3026 goto pi_retry;
802ab58d
SAS
3027 /*
3028 * wake_futex_pi has detected invalid state. Tell user
3029 * space.
3030 */
16ffa12d 3031 goto out_putkey;
c87e2837 3032 }
ccf9e6a8 3033
c87e2837 3034 /*
ccf9e6a8
TG
3035 * We have no kernel internal state, i.e. no waiters in the
3036 * kernel. Waiters which are about to queue themselves are stuck
3037 * on hb->lock. So we can safely ignore them. We do neither
3038 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3039 * owner.
c87e2837 3040 */
6b4f4bc9 3041 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3042 spin_unlock(&hb->lock);
6b4f4bc9
WD
3043 switch (ret) {
3044 case -EFAULT:
3045 goto pi_faulted;
3046
3047 case -EAGAIN:
3048 goto pi_retry;
3049
3050 default:
3051 WARN_ON_ONCE(1);
3052 goto out_putkey;
3053 }
16ffa12d 3054 }
c87e2837 3055
ccf9e6a8
TG
3056 /*
3057 * If uval has changed, let user space handle it.
3058 */
3059 ret = (curval == uval) ? 0 : -EAGAIN;
3060
c87e2837
IM
3061out_unlock:
3062 spin_unlock(&hb->lock);
802ab58d 3063out_putkey:
c87e2837
IM
3064 return ret;
3065
6b4f4bc9 3066pi_retry:
6b4f4bc9
WD
3067 cond_resched();
3068 goto retry;
3069
c87e2837 3070pi_faulted:
c87e2837 3071
d0725992 3072 ret = fault_in_user_writeable(uaddr);
b5686363 3073 if (!ret)
c87e2837
IM
3074 goto retry;
3075
1da177e4
LT
3076 return ret;
3077}
3078
52400ba9
DH
3079/**
3080 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3081 * @hb: the hash_bucket futex_q was original enqueued on
3082 * @q: the futex_q woken while waiting to be requeued
3083 * @key2: the futex_key of the requeue target futex
3084 * @timeout: the timeout associated with the wait (NULL if none)
3085 *
3086 * Detect if the task was woken on the initial futex as opposed to the requeue
3087 * target futex. If so, determine if it was a timeout or a signal that caused
3088 * the wakeup and return the appropriate error code to the caller. Must be
3089 * called with the hb lock held.
3090 *
6c23cbbd 3091 * Return:
7b4ff1ad
MCC
3092 * - 0 = no early wakeup detected;
3093 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3094 */
3095static inline
3096int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3097 struct futex_q *q, union futex_key *key2,
3098 struct hrtimer_sleeper *timeout)
3099{
3100 int ret = 0;
3101
3102 /*
3103 * With the hb lock held, we avoid races while we process the wakeup.
3104 * We only need to hold hb (and not hb2) to ensure atomicity as the
3105 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3106 * It can't be requeued from uaddr2 to something else since we don't
3107 * support a PI aware source futex for requeue.
3108 */
3109 if (!match_futex(&q->key, key2)) {
3110 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3111 /*
3112 * We were woken prior to requeue by a timeout or a signal.
3113 * Unqueue the futex_q and determine which it was.
3114 */
2e12978a 3115 plist_del(&q->list, &hb->chain);
11d4616b 3116 hb_waiters_dec(hb);
52400ba9 3117
d58e6576 3118 /* Handle spurious wakeups gracefully */
11df6ddd 3119 ret = -EWOULDBLOCK;
52400ba9
DH
3120 if (timeout && !timeout->task)
3121 ret = -ETIMEDOUT;
d58e6576 3122 else if (signal_pending(current))
1c840c14 3123 ret = -ERESTARTNOINTR;
52400ba9
DH
3124 }
3125 return ret;
3126}
3127
3128/**
3129 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3130 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3131 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3132 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3133 * @val: the expected value of uaddr
3134 * @abs_time: absolute timeout
56ec1607 3135 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3136 * @uaddr2: the pi futex we will take prior to returning to user-space
3137 *
3138 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3139 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3140 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3141 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3142 * without one, the pi logic would not know which task to boost/deboost, if
3143 * there was a need to.
52400ba9
DH
3144 *
3145 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3146 * via the following--
52400ba9 3147 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3148 * 2) wakeup on uaddr2 after a requeue
3149 * 3) signal
3150 * 4) timeout
52400ba9 3151 *
cc6db4e6 3152 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3153 *
3154 * If 2, we may then block on trying to take the rt_mutex and return via:
3155 * 5) successful lock
3156 * 6) signal
3157 * 7) timeout
3158 * 8) other lock acquisition failure
3159 *
cc6db4e6 3160 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3161 *
3162 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3163 *
6c23cbbd 3164 * Return:
7b4ff1ad
MCC
3165 * - 0 - On success;
3166 * - <0 - On error
52400ba9 3167 */
b41277dc 3168static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3169 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3170 u32 __user *uaddr2)
52400ba9 3171{
5ca584d9 3172 struct hrtimer_sleeper timeout, *to;
16ffa12d 3173 struct futex_pi_state *pi_state = NULL;
52400ba9 3174 struct rt_mutex_waiter rt_waiter;
52400ba9 3175 struct futex_hash_bucket *hb;
5bdb05f9
DH
3176 union futex_key key2 = FUTEX_KEY_INIT;
3177 struct futex_q q = futex_q_init;
52400ba9 3178 int res, ret;
52400ba9 3179
bc2eecd7
NP
3180 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3181 return -ENOSYS;
3182
6f7b0a2a
DH
3183 if (uaddr == uaddr2)
3184 return -EINVAL;
3185
52400ba9
DH
3186 if (!bitset)
3187 return -EINVAL;
3188
5ca584d9
WL
3189 to = futex_setup_timer(abs_time, &timeout, flags,
3190 current->timer_slack_ns);
52400ba9
DH
3191
3192 /*
3193 * The waiter is allocated on our stack, manipulated by the requeue
3194 * code while we sleep on uaddr.
3195 */
50809358 3196 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3197
96d4f267 3198 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3199 if (unlikely(ret != 0))
3200 goto out;
3201
84bc4af5
DH
3202 q.bitset = bitset;
3203 q.rt_waiter = &rt_waiter;
3204 q.requeue_pi_key = &key2;
3205
7ada876a
DH
3206 /*
3207 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3208 * count.
3209 */
b41277dc 3210 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3211 if (ret)
9180bd46 3212 goto out;
52400ba9 3213
e9c243a5
TG
3214 /*
3215 * The check above which compares uaddrs is not sufficient for
3216 * shared futexes. We need to compare the keys:
3217 */
3218 if (match_futex(&q.key, &key2)) {
13c42c2f 3219 queue_unlock(hb);
e9c243a5 3220 ret = -EINVAL;
9180bd46 3221 goto out;
e9c243a5
TG
3222 }
3223
52400ba9 3224 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3225 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3226
3227 spin_lock(&hb->lock);
3228 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3229 spin_unlock(&hb->lock);
3230 if (ret)
9180bd46 3231 goto out;
52400ba9
DH
3232
3233 /*
3234 * In order for us to be here, we know our q.key == key2, and since
3235 * we took the hb->lock above, we also know that futex_requeue() has
3236 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3237 * race with the atomic proxy lock acquisition by the requeue code. The
3238 * futex_requeue dropped our key1 reference and incremented our key2
3239 * reference count.
52400ba9
DH
3240 */
3241
3242 /* Check if the requeue code acquired the second futex for us. */
3243 if (!q.rt_waiter) {
3244 /*
3245 * Got the lock. We might not be the anticipated owner if we
3246 * did a lock-steal - fix up the PI-state in that case.
3247 */
3248 if (q.pi_state && (q.pi_state->owner != current)) {
3249 spin_lock(q.lock_ptr);
ae791a2d 3250 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3251 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3252 pi_state = q.pi_state;
3253 get_pi_state(pi_state);
3254 }
fb75a428
TG
3255 /*
3256 * Drop the reference to the pi state which
3257 * the requeue_pi() code acquired for us.
3258 */
29e9ee5d 3259 put_pi_state(q.pi_state);
52400ba9
DH
3260 spin_unlock(q.lock_ptr);
3261 }
3262 } else {
c236c8e9
PZ
3263 struct rt_mutex *pi_mutex;
3264
52400ba9
DH
3265 /*
3266 * We have been woken up by futex_unlock_pi(), a timeout, or a
3267 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3268 * the pi_state.
3269 */
f27071cb 3270 WARN_ON(!q.pi_state);
52400ba9 3271 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3272 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3273
3274 spin_lock(q.lock_ptr);
38d589f2
PZ
3275 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3276 ret = 0;
3277
3278 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3279 /*
3280 * Fixup the pi_state owner and possibly acquire the lock if we
3281 * haven't already.
3282 */
ae791a2d 3283 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3284 /*
3285 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3286 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3287 */
3288 if (res)
3289 ret = (res < 0) ? res : 0;
3290
c236c8e9
PZ
3291 /*
3292 * If fixup_pi_state_owner() faulted and was unable to handle
3293 * the fault, unlock the rt_mutex and return the fault to
3294 * userspace.
3295 */
16ffa12d
PZ
3296 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3297 pi_state = q.pi_state;
3298 get_pi_state(pi_state);
3299 }
c236c8e9 3300
52400ba9
DH
3301 /* Unqueue and drop the lock. */
3302 unqueue_me_pi(&q);
3303 }
3304
16ffa12d
PZ
3305 if (pi_state) {
3306 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3307 put_pi_state(pi_state);
3308 }
3309
c236c8e9 3310 if (ret == -EINTR) {
52400ba9 3311 /*
cc6db4e6
DH
3312 * We've already been requeued, but cannot restart by calling
3313 * futex_lock_pi() directly. We could restart this syscall, but
3314 * it would detect that the user space "val" changed and return
3315 * -EWOULDBLOCK. Save the overhead of the restart and return
3316 * -EWOULDBLOCK directly.
52400ba9 3317 */
2070887f 3318 ret = -EWOULDBLOCK;
52400ba9
DH
3319 }
3320
52400ba9
DH
3321out:
3322 if (to) {
3323 hrtimer_cancel(&to->timer);
3324 destroy_hrtimer_on_stack(&to->timer);
3325 }
3326 return ret;
3327}
3328
0771dfef
IM
3329/*
3330 * Support for robust futexes: the kernel cleans up held futexes at
3331 * thread exit time.
3332 *
3333 * Implementation: user-space maintains a per-thread list of locks it
3334 * is holding. Upon do_exit(), the kernel carefully walks this list,
3335 * and marks all locks that are owned by this thread with the
c87e2837 3336 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3337 * always manipulated with the lock held, so the list is private and
3338 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3339 * field, to allow the kernel to clean up if the thread dies after
3340 * acquiring the lock, but just before it could have added itself to
3341 * the list. There can only be one such pending lock.
3342 */
3343
3344/**
d96ee56c
DH
3345 * sys_set_robust_list() - Set the robust-futex list head of a task
3346 * @head: pointer to the list-head
3347 * @len: length of the list-head, as userspace expects
0771dfef 3348 */
836f92ad
HC
3349SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3350 size_t, len)
0771dfef 3351{
a0c1e907
TG
3352 if (!futex_cmpxchg_enabled)
3353 return -ENOSYS;
0771dfef
IM
3354 /*
3355 * The kernel knows only one size for now:
3356 */
3357 if (unlikely(len != sizeof(*head)))
3358 return -EINVAL;
3359
3360 current->robust_list = head;
3361
3362 return 0;
3363}
3364
3365/**
d96ee56c
DH
3366 * sys_get_robust_list() - Get the robust-futex list head of a task
3367 * @pid: pid of the process [zero for current task]
3368 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3369 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3370 */
836f92ad
HC
3371SYSCALL_DEFINE3(get_robust_list, int, pid,
3372 struct robust_list_head __user * __user *, head_ptr,
3373 size_t __user *, len_ptr)
0771dfef 3374{
ba46df98 3375 struct robust_list_head __user *head;
0771dfef 3376 unsigned long ret;
bdbb776f 3377 struct task_struct *p;
0771dfef 3378
a0c1e907
TG
3379 if (!futex_cmpxchg_enabled)
3380 return -ENOSYS;
3381
bdbb776f
KC
3382 rcu_read_lock();
3383
3384 ret = -ESRCH;
0771dfef 3385 if (!pid)
bdbb776f 3386 p = current;
0771dfef 3387 else {
228ebcbe 3388 p = find_task_by_vpid(pid);
0771dfef
IM
3389 if (!p)
3390 goto err_unlock;
0771dfef
IM
3391 }
3392
bdbb776f 3393 ret = -EPERM;
caaee623 3394 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3395 goto err_unlock;
3396
3397 head = p->robust_list;
3398 rcu_read_unlock();
3399
0771dfef
IM
3400 if (put_user(sizeof(*head), len_ptr))
3401 return -EFAULT;
3402 return put_user(head, head_ptr);
3403
3404err_unlock:
aaa2a97e 3405 rcu_read_unlock();
0771dfef
IM
3406
3407 return ret;
3408}
3409
ca16d5be
YT
3410/* Constants for the pending_op argument of handle_futex_death */
3411#define HANDLE_DEATH_PENDING true
3412#define HANDLE_DEATH_LIST false
3413
0771dfef
IM
3414/*
3415 * Process a futex-list entry, check whether it's owned by the
3416 * dying task, and do notification if so:
3417 */
ca16d5be
YT
3418static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3419 bool pi, bool pending_op)
0771dfef 3420{
3f649ab7 3421 u32 uval, nval, mval;
6b4f4bc9 3422 int err;
0771dfef 3423
5a07168d
CJ
3424 /* Futex address must be 32bit aligned */
3425 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3426 return -1;
3427
8f17d3a5
IM
3428retry:
3429 if (get_user(uval, uaddr))
0771dfef
IM
3430 return -1;
3431
ca16d5be
YT
3432 /*
3433 * Special case for regular (non PI) futexes. The unlock path in
3434 * user space has two race scenarios:
3435 *
3436 * 1. The unlock path releases the user space futex value and
3437 * before it can execute the futex() syscall to wake up
3438 * waiters it is killed.
3439 *
3440 * 2. A woken up waiter is killed before it can acquire the
3441 * futex in user space.
3442 *
3443 * In both cases the TID validation below prevents a wakeup of
3444 * potential waiters which can cause these waiters to block
3445 * forever.
3446 *
3447 * In both cases the following conditions are met:
3448 *
3449 * 1) task->robust_list->list_op_pending != NULL
3450 * @pending_op == true
3451 * 2) User space futex value == 0
3452 * 3) Regular futex: @pi == false
3453 *
3454 * If these conditions are met, it is safe to attempt waking up a
3455 * potential waiter without touching the user space futex value and
3456 * trying to set the OWNER_DIED bit. The user space futex value is
3457 * uncontended and the rest of the user space mutex state is
3458 * consistent, so a woken waiter will just take over the
3459 * uncontended futex. Setting the OWNER_DIED bit would create
3460 * inconsistent state and malfunction of the user space owner died
3461 * handling.
3462 */
3463 if (pending_op && !pi && !uval) {
3464 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3465 return 0;
3466 }
3467
6b4f4bc9
WD
3468 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3469 return 0;
3470
3471 /*
3472 * Ok, this dying thread is truly holding a futex
3473 * of interest. Set the OWNER_DIED bit atomically
3474 * via cmpxchg, and if the value had FUTEX_WAITERS
3475 * set, wake up a waiter (if any). (We have to do a
3476 * futex_wake() even if OWNER_DIED is already set -
3477 * to handle the rare but possible case of recursive
3478 * thread-death.) The rest of the cleanup is done in
3479 * userspace.
3480 */
3481 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3482
3483 /*
3484 * We are not holding a lock here, but we want to have
3485 * the pagefault_disable/enable() protection because
3486 * we want to handle the fault gracefully. If the
3487 * access fails we try to fault in the futex with R/W
3488 * verification via get_user_pages. get_user() above
3489 * does not guarantee R/W access. If that fails we
3490 * give up and leave the futex locked.
3491 */
3492 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3493 switch (err) {
3494 case -EFAULT:
6e0aa9f8
TG
3495 if (fault_in_user_writeable(uaddr))
3496 return -1;
3497 goto retry;
6b4f4bc9
WD
3498
3499 case -EAGAIN:
3500 cond_resched();
8f17d3a5 3501 goto retry;
0771dfef 3502
6b4f4bc9
WD
3503 default:
3504 WARN_ON_ONCE(1);
3505 return err;
3506 }
0771dfef 3507 }
6b4f4bc9
WD
3508
3509 if (nval != uval)
3510 goto retry;
3511
3512 /*
3513 * Wake robust non-PI futexes here. The wakeup of
3514 * PI futexes happens in exit_pi_state():
3515 */
3516 if (!pi && (uval & FUTEX_WAITERS))
3517 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3518
0771dfef
IM
3519 return 0;
3520}
3521
e3f2ddea
IM
3522/*
3523 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3524 */
3525static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3526 struct robust_list __user * __user *head,
1dcc41bb 3527 unsigned int *pi)
e3f2ddea
IM
3528{
3529 unsigned long uentry;
3530
ba46df98 3531 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3532 return -EFAULT;
3533
ba46df98 3534 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3535 *pi = uentry & 1;
3536
3537 return 0;
3538}
3539
0771dfef
IM
3540/*
3541 * Walk curr->robust_list (very carefully, it's a userspace list!)
3542 * and mark any locks found there dead, and notify any waiters.
3543 *
3544 * We silently return on any sign of list-walking problem.
3545 */
ba31c1a4 3546static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3547{
3548 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3549 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3550 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3551 unsigned int next_pi;
0771dfef 3552 unsigned long futex_offset;
9f96cb1e 3553 int rc;
0771dfef 3554
a0c1e907
TG
3555 if (!futex_cmpxchg_enabled)
3556 return;
3557
0771dfef
IM
3558 /*
3559 * Fetch the list head (which was registered earlier, via
3560 * sys_set_robust_list()):
3561 */
e3f2ddea 3562 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3563 return;
3564 /*
3565 * Fetch the relative futex offset:
3566 */
3567 if (get_user(futex_offset, &head->futex_offset))
3568 return;
3569 /*
3570 * Fetch any possibly pending lock-add first, and handle it
3571 * if it exists:
3572 */
e3f2ddea 3573 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3574 return;
e3f2ddea 3575
9f96cb1e 3576 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3577 while (entry != &head->list) {
9f96cb1e
MS
3578 /*
3579 * Fetch the next entry in the list before calling
3580 * handle_futex_death:
3581 */
3582 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3583 /*
3584 * A pending lock might already be on the list, so
c87e2837 3585 * don't process it twice:
0771dfef 3586 */
ca16d5be 3587 if (entry != pending) {
ba46df98 3588 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3589 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3590 return;
ca16d5be 3591 }
9f96cb1e 3592 if (rc)
0771dfef 3593 return;
9f96cb1e
MS
3594 entry = next_entry;
3595 pi = next_pi;
0771dfef
IM
3596 /*
3597 * Avoid excessively long or circular lists:
3598 */
3599 if (!--limit)
3600 break;
3601
3602 cond_resched();
3603 }
9f96cb1e 3604
ca16d5be 3605 if (pending) {
9f96cb1e 3606 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3607 curr, pip, HANDLE_DEATH_PENDING);
3608 }
0771dfef
IM
3609}
3610
af8cbda2 3611static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3612{
3613 if (unlikely(tsk->robust_list)) {
3614 exit_robust_list(tsk);
3615 tsk->robust_list = NULL;
3616 }
3617
3618#ifdef CONFIG_COMPAT
3619 if (unlikely(tsk->compat_robust_list)) {
3620 compat_exit_robust_list(tsk);
3621 tsk->compat_robust_list = NULL;
3622 }
3623#endif
3624
3625 if (unlikely(!list_empty(&tsk->pi_state_list)))
3626 exit_pi_state_list(tsk);
3627}
3628
18f69438
TG
3629/**
3630 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3631 * @tsk: task to set the state on
3632 *
3633 * Set the futex exit state of the task lockless. The futex waiter code
3634 * observes that state when a task is exiting and loops until the task has
3635 * actually finished the futex cleanup. The worst case for this is that the
3636 * waiter runs through the wait loop until the state becomes visible.
3637 *
3638 * This is called from the recursive fault handling path in do_exit().
3639 *
3640 * This is best effort. Either the futex exit code has run already or
3641 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3642 * take it over. If not, the problem is pushed back to user space. If the
3643 * futex exit code did not run yet, then an already queued waiter might
3644 * block forever, but there is nothing which can be done about that.
3645 */
3646void futex_exit_recursive(struct task_struct *tsk)
3647{
3f186d97
TG
3648 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3649 if (tsk->futex_state == FUTEX_STATE_EXITING)
3650 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3651 tsk->futex_state = FUTEX_STATE_DEAD;
3652}
3653
af8cbda2 3654static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3655{
3f186d97
TG
3656 /*
3657 * Prevent various race issues against a concurrent incoming waiter
3658 * including live locks by forcing the waiter to block on
3659 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3660 * attach_to_pi_owner().
3661 */
3662 mutex_lock(&tsk->futex_exit_mutex);
3663
18f69438 3664 /*
4a8e991b
TG
3665 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3666 *
3667 * This ensures that all subsequent checks of tsk->futex_state in
3668 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3669 * tsk->pi_lock held.
3670 *
3671 * It guarantees also that a pi_state which was queued right before
3672 * the state change under tsk->pi_lock by a concurrent waiter must
3673 * be observed in exit_pi_state_list().
18f69438
TG
3674 */
3675 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3676 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3677 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3678}
18f69438 3679
af8cbda2
TG
3680static void futex_cleanup_end(struct task_struct *tsk, int state)
3681{
3682 /*
3683 * Lockless store. The only side effect is that an observer might
3684 * take another loop until it becomes visible.
3685 */
3686 tsk->futex_state = state;
3f186d97
TG
3687 /*
3688 * Drop the exit protection. This unblocks waiters which observed
3689 * FUTEX_STATE_EXITING to reevaluate the state.
3690 */
3691 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3692}
18f69438 3693
af8cbda2
TG
3694void futex_exec_release(struct task_struct *tsk)
3695{
3696 /*
3697 * The state handling is done for consistency, but in the case of
3698 * exec() there is no way to prevent futher damage as the PID stays
3699 * the same. But for the unlikely and arguably buggy case that a
3700 * futex is held on exec(), this provides at least as much state
3701 * consistency protection which is possible.
3702 */
3703 futex_cleanup_begin(tsk);
3704 futex_cleanup(tsk);
3705 /*
3706 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3707 * exec a new binary.
3708 */
3709 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3710}
3711
3712void futex_exit_release(struct task_struct *tsk)
3713{
3714 futex_cleanup_begin(tsk);
3715 futex_cleanup(tsk);
3716 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3717}
3718
c19384b5 3719long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3720 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3721{
81b40539 3722 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3723 unsigned int flags = 0;
34f01cc1
ED
3724
3725 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3726 flags |= FLAGS_SHARED;
1da177e4 3727
b41277dc
DH
3728 if (op & FUTEX_CLOCK_REALTIME) {
3729 flags |= FLAGS_CLOCKRT;
337f1304
DH
3730 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3731 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3732 return -ENOSYS;
3733 }
1da177e4 3734
59263b51
TG
3735 switch (cmd) {
3736 case FUTEX_LOCK_PI:
3737 case FUTEX_UNLOCK_PI:
3738 case FUTEX_TRYLOCK_PI:
3739 case FUTEX_WAIT_REQUEUE_PI:
3740 case FUTEX_CMP_REQUEUE_PI:
3741 if (!futex_cmpxchg_enabled)
3742 return -ENOSYS;
3743 }
3744
34f01cc1 3745 switch (cmd) {
1da177e4 3746 case FUTEX_WAIT:
cd689985 3747 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3748 fallthrough;
cd689985 3749 case FUTEX_WAIT_BITSET:
81b40539 3750 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3751 case FUTEX_WAKE:
cd689985 3752 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3753 fallthrough;
cd689985 3754 case FUTEX_WAKE_BITSET:
81b40539 3755 return futex_wake(uaddr, flags, val, val3);
1da177e4 3756 case FUTEX_REQUEUE:
81b40539 3757 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3758 case FUTEX_CMP_REQUEUE:
81b40539 3759 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3760 case FUTEX_WAKE_OP:
81b40539 3761 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3762 case FUTEX_LOCK_PI:
996636dd 3763 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3764 case FUTEX_UNLOCK_PI:
81b40539 3765 return futex_unlock_pi(uaddr, flags);
c87e2837 3766 case FUTEX_TRYLOCK_PI:
996636dd 3767 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3768 case FUTEX_WAIT_REQUEUE_PI:
3769 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3770 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3771 uaddr2);
52400ba9 3772 case FUTEX_CMP_REQUEUE_PI:
81b40539 3773 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3774 }
81b40539 3775 return -ENOSYS;
1da177e4
LT
3776}
3777
3778
17da2bd9 3779SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3780 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3781 u32, val3)
1da177e4 3782{
bec2f7cb 3783 struct timespec64 ts;
c19384b5 3784 ktime_t t, *tp = NULL;
e2970f2f 3785 u32 val2 = 0;
34f01cc1 3786 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3787
cd689985 3788 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3789 cmd == FUTEX_WAIT_BITSET ||
3790 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3791 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3792 return -EFAULT;
bec2f7cb 3793 if (get_timespec64(&ts, utime))
1da177e4 3794 return -EFAULT;
bec2f7cb 3795 if (!timespec64_valid(&ts))
9741ef96 3796 return -EINVAL;
c19384b5 3797
bec2f7cb 3798 t = timespec64_to_ktime(ts);
34f01cc1 3799 if (cmd == FUTEX_WAIT)
5a7780e7 3800 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
3801 else if (!(op & FUTEX_CLOCK_REALTIME))
3802 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
c19384b5 3803 tp = &t;
1da177e4
LT
3804 }
3805 /*
52400ba9 3806 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3807 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3808 */
f54f0986 3809 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3810 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3811 val2 = (u32) (unsigned long) utime;
1da177e4 3812
c19384b5 3813 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3814}
3815
04e7712f
AB
3816#ifdef CONFIG_COMPAT
3817/*
3818 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3819 */
3820static inline int
3821compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3822 compat_uptr_t __user *head, unsigned int *pi)
3823{
3824 if (get_user(*uentry, head))
3825 return -EFAULT;
3826
3827 *entry = compat_ptr((*uentry) & ~1);
3828 *pi = (unsigned int)(*uentry) & 1;
3829
3830 return 0;
3831}
3832
3833static void __user *futex_uaddr(struct robust_list __user *entry,
3834 compat_long_t futex_offset)
3835{
3836 compat_uptr_t base = ptr_to_compat(entry);
3837 void __user *uaddr = compat_ptr(base + futex_offset);
3838
3839 return uaddr;
3840}
3841
3842/*
3843 * Walk curr->robust_list (very carefully, it's a userspace list!)
3844 * and mark any locks found there dead, and notify any waiters.
3845 *
3846 * We silently return on any sign of list-walking problem.
3847 */
ba31c1a4 3848static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3849{
3850 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3851 struct robust_list __user *entry, *next_entry, *pending;
3852 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3853 unsigned int next_pi;
04e7712f
AB
3854 compat_uptr_t uentry, next_uentry, upending;
3855 compat_long_t futex_offset;
3856 int rc;
3857
3858 if (!futex_cmpxchg_enabled)
3859 return;
3860
3861 /*
3862 * Fetch the list head (which was registered earlier, via
3863 * sys_set_robust_list()):
3864 */
3865 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3866 return;
3867 /*
3868 * Fetch the relative futex offset:
3869 */
3870 if (get_user(futex_offset, &head->futex_offset))
3871 return;
3872 /*
3873 * Fetch any possibly pending lock-add first, and handle it
3874 * if it exists:
3875 */
3876 if (compat_fetch_robust_entry(&upending, &pending,
3877 &head->list_op_pending, &pip))
3878 return;
3879
3880 next_entry = NULL; /* avoid warning with gcc */
3881 while (entry != (struct robust_list __user *) &head->list) {
3882 /*
3883 * Fetch the next entry in the list before calling
3884 * handle_futex_death:
3885 */
3886 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3887 (compat_uptr_t __user *)&entry->next, &next_pi);
3888 /*
3889 * A pending lock might already be on the list, so
3890 * dont process it twice:
3891 */
3892 if (entry != pending) {
3893 void __user *uaddr = futex_uaddr(entry, futex_offset);
3894
ca16d5be
YT
3895 if (handle_futex_death(uaddr, curr, pi,
3896 HANDLE_DEATH_LIST))
04e7712f
AB
3897 return;
3898 }
3899 if (rc)
3900 return;
3901 uentry = next_uentry;
3902 entry = next_entry;
3903 pi = next_pi;
3904 /*
3905 * Avoid excessively long or circular lists:
3906 */
3907 if (!--limit)
3908 break;
3909
3910 cond_resched();
3911 }
3912 if (pending) {
3913 void __user *uaddr = futex_uaddr(pending, futex_offset);
3914
ca16d5be 3915 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3916 }
3917}
3918
3919COMPAT_SYSCALL_DEFINE2(set_robust_list,
3920 struct compat_robust_list_head __user *, head,
3921 compat_size_t, len)
3922{
3923 if (!futex_cmpxchg_enabled)
3924 return -ENOSYS;
3925
3926 if (unlikely(len != sizeof(*head)))
3927 return -EINVAL;
3928
3929 current->compat_robust_list = head;
3930
3931 return 0;
3932}
3933
3934COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3935 compat_uptr_t __user *, head_ptr,
3936 compat_size_t __user *, len_ptr)
3937{
3938 struct compat_robust_list_head __user *head;
3939 unsigned long ret;
3940 struct task_struct *p;
3941
3942 if (!futex_cmpxchg_enabled)
3943 return -ENOSYS;
3944
3945 rcu_read_lock();
3946
3947 ret = -ESRCH;
3948 if (!pid)
3949 p = current;
3950 else {
3951 p = find_task_by_vpid(pid);
3952 if (!p)
3953 goto err_unlock;
3954 }
3955
3956 ret = -EPERM;
3957 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3958 goto err_unlock;
3959
3960 head = p->compat_robust_list;
3961 rcu_read_unlock();
3962
3963 if (put_user(sizeof(*head), len_ptr))
3964 return -EFAULT;
3965 return put_user(ptr_to_compat(head), head_ptr);
3966
3967err_unlock:
3968 rcu_read_unlock();
3969
3970 return ret;
3971}
bec2f7cb 3972#endif /* CONFIG_COMPAT */
04e7712f 3973
bec2f7cb 3974#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3975SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3976 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3977 u32, val3)
3978{
bec2f7cb 3979 struct timespec64 ts;
04e7712f
AB
3980 ktime_t t, *tp = NULL;
3981 int val2 = 0;
3982 int cmd = op & FUTEX_CMD_MASK;
3983
3984 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3985 cmd == FUTEX_WAIT_BITSET ||
3986 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3987 if (get_old_timespec32(&ts, utime))
04e7712f 3988 return -EFAULT;
bec2f7cb 3989 if (!timespec64_valid(&ts))
04e7712f
AB
3990 return -EINVAL;
3991
bec2f7cb 3992 t = timespec64_to_ktime(ts);
04e7712f
AB
3993 if (cmd == FUTEX_WAIT)
3994 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
3995 else if (!(op & FUTEX_CLOCK_REALTIME))
3996 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
04e7712f
AB
3997 tp = &t;
3998 }
3999 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4000 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4001 val2 = (int) (unsigned long) utime;
4002
4003 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4004}
bec2f7cb 4005#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 4006
03b8c7b6 4007static void __init futex_detect_cmpxchg(void)
1da177e4 4008{
03b8c7b6 4009#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 4010 u32 curval;
03b8c7b6
HC
4011
4012 /*
4013 * This will fail and we want it. Some arch implementations do
4014 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4015 * functionality. We want to know that before we call in any
4016 * of the complex code paths. Also we want to prevent
4017 * registration of robust lists in that case. NULL is
4018 * guaranteed to fault and we get -EFAULT on functional
4019 * implementation, the non-functional ones will return
4020 * -ENOSYS.
4021 */
4022 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4023 futex_cmpxchg_enabled = 1;
4024#endif
4025}
4026
4027static int __init futex_init(void)
4028{
63b1a816 4029 unsigned int futex_shift;
a52b89eb
DB
4030 unsigned long i;
4031
4032#if CONFIG_BASE_SMALL
4033 futex_hashsize = 16;
4034#else
4035 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4036#endif
4037
4038 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4039 futex_hashsize, 0,
4040 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4041 &futex_shift, NULL,
4042 futex_hashsize, futex_hashsize);
4043 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4044
4045 futex_detect_cmpxchg();
a0c1e907 4046
a52b89eb 4047 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4048 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4049 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4050 spin_lock_init(&futex_queues[i].lock);
4051 }
4052
1da177e4
LT
4053 return 0;
4054}
25f71d1c 4055core_initcall(futex_init);