]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/futex.c
bpf: do not disable/enable BH in bpf_map_free_id()
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
3859a271 215} __randomize_layout;
c87e2837 216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
ac6424b9 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
3859a271 249} __randomize_layout;
1da177e4 250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
7b4ff1ad 491 * The key words are stored in @key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
48fb6f4d
MG
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
65d8fc77
MG
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
48fb6f4d 680 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
38d47c1b 696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 697 key->shared.inode = inode;
077fa7ae 698 key->shared.pgoff = basepage_index(tail);
65d8fc77 699 rcu_read_unlock();
1da177e4
LT
700 }
701
9ea71503 702out:
14d27abd 703 put_page(page);
9ea71503 704 return err;
1da177e4
LT
705}
706
ae791a2d 707static inline void put_futex_key(union futex_key *key)
1da177e4 708{
38d47c1b 709 drop_futex_key_refs(key);
1da177e4
LT
710}
711
d96ee56c
DH
712/**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
fb62db2b 719 * We have no generic implementation of a non-destructive write to the
d0725992
TG
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724static int fault_in_user_writeable(u32 __user *uaddr)
725{
722d0172
AK
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
2efaca92 730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 731 FAULT_FLAG_WRITE, NULL);
722d0172
AK
732 up_read(&mm->mmap_sem);
733
d0725992
TG
734 return ret < 0 ? ret : 0;
735}
736
4b1c486b
DH
737/**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
741 *
742 * Must be called with the hb lock held.
743 */
744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746{
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754}
755
37a9d912
ML
756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
36cf3b5c 758{
37a9d912 759 int ret;
36cf3b5c
TG
760
761 pagefault_disable();
37a9d912 762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
763 pagefault_enable();
764
37a9d912 765 return ret;
36cf3b5c
TG
766}
767
768static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
769{
770 int ret;
771
a866374a 772 pagefault_disable();
bd28b145 773 ret = __get_user(*dest, from);
a866374a 774 pagefault_enable();
1da177e4
LT
775
776 return ret ? -EFAULT : 0;
777}
778
c87e2837
IM
779
780/*
781 * PI code:
782 */
783static int refill_pi_state_cache(void)
784{
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
4668edc3 790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
791
792 if (!pi_state)
793 return -ENOMEM;
794
c87e2837
IM
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
38d47c1b 799 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804}
805
bf92cf3a 806static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
807{
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814}
815
bf92cf3a
PZ
816static void get_pi_state(struct futex_pi_state *pi_state)
817{
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819}
820
30a6b803 821/*
29e9ee5d
TG
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
30a6b803 824 */
29e9ee5d 825static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 826{
30a6b803
BS
827 if (!pi_state)
828 return;
829
c87e2837
IM
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
01dcbf88 838 struct task_struct *owner;
c87e2837 839
01dcbf88
PZ
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
849 }
850
01dcbf88 851 if (current->pi_state_cache) {
c87e2837 852 kfree(pi_state);
01dcbf88 853 } else {
c87e2837
IM
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863}
864
865/*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
bf92cf3a 869static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
870{
871 struct task_struct *p;
872
d359b549 873 rcu_read_lock();
228ebcbe 874 p = find_task_by_vpid(pid);
7a0ea09a
MH
875 if (p)
876 get_task_struct(p);
a06381fe 877
d359b549 878 rcu_read_unlock();
c87e2837
IM
879
880 return p;
881}
882
883/*
884 * This task is holding PI mutexes at exit time => bad.
885 * Kernel cleans up PI-state, but userspace is likely hosed.
886 * (Robust-futex cleanup is separate and might save the day for userspace.)
887 */
888void exit_pi_state_list(struct task_struct *curr)
889{
c87e2837
IM
890 struct list_head *next, *head = &curr->pi_state_list;
891 struct futex_pi_state *pi_state;
627371d7 892 struct futex_hash_bucket *hb;
38d47c1b 893 union futex_key key = FUTEX_KEY_INIT;
c87e2837 894
a0c1e907
TG
895 if (!futex_cmpxchg_enabled)
896 return;
c87e2837
IM
897 /*
898 * We are a ZOMBIE and nobody can enqueue itself on
899 * pi_state_list anymore, but we have to be careful
627371d7 900 * versus waiters unqueueing themselves:
c87e2837 901 */
1d615482 902 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
903 while (!list_empty(head)) {
904
905 next = head->next;
906 pi_state = list_entry(next, struct futex_pi_state, list);
907 key = pi_state->key;
627371d7 908 hb = hash_futex(&key);
1d615482 909 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 910
c87e2837 911 spin_lock(&hb->lock);
01dcbf88
PZ
912 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913 raw_spin_lock(&curr->pi_lock);
627371d7
IM
914 /*
915 * We dropped the pi-lock, so re-check whether this
916 * task still owns the PI-state:
917 */
c87e2837 918 if (head->next != next) {
01dcbf88 919 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
920 spin_unlock(&hb->lock);
921 continue;
922 }
923
c87e2837 924 WARN_ON(pi_state->owner != curr);
627371d7
IM
925 WARN_ON(list_empty(&pi_state->list));
926 list_del_init(&pi_state->list);
c87e2837 927 pi_state->owner = NULL;
01dcbf88 928 raw_spin_unlock(&curr->pi_lock);
c87e2837 929
16ffa12d 930 get_pi_state(pi_state);
01dcbf88 931 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
932 spin_unlock(&hb->lock);
933
16ffa12d
PZ
934 rt_mutex_futex_unlock(&pi_state->pi_mutex);
935 put_pi_state(pi_state);
936
1d615482 937 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 938 }
1d615482 939 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
940}
941
54a21788
TG
942/*
943 * We need to check the following states:
944 *
945 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
946 *
947 * [1] NULL | --- | --- | 0 | 0/1 | Valid
948 * [2] NULL | --- | --- | >0 | 0/1 | Valid
949 *
950 * [3] Found | NULL | -- | Any | 0/1 | Invalid
951 *
952 * [4] Found | Found | NULL | 0 | 1 | Valid
953 * [5] Found | Found | NULL | >0 | 1 | Invalid
954 *
955 * [6] Found | Found | task | 0 | 1 | Valid
956 *
957 * [7] Found | Found | NULL | Any | 0 | Invalid
958 *
959 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
960 * [9] Found | Found | task | 0 | 0 | Invalid
961 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
962 *
963 * [1] Indicates that the kernel can acquire the futex atomically. We
964 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
965 *
966 * [2] Valid, if TID does not belong to a kernel thread. If no matching
967 * thread is found then it indicates that the owner TID has died.
968 *
969 * [3] Invalid. The waiter is queued on a non PI futex
970 *
971 * [4] Valid state after exit_robust_list(), which sets the user space
972 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
973 *
974 * [5] The user space value got manipulated between exit_robust_list()
975 * and exit_pi_state_list()
976 *
977 * [6] Valid state after exit_pi_state_list() which sets the new owner in
978 * the pi_state but cannot access the user space value.
979 *
980 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
981 *
982 * [8] Owner and user space value match
983 *
984 * [9] There is no transient state which sets the user space TID to 0
985 * except exit_robust_list(), but this is indicated by the
986 * FUTEX_OWNER_DIED bit. See [4]
987 *
988 * [10] There is no transient state which leaves owner and user space
989 * TID out of sync.
734009e9
PZ
990 *
991 *
992 * Serialization and lifetime rules:
993 *
994 * hb->lock:
995 *
996 * hb -> futex_q, relation
997 * futex_q -> pi_state, relation
998 *
999 * (cannot be raw because hb can contain arbitrary amount
1000 * of futex_q's)
1001 *
1002 * pi_mutex->wait_lock:
1003 *
1004 * {uval, pi_state}
1005 *
1006 * (and pi_mutex 'obviously')
1007 *
1008 * p->pi_lock:
1009 *
1010 * p->pi_state_list -> pi_state->list, relation
1011 *
1012 * pi_state->refcount:
1013 *
1014 * pi_state lifetime
1015 *
1016 *
1017 * Lock order:
1018 *
1019 * hb->lock
1020 * pi_mutex->wait_lock
1021 * p->pi_lock
1022 *
54a21788 1023 */
e60cbc5c
TG
1024
1025/*
1026 * Validate that the existing waiter has a pi_state and sanity check
1027 * the pi_state against the user space value. If correct, attach to
1028 * it.
1029 */
734009e9
PZ
1030static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1031 struct futex_pi_state *pi_state,
e60cbc5c 1032 struct futex_pi_state **ps)
c87e2837 1033{
778e9a9c 1034 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1035 u32 uval2;
1036 int ret;
c87e2837 1037
e60cbc5c
TG
1038 /*
1039 * Userspace might have messed up non-PI and PI futexes [3]
1040 */
1041 if (unlikely(!pi_state))
1042 return -EINVAL;
06a9ec29 1043
734009e9
PZ
1044 /*
1045 * We get here with hb->lock held, and having found a
1046 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1047 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1048 * which in turn means that futex_lock_pi() still has a reference on
1049 * our pi_state.
16ffa12d
PZ
1050 *
1051 * The waiter holding a reference on @pi_state also protects against
1052 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1053 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1054 * free pi_state before we can take a reference ourselves.
734009e9 1055 */
e60cbc5c 1056 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1057
734009e9
PZ
1058 /*
1059 * Now that we have a pi_state, we can acquire wait_lock
1060 * and do the state validation.
1061 */
1062 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1063
1064 /*
1065 * Since {uval, pi_state} is serialized by wait_lock, and our current
1066 * uval was read without holding it, it can have changed. Verify it
1067 * still is what we expect it to be, otherwise retry the entire
1068 * operation.
1069 */
1070 if (get_futex_value_locked(&uval2, uaddr))
1071 goto out_efault;
1072
1073 if (uval != uval2)
1074 goto out_eagain;
1075
e60cbc5c
TG
1076 /*
1077 * Handle the owner died case:
1078 */
1079 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1080 /*
e60cbc5c
TG
1081 * exit_pi_state_list sets owner to NULL and wakes the
1082 * topmost waiter. The task which acquires the
1083 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1084 */
e60cbc5c 1085 if (!pi_state->owner) {
59647b6a 1086 /*
e60cbc5c
TG
1087 * No pi state owner, but the user space TID
1088 * is not 0. Inconsistent state. [5]
59647b6a 1089 */
e60cbc5c 1090 if (pid)
734009e9 1091 goto out_einval;
bd1dbcc6 1092 /*
e60cbc5c 1093 * Take a ref on the state and return success. [4]
866293ee 1094 */
734009e9 1095 goto out_attach;
c87e2837 1096 }
bd1dbcc6
TG
1097
1098 /*
e60cbc5c
TG
1099 * If TID is 0, then either the dying owner has not
1100 * yet executed exit_pi_state_list() or some waiter
1101 * acquired the rtmutex in the pi state, but did not
1102 * yet fixup the TID in user space.
1103 *
1104 * Take a ref on the state and return success. [6]
1105 */
1106 if (!pid)
734009e9 1107 goto out_attach;
e60cbc5c
TG
1108 } else {
1109 /*
1110 * If the owner died bit is not set, then the pi_state
1111 * must have an owner. [7]
bd1dbcc6 1112 */
e60cbc5c 1113 if (!pi_state->owner)
734009e9 1114 goto out_einval;
c87e2837
IM
1115 }
1116
e60cbc5c
TG
1117 /*
1118 * Bail out if user space manipulated the futex value. If pi
1119 * state exists then the owner TID must be the same as the
1120 * user space TID. [9/10]
1121 */
1122 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1123 goto out_einval;
1124
1125out_attach:
bf92cf3a 1126 get_pi_state(pi_state);
734009e9 1127 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1128 *ps = pi_state;
1129 return 0;
734009e9
PZ
1130
1131out_einval:
1132 ret = -EINVAL;
1133 goto out_error;
1134
1135out_eagain:
1136 ret = -EAGAIN;
1137 goto out_error;
1138
1139out_efault:
1140 ret = -EFAULT;
1141 goto out_error;
1142
1143out_error:
1144 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1145 return ret;
e60cbc5c
TG
1146}
1147
04e1b2e5
TG
1148/*
1149 * Lookup the task for the TID provided from user space and attach to
1150 * it after doing proper sanity checks.
1151 */
1152static int attach_to_pi_owner(u32 uval, union futex_key *key,
1153 struct futex_pi_state **ps)
e60cbc5c 1154{
e60cbc5c 1155 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1156 struct futex_pi_state *pi_state;
1157 struct task_struct *p;
e60cbc5c 1158
c87e2837 1159 /*
e3f2ddea 1160 * We are the first waiter - try to look up the real owner and attach
54a21788 1161 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1162 */
778e9a9c 1163 if (!pid)
e3f2ddea 1164 return -ESRCH;
c87e2837 1165 p = futex_find_get_task(pid);
7a0ea09a
MH
1166 if (!p)
1167 return -ESRCH;
778e9a9c 1168
a2129464 1169 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1170 put_task_struct(p);
1171 return -EPERM;
1172 }
1173
778e9a9c
AK
1174 /*
1175 * We need to look at the task state flags to figure out,
1176 * whether the task is exiting. To protect against the do_exit
1177 * change of the task flags, we do this protected by
1178 * p->pi_lock:
1179 */
1d615482 1180 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1181 if (unlikely(p->flags & PF_EXITING)) {
1182 /*
1183 * The task is on the way out. When PF_EXITPIDONE is
1184 * set, we know that the task has finished the
1185 * cleanup:
1186 */
1187 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1188
1d615482 1189 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1190 put_task_struct(p);
1191 return ret;
1192 }
c87e2837 1193
54a21788
TG
1194 /*
1195 * No existing pi state. First waiter. [2]
734009e9
PZ
1196 *
1197 * This creates pi_state, we have hb->lock held, this means nothing can
1198 * observe this state, wait_lock is irrelevant.
54a21788 1199 */
c87e2837
IM
1200 pi_state = alloc_pi_state();
1201
1202 /*
04e1b2e5 1203 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1204 * the owner of it:
1205 */
1206 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1207
1208 /* Store the key for possible exit cleanups: */
d0aa7a70 1209 pi_state->key = *key;
c87e2837 1210
627371d7 1211 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1212 list_add(&pi_state->list, &p->pi_state_list);
01dcbf88
PZ
1213 /*
1214 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1215 * because there is no concurrency as the object is not published yet.
1216 */
c87e2837 1217 pi_state->owner = p;
1d615482 1218 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1219
1220 put_task_struct(p);
1221
d0aa7a70 1222 *ps = pi_state;
c87e2837
IM
1223
1224 return 0;
1225}
1226
734009e9
PZ
1227static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1228 struct futex_hash_bucket *hb,
04e1b2e5
TG
1229 union futex_key *key, struct futex_pi_state **ps)
1230{
499f5aca 1231 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1232
1233 /*
1234 * If there is a waiter on that futex, validate it and
1235 * attach to the pi_state when the validation succeeds.
1236 */
499f5aca 1237 if (top_waiter)
734009e9 1238 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1239
1240 /*
1241 * We are the first waiter - try to look up the owner based on
1242 * @uval and attach to it.
1243 */
1244 return attach_to_pi_owner(uval, key, ps);
1245}
1246
af54d6a1
TG
1247static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1248{
1249 u32 uninitialized_var(curval);
1250
ab51fbab
DB
1251 if (unlikely(should_fail_futex(true)))
1252 return -EFAULT;
1253
af54d6a1
TG
1254 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1255 return -EFAULT;
1256
734009e9 1257 /* If user space value changed, let the caller retry */
af54d6a1
TG
1258 return curval != uval ? -EAGAIN : 0;
1259}
1260
1a52084d 1261/**
d96ee56c 1262 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1263 * @uaddr: the pi futex user address
1264 * @hb: the pi futex hash bucket
1265 * @key: the futex key associated with uaddr and hb
1266 * @ps: the pi_state pointer where we store the result of the
1267 * lookup
1268 * @task: the task to perform the atomic lock work for. This will
1269 * be "current" except in the case of requeue pi.
1270 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1271 *
6c23cbbd 1272 * Return:
7b4ff1ad
MCC
1273 * - 0 - ready to wait;
1274 * - 1 - acquired the lock;
1275 * - <0 - error
1a52084d
DH
1276 *
1277 * The hb->lock and futex_key refs shall be held by the caller.
1278 */
1279static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1280 union futex_key *key,
1281 struct futex_pi_state **ps,
bab5bc9e 1282 struct task_struct *task, int set_waiters)
1a52084d 1283{
af54d6a1 1284 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1285 struct futex_q *top_waiter;
af54d6a1 1286 int ret;
1a52084d
DH
1287
1288 /*
af54d6a1
TG
1289 * Read the user space value first so we can validate a few
1290 * things before proceeding further.
1a52084d 1291 */
af54d6a1 1292 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1293 return -EFAULT;
1294
ab51fbab
DB
1295 if (unlikely(should_fail_futex(true)))
1296 return -EFAULT;
1297
1a52084d
DH
1298 /*
1299 * Detect deadlocks.
1300 */
af54d6a1 1301 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1302 return -EDEADLK;
1303
ab51fbab
DB
1304 if ((unlikely(should_fail_futex(true))))
1305 return -EDEADLK;
1306
1a52084d 1307 /*
af54d6a1
TG
1308 * Lookup existing state first. If it exists, try to attach to
1309 * its pi_state.
1a52084d 1310 */
499f5aca
PZ
1311 top_waiter = futex_top_waiter(hb, key);
1312 if (top_waiter)
734009e9 1313 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1314
1315 /*
af54d6a1
TG
1316 * No waiter and user TID is 0. We are here because the
1317 * waiters or the owner died bit is set or called from
1318 * requeue_cmp_pi or for whatever reason something took the
1319 * syscall.
1a52084d 1320 */
af54d6a1 1321 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1322 /*
af54d6a1
TG
1323 * We take over the futex. No other waiters and the user space
1324 * TID is 0. We preserve the owner died bit.
59fa6245 1325 */
af54d6a1
TG
1326 newval = uval & FUTEX_OWNER_DIED;
1327 newval |= vpid;
1a52084d 1328
af54d6a1
TG
1329 /* The futex requeue_pi code can enforce the waiters bit */
1330 if (set_waiters)
1331 newval |= FUTEX_WAITERS;
1332
1333 ret = lock_pi_update_atomic(uaddr, uval, newval);
1334 /* If the take over worked, return 1 */
1335 return ret < 0 ? ret : 1;
1336 }
1a52084d
DH
1337
1338 /*
af54d6a1
TG
1339 * First waiter. Set the waiters bit before attaching ourself to
1340 * the owner. If owner tries to unlock, it will be forced into
1341 * the kernel and blocked on hb->lock.
1a52084d 1342 */
af54d6a1
TG
1343 newval = uval | FUTEX_WAITERS;
1344 ret = lock_pi_update_atomic(uaddr, uval, newval);
1345 if (ret)
1346 return ret;
1a52084d 1347 /*
af54d6a1
TG
1348 * If the update of the user space value succeeded, we try to
1349 * attach to the owner. If that fails, no harm done, we only
1350 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1351 */
af54d6a1 1352 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1353}
1354
2e12978a
LJ
1355/**
1356 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1357 * @q: The futex_q to unqueue
1358 *
1359 * The q->lock_ptr must not be NULL and must be held by the caller.
1360 */
1361static void __unqueue_futex(struct futex_q *q)
1362{
1363 struct futex_hash_bucket *hb;
1364
29096202
SR
1365 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1366 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1367 return;
1368
1369 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1370 plist_del(&q->list, &hb->chain);
11d4616b 1371 hb_waiters_dec(hb);
2e12978a
LJ
1372}
1373
1da177e4
LT
1374/*
1375 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1376 * Afterwards, the futex_q must not be accessed. Callers
1377 * must ensure to later call wake_up_q() for the actual
1378 * wakeups to occur.
1da177e4 1379 */
1d0dcb3a 1380static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1381{
f1a11e05
TG
1382 struct task_struct *p = q->task;
1383
aa10990e
DH
1384 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1385 return;
1386
1da177e4 1387 /*
1d0dcb3a
DB
1388 * Queue the task for later wakeup for after we've released
1389 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1390 */
1d0dcb3a 1391 wake_q_add(wake_q, p);
2e12978a 1392 __unqueue_futex(q);
1da177e4 1393 /*
38fcd06e
DHV
1394 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1395 * is written, without taking any locks. This is possible in the event
1396 * of a spurious wakeup, for example. A memory barrier is required here
1397 * to prevent the following store to lock_ptr from getting ahead of the
1398 * plist_del in __unqueue_futex().
1da177e4 1399 */
1b367ece 1400 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1401}
1402
16ffa12d
PZ
1403/*
1404 * Caller must hold a reference on @pi_state.
1405 */
1406static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1407{
7cfdaf38 1408 u32 uninitialized_var(curval), newval;
16ffa12d 1409 struct task_struct *new_owner;
aa2bfe55 1410 bool postunlock = false;
194a6b5b 1411 DEFINE_WAKE_Q(wake_q);
13fbca4c 1412 int ret = 0;
c87e2837 1413
c87e2837 1414 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1415 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1416 /*
bebe5b51 1417 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1418 *
1419 * When this happens, give up our locks and try again, giving
1420 * the futex_lock_pi() instance time to complete, either by
1421 * waiting on the rtmutex or removing itself from the futex
1422 * queue.
1423 */
1424 ret = -EAGAIN;
1425 goto out_unlock;
73d786bd 1426 }
c87e2837
IM
1427
1428 /*
16ffa12d
PZ
1429 * We pass it to the next owner. The WAITERS bit is always kept
1430 * enabled while there is PI state around. We cleanup the owner
1431 * died bit, because we are the owner.
c87e2837 1432 */
13fbca4c 1433 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1434
ab51fbab
DB
1435 if (unlikely(should_fail_futex(true)))
1436 ret = -EFAULT;
1437
89e9e66b 1438 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1439 ret = -EFAULT;
734009e9 1440
89e9e66b
SAS
1441 } else if (curval != uval) {
1442 /*
1443 * If a unconditional UNLOCK_PI operation (user space did not
1444 * try the TID->0 transition) raced with a waiter setting the
1445 * FUTEX_WAITERS flag between get_user() and locking the hash
1446 * bucket lock, retry the operation.
1447 */
1448 if ((FUTEX_TID_MASK & curval) == uval)
1449 ret = -EAGAIN;
1450 else
1451 ret = -EINVAL;
1452 }
734009e9 1453
16ffa12d
PZ
1454 if (ret)
1455 goto out_unlock;
c87e2837 1456
94ffac5d
PZ
1457 /*
1458 * This is a point of no return; once we modify the uval there is no
1459 * going back and subsequent operations must not fail.
1460 */
1461
b4abf910 1462 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1463 WARN_ON(list_empty(&pi_state->list));
1464 list_del_init(&pi_state->list);
b4abf910 1465 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1466
b4abf910 1467 raw_spin_lock(&new_owner->pi_lock);
627371d7 1468 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1469 list_add(&pi_state->list, &new_owner->pi_state_list);
1470 pi_state->owner = new_owner;
b4abf910 1471 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1472
aa2bfe55 1473 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1474
16ffa12d 1475out_unlock:
5293c2ef 1476 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1477
aa2bfe55
PZ
1478 if (postunlock)
1479 rt_mutex_postunlock(&wake_q);
c87e2837 1480
16ffa12d 1481 return ret;
c87e2837
IM
1482}
1483
8b8f319f
IM
1484/*
1485 * Express the locking dependencies for lockdep:
1486 */
1487static inline void
1488double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1489{
1490 if (hb1 <= hb2) {
1491 spin_lock(&hb1->lock);
1492 if (hb1 < hb2)
1493 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1494 } else { /* hb1 > hb2 */
1495 spin_lock(&hb2->lock);
1496 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1497 }
1498}
1499
5eb3dc62
DH
1500static inline void
1501double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1502{
f061d351 1503 spin_unlock(&hb1->lock);
88f502fe
IM
1504 if (hb1 != hb2)
1505 spin_unlock(&hb2->lock);
5eb3dc62
DH
1506}
1507
1da177e4 1508/*
b2d0994b 1509 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1510 */
b41277dc
DH
1511static int
1512futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1513{
e2970f2f 1514 struct futex_hash_bucket *hb;
1da177e4 1515 struct futex_q *this, *next;
38d47c1b 1516 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1517 int ret;
194a6b5b 1518 DEFINE_WAKE_Q(wake_q);
1da177e4 1519
cd689985
TG
1520 if (!bitset)
1521 return -EINVAL;
1522
9ea71503 1523 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1524 if (unlikely(ret != 0))
1525 goto out;
1526
e2970f2f 1527 hb = hash_futex(&key);
b0c29f79
DB
1528
1529 /* Make sure we really have tasks to wakeup */
1530 if (!hb_waiters_pending(hb))
1531 goto out_put_key;
1532
e2970f2f 1533 spin_lock(&hb->lock);
1da177e4 1534
0d00c7b2 1535 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1536 if (match_futex (&this->key, &key)) {
52400ba9 1537 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1538 ret = -EINVAL;
1539 break;
1540 }
cd689985
TG
1541
1542 /* Check if one of the bits is set in both bitsets */
1543 if (!(this->bitset & bitset))
1544 continue;
1545
1d0dcb3a 1546 mark_wake_futex(&wake_q, this);
1da177e4
LT
1547 if (++ret >= nr_wake)
1548 break;
1549 }
1550 }
1551
e2970f2f 1552 spin_unlock(&hb->lock);
1d0dcb3a 1553 wake_up_q(&wake_q);
b0c29f79 1554out_put_key:
ae791a2d 1555 put_futex_key(&key);
42d35d48 1556out:
1da177e4
LT
1557 return ret;
1558}
1559
4732efbe
JJ
1560/*
1561 * Wake up all waiters hashed on the physical page that is mapped
1562 * to this virtual address:
1563 */
e2970f2f 1564static int
b41277dc 1565futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1566 int nr_wake, int nr_wake2, int op)
4732efbe 1567{
38d47c1b 1568 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1569 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1570 struct futex_q *this, *next;
e4dc5b7a 1571 int ret, op_ret;
194a6b5b 1572 DEFINE_WAKE_Q(wake_q);
4732efbe 1573
e4dc5b7a 1574retry:
9ea71503 1575 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1576 if (unlikely(ret != 0))
1577 goto out;
9ea71503 1578 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1579 if (unlikely(ret != 0))
42d35d48 1580 goto out_put_key1;
4732efbe 1581
e2970f2f
IM
1582 hb1 = hash_futex(&key1);
1583 hb2 = hash_futex(&key2);
4732efbe 1584
e4dc5b7a 1585retry_private:
eaaea803 1586 double_lock_hb(hb1, hb2);
e2970f2f 1587 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1588 if (unlikely(op_ret < 0)) {
4732efbe 1589
5eb3dc62 1590 double_unlock_hb(hb1, hb2);
4732efbe 1591
7ee1dd3f 1592#ifndef CONFIG_MMU
e2970f2f
IM
1593 /*
1594 * we don't get EFAULT from MMU faults if we don't have an MMU,
1595 * but we might get them from range checking
1596 */
7ee1dd3f 1597 ret = op_ret;
42d35d48 1598 goto out_put_keys;
7ee1dd3f
DH
1599#endif
1600
796f8d9b
DG
1601 if (unlikely(op_ret != -EFAULT)) {
1602 ret = op_ret;
42d35d48 1603 goto out_put_keys;
796f8d9b
DG
1604 }
1605
d0725992 1606 ret = fault_in_user_writeable(uaddr2);
4732efbe 1607 if (ret)
de87fcc1 1608 goto out_put_keys;
4732efbe 1609
b41277dc 1610 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1611 goto retry_private;
1612
ae791a2d
TG
1613 put_futex_key(&key2);
1614 put_futex_key(&key1);
e4dc5b7a 1615 goto retry;
4732efbe
JJ
1616 }
1617
0d00c7b2 1618 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1619 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1620 if (this->pi_state || this->rt_waiter) {
1621 ret = -EINVAL;
1622 goto out_unlock;
1623 }
1d0dcb3a 1624 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1625 if (++ret >= nr_wake)
1626 break;
1627 }
1628 }
1629
1630 if (op_ret > 0) {
4732efbe 1631 op_ret = 0;
0d00c7b2 1632 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1633 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1634 if (this->pi_state || this->rt_waiter) {
1635 ret = -EINVAL;
1636 goto out_unlock;
1637 }
1d0dcb3a 1638 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1639 if (++op_ret >= nr_wake2)
1640 break;
1641 }
1642 }
1643 ret += op_ret;
1644 }
1645
aa10990e 1646out_unlock:
5eb3dc62 1647 double_unlock_hb(hb1, hb2);
1d0dcb3a 1648 wake_up_q(&wake_q);
42d35d48 1649out_put_keys:
ae791a2d 1650 put_futex_key(&key2);
42d35d48 1651out_put_key1:
ae791a2d 1652 put_futex_key(&key1);
42d35d48 1653out:
4732efbe
JJ
1654 return ret;
1655}
1656
9121e478
DH
1657/**
1658 * requeue_futex() - Requeue a futex_q from one hb to another
1659 * @q: the futex_q to requeue
1660 * @hb1: the source hash_bucket
1661 * @hb2: the target hash_bucket
1662 * @key2: the new key for the requeued futex_q
1663 */
1664static inline
1665void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1666 struct futex_hash_bucket *hb2, union futex_key *key2)
1667{
1668
1669 /*
1670 * If key1 and key2 hash to the same bucket, no need to
1671 * requeue.
1672 */
1673 if (likely(&hb1->chain != &hb2->chain)) {
1674 plist_del(&q->list, &hb1->chain);
11d4616b 1675 hb_waiters_dec(hb1);
11d4616b 1676 hb_waiters_inc(hb2);
fe1bce9e 1677 plist_add(&q->list, &hb2->chain);
9121e478 1678 q->lock_ptr = &hb2->lock;
9121e478
DH
1679 }
1680 get_futex_key_refs(key2);
1681 q->key = *key2;
1682}
1683
52400ba9
DH
1684/**
1685 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1686 * @q: the futex_q
1687 * @key: the key of the requeue target futex
1688 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1689 *
1690 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1691 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1692 * to the requeue target futex so the waiter can detect the wakeup on the right
1693 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1694 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1695 * to protect access to the pi_state to fixup the owner later. Must be called
1696 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1697 */
1698static inline
beda2c7e
DH
1699void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1700 struct futex_hash_bucket *hb)
52400ba9 1701{
52400ba9
DH
1702 get_futex_key_refs(key);
1703 q->key = *key;
1704
2e12978a 1705 __unqueue_futex(q);
52400ba9
DH
1706
1707 WARN_ON(!q->rt_waiter);
1708 q->rt_waiter = NULL;
1709
beda2c7e 1710 q->lock_ptr = &hb->lock;
beda2c7e 1711
f1a11e05 1712 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1713}
1714
1715/**
1716 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1717 * @pifutex: the user address of the to futex
1718 * @hb1: the from futex hash bucket, must be locked by the caller
1719 * @hb2: the to futex hash bucket, must be locked by the caller
1720 * @key1: the from futex key
1721 * @key2: the to futex key
1722 * @ps: address to store the pi_state pointer
1723 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1724 *
1725 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1726 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1727 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1728 * hb1 and hb2 must be held by the caller.
52400ba9 1729 *
6c23cbbd 1730 * Return:
7b4ff1ad
MCC
1731 * - 0 - failed to acquire the lock atomically;
1732 * - >0 - acquired the lock, return value is vpid of the top_waiter
1733 * - <0 - error
52400ba9
DH
1734 */
1735static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1736 struct futex_hash_bucket *hb1,
1737 struct futex_hash_bucket *hb2,
1738 union futex_key *key1, union futex_key *key2,
bab5bc9e 1739 struct futex_pi_state **ps, int set_waiters)
52400ba9 1740{
bab5bc9e 1741 struct futex_q *top_waiter = NULL;
52400ba9 1742 u32 curval;
866293ee 1743 int ret, vpid;
52400ba9
DH
1744
1745 if (get_futex_value_locked(&curval, pifutex))
1746 return -EFAULT;
1747
ab51fbab
DB
1748 if (unlikely(should_fail_futex(true)))
1749 return -EFAULT;
1750
bab5bc9e
DH
1751 /*
1752 * Find the top_waiter and determine if there are additional waiters.
1753 * If the caller intends to requeue more than 1 waiter to pifutex,
1754 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1755 * as we have means to handle the possible fault. If not, don't set
1756 * the bit unecessarily as it will force the subsequent unlock to enter
1757 * the kernel.
1758 */
52400ba9
DH
1759 top_waiter = futex_top_waiter(hb1, key1);
1760
1761 /* There are no waiters, nothing for us to do. */
1762 if (!top_waiter)
1763 return 0;
1764
84bc4af5
DH
1765 /* Ensure we requeue to the expected futex. */
1766 if (!match_futex(top_waiter->requeue_pi_key, key2))
1767 return -EINVAL;
1768
52400ba9 1769 /*
bab5bc9e
DH
1770 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1771 * the contended case or if set_waiters is 1. The pi_state is returned
1772 * in ps in contended cases.
52400ba9 1773 */
866293ee 1774 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1775 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1776 set_waiters);
866293ee 1777 if (ret == 1) {
beda2c7e 1778 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1779 return vpid;
1780 }
52400ba9
DH
1781 return ret;
1782}
1783
1784/**
1785 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1786 * @uaddr1: source futex user address
b41277dc 1787 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1788 * @uaddr2: target futex user address
1789 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1790 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1791 * @cmpval: @uaddr1 expected value (or %NULL)
1792 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1793 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1794 *
1795 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1796 * uaddr2 atomically on behalf of the top waiter.
1797 *
6c23cbbd 1798 * Return:
7b4ff1ad
MCC
1799 * - >=0 - on success, the number of tasks requeued or woken;
1800 * - <0 - on error
1da177e4 1801 */
b41277dc
DH
1802static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1803 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1804 u32 *cmpval, int requeue_pi)
1da177e4 1805{
38d47c1b 1806 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1807 int drop_count = 0, task_count = 0, ret;
1808 struct futex_pi_state *pi_state = NULL;
e2970f2f 1809 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1810 struct futex_q *this, *next;
194a6b5b 1811 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1812
1813 if (requeue_pi) {
e9c243a5
TG
1814 /*
1815 * Requeue PI only works on two distinct uaddrs. This
1816 * check is only valid for private futexes. See below.
1817 */
1818 if (uaddr1 == uaddr2)
1819 return -EINVAL;
1820
52400ba9
DH
1821 /*
1822 * requeue_pi requires a pi_state, try to allocate it now
1823 * without any locks in case it fails.
1824 */
1825 if (refill_pi_state_cache())
1826 return -ENOMEM;
1827 /*
1828 * requeue_pi must wake as many tasks as it can, up to nr_wake
1829 * + nr_requeue, since it acquires the rt_mutex prior to
1830 * returning to userspace, so as to not leave the rt_mutex with
1831 * waiters and no owner. However, second and third wake-ups
1832 * cannot be predicted as they involve race conditions with the
1833 * first wake and a fault while looking up the pi_state. Both
1834 * pthread_cond_signal() and pthread_cond_broadcast() should
1835 * use nr_wake=1.
1836 */
1837 if (nr_wake != 1)
1838 return -EINVAL;
1839 }
1da177e4 1840
42d35d48 1841retry:
9ea71503 1842 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1843 if (unlikely(ret != 0))
1844 goto out;
9ea71503
SB
1845 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1846 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1847 if (unlikely(ret != 0))
42d35d48 1848 goto out_put_key1;
1da177e4 1849
e9c243a5
TG
1850 /*
1851 * The check above which compares uaddrs is not sufficient for
1852 * shared futexes. We need to compare the keys:
1853 */
1854 if (requeue_pi && match_futex(&key1, &key2)) {
1855 ret = -EINVAL;
1856 goto out_put_keys;
1857 }
1858
e2970f2f
IM
1859 hb1 = hash_futex(&key1);
1860 hb2 = hash_futex(&key2);
1da177e4 1861
e4dc5b7a 1862retry_private:
69cd9eba 1863 hb_waiters_inc(hb2);
8b8f319f 1864 double_lock_hb(hb1, hb2);
1da177e4 1865
e2970f2f
IM
1866 if (likely(cmpval != NULL)) {
1867 u32 curval;
1da177e4 1868
e2970f2f 1869 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1870
1871 if (unlikely(ret)) {
5eb3dc62 1872 double_unlock_hb(hb1, hb2);
69cd9eba 1873 hb_waiters_dec(hb2);
1da177e4 1874
e2970f2f 1875 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1876 if (ret)
1877 goto out_put_keys;
1da177e4 1878
b41277dc 1879 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1880 goto retry_private;
1da177e4 1881
ae791a2d
TG
1882 put_futex_key(&key2);
1883 put_futex_key(&key1);
e4dc5b7a 1884 goto retry;
1da177e4 1885 }
e2970f2f 1886 if (curval != *cmpval) {
1da177e4
LT
1887 ret = -EAGAIN;
1888 goto out_unlock;
1889 }
1890 }
1891
52400ba9 1892 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1893 /*
1894 * Attempt to acquire uaddr2 and wake the top waiter. If we
1895 * intend to requeue waiters, force setting the FUTEX_WAITERS
1896 * bit. We force this here where we are able to easily handle
1897 * faults rather in the requeue loop below.
1898 */
52400ba9 1899 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1900 &key2, &pi_state, nr_requeue);
52400ba9
DH
1901
1902 /*
1903 * At this point the top_waiter has either taken uaddr2 or is
1904 * waiting on it. If the former, then the pi_state will not
1905 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1906 * reference to it. If the lock was taken, ret contains the
1907 * vpid of the top waiter task.
ecb38b78
TG
1908 * If the lock was not taken, we have pi_state and an initial
1909 * refcount on it. In case of an error we have nothing.
52400ba9 1910 */
866293ee 1911 if (ret > 0) {
52400ba9 1912 WARN_ON(pi_state);
89061d3d 1913 drop_count++;
52400ba9 1914 task_count++;
866293ee 1915 /*
ecb38b78
TG
1916 * If we acquired the lock, then the user space value
1917 * of uaddr2 should be vpid. It cannot be changed by
1918 * the top waiter as it is blocked on hb2 lock if it
1919 * tries to do so. If something fiddled with it behind
1920 * our back the pi state lookup might unearth it. So
1921 * we rather use the known value than rereading and
1922 * handing potential crap to lookup_pi_state.
1923 *
1924 * If that call succeeds then we have pi_state and an
1925 * initial refcount on it.
866293ee 1926 */
734009e9 1927 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1928 }
1929
1930 switch (ret) {
1931 case 0:
ecb38b78 1932 /* We hold a reference on the pi state. */
52400ba9 1933 break;
4959f2de
TG
1934
1935 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1936 case -EFAULT:
1937 double_unlock_hb(hb1, hb2);
69cd9eba 1938 hb_waiters_dec(hb2);
ae791a2d
TG
1939 put_futex_key(&key2);
1940 put_futex_key(&key1);
d0725992 1941 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1942 if (!ret)
1943 goto retry;
1944 goto out;
1945 case -EAGAIN:
af54d6a1
TG
1946 /*
1947 * Two reasons for this:
1948 * - Owner is exiting and we just wait for the
1949 * exit to complete.
1950 * - The user space value changed.
1951 */
52400ba9 1952 double_unlock_hb(hb1, hb2);
69cd9eba 1953 hb_waiters_dec(hb2);
ae791a2d
TG
1954 put_futex_key(&key2);
1955 put_futex_key(&key1);
52400ba9
DH
1956 cond_resched();
1957 goto retry;
1958 default:
1959 goto out_unlock;
1960 }
1961 }
1962
0d00c7b2 1963 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1964 if (task_count - nr_wake >= nr_requeue)
1965 break;
1966
1967 if (!match_futex(&this->key, &key1))
1da177e4 1968 continue;
52400ba9 1969
392741e0
DH
1970 /*
1971 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1972 * be paired with each other and no other futex ops.
aa10990e
DH
1973 *
1974 * We should never be requeueing a futex_q with a pi_state,
1975 * which is awaiting a futex_unlock_pi().
392741e0
DH
1976 */
1977 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1978 (!requeue_pi && this->rt_waiter) ||
1979 this->pi_state) {
392741e0
DH
1980 ret = -EINVAL;
1981 break;
1982 }
52400ba9
DH
1983
1984 /*
1985 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1986 * lock, we already woke the top_waiter. If not, it will be
1987 * woken by futex_unlock_pi().
1988 */
1989 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1990 mark_wake_futex(&wake_q, this);
52400ba9
DH
1991 continue;
1992 }
1da177e4 1993
84bc4af5
DH
1994 /* Ensure we requeue to the expected futex for requeue_pi. */
1995 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1996 ret = -EINVAL;
1997 break;
1998 }
1999
52400ba9
DH
2000 /*
2001 * Requeue nr_requeue waiters and possibly one more in the case
2002 * of requeue_pi if we couldn't acquire the lock atomically.
2003 */
2004 if (requeue_pi) {
ecb38b78
TG
2005 /*
2006 * Prepare the waiter to take the rt_mutex. Take a
2007 * refcount on the pi_state and store the pointer in
2008 * the futex_q object of the waiter.
2009 */
bf92cf3a 2010 get_pi_state(pi_state);
52400ba9
DH
2011 this->pi_state = pi_state;
2012 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2013 this->rt_waiter,
c051b21f 2014 this->task);
52400ba9 2015 if (ret == 1) {
ecb38b78
TG
2016 /*
2017 * We got the lock. We do neither drop the
2018 * refcount on pi_state nor clear
2019 * this->pi_state because the waiter needs the
2020 * pi_state for cleaning up the user space
2021 * value. It will drop the refcount after
2022 * doing so.
2023 */
beda2c7e 2024 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2025 drop_count++;
52400ba9
DH
2026 continue;
2027 } else if (ret) {
ecb38b78
TG
2028 /*
2029 * rt_mutex_start_proxy_lock() detected a
2030 * potential deadlock when we tried to queue
2031 * that waiter. Drop the pi_state reference
2032 * which we took above and remove the pointer
2033 * to the state from the waiters futex_q
2034 * object.
2035 */
52400ba9 2036 this->pi_state = NULL;
29e9ee5d 2037 put_pi_state(pi_state);
885c2cb7
TG
2038 /*
2039 * We stop queueing more waiters and let user
2040 * space deal with the mess.
2041 */
2042 break;
52400ba9 2043 }
1da177e4 2044 }
52400ba9
DH
2045 requeue_futex(this, hb1, hb2, &key2);
2046 drop_count++;
1da177e4
LT
2047 }
2048
ecb38b78
TG
2049 /*
2050 * We took an extra initial reference to the pi_state either
2051 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2052 * need to drop it here again.
2053 */
29e9ee5d 2054 put_pi_state(pi_state);
885c2cb7
TG
2055
2056out_unlock:
5eb3dc62 2057 double_unlock_hb(hb1, hb2);
1d0dcb3a 2058 wake_up_q(&wake_q);
69cd9eba 2059 hb_waiters_dec(hb2);
1da177e4 2060
cd84a42f
DH
2061 /*
2062 * drop_futex_key_refs() must be called outside the spinlocks. During
2063 * the requeue we moved futex_q's from the hash bucket at key1 to the
2064 * one at key2 and updated their key pointer. We no longer need to
2065 * hold the references to key1.
2066 */
1da177e4 2067 while (--drop_count >= 0)
9adef58b 2068 drop_futex_key_refs(&key1);
1da177e4 2069
42d35d48 2070out_put_keys:
ae791a2d 2071 put_futex_key(&key2);
42d35d48 2072out_put_key1:
ae791a2d 2073 put_futex_key(&key1);
42d35d48 2074out:
52400ba9 2075 return ret ? ret : task_count;
1da177e4
LT
2076}
2077
2078/* The key must be already stored in q->key. */
82af7aca 2079static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2080 __acquires(&hb->lock)
1da177e4 2081{
e2970f2f 2082 struct futex_hash_bucket *hb;
1da177e4 2083
e2970f2f 2084 hb = hash_futex(&q->key);
11d4616b
LT
2085
2086 /*
2087 * Increment the counter before taking the lock so that
2088 * a potential waker won't miss a to-be-slept task that is
2089 * waiting for the spinlock. This is safe as all queue_lock()
2090 * users end up calling queue_me(). Similarly, for housekeeping,
2091 * decrement the counter at queue_unlock() when some error has
2092 * occurred and we don't end up adding the task to the list.
2093 */
2094 hb_waiters_inc(hb);
2095
e2970f2f 2096 q->lock_ptr = &hb->lock;
1da177e4 2097
8ad7b378 2098 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2099 return hb;
1da177e4
LT
2100}
2101
d40d65c8 2102static inline void
0d00c7b2 2103queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2104 __releases(&hb->lock)
d40d65c8
DH
2105{
2106 spin_unlock(&hb->lock);
11d4616b 2107 hb_waiters_dec(hb);
d40d65c8
DH
2108}
2109
cfafcd11 2110static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2111{
ec92d082
PP
2112 int prio;
2113
2114 /*
2115 * The priority used to register this element is
2116 * - either the real thread-priority for the real-time threads
2117 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2118 * - or MAX_RT_PRIO for non-RT threads.
2119 * Thus, all RT-threads are woken first in priority order, and
2120 * the others are woken last, in FIFO order.
2121 */
2122 prio = min(current->normal_prio, MAX_RT_PRIO);
2123
2124 plist_node_init(&q->list, prio);
ec92d082 2125 plist_add(&q->list, &hb->chain);
c87e2837 2126 q->task = current;
cfafcd11
PZ
2127}
2128
2129/**
2130 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2131 * @q: The futex_q to enqueue
2132 * @hb: The destination hash bucket
2133 *
2134 * The hb->lock must be held by the caller, and is released here. A call to
2135 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2136 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2137 * or nothing if the unqueue is done as part of the wake process and the unqueue
2138 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2139 * an example).
2140 */
2141static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2142 __releases(&hb->lock)
2143{
2144 __queue_me(q, hb);
e2970f2f 2145 spin_unlock(&hb->lock);
1da177e4
LT
2146}
2147
d40d65c8
DH
2148/**
2149 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2150 * @q: The futex_q to unqueue
2151 *
2152 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2153 * be paired with exactly one earlier call to queue_me().
2154 *
6c23cbbd 2155 * Return:
7b4ff1ad
MCC
2156 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2157 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2158 */
1da177e4
LT
2159static int unqueue_me(struct futex_q *q)
2160{
1da177e4 2161 spinlock_t *lock_ptr;
e2970f2f 2162 int ret = 0;
1da177e4
LT
2163
2164 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2165retry:
29b75eb2
JZ
2166 /*
2167 * q->lock_ptr can change between this read and the following spin_lock.
2168 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2169 * optimizing lock_ptr out of the logic below.
2170 */
2171 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2172 if (lock_ptr != NULL) {
1da177e4
LT
2173 spin_lock(lock_ptr);
2174 /*
2175 * q->lock_ptr can change between reading it and
2176 * spin_lock(), causing us to take the wrong lock. This
2177 * corrects the race condition.
2178 *
2179 * Reasoning goes like this: if we have the wrong lock,
2180 * q->lock_ptr must have changed (maybe several times)
2181 * between reading it and the spin_lock(). It can
2182 * change again after the spin_lock() but only if it was
2183 * already changed before the spin_lock(). It cannot,
2184 * however, change back to the original value. Therefore
2185 * we can detect whether we acquired the correct lock.
2186 */
2187 if (unlikely(lock_ptr != q->lock_ptr)) {
2188 spin_unlock(lock_ptr);
2189 goto retry;
2190 }
2e12978a 2191 __unqueue_futex(q);
c87e2837
IM
2192
2193 BUG_ON(q->pi_state);
2194
1da177e4
LT
2195 spin_unlock(lock_ptr);
2196 ret = 1;
2197 }
2198
9adef58b 2199 drop_futex_key_refs(&q->key);
1da177e4
LT
2200 return ret;
2201}
2202
c87e2837
IM
2203/*
2204 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2205 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2206 * and dropped here.
c87e2837 2207 */
d0aa7a70 2208static void unqueue_me_pi(struct futex_q *q)
15e408cd 2209 __releases(q->lock_ptr)
c87e2837 2210{
2e12978a 2211 __unqueue_futex(q);
c87e2837
IM
2212
2213 BUG_ON(!q->pi_state);
29e9ee5d 2214 put_pi_state(q->pi_state);
c87e2837
IM
2215 q->pi_state = NULL;
2216
d0aa7a70 2217 spin_unlock(q->lock_ptr);
c87e2837
IM
2218}
2219
d0aa7a70 2220/*
cdf71a10 2221 * Fixup the pi_state owner with the new owner.
d0aa7a70 2222 *
778e9a9c
AK
2223 * Must be called with hash bucket lock held and mm->sem held for non
2224 * private futexes.
d0aa7a70 2225 */
778e9a9c 2226static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2227 struct task_struct *newowner)
d0aa7a70 2228{
cdf71a10 2229 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2230 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2231 u32 uval, uninitialized_var(curval), newval;
734009e9 2232 struct task_struct *oldowner;
e4dc5b7a 2233 int ret;
d0aa7a70 2234
734009e9
PZ
2235 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2236
2237 oldowner = pi_state->owner;
d0aa7a70 2238 /* Owner died? */
1b7558e4
TG
2239 if (!pi_state->owner)
2240 newtid |= FUTEX_OWNER_DIED;
2241
2242 /*
2243 * We are here either because we stole the rtmutex from the
8161239a 2244 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2245 * waiter but have failed to get the rtmutex the first time.
2246 *
8161239a
LJ
2247 * We have to replace the newowner TID in the user space variable.
2248 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2249 *
b2d0994b
DH
2250 * Note: We write the user space value _before_ changing the pi_state
2251 * because we can fault here. Imagine swapped out pages or a fork
2252 * that marked all the anonymous memory readonly for cow.
1b7558e4 2253 *
734009e9
PZ
2254 * Modifying pi_state _before_ the user space value would leave the
2255 * pi_state in an inconsistent state when we fault here, because we
2256 * need to drop the locks to handle the fault. This might be observed
2257 * in the PID check in lookup_pi_state.
1b7558e4
TG
2258 */
2259retry:
2260 if (get_futex_value_locked(&uval, uaddr))
2261 goto handle_fault;
2262
16ffa12d 2263 for (;;) {
1b7558e4
TG
2264 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2265
37a9d912 2266 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2267 goto handle_fault;
2268 if (curval == uval)
2269 break;
2270 uval = curval;
2271 }
2272
2273 /*
2274 * We fixed up user space. Now we need to fix the pi_state
2275 * itself.
2276 */
d0aa7a70 2277 if (pi_state->owner != NULL) {
734009e9 2278 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2279 WARN_ON(list_empty(&pi_state->list));
2280 list_del_init(&pi_state->list);
734009e9 2281 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2282 }
d0aa7a70 2283
cdf71a10 2284 pi_state->owner = newowner;
d0aa7a70 2285
734009e9 2286 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2287 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2288 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2289 raw_spin_unlock(&newowner->pi_lock);
2290 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2291
1b7558e4 2292 return 0;
d0aa7a70 2293
d0aa7a70 2294 /*
734009e9
PZ
2295 * To handle the page fault we need to drop the locks here. That gives
2296 * the other task (either the highest priority waiter itself or the
2297 * task which stole the rtmutex) the chance to try the fixup of the
2298 * pi_state. So once we are back from handling the fault we need to
2299 * check the pi_state after reacquiring the locks and before trying to
2300 * do another fixup. When the fixup has been done already we simply
2301 * return.
2302 *
2303 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2304 * drop hb->lock since the caller owns the hb -> futex_q relation.
2305 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2306 */
1b7558e4 2307handle_fault:
734009e9 2308 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2309 spin_unlock(q->lock_ptr);
778e9a9c 2310
d0725992 2311 ret = fault_in_user_writeable(uaddr);
778e9a9c 2312
1b7558e4 2313 spin_lock(q->lock_ptr);
734009e9 2314 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2315
1b7558e4
TG
2316 /*
2317 * Check if someone else fixed it for us:
2318 */
734009e9
PZ
2319 if (pi_state->owner != oldowner) {
2320 ret = 0;
2321 goto out_unlock;
2322 }
1b7558e4
TG
2323
2324 if (ret)
734009e9 2325 goto out_unlock;
1b7558e4
TG
2326
2327 goto retry;
734009e9
PZ
2328
2329out_unlock:
2330 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2331 return ret;
d0aa7a70
PP
2332}
2333
72c1bbf3 2334static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2335
dd973998
DH
2336/**
2337 * fixup_owner() - Post lock pi_state and corner case management
2338 * @uaddr: user address of the futex
dd973998
DH
2339 * @q: futex_q (contains pi_state and access to the rt_mutex)
2340 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2341 *
2342 * After attempting to lock an rt_mutex, this function is called to cleanup
2343 * the pi_state owner as well as handle race conditions that may allow us to
2344 * acquire the lock. Must be called with the hb lock held.
2345 *
6c23cbbd 2346 * Return:
7b4ff1ad
MCC
2347 * - 1 - success, lock taken;
2348 * - 0 - success, lock not taken;
2349 * - <0 - on error (-EFAULT)
dd973998 2350 */
ae791a2d 2351static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2352{
dd973998
DH
2353 int ret = 0;
2354
2355 if (locked) {
2356 /*
2357 * Got the lock. We might not be the anticipated owner if we
2358 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2359 *
2360 * We can safely read pi_state->owner without holding wait_lock
2361 * because we now own the rt_mutex, only the owner will attempt
2362 * to change it.
dd973998
DH
2363 */
2364 if (q->pi_state->owner != current)
ae791a2d 2365 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2366 goto out;
2367 }
2368
dd973998
DH
2369 /*
2370 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2371 * the owner of the rt_mutex.
dd973998 2372 */
73d786bd 2373 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2374 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2375 "pi-state %p\n", ret,
2376 q->pi_state->pi_mutex.owner,
2377 q->pi_state->owner);
73d786bd 2378 }
dd973998
DH
2379
2380out:
2381 return ret ? ret : locked;
2382}
2383
ca5f9524
DH
2384/**
2385 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2386 * @hb: the futex hash bucket, must be locked by the caller
2387 * @q: the futex_q to queue up on
2388 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2389 */
2390static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2391 struct hrtimer_sleeper *timeout)
ca5f9524 2392{
9beba3c5
DH
2393 /*
2394 * The task state is guaranteed to be set before another task can
b92b8b35 2395 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2396 * queue_me() calls spin_unlock() upon completion, both serializing
2397 * access to the hash list and forcing another memory barrier.
2398 */
f1a11e05 2399 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2400 queue_me(q, hb);
ca5f9524
DH
2401
2402 /* Arm the timer */
2e4b0d3f 2403 if (timeout)
ca5f9524 2404 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2405
2406 /*
0729e196
DH
2407 * If we have been removed from the hash list, then another task
2408 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2409 */
2410 if (likely(!plist_node_empty(&q->list))) {
2411 /*
2412 * If the timer has already expired, current will already be
2413 * flagged for rescheduling. Only call schedule if there
2414 * is no timeout, or if it has yet to expire.
2415 */
2416 if (!timeout || timeout->task)
88c8004f 2417 freezable_schedule();
ca5f9524
DH
2418 }
2419 __set_current_state(TASK_RUNNING);
2420}
2421
f801073f
DH
2422/**
2423 * futex_wait_setup() - Prepare to wait on a futex
2424 * @uaddr: the futex userspace address
2425 * @val: the expected value
b41277dc 2426 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2427 * @q: the associated futex_q
2428 * @hb: storage for hash_bucket pointer to be returned to caller
2429 *
2430 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2431 * compare it with the expected value. Handle atomic faults internally.
2432 * Return with the hb lock held and a q.key reference on success, and unlocked
2433 * with no q.key reference on failure.
2434 *
6c23cbbd 2435 * Return:
7b4ff1ad
MCC
2436 * - 0 - uaddr contains val and hb has been locked;
2437 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2438 */
b41277dc 2439static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2440 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2441{
e2970f2f
IM
2442 u32 uval;
2443 int ret;
1da177e4 2444
1da177e4 2445 /*
b2d0994b 2446 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2447 * Order is important:
2448 *
2449 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2450 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2451 *
2452 * The basic logical guarantee of a futex is that it blocks ONLY
2453 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2454 * any cond. If we locked the hash-bucket after testing *uaddr, that
2455 * would open a race condition where we could block indefinitely with
1da177e4
LT
2456 * cond(var) false, which would violate the guarantee.
2457 *
8fe8f545
ML
2458 * On the other hand, we insert q and release the hash-bucket only
2459 * after testing *uaddr. This guarantees that futex_wait() will NOT
2460 * absorb a wakeup if *uaddr does not match the desired values
2461 * while the syscall executes.
1da177e4 2462 */
f801073f 2463retry:
9ea71503 2464 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2465 if (unlikely(ret != 0))
a5a2a0c7 2466 return ret;
f801073f
DH
2467
2468retry_private:
2469 *hb = queue_lock(q);
2470
e2970f2f 2471 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2472
f801073f 2473 if (ret) {
0d00c7b2 2474 queue_unlock(*hb);
1da177e4 2475
e2970f2f 2476 ret = get_user(uval, uaddr);
e4dc5b7a 2477 if (ret)
f801073f 2478 goto out;
1da177e4 2479
b41277dc 2480 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2481 goto retry_private;
2482
ae791a2d 2483 put_futex_key(&q->key);
e4dc5b7a 2484 goto retry;
1da177e4 2485 }
ca5f9524 2486
f801073f 2487 if (uval != val) {
0d00c7b2 2488 queue_unlock(*hb);
f801073f 2489 ret = -EWOULDBLOCK;
2fff78c7 2490 }
1da177e4 2491
f801073f
DH
2492out:
2493 if (ret)
ae791a2d 2494 put_futex_key(&q->key);
f801073f
DH
2495 return ret;
2496}
2497
b41277dc
DH
2498static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2499 ktime_t *abs_time, u32 bitset)
f801073f
DH
2500{
2501 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2502 struct restart_block *restart;
2503 struct futex_hash_bucket *hb;
5bdb05f9 2504 struct futex_q q = futex_q_init;
f801073f
DH
2505 int ret;
2506
2507 if (!bitset)
2508 return -EINVAL;
f801073f
DH
2509 q.bitset = bitset;
2510
2511 if (abs_time) {
2512 to = &timeout;
2513
b41277dc
DH
2514 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2515 CLOCK_REALTIME : CLOCK_MONOTONIC,
2516 HRTIMER_MODE_ABS);
f801073f
DH
2517 hrtimer_init_sleeper(to, current);
2518 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2519 current->timer_slack_ns);
2520 }
2521
d58e6576 2522retry:
7ada876a
DH
2523 /*
2524 * Prepare to wait on uaddr. On success, holds hb lock and increments
2525 * q.key refs.
2526 */
b41277dc 2527 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2528 if (ret)
2529 goto out;
2530
ca5f9524 2531 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2532 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2533
2534 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2535 ret = 0;
7ada876a 2536 /* unqueue_me() drops q.key ref */
1da177e4 2537 if (!unqueue_me(&q))
7ada876a 2538 goto out;
2fff78c7 2539 ret = -ETIMEDOUT;
ca5f9524 2540 if (to && !to->task)
7ada876a 2541 goto out;
72c1bbf3 2542
e2970f2f 2543 /*
d58e6576
TG
2544 * We expect signal_pending(current), but we might be the
2545 * victim of a spurious wakeup as well.
e2970f2f 2546 */
7ada876a 2547 if (!signal_pending(current))
d58e6576 2548 goto retry;
d58e6576 2549
2fff78c7 2550 ret = -ERESTARTSYS;
c19384b5 2551 if (!abs_time)
7ada876a 2552 goto out;
1da177e4 2553
f56141e3 2554 restart = &current->restart_block;
2fff78c7 2555 restart->fn = futex_wait_restart;
a3c74c52 2556 restart->futex.uaddr = uaddr;
2fff78c7 2557 restart->futex.val = val;
2456e855 2558 restart->futex.time = *abs_time;
2fff78c7 2559 restart->futex.bitset = bitset;
0cd9c649 2560 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2561
2fff78c7
PZ
2562 ret = -ERESTART_RESTARTBLOCK;
2563
42d35d48 2564out:
ca5f9524
DH
2565 if (to) {
2566 hrtimer_cancel(&to->timer);
2567 destroy_hrtimer_on_stack(&to->timer);
2568 }
c87e2837
IM
2569 return ret;
2570}
2571
72c1bbf3
NP
2572
2573static long futex_wait_restart(struct restart_block *restart)
2574{
a3c74c52 2575 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2576 ktime_t t, *tp = NULL;
72c1bbf3 2577
a72188d8 2578 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2579 t = restart->futex.time;
a72188d8
DH
2580 tp = &t;
2581 }
72c1bbf3 2582 restart->fn = do_no_restart_syscall;
b41277dc
DH
2583
2584 return (long)futex_wait(uaddr, restart->futex.flags,
2585 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2586}
2587
2588
c87e2837
IM
2589/*
2590 * Userspace tried a 0 -> TID atomic transition of the futex value
2591 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2592 * if there are waiters then it will block as a consequence of relying
2593 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2594 * a 0 value of the futex too.).
2595 *
2596 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2597 */
996636dd 2598static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2599 ktime_t *time, int trylock)
c87e2837 2600{
c5780e97 2601 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2602 struct futex_pi_state *pi_state = NULL;
cfafcd11 2603 struct rt_mutex_waiter rt_waiter;
c87e2837 2604 struct futex_hash_bucket *hb;
5bdb05f9 2605 struct futex_q q = futex_q_init;
dd973998 2606 int res, ret;
c87e2837
IM
2607
2608 if (refill_pi_state_cache())
2609 return -ENOMEM;
2610
c19384b5 2611 if (time) {
c5780e97 2612 to = &timeout;
237fc6e7
TG
2613 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2614 HRTIMER_MODE_ABS);
c5780e97 2615 hrtimer_init_sleeper(to, current);
cc584b21 2616 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2617 }
2618
42d35d48 2619retry:
9ea71503 2620 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2621 if (unlikely(ret != 0))
42d35d48 2622 goto out;
c87e2837 2623
e4dc5b7a 2624retry_private:
82af7aca 2625 hb = queue_lock(&q);
c87e2837 2626
bab5bc9e 2627 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2628 if (unlikely(ret)) {
767f509c
DB
2629 /*
2630 * Atomic work succeeded and we got the lock,
2631 * or failed. Either way, we do _not_ block.
2632 */
778e9a9c 2633 switch (ret) {
1a52084d
DH
2634 case 1:
2635 /* We got the lock. */
2636 ret = 0;
2637 goto out_unlock_put_key;
2638 case -EFAULT:
2639 goto uaddr_faulted;
778e9a9c
AK
2640 case -EAGAIN:
2641 /*
af54d6a1
TG
2642 * Two reasons for this:
2643 * - Task is exiting and we just wait for the
2644 * exit to complete.
2645 * - The user space value changed.
778e9a9c 2646 */
0d00c7b2 2647 queue_unlock(hb);
ae791a2d 2648 put_futex_key(&q.key);
778e9a9c
AK
2649 cond_resched();
2650 goto retry;
778e9a9c 2651 default:
42d35d48 2652 goto out_unlock_put_key;
c87e2837 2653 }
c87e2837
IM
2654 }
2655
cfafcd11
PZ
2656 WARN_ON(!q.pi_state);
2657
c87e2837
IM
2658 /*
2659 * Only actually queue now that the atomic ops are done:
2660 */
cfafcd11 2661 __queue_me(&q, hb);
c87e2837 2662
cfafcd11 2663 if (trylock) {
5293c2ef 2664 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2665 /* Fixup the trylock return value: */
2666 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2667 goto no_block;
c87e2837
IM
2668 }
2669
56222b21
PZ
2670 rt_mutex_init_waiter(&rt_waiter);
2671
cfafcd11 2672 /*
56222b21
PZ
2673 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2674 * hold it while doing rt_mutex_start_proxy(), because then it will
2675 * include hb->lock in the blocking chain, even through we'll not in
2676 * fact hold it while blocking. This will lead it to report -EDEADLK
2677 * and BUG when futex_unlock_pi() interleaves with this.
2678 *
2679 * Therefore acquire wait_lock while holding hb->lock, but drop the
2680 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2681 * serializes against futex_unlock_pi() as that does the exact same
2682 * lock handoff sequence.
cfafcd11 2683 */
56222b21
PZ
2684 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2685 spin_unlock(q.lock_ptr);
2686 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2687 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2688
cfafcd11
PZ
2689 if (ret) {
2690 if (ret == 1)
2691 ret = 0;
2692
56222b21 2693 spin_lock(q.lock_ptr);
cfafcd11
PZ
2694 goto no_block;
2695 }
2696
cfafcd11
PZ
2697
2698 if (unlikely(to))
2699 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2700
2701 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2702
a99e4e41 2703 spin_lock(q.lock_ptr);
cfafcd11
PZ
2704 /*
2705 * If we failed to acquire the lock (signal/timeout), we must
2706 * first acquire the hb->lock before removing the lock from the
2707 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2708 * wait lists consistent.
56222b21
PZ
2709 *
2710 * In particular; it is important that futex_unlock_pi() can not
2711 * observe this inconsistency.
cfafcd11
PZ
2712 */
2713 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2714 ret = 0;
2715
2716no_block:
dd973998
DH
2717 /*
2718 * Fixup the pi_state owner and possibly acquire the lock if we
2719 * haven't already.
2720 */
ae791a2d 2721 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2722 /*
2723 * If fixup_owner() returned an error, proprogate that. If it acquired
2724 * the lock, clear our -ETIMEDOUT or -EINTR.
2725 */
2726 if (res)
2727 ret = (res < 0) ? res : 0;
c87e2837 2728
e8f6386c 2729 /*
dd973998
DH
2730 * If fixup_owner() faulted and was unable to handle the fault, unlock
2731 * it and return the fault to userspace.
e8f6386c 2732 */
16ffa12d
PZ
2733 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2734 pi_state = q.pi_state;
2735 get_pi_state(pi_state);
2736 }
e8f6386c 2737
778e9a9c
AK
2738 /* Unqueue and drop the lock */
2739 unqueue_me_pi(&q);
c87e2837 2740
16ffa12d
PZ
2741 if (pi_state) {
2742 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2743 put_pi_state(pi_state);
2744 }
2745
5ecb01cf 2746 goto out_put_key;
c87e2837 2747
42d35d48 2748out_unlock_put_key:
0d00c7b2 2749 queue_unlock(hb);
c87e2837 2750
42d35d48 2751out_put_key:
ae791a2d 2752 put_futex_key(&q.key);
42d35d48 2753out:
97181f9b
TG
2754 if (to) {
2755 hrtimer_cancel(&to->timer);
237fc6e7 2756 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2757 }
dd973998 2758 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2759
42d35d48 2760uaddr_faulted:
0d00c7b2 2761 queue_unlock(hb);
778e9a9c 2762
d0725992 2763 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2764 if (ret)
2765 goto out_put_key;
c87e2837 2766
b41277dc 2767 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2768 goto retry_private;
2769
ae791a2d 2770 put_futex_key(&q.key);
e4dc5b7a 2771 goto retry;
c87e2837
IM
2772}
2773
c87e2837
IM
2774/*
2775 * Userspace attempted a TID -> 0 atomic transition, and failed.
2776 * This is the in-kernel slowpath: we look up the PI state (if any),
2777 * and do the rt-mutex unlock.
2778 */
b41277dc 2779static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2780{
ccf9e6a8 2781 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2782 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2783 struct futex_hash_bucket *hb;
499f5aca 2784 struct futex_q *top_waiter;
e4dc5b7a 2785 int ret;
c87e2837
IM
2786
2787retry:
2788 if (get_user(uval, uaddr))
2789 return -EFAULT;
2790 /*
2791 * We release only a lock we actually own:
2792 */
c0c9ed15 2793 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2794 return -EPERM;
c87e2837 2795
9ea71503 2796 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2797 if (ret)
2798 return ret;
c87e2837
IM
2799
2800 hb = hash_futex(&key);
2801 spin_lock(&hb->lock);
2802
c87e2837 2803 /*
ccf9e6a8
TG
2804 * Check waiters first. We do not trust user space values at
2805 * all and we at least want to know if user space fiddled
2806 * with the futex value instead of blindly unlocking.
c87e2837 2807 */
499f5aca
PZ
2808 top_waiter = futex_top_waiter(hb, &key);
2809 if (top_waiter) {
16ffa12d
PZ
2810 struct futex_pi_state *pi_state = top_waiter->pi_state;
2811
2812 ret = -EINVAL;
2813 if (!pi_state)
2814 goto out_unlock;
2815
2816 /*
2817 * If current does not own the pi_state then the futex is
2818 * inconsistent and user space fiddled with the futex value.
2819 */
2820 if (pi_state->owner != current)
2821 goto out_unlock;
2822
bebe5b51 2823 get_pi_state(pi_state);
802ab58d 2824 /*
bebe5b51
PZ
2825 * By taking wait_lock while still holding hb->lock, we ensure
2826 * there is no point where we hold neither; and therefore
2827 * wake_futex_pi() must observe a state consistent with what we
2828 * observed.
16ffa12d 2829 */
bebe5b51 2830 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2831 spin_unlock(&hb->lock);
2832
01dcbf88 2833 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
2834 ret = wake_futex_pi(uaddr, uval, pi_state);
2835
2836 put_pi_state(pi_state);
2837
2838 /*
2839 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2840 */
2841 if (!ret)
2842 goto out_putkey;
c87e2837 2843 /*
ccf9e6a8
TG
2844 * The atomic access to the futex value generated a
2845 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2846 */
2847 if (ret == -EFAULT)
2848 goto pi_faulted;
89e9e66b
SAS
2849 /*
2850 * A unconditional UNLOCK_PI op raced against a waiter
2851 * setting the FUTEX_WAITERS bit. Try again.
2852 */
2853 if (ret == -EAGAIN) {
89e9e66b
SAS
2854 put_futex_key(&key);
2855 goto retry;
2856 }
802ab58d
SAS
2857 /*
2858 * wake_futex_pi has detected invalid state. Tell user
2859 * space.
2860 */
16ffa12d 2861 goto out_putkey;
c87e2837 2862 }
ccf9e6a8 2863
c87e2837 2864 /*
ccf9e6a8
TG
2865 * We have no kernel internal state, i.e. no waiters in the
2866 * kernel. Waiters which are about to queue themselves are stuck
2867 * on hb->lock. So we can safely ignore them. We do neither
2868 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2869 * owner.
c87e2837 2870 */
16ffa12d
PZ
2871 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2872 spin_unlock(&hb->lock);
13fbca4c 2873 goto pi_faulted;
16ffa12d 2874 }
c87e2837 2875
ccf9e6a8
TG
2876 /*
2877 * If uval has changed, let user space handle it.
2878 */
2879 ret = (curval == uval) ? 0 : -EAGAIN;
2880
c87e2837
IM
2881out_unlock:
2882 spin_unlock(&hb->lock);
802ab58d 2883out_putkey:
ae791a2d 2884 put_futex_key(&key);
c87e2837
IM
2885 return ret;
2886
2887pi_faulted:
ae791a2d 2888 put_futex_key(&key);
c87e2837 2889
d0725992 2890 ret = fault_in_user_writeable(uaddr);
b5686363 2891 if (!ret)
c87e2837
IM
2892 goto retry;
2893
1da177e4
LT
2894 return ret;
2895}
2896
52400ba9
DH
2897/**
2898 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2899 * @hb: the hash_bucket futex_q was original enqueued on
2900 * @q: the futex_q woken while waiting to be requeued
2901 * @key2: the futex_key of the requeue target futex
2902 * @timeout: the timeout associated with the wait (NULL if none)
2903 *
2904 * Detect if the task was woken on the initial futex as opposed to the requeue
2905 * target futex. If so, determine if it was a timeout or a signal that caused
2906 * the wakeup and return the appropriate error code to the caller. Must be
2907 * called with the hb lock held.
2908 *
6c23cbbd 2909 * Return:
7b4ff1ad
MCC
2910 * - 0 = no early wakeup detected;
2911 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2912 */
2913static inline
2914int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2915 struct futex_q *q, union futex_key *key2,
2916 struct hrtimer_sleeper *timeout)
2917{
2918 int ret = 0;
2919
2920 /*
2921 * With the hb lock held, we avoid races while we process the wakeup.
2922 * We only need to hold hb (and not hb2) to ensure atomicity as the
2923 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2924 * It can't be requeued from uaddr2 to something else since we don't
2925 * support a PI aware source futex for requeue.
2926 */
2927 if (!match_futex(&q->key, key2)) {
2928 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2929 /*
2930 * We were woken prior to requeue by a timeout or a signal.
2931 * Unqueue the futex_q and determine which it was.
2932 */
2e12978a 2933 plist_del(&q->list, &hb->chain);
11d4616b 2934 hb_waiters_dec(hb);
52400ba9 2935
d58e6576 2936 /* Handle spurious wakeups gracefully */
11df6ddd 2937 ret = -EWOULDBLOCK;
52400ba9
DH
2938 if (timeout && !timeout->task)
2939 ret = -ETIMEDOUT;
d58e6576 2940 else if (signal_pending(current))
1c840c14 2941 ret = -ERESTARTNOINTR;
52400ba9
DH
2942 }
2943 return ret;
2944}
2945
2946/**
2947 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2948 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2949 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2950 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2951 * @val: the expected value of uaddr
2952 * @abs_time: absolute timeout
56ec1607 2953 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2954 * @uaddr2: the pi futex we will take prior to returning to user-space
2955 *
2956 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2957 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2958 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2959 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2960 * without one, the pi logic would not know which task to boost/deboost, if
2961 * there was a need to.
52400ba9
DH
2962 *
2963 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2964 * via the following--
52400ba9 2965 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2966 * 2) wakeup on uaddr2 after a requeue
2967 * 3) signal
2968 * 4) timeout
52400ba9 2969 *
cc6db4e6 2970 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2971 *
2972 * If 2, we may then block on trying to take the rt_mutex and return via:
2973 * 5) successful lock
2974 * 6) signal
2975 * 7) timeout
2976 * 8) other lock acquisition failure
2977 *
cc6db4e6 2978 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2979 *
2980 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2981 *
6c23cbbd 2982 * Return:
7b4ff1ad
MCC
2983 * - 0 - On success;
2984 * - <0 - On error
52400ba9 2985 */
b41277dc 2986static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2987 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2988 u32 __user *uaddr2)
52400ba9
DH
2989{
2990 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2991 struct futex_pi_state *pi_state = NULL;
52400ba9 2992 struct rt_mutex_waiter rt_waiter;
52400ba9 2993 struct futex_hash_bucket *hb;
5bdb05f9
DH
2994 union futex_key key2 = FUTEX_KEY_INIT;
2995 struct futex_q q = futex_q_init;
52400ba9 2996 int res, ret;
52400ba9 2997
6f7b0a2a
DH
2998 if (uaddr == uaddr2)
2999 return -EINVAL;
3000
52400ba9
DH
3001 if (!bitset)
3002 return -EINVAL;
3003
3004 if (abs_time) {
3005 to = &timeout;
b41277dc
DH
3006 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3007 CLOCK_REALTIME : CLOCK_MONOTONIC,
3008 HRTIMER_MODE_ABS);
52400ba9
DH
3009 hrtimer_init_sleeper(to, current);
3010 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3011 current->timer_slack_ns);
3012 }
3013
3014 /*
3015 * The waiter is allocated on our stack, manipulated by the requeue
3016 * code while we sleep on uaddr.
3017 */
50809358 3018 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3019
9ea71503 3020 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3021 if (unlikely(ret != 0))
3022 goto out;
3023
84bc4af5
DH
3024 q.bitset = bitset;
3025 q.rt_waiter = &rt_waiter;
3026 q.requeue_pi_key = &key2;
3027
7ada876a
DH
3028 /*
3029 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3030 * count.
3031 */
b41277dc 3032 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3033 if (ret)
3034 goto out_key2;
52400ba9 3035
e9c243a5
TG
3036 /*
3037 * The check above which compares uaddrs is not sufficient for
3038 * shared futexes. We need to compare the keys:
3039 */
3040 if (match_futex(&q.key, &key2)) {
13c42c2f 3041 queue_unlock(hb);
e9c243a5
TG
3042 ret = -EINVAL;
3043 goto out_put_keys;
3044 }
3045
52400ba9 3046 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3047 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3048
3049 spin_lock(&hb->lock);
3050 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3051 spin_unlock(&hb->lock);
3052 if (ret)
3053 goto out_put_keys;
3054
3055 /*
3056 * In order for us to be here, we know our q.key == key2, and since
3057 * we took the hb->lock above, we also know that futex_requeue() has
3058 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3059 * race with the atomic proxy lock acquisition by the requeue code. The
3060 * futex_requeue dropped our key1 reference and incremented our key2
3061 * reference count.
52400ba9
DH
3062 */
3063
3064 /* Check if the requeue code acquired the second futex for us. */
3065 if (!q.rt_waiter) {
3066 /*
3067 * Got the lock. We might not be the anticipated owner if we
3068 * did a lock-steal - fix up the PI-state in that case.
3069 */
3070 if (q.pi_state && (q.pi_state->owner != current)) {
3071 spin_lock(q.lock_ptr);
ae791a2d 3072 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3073 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3074 pi_state = q.pi_state;
3075 get_pi_state(pi_state);
3076 }
fb75a428
TG
3077 /*
3078 * Drop the reference to the pi state which
3079 * the requeue_pi() code acquired for us.
3080 */
29e9ee5d 3081 put_pi_state(q.pi_state);
52400ba9
DH
3082 spin_unlock(q.lock_ptr);
3083 }
3084 } else {
c236c8e9
PZ
3085 struct rt_mutex *pi_mutex;
3086
52400ba9
DH
3087 /*
3088 * We have been woken up by futex_unlock_pi(), a timeout, or a
3089 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3090 * the pi_state.
3091 */
f27071cb 3092 WARN_ON(!q.pi_state);
52400ba9 3093 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3094 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3095
3096 spin_lock(q.lock_ptr);
38d589f2
PZ
3097 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3098 ret = 0;
3099
3100 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3101 /*
3102 * Fixup the pi_state owner and possibly acquire the lock if we
3103 * haven't already.
3104 */
ae791a2d 3105 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3106 /*
3107 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3108 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3109 */
3110 if (res)
3111 ret = (res < 0) ? res : 0;
3112
c236c8e9
PZ
3113 /*
3114 * If fixup_pi_state_owner() faulted and was unable to handle
3115 * the fault, unlock the rt_mutex and return the fault to
3116 * userspace.
3117 */
16ffa12d
PZ
3118 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3119 pi_state = q.pi_state;
3120 get_pi_state(pi_state);
3121 }
c236c8e9 3122
52400ba9
DH
3123 /* Unqueue and drop the lock. */
3124 unqueue_me_pi(&q);
3125 }
3126
16ffa12d
PZ
3127 if (pi_state) {
3128 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3129 put_pi_state(pi_state);
3130 }
3131
c236c8e9 3132 if (ret == -EINTR) {
52400ba9 3133 /*
cc6db4e6
DH
3134 * We've already been requeued, but cannot restart by calling
3135 * futex_lock_pi() directly. We could restart this syscall, but
3136 * it would detect that the user space "val" changed and return
3137 * -EWOULDBLOCK. Save the overhead of the restart and return
3138 * -EWOULDBLOCK directly.
52400ba9 3139 */
2070887f 3140 ret = -EWOULDBLOCK;
52400ba9
DH
3141 }
3142
3143out_put_keys:
ae791a2d 3144 put_futex_key(&q.key);
c8b15a70 3145out_key2:
ae791a2d 3146 put_futex_key(&key2);
52400ba9
DH
3147
3148out:
3149 if (to) {
3150 hrtimer_cancel(&to->timer);
3151 destroy_hrtimer_on_stack(&to->timer);
3152 }
3153 return ret;
3154}
3155
0771dfef
IM
3156/*
3157 * Support for robust futexes: the kernel cleans up held futexes at
3158 * thread exit time.
3159 *
3160 * Implementation: user-space maintains a per-thread list of locks it
3161 * is holding. Upon do_exit(), the kernel carefully walks this list,
3162 * and marks all locks that are owned by this thread with the
c87e2837 3163 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3164 * always manipulated with the lock held, so the list is private and
3165 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3166 * field, to allow the kernel to clean up if the thread dies after
3167 * acquiring the lock, but just before it could have added itself to
3168 * the list. There can only be one such pending lock.
3169 */
3170
3171/**
d96ee56c
DH
3172 * sys_set_robust_list() - Set the robust-futex list head of a task
3173 * @head: pointer to the list-head
3174 * @len: length of the list-head, as userspace expects
0771dfef 3175 */
836f92ad
HC
3176SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3177 size_t, len)
0771dfef 3178{
a0c1e907
TG
3179 if (!futex_cmpxchg_enabled)
3180 return -ENOSYS;
0771dfef
IM
3181 /*
3182 * The kernel knows only one size for now:
3183 */
3184 if (unlikely(len != sizeof(*head)))
3185 return -EINVAL;
3186
3187 current->robust_list = head;
3188
3189 return 0;
3190}
3191
3192/**
d96ee56c
DH
3193 * sys_get_robust_list() - Get the robust-futex list head of a task
3194 * @pid: pid of the process [zero for current task]
3195 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3196 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3197 */
836f92ad
HC
3198SYSCALL_DEFINE3(get_robust_list, int, pid,
3199 struct robust_list_head __user * __user *, head_ptr,
3200 size_t __user *, len_ptr)
0771dfef 3201{
ba46df98 3202 struct robust_list_head __user *head;
0771dfef 3203 unsigned long ret;
bdbb776f 3204 struct task_struct *p;
0771dfef 3205
a0c1e907
TG
3206 if (!futex_cmpxchg_enabled)
3207 return -ENOSYS;
3208
bdbb776f
KC
3209 rcu_read_lock();
3210
3211 ret = -ESRCH;
0771dfef 3212 if (!pid)
bdbb776f 3213 p = current;
0771dfef 3214 else {
228ebcbe 3215 p = find_task_by_vpid(pid);
0771dfef
IM
3216 if (!p)
3217 goto err_unlock;
0771dfef
IM
3218 }
3219
bdbb776f 3220 ret = -EPERM;
caaee623 3221 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3222 goto err_unlock;
3223
3224 head = p->robust_list;
3225 rcu_read_unlock();
3226
0771dfef
IM
3227 if (put_user(sizeof(*head), len_ptr))
3228 return -EFAULT;
3229 return put_user(head, head_ptr);
3230
3231err_unlock:
aaa2a97e 3232 rcu_read_unlock();
0771dfef
IM
3233
3234 return ret;
3235}
3236
3237/*
3238 * Process a futex-list entry, check whether it's owned by the
3239 * dying task, and do notification if so:
3240 */
e3f2ddea 3241int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3242{
7cfdaf38 3243 u32 uval, uninitialized_var(nval), mval;
0771dfef 3244
8f17d3a5
IM
3245retry:
3246 if (get_user(uval, uaddr))
0771dfef
IM
3247 return -1;
3248
b488893a 3249 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3250 /*
3251 * Ok, this dying thread is truly holding a futex
3252 * of interest. Set the OWNER_DIED bit atomically
3253 * via cmpxchg, and if the value had FUTEX_WAITERS
3254 * set, wake up a waiter (if any). (We have to do a
3255 * futex_wake() even if OWNER_DIED is already set -
3256 * to handle the rare but possible case of recursive
3257 * thread-death.) The rest of the cleanup is done in
3258 * userspace.
3259 */
e3f2ddea 3260 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3261 /*
3262 * We are not holding a lock here, but we want to have
3263 * the pagefault_disable/enable() protection because
3264 * we want to handle the fault gracefully. If the
3265 * access fails we try to fault in the futex with R/W
3266 * verification via get_user_pages. get_user() above
3267 * does not guarantee R/W access. If that fails we
3268 * give up and leave the futex locked.
3269 */
3270 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3271 if (fault_in_user_writeable(uaddr))
3272 return -1;
3273 goto retry;
3274 }
c87e2837 3275 if (nval != uval)
8f17d3a5 3276 goto retry;
0771dfef 3277
e3f2ddea
IM
3278 /*
3279 * Wake robust non-PI futexes here. The wakeup of
3280 * PI futexes happens in exit_pi_state():
3281 */
36cf3b5c 3282 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3283 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3284 }
3285 return 0;
3286}
3287
e3f2ddea
IM
3288/*
3289 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3290 */
3291static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3292 struct robust_list __user * __user *head,
1dcc41bb 3293 unsigned int *pi)
e3f2ddea
IM
3294{
3295 unsigned long uentry;
3296
ba46df98 3297 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3298 return -EFAULT;
3299
ba46df98 3300 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3301 *pi = uentry & 1;
3302
3303 return 0;
3304}
3305
0771dfef
IM
3306/*
3307 * Walk curr->robust_list (very carefully, it's a userspace list!)
3308 * and mark any locks found there dead, and notify any waiters.
3309 *
3310 * We silently return on any sign of list-walking problem.
3311 */
3312void exit_robust_list(struct task_struct *curr)
3313{
3314 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3315 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3316 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3317 unsigned int uninitialized_var(next_pi);
0771dfef 3318 unsigned long futex_offset;
9f96cb1e 3319 int rc;
0771dfef 3320
a0c1e907
TG
3321 if (!futex_cmpxchg_enabled)
3322 return;
3323
0771dfef
IM
3324 /*
3325 * Fetch the list head (which was registered earlier, via
3326 * sys_set_robust_list()):
3327 */
e3f2ddea 3328 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3329 return;
3330 /*
3331 * Fetch the relative futex offset:
3332 */
3333 if (get_user(futex_offset, &head->futex_offset))
3334 return;
3335 /*
3336 * Fetch any possibly pending lock-add first, and handle it
3337 * if it exists:
3338 */
e3f2ddea 3339 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3340 return;
e3f2ddea 3341
9f96cb1e 3342 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3343 while (entry != &head->list) {
9f96cb1e
MS
3344 /*
3345 * Fetch the next entry in the list before calling
3346 * handle_futex_death:
3347 */
3348 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3349 /*
3350 * A pending lock might already be on the list, so
c87e2837 3351 * don't process it twice:
0771dfef
IM
3352 */
3353 if (entry != pending)
ba46df98 3354 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3355 curr, pi))
0771dfef 3356 return;
9f96cb1e 3357 if (rc)
0771dfef 3358 return;
9f96cb1e
MS
3359 entry = next_entry;
3360 pi = next_pi;
0771dfef
IM
3361 /*
3362 * Avoid excessively long or circular lists:
3363 */
3364 if (!--limit)
3365 break;
3366
3367 cond_resched();
3368 }
9f96cb1e
MS
3369
3370 if (pending)
3371 handle_futex_death((void __user *)pending + futex_offset,
3372 curr, pip);
0771dfef
IM
3373}
3374
c19384b5 3375long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3376 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3377{
81b40539 3378 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3379 unsigned int flags = 0;
34f01cc1
ED
3380
3381 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3382 flags |= FLAGS_SHARED;
1da177e4 3383
b41277dc
DH
3384 if (op & FUTEX_CLOCK_REALTIME) {
3385 flags |= FLAGS_CLOCKRT;
337f1304
DH
3386 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3387 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3388 return -ENOSYS;
3389 }
1da177e4 3390
59263b51
TG
3391 switch (cmd) {
3392 case FUTEX_LOCK_PI:
3393 case FUTEX_UNLOCK_PI:
3394 case FUTEX_TRYLOCK_PI:
3395 case FUTEX_WAIT_REQUEUE_PI:
3396 case FUTEX_CMP_REQUEUE_PI:
3397 if (!futex_cmpxchg_enabled)
3398 return -ENOSYS;
3399 }
3400
34f01cc1 3401 switch (cmd) {
1da177e4 3402 case FUTEX_WAIT:
cd689985
TG
3403 val3 = FUTEX_BITSET_MATCH_ANY;
3404 case FUTEX_WAIT_BITSET:
81b40539 3405 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3406 case FUTEX_WAKE:
cd689985
TG
3407 val3 = FUTEX_BITSET_MATCH_ANY;
3408 case FUTEX_WAKE_BITSET:
81b40539 3409 return futex_wake(uaddr, flags, val, val3);
1da177e4 3410 case FUTEX_REQUEUE:
81b40539 3411 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3412 case FUTEX_CMP_REQUEUE:
81b40539 3413 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3414 case FUTEX_WAKE_OP:
81b40539 3415 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3416 case FUTEX_LOCK_PI:
996636dd 3417 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3418 case FUTEX_UNLOCK_PI:
81b40539 3419 return futex_unlock_pi(uaddr, flags);
c87e2837 3420 case FUTEX_TRYLOCK_PI:
996636dd 3421 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3422 case FUTEX_WAIT_REQUEUE_PI:
3423 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3424 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3425 uaddr2);
52400ba9 3426 case FUTEX_CMP_REQUEUE_PI:
81b40539 3427 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3428 }
81b40539 3429 return -ENOSYS;
1da177e4
LT
3430}
3431
3432
17da2bd9
HC
3433SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3434 struct timespec __user *, utime, u32 __user *, uaddr2,
3435 u32, val3)
1da177e4 3436{
c19384b5
PP
3437 struct timespec ts;
3438 ktime_t t, *tp = NULL;
e2970f2f 3439 u32 val2 = 0;
34f01cc1 3440 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3441
cd689985 3442 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3443 cmd == FUTEX_WAIT_BITSET ||
3444 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3445 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3446 return -EFAULT;
c19384b5 3447 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3448 return -EFAULT;
c19384b5 3449 if (!timespec_valid(&ts))
9741ef96 3450 return -EINVAL;
c19384b5
PP
3451
3452 t = timespec_to_ktime(ts);
34f01cc1 3453 if (cmd == FUTEX_WAIT)
5a7780e7 3454 t = ktime_add_safe(ktime_get(), t);
c19384b5 3455 tp = &t;
1da177e4
LT
3456 }
3457 /*
52400ba9 3458 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3459 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3460 */
f54f0986 3461 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3462 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3463 val2 = (u32) (unsigned long) utime;
1da177e4 3464
c19384b5 3465 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3466}
3467
03b8c7b6 3468static void __init futex_detect_cmpxchg(void)
1da177e4 3469{
03b8c7b6 3470#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3471 u32 curval;
03b8c7b6
HC
3472
3473 /*
3474 * This will fail and we want it. Some arch implementations do
3475 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3476 * functionality. We want to know that before we call in any
3477 * of the complex code paths. Also we want to prevent
3478 * registration of robust lists in that case. NULL is
3479 * guaranteed to fault and we get -EFAULT on functional
3480 * implementation, the non-functional ones will return
3481 * -ENOSYS.
3482 */
3483 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3484 futex_cmpxchg_enabled = 1;
3485#endif
3486}
3487
3488static int __init futex_init(void)
3489{
63b1a816 3490 unsigned int futex_shift;
a52b89eb
DB
3491 unsigned long i;
3492
3493#if CONFIG_BASE_SMALL
3494 futex_hashsize = 16;
3495#else
3496 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3497#endif
3498
3499 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3500 futex_hashsize, 0,
3501 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3502 &futex_shift, NULL,
3503 futex_hashsize, futex_hashsize);
3504 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3505
3506 futex_detect_cmpxchg();
a0c1e907 3507
a52b89eb 3508 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3509 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3510 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3511 spin_lock_init(&futex_queues[i].lock);
3512 }
3513
1da177e4
LT
3514 return 0;
3515}
25f71d1c 3516core_initcall(futex_init);