]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
4e857c58 270 smp_mb__after_atomic();
b0c29f79
DB
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
4e857c58 283 smp_mb__after_atomic();
11d4616b
LT
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
54a21788
TG
746/*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
e60cbc5c
TG
795
796/*
797 * Validate that the existing waiter has a pi_state and sanity check
798 * the pi_state against the user space value. If correct, attach to
799 * it.
800 */
801static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
802 struct futex_pi_state **ps)
c87e2837 803{
778e9a9c 804 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 805
e60cbc5c
TG
806 /*
807 * Userspace might have messed up non-PI and PI futexes [3]
808 */
809 if (unlikely(!pi_state))
810 return -EINVAL;
06a9ec29 811
e60cbc5c 812 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 813
e60cbc5c
TG
814 /*
815 * Handle the owner died case:
816 */
817 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 818 /*
e60cbc5c
TG
819 * exit_pi_state_list sets owner to NULL and wakes the
820 * topmost waiter. The task which acquires the
821 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 822 */
e60cbc5c 823 if (!pi_state->owner) {
59647b6a 824 /*
e60cbc5c
TG
825 * No pi state owner, but the user space TID
826 * is not 0. Inconsistent state. [5]
59647b6a 827 */
e60cbc5c
TG
828 if (pid)
829 return -EINVAL;
bd1dbcc6 830 /*
e60cbc5c 831 * Take a ref on the state and return success. [4]
866293ee 832 */
e60cbc5c 833 goto out_state;
c87e2837 834 }
bd1dbcc6
TG
835
836 /*
e60cbc5c
TG
837 * If TID is 0, then either the dying owner has not
838 * yet executed exit_pi_state_list() or some waiter
839 * acquired the rtmutex in the pi state, but did not
840 * yet fixup the TID in user space.
841 *
842 * Take a ref on the state and return success. [6]
843 */
844 if (!pid)
845 goto out_state;
846 } else {
847 /*
848 * If the owner died bit is not set, then the pi_state
849 * must have an owner. [7]
bd1dbcc6 850 */
e60cbc5c 851 if (!pi_state->owner)
bd1dbcc6 852 return -EINVAL;
c87e2837
IM
853 }
854
e60cbc5c
TG
855 /*
856 * Bail out if user space manipulated the futex value. If pi
857 * state exists then the owner TID must be the same as the
858 * user space TID. [9/10]
859 */
860 if (pid != task_pid_vnr(pi_state->owner))
861 return -EINVAL;
862out_state:
863 atomic_inc(&pi_state->refcount);
864 *ps = pi_state;
865 return 0;
866}
867
04e1b2e5
TG
868/*
869 * Lookup the task for the TID provided from user space and attach to
870 * it after doing proper sanity checks.
871 */
872static int attach_to_pi_owner(u32 uval, union futex_key *key,
873 struct futex_pi_state **ps)
e60cbc5c 874{
e60cbc5c 875 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
876 struct futex_pi_state *pi_state;
877 struct task_struct *p;
e60cbc5c 878
c87e2837 879 /*
e3f2ddea 880 * We are the first waiter - try to look up the real owner and attach
54a21788 881 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 882 */
778e9a9c 883 if (!pid)
e3f2ddea 884 return -ESRCH;
c87e2837 885 p = futex_find_get_task(pid);
7a0ea09a
MH
886 if (!p)
887 return -ESRCH;
778e9a9c 888
f0d71b3d
TG
889 if (!p->mm) {
890 put_task_struct(p);
891 return -EPERM;
892 }
893
778e9a9c
AK
894 /*
895 * We need to look at the task state flags to figure out,
896 * whether the task is exiting. To protect against the do_exit
897 * change of the task flags, we do this protected by
898 * p->pi_lock:
899 */
1d615482 900 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
901 if (unlikely(p->flags & PF_EXITING)) {
902 /*
903 * The task is on the way out. When PF_EXITPIDONE is
904 * set, we know that the task has finished the
905 * cleanup:
906 */
907 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
908
1d615482 909 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
910 put_task_struct(p);
911 return ret;
912 }
c87e2837 913
54a21788
TG
914 /*
915 * No existing pi state. First waiter. [2]
916 */
c87e2837
IM
917 pi_state = alloc_pi_state();
918
919 /*
04e1b2e5 920 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
921 * the owner of it:
922 */
923 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
924
925 /* Store the key for possible exit cleanups: */
d0aa7a70 926 pi_state->key = *key;
c87e2837 927
627371d7 928 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
929 list_add(&pi_state->list, &p->pi_state_list);
930 pi_state->owner = p;
1d615482 931 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
932
933 put_task_struct(p);
934
d0aa7a70 935 *ps = pi_state;
c87e2837
IM
936
937 return 0;
938}
939
04e1b2e5
TG
940static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
941 union futex_key *key, struct futex_pi_state **ps)
942{
943 struct futex_q *match = futex_top_waiter(hb, key);
944
945 /*
946 * If there is a waiter on that futex, validate it and
947 * attach to the pi_state when the validation succeeds.
948 */
949 if (match)
950 return attach_to_pi_state(uval, match->pi_state, ps);
951
952 /*
953 * We are the first waiter - try to look up the owner based on
954 * @uval and attach to it.
955 */
956 return attach_to_pi_owner(uval, key, ps);
957}
958
af54d6a1
TG
959static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
960{
961 u32 uninitialized_var(curval);
962
963 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
964 return -EFAULT;
965
966 /*If user space value changed, let the caller retry */
967 return curval != uval ? -EAGAIN : 0;
968}
969
1a52084d 970/**
d96ee56c 971 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
972 * @uaddr: the pi futex user address
973 * @hb: the pi futex hash bucket
974 * @key: the futex key associated with uaddr and hb
975 * @ps: the pi_state pointer where we store the result of the
976 * lookup
977 * @task: the task to perform the atomic lock work for. This will
978 * be "current" except in the case of requeue pi.
979 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 980 *
6c23cbbd
RD
981 * Return:
982 * 0 - ready to wait;
983 * 1 - acquired the lock;
1a52084d
DH
984 * <0 - error
985 *
986 * The hb->lock and futex_key refs shall be held by the caller.
987 */
988static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
989 union futex_key *key,
990 struct futex_pi_state **ps,
bab5bc9e 991 struct task_struct *task, int set_waiters)
1a52084d 992{
af54d6a1
TG
993 u32 uval, newval, vpid = task_pid_vnr(task);
994 struct futex_q *match;
995 int ret;
1a52084d
DH
996
997 /*
af54d6a1
TG
998 * Read the user space value first so we can validate a few
999 * things before proceeding further.
1a52084d 1000 */
af54d6a1 1001 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1002 return -EFAULT;
1003
1004 /*
1005 * Detect deadlocks.
1006 */
af54d6a1 1007 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1008 return -EDEADLK;
1009
1010 /*
af54d6a1
TG
1011 * Lookup existing state first. If it exists, try to attach to
1012 * its pi_state.
1a52084d 1013 */
af54d6a1
TG
1014 match = futex_top_waiter(hb, key);
1015 if (match)
1016 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1017
1018 /*
af54d6a1
TG
1019 * No waiter and user TID is 0. We are here because the
1020 * waiters or the owner died bit is set or called from
1021 * requeue_cmp_pi or for whatever reason something took the
1022 * syscall.
1a52084d 1023 */
af54d6a1 1024 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1025 /*
af54d6a1
TG
1026 * We take over the futex. No other waiters and the user space
1027 * TID is 0. We preserve the owner died bit.
59fa6245 1028 */
af54d6a1
TG
1029 newval = uval & FUTEX_OWNER_DIED;
1030 newval |= vpid;
1a52084d 1031
af54d6a1
TG
1032 /* The futex requeue_pi code can enforce the waiters bit */
1033 if (set_waiters)
1034 newval |= FUTEX_WAITERS;
1035
1036 ret = lock_pi_update_atomic(uaddr, uval, newval);
1037 /* If the take over worked, return 1 */
1038 return ret < 0 ? ret : 1;
1039 }
1a52084d
DH
1040
1041 /*
af54d6a1
TG
1042 * First waiter. Set the waiters bit before attaching ourself to
1043 * the owner. If owner tries to unlock, it will be forced into
1044 * the kernel and blocked on hb->lock.
1a52084d 1045 */
af54d6a1
TG
1046 newval = uval | FUTEX_WAITERS;
1047 ret = lock_pi_update_atomic(uaddr, uval, newval);
1048 if (ret)
1049 return ret;
1a52084d 1050 /*
af54d6a1
TG
1051 * If the update of the user space value succeeded, we try to
1052 * attach to the owner. If that fails, no harm done, we only
1053 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1054 */
af54d6a1 1055 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1056}
1057
2e12978a
LJ
1058/**
1059 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1060 * @q: The futex_q to unqueue
1061 *
1062 * The q->lock_ptr must not be NULL and must be held by the caller.
1063 */
1064static void __unqueue_futex(struct futex_q *q)
1065{
1066 struct futex_hash_bucket *hb;
1067
29096202
SR
1068 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1069 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1070 return;
1071
1072 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1073 plist_del(&q->list, &hb->chain);
11d4616b 1074 hb_waiters_dec(hb);
2e12978a
LJ
1075}
1076
1da177e4
LT
1077/*
1078 * The hash bucket lock must be held when this is called.
1079 * Afterwards, the futex_q must not be accessed.
1080 */
1081static void wake_futex(struct futex_q *q)
1082{
f1a11e05
TG
1083 struct task_struct *p = q->task;
1084
aa10990e
DH
1085 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1086 return;
1087
1da177e4 1088 /*
f1a11e05 1089 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1090 * a non-futex wake up happens on another CPU then the task
1091 * might exit and p would dereference a non-existing task
f1a11e05
TG
1092 * struct. Prevent this by holding a reference on p across the
1093 * wake up.
1da177e4 1094 */
f1a11e05
TG
1095 get_task_struct(p);
1096
2e12978a 1097 __unqueue_futex(q);
1da177e4 1098 /*
f1a11e05
TG
1099 * The waiting task can free the futex_q as soon as
1100 * q->lock_ptr = NULL is written, without taking any locks. A
1101 * memory barrier is required here to prevent the following
1102 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1103 */
ccdea2f8 1104 smp_wmb();
1da177e4 1105 q->lock_ptr = NULL;
f1a11e05
TG
1106
1107 wake_up_state(p, TASK_NORMAL);
1108 put_task_struct(p);
1da177e4
LT
1109}
1110
c87e2837
IM
1111static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1112{
1113 struct task_struct *new_owner;
1114 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1115 u32 uninitialized_var(curval), newval;
13fbca4c 1116 int ret = 0;
c87e2837
IM
1117
1118 if (!pi_state)
1119 return -EINVAL;
1120
51246bfd
TG
1121 /*
1122 * If current does not own the pi_state then the futex is
1123 * inconsistent and user space fiddled with the futex value.
1124 */
1125 if (pi_state->owner != current)
1126 return -EINVAL;
1127
d209d74d 1128 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1129 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1130
1131 /*
f123c98e
SR
1132 * It is possible that the next waiter (the one that brought
1133 * this owner to the kernel) timed out and is no longer
1134 * waiting on the lock.
c87e2837
IM
1135 */
1136 if (!new_owner)
1137 new_owner = this->task;
1138
1139 /*
13fbca4c
TG
1140 * We pass it to the next owner. The WAITERS bit is always
1141 * kept enabled while there is PI state around. We cleanup the
1142 * owner died bit, because we are the owner.
c87e2837 1143 */
13fbca4c 1144 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1145
13fbca4c
TG
1146 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1147 ret = -EFAULT;
1148 else if (curval != uval)
1149 ret = -EINVAL;
1150 if (ret) {
1151 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1152 return ret;
e3f2ddea 1153 }
c87e2837 1154
1d615482 1155 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1156 WARN_ON(list_empty(&pi_state->list));
1157 list_del_init(&pi_state->list);
1d615482 1158 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1159
1d615482 1160 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1161 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1162 list_add(&pi_state->list, &new_owner->pi_state_list);
1163 pi_state->owner = new_owner;
1d615482 1164 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1165
d209d74d 1166 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1167 rt_mutex_unlock(&pi_state->pi_mutex);
1168
1169 return 0;
1170}
1171
8b8f319f
IM
1172/*
1173 * Express the locking dependencies for lockdep:
1174 */
1175static inline void
1176double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1177{
1178 if (hb1 <= hb2) {
1179 spin_lock(&hb1->lock);
1180 if (hb1 < hb2)
1181 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1182 } else { /* hb1 > hb2 */
1183 spin_lock(&hb2->lock);
1184 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1185 }
1186}
1187
5eb3dc62
DH
1188static inline void
1189double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1190{
f061d351 1191 spin_unlock(&hb1->lock);
88f502fe
IM
1192 if (hb1 != hb2)
1193 spin_unlock(&hb2->lock);
5eb3dc62
DH
1194}
1195
1da177e4 1196/*
b2d0994b 1197 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1198 */
b41277dc
DH
1199static int
1200futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1201{
e2970f2f 1202 struct futex_hash_bucket *hb;
1da177e4 1203 struct futex_q *this, *next;
38d47c1b 1204 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1205 int ret;
1206
cd689985
TG
1207 if (!bitset)
1208 return -EINVAL;
1209
9ea71503 1210 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1211 if (unlikely(ret != 0))
1212 goto out;
1213
e2970f2f 1214 hb = hash_futex(&key);
b0c29f79
DB
1215
1216 /* Make sure we really have tasks to wakeup */
1217 if (!hb_waiters_pending(hb))
1218 goto out_put_key;
1219
e2970f2f 1220 spin_lock(&hb->lock);
1da177e4 1221
0d00c7b2 1222 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1223 if (match_futex (&this->key, &key)) {
52400ba9 1224 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1225 ret = -EINVAL;
1226 break;
1227 }
cd689985
TG
1228
1229 /* Check if one of the bits is set in both bitsets */
1230 if (!(this->bitset & bitset))
1231 continue;
1232
1da177e4
LT
1233 wake_futex(this);
1234 if (++ret >= nr_wake)
1235 break;
1236 }
1237 }
1238
e2970f2f 1239 spin_unlock(&hb->lock);
b0c29f79 1240out_put_key:
ae791a2d 1241 put_futex_key(&key);
42d35d48 1242out:
1da177e4
LT
1243 return ret;
1244}
1245
4732efbe
JJ
1246/*
1247 * Wake up all waiters hashed on the physical page that is mapped
1248 * to this virtual address:
1249 */
e2970f2f 1250static int
b41277dc 1251futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1252 int nr_wake, int nr_wake2, int op)
4732efbe 1253{
38d47c1b 1254 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1255 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1256 struct futex_q *this, *next;
e4dc5b7a 1257 int ret, op_ret;
4732efbe 1258
e4dc5b7a 1259retry:
9ea71503 1260 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1261 if (unlikely(ret != 0))
1262 goto out;
9ea71503 1263 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1264 if (unlikely(ret != 0))
42d35d48 1265 goto out_put_key1;
4732efbe 1266
e2970f2f
IM
1267 hb1 = hash_futex(&key1);
1268 hb2 = hash_futex(&key2);
4732efbe 1269
e4dc5b7a 1270retry_private:
eaaea803 1271 double_lock_hb(hb1, hb2);
e2970f2f 1272 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1273 if (unlikely(op_ret < 0)) {
4732efbe 1274
5eb3dc62 1275 double_unlock_hb(hb1, hb2);
4732efbe 1276
7ee1dd3f 1277#ifndef CONFIG_MMU
e2970f2f
IM
1278 /*
1279 * we don't get EFAULT from MMU faults if we don't have an MMU,
1280 * but we might get them from range checking
1281 */
7ee1dd3f 1282 ret = op_ret;
42d35d48 1283 goto out_put_keys;
7ee1dd3f
DH
1284#endif
1285
796f8d9b
DG
1286 if (unlikely(op_ret != -EFAULT)) {
1287 ret = op_ret;
42d35d48 1288 goto out_put_keys;
796f8d9b
DG
1289 }
1290
d0725992 1291 ret = fault_in_user_writeable(uaddr2);
4732efbe 1292 if (ret)
de87fcc1 1293 goto out_put_keys;
4732efbe 1294
b41277dc 1295 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1296 goto retry_private;
1297
ae791a2d
TG
1298 put_futex_key(&key2);
1299 put_futex_key(&key1);
e4dc5b7a 1300 goto retry;
4732efbe
JJ
1301 }
1302
0d00c7b2 1303 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1304 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1305 if (this->pi_state || this->rt_waiter) {
1306 ret = -EINVAL;
1307 goto out_unlock;
1308 }
4732efbe
JJ
1309 wake_futex(this);
1310 if (++ret >= nr_wake)
1311 break;
1312 }
1313 }
1314
1315 if (op_ret > 0) {
4732efbe 1316 op_ret = 0;
0d00c7b2 1317 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1318 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1319 if (this->pi_state || this->rt_waiter) {
1320 ret = -EINVAL;
1321 goto out_unlock;
1322 }
4732efbe
JJ
1323 wake_futex(this);
1324 if (++op_ret >= nr_wake2)
1325 break;
1326 }
1327 }
1328 ret += op_ret;
1329 }
1330
aa10990e 1331out_unlock:
5eb3dc62 1332 double_unlock_hb(hb1, hb2);
42d35d48 1333out_put_keys:
ae791a2d 1334 put_futex_key(&key2);
42d35d48 1335out_put_key1:
ae791a2d 1336 put_futex_key(&key1);
42d35d48 1337out:
4732efbe
JJ
1338 return ret;
1339}
1340
9121e478
DH
1341/**
1342 * requeue_futex() - Requeue a futex_q from one hb to another
1343 * @q: the futex_q to requeue
1344 * @hb1: the source hash_bucket
1345 * @hb2: the target hash_bucket
1346 * @key2: the new key for the requeued futex_q
1347 */
1348static inline
1349void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1350 struct futex_hash_bucket *hb2, union futex_key *key2)
1351{
1352
1353 /*
1354 * If key1 and key2 hash to the same bucket, no need to
1355 * requeue.
1356 */
1357 if (likely(&hb1->chain != &hb2->chain)) {
1358 plist_del(&q->list, &hb1->chain);
11d4616b 1359 hb_waiters_dec(hb1);
9121e478 1360 plist_add(&q->list, &hb2->chain);
11d4616b 1361 hb_waiters_inc(hb2);
9121e478 1362 q->lock_ptr = &hb2->lock;
9121e478
DH
1363 }
1364 get_futex_key_refs(key2);
1365 q->key = *key2;
1366}
1367
52400ba9
DH
1368/**
1369 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1370 * @q: the futex_q
1371 * @key: the key of the requeue target futex
1372 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1373 *
1374 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1375 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1376 * to the requeue target futex so the waiter can detect the wakeup on the right
1377 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1378 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1379 * to protect access to the pi_state to fixup the owner later. Must be called
1380 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1381 */
1382static inline
beda2c7e
DH
1383void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1384 struct futex_hash_bucket *hb)
52400ba9 1385{
52400ba9
DH
1386 get_futex_key_refs(key);
1387 q->key = *key;
1388
2e12978a 1389 __unqueue_futex(q);
52400ba9
DH
1390
1391 WARN_ON(!q->rt_waiter);
1392 q->rt_waiter = NULL;
1393
beda2c7e 1394 q->lock_ptr = &hb->lock;
beda2c7e 1395
f1a11e05 1396 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1397}
1398
1399/**
1400 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1401 * @pifutex: the user address of the to futex
1402 * @hb1: the from futex hash bucket, must be locked by the caller
1403 * @hb2: the to futex hash bucket, must be locked by the caller
1404 * @key1: the from futex key
1405 * @key2: the to futex key
1406 * @ps: address to store the pi_state pointer
1407 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1408 *
1409 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1410 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1411 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1412 * hb1 and hb2 must be held by the caller.
52400ba9 1413 *
6c23cbbd
RD
1414 * Return:
1415 * 0 - failed to acquire the lock atomically;
866293ee 1416 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1417 * <0 - error
1418 */
1419static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1420 struct futex_hash_bucket *hb1,
1421 struct futex_hash_bucket *hb2,
1422 union futex_key *key1, union futex_key *key2,
bab5bc9e 1423 struct futex_pi_state **ps, int set_waiters)
52400ba9 1424{
bab5bc9e 1425 struct futex_q *top_waiter = NULL;
52400ba9 1426 u32 curval;
866293ee 1427 int ret, vpid;
52400ba9
DH
1428
1429 if (get_futex_value_locked(&curval, pifutex))
1430 return -EFAULT;
1431
bab5bc9e
DH
1432 /*
1433 * Find the top_waiter and determine if there are additional waiters.
1434 * If the caller intends to requeue more than 1 waiter to pifutex,
1435 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1436 * as we have means to handle the possible fault. If not, don't set
1437 * the bit unecessarily as it will force the subsequent unlock to enter
1438 * the kernel.
1439 */
52400ba9
DH
1440 top_waiter = futex_top_waiter(hb1, key1);
1441
1442 /* There are no waiters, nothing for us to do. */
1443 if (!top_waiter)
1444 return 0;
1445
84bc4af5
DH
1446 /* Ensure we requeue to the expected futex. */
1447 if (!match_futex(top_waiter->requeue_pi_key, key2))
1448 return -EINVAL;
1449
52400ba9 1450 /*
bab5bc9e
DH
1451 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1452 * the contended case or if set_waiters is 1. The pi_state is returned
1453 * in ps in contended cases.
52400ba9 1454 */
866293ee 1455 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1456 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1457 set_waiters);
866293ee 1458 if (ret == 1) {
beda2c7e 1459 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1460 return vpid;
1461 }
52400ba9
DH
1462 return ret;
1463}
1464
1465/**
1466 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1467 * @uaddr1: source futex user address
b41277dc 1468 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1469 * @uaddr2: target futex user address
1470 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1471 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1472 * @cmpval: @uaddr1 expected value (or %NULL)
1473 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1474 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1475 *
1476 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1477 * uaddr2 atomically on behalf of the top waiter.
1478 *
6c23cbbd
RD
1479 * Return:
1480 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1481 * <0 - on error
1da177e4 1482 */
b41277dc
DH
1483static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1484 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1485 u32 *cmpval, int requeue_pi)
1da177e4 1486{
38d47c1b 1487 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1488 int drop_count = 0, task_count = 0, ret;
1489 struct futex_pi_state *pi_state = NULL;
e2970f2f 1490 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1491 struct futex_q *this, *next;
52400ba9
DH
1492
1493 if (requeue_pi) {
e9c243a5
TG
1494 /*
1495 * Requeue PI only works on two distinct uaddrs. This
1496 * check is only valid for private futexes. See below.
1497 */
1498 if (uaddr1 == uaddr2)
1499 return -EINVAL;
1500
52400ba9
DH
1501 /*
1502 * requeue_pi requires a pi_state, try to allocate it now
1503 * without any locks in case it fails.
1504 */
1505 if (refill_pi_state_cache())
1506 return -ENOMEM;
1507 /*
1508 * requeue_pi must wake as many tasks as it can, up to nr_wake
1509 * + nr_requeue, since it acquires the rt_mutex prior to
1510 * returning to userspace, so as to not leave the rt_mutex with
1511 * waiters and no owner. However, second and third wake-ups
1512 * cannot be predicted as they involve race conditions with the
1513 * first wake and a fault while looking up the pi_state. Both
1514 * pthread_cond_signal() and pthread_cond_broadcast() should
1515 * use nr_wake=1.
1516 */
1517 if (nr_wake != 1)
1518 return -EINVAL;
1519 }
1da177e4 1520
42d35d48 1521retry:
52400ba9
DH
1522 if (pi_state != NULL) {
1523 /*
1524 * We will have to lookup the pi_state again, so free this one
1525 * to keep the accounting correct.
1526 */
1527 free_pi_state(pi_state);
1528 pi_state = NULL;
1529 }
1530
9ea71503 1531 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1532 if (unlikely(ret != 0))
1533 goto out;
9ea71503
SB
1534 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1535 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1536 if (unlikely(ret != 0))
42d35d48 1537 goto out_put_key1;
1da177e4 1538
e9c243a5
TG
1539 /*
1540 * The check above which compares uaddrs is not sufficient for
1541 * shared futexes. We need to compare the keys:
1542 */
1543 if (requeue_pi && match_futex(&key1, &key2)) {
1544 ret = -EINVAL;
1545 goto out_put_keys;
1546 }
1547
e2970f2f
IM
1548 hb1 = hash_futex(&key1);
1549 hb2 = hash_futex(&key2);
1da177e4 1550
e4dc5b7a 1551retry_private:
69cd9eba 1552 hb_waiters_inc(hb2);
8b8f319f 1553 double_lock_hb(hb1, hb2);
1da177e4 1554
e2970f2f
IM
1555 if (likely(cmpval != NULL)) {
1556 u32 curval;
1da177e4 1557
e2970f2f 1558 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1559
1560 if (unlikely(ret)) {
5eb3dc62 1561 double_unlock_hb(hb1, hb2);
69cd9eba 1562 hb_waiters_dec(hb2);
1da177e4 1563
e2970f2f 1564 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1565 if (ret)
1566 goto out_put_keys;
1da177e4 1567
b41277dc 1568 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1569 goto retry_private;
1da177e4 1570
ae791a2d
TG
1571 put_futex_key(&key2);
1572 put_futex_key(&key1);
e4dc5b7a 1573 goto retry;
1da177e4 1574 }
e2970f2f 1575 if (curval != *cmpval) {
1da177e4
LT
1576 ret = -EAGAIN;
1577 goto out_unlock;
1578 }
1579 }
1580
52400ba9 1581 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1582 /*
1583 * Attempt to acquire uaddr2 and wake the top waiter. If we
1584 * intend to requeue waiters, force setting the FUTEX_WAITERS
1585 * bit. We force this here where we are able to easily handle
1586 * faults rather in the requeue loop below.
1587 */
52400ba9 1588 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1589 &key2, &pi_state, nr_requeue);
52400ba9
DH
1590
1591 /*
1592 * At this point the top_waiter has either taken uaddr2 or is
1593 * waiting on it. If the former, then the pi_state will not
1594 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1595 * reference to it. If the lock was taken, ret contains the
1596 * vpid of the top waiter task.
52400ba9 1597 */
866293ee 1598 if (ret > 0) {
52400ba9 1599 WARN_ON(pi_state);
89061d3d 1600 drop_count++;
52400ba9 1601 task_count++;
866293ee
TG
1602 /*
1603 * If we acquired the lock, then the user
1604 * space value of uaddr2 should be vpid. It
1605 * cannot be changed by the top waiter as it
1606 * is blocked on hb2 lock if it tries to do
1607 * so. If something fiddled with it behind our
1608 * back the pi state lookup might unearth
1609 * it. So we rather use the known value than
1610 * rereading and handing potential crap to
1611 * lookup_pi_state.
1612 */
54a21788 1613 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1614 }
1615
1616 switch (ret) {
1617 case 0:
1618 break;
1619 case -EFAULT:
1620 double_unlock_hb(hb1, hb2);
69cd9eba 1621 hb_waiters_dec(hb2);
ae791a2d
TG
1622 put_futex_key(&key2);
1623 put_futex_key(&key1);
d0725992 1624 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1625 if (!ret)
1626 goto retry;
1627 goto out;
1628 case -EAGAIN:
af54d6a1
TG
1629 /*
1630 * Two reasons for this:
1631 * - Owner is exiting and we just wait for the
1632 * exit to complete.
1633 * - The user space value changed.
1634 */
52400ba9 1635 double_unlock_hb(hb1, hb2);
69cd9eba 1636 hb_waiters_dec(hb2);
ae791a2d
TG
1637 put_futex_key(&key2);
1638 put_futex_key(&key1);
52400ba9
DH
1639 cond_resched();
1640 goto retry;
1641 default:
1642 goto out_unlock;
1643 }
1644 }
1645
0d00c7b2 1646 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1647 if (task_count - nr_wake >= nr_requeue)
1648 break;
1649
1650 if (!match_futex(&this->key, &key1))
1da177e4 1651 continue;
52400ba9 1652
392741e0
DH
1653 /*
1654 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1655 * be paired with each other and no other futex ops.
aa10990e
DH
1656 *
1657 * We should never be requeueing a futex_q with a pi_state,
1658 * which is awaiting a futex_unlock_pi().
392741e0
DH
1659 */
1660 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1661 (!requeue_pi && this->rt_waiter) ||
1662 this->pi_state) {
392741e0
DH
1663 ret = -EINVAL;
1664 break;
1665 }
52400ba9
DH
1666
1667 /*
1668 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1669 * lock, we already woke the top_waiter. If not, it will be
1670 * woken by futex_unlock_pi().
1671 */
1672 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1673 wake_futex(this);
52400ba9
DH
1674 continue;
1675 }
1da177e4 1676
84bc4af5
DH
1677 /* Ensure we requeue to the expected futex for requeue_pi. */
1678 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1679 ret = -EINVAL;
1680 break;
1681 }
1682
52400ba9
DH
1683 /*
1684 * Requeue nr_requeue waiters and possibly one more in the case
1685 * of requeue_pi if we couldn't acquire the lock atomically.
1686 */
1687 if (requeue_pi) {
1688 /* Prepare the waiter to take the rt_mutex. */
1689 atomic_inc(&pi_state->refcount);
1690 this->pi_state = pi_state;
1691 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1692 this->rt_waiter,
c051b21f 1693 this->task);
52400ba9
DH
1694 if (ret == 1) {
1695 /* We got the lock. */
beda2c7e 1696 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1697 drop_count++;
52400ba9
DH
1698 continue;
1699 } else if (ret) {
1700 /* -EDEADLK */
1701 this->pi_state = NULL;
1702 free_pi_state(pi_state);
1703 goto out_unlock;
1704 }
1da177e4 1705 }
52400ba9
DH
1706 requeue_futex(this, hb1, hb2, &key2);
1707 drop_count++;
1da177e4
LT
1708 }
1709
1710out_unlock:
5eb3dc62 1711 double_unlock_hb(hb1, hb2);
69cd9eba 1712 hb_waiters_dec(hb2);
1da177e4 1713
cd84a42f
DH
1714 /*
1715 * drop_futex_key_refs() must be called outside the spinlocks. During
1716 * the requeue we moved futex_q's from the hash bucket at key1 to the
1717 * one at key2 and updated their key pointer. We no longer need to
1718 * hold the references to key1.
1719 */
1da177e4 1720 while (--drop_count >= 0)
9adef58b 1721 drop_futex_key_refs(&key1);
1da177e4 1722
42d35d48 1723out_put_keys:
ae791a2d 1724 put_futex_key(&key2);
42d35d48 1725out_put_key1:
ae791a2d 1726 put_futex_key(&key1);
42d35d48 1727out:
52400ba9
DH
1728 if (pi_state != NULL)
1729 free_pi_state(pi_state);
1730 return ret ? ret : task_count;
1da177e4
LT
1731}
1732
1733/* The key must be already stored in q->key. */
82af7aca 1734static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1735 __acquires(&hb->lock)
1da177e4 1736{
e2970f2f 1737 struct futex_hash_bucket *hb;
1da177e4 1738
e2970f2f 1739 hb = hash_futex(&q->key);
11d4616b
LT
1740
1741 /*
1742 * Increment the counter before taking the lock so that
1743 * a potential waker won't miss a to-be-slept task that is
1744 * waiting for the spinlock. This is safe as all queue_lock()
1745 * users end up calling queue_me(). Similarly, for housekeeping,
1746 * decrement the counter at queue_unlock() when some error has
1747 * occurred and we don't end up adding the task to the list.
1748 */
1749 hb_waiters_inc(hb);
1750
e2970f2f 1751 q->lock_ptr = &hb->lock;
1da177e4 1752
b0c29f79 1753 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1754 return hb;
1da177e4
LT
1755}
1756
d40d65c8 1757static inline void
0d00c7b2 1758queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1759 __releases(&hb->lock)
d40d65c8
DH
1760{
1761 spin_unlock(&hb->lock);
11d4616b 1762 hb_waiters_dec(hb);
d40d65c8
DH
1763}
1764
1765/**
1766 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1767 * @q: The futex_q to enqueue
1768 * @hb: The destination hash bucket
1769 *
1770 * The hb->lock must be held by the caller, and is released here. A call to
1771 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1772 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1773 * or nothing if the unqueue is done as part of the wake process and the unqueue
1774 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1775 * an example).
1776 */
82af7aca 1777static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1778 __releases(&hb->lock)
1da177e4 1779{
ec92d082
PP
1780 int prio;
1781
1782 /*
1783 * The priority used to register this element is
1784 * - either the real thread-priority for the real-time threads
1785 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1786 * - or MAX_RT_PRIO for non-RT threads.
1787 * Thus, all RT-threads are woken first in priority order, and
1788 * the others are woken last, in FIFO order.
1789 */
1790 prio = min(current->normal_prio, MAX_RT_PRIO);
1791
1792 plist_node_init(&q->list, prio);
ec92d082 1793 plist_add(&q->list, &hb->chain);
c87e2837 1794 q->task = current;
e2970f2f 1795 spin_unlock(&hb->lock);
1da177e4
LT
1796}
1797
d40d65c8
DH
1798/**
1799 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1800 * @q: The futex_q to unqueue
1801 *
1802 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1803 * be paired with exactly one earlier call to queue_me().
1804 *
6c23cbbd
RD
1805 * Return:
1806 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1807 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1808 */
1da177e4
LT
1809static int unqueue_me(struct futex_q *q)
1810{
1da177e4 1811 spinlock_t *lock_ptr;
e2970f2f 1812 int ret = 0;
1da177e4
LT
1813
1814 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1815retry:
1da177e4 1816 lock_ptr = q->lock_ptr;
e91467ec 1817 barrier();
c80544dc 1818 if (lock_ptr != NULL) {
1da177e4
LT
1819 spin_lock(lock_ptr);
1820 /*
1821 * q->lock_ptr can change between reading it and
1822 * spin_lock(), causing us to take the wrong lock. This
1823 * corrects the race condition.
1824 *
1825 * Reasoning goes like this: if we have the wrong lock,
1826 * q->lock_ptr must have changed (maybe several times)
1827 * between reading it and the spin_lock(). It can
1828 * change again after the spin_lock() but only if it was
1829 * already changed before the spin_lock(). It cannot,
1830 * however, change back to the original value. Therefore
1831 * we can detect whether we acquired the correct lock.
1832 */
1833 if (unlikely(lock_ptr != q->lock_ptr)) {
1834 spin_unlock(lock_ptr);
1835 goto retry;
1836 }
2e12978a 1837 __unqueue_futex(q);
c87e2837
IM
1838
1839 BUG_ON(q->pi_state);
1840
1da177e4
LT
1841 spin_unlock(lock_ptr);
1842 ret = 1;
1843 }
1844
9adef58b 1845 drop_futex_key_refs(&q->key);
1da177e4
LT
1846 return ret;
1847}
1848
c87e2837
IM
1849/*
1850 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1851 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1852 * and dropped here.
c87e2837 1853 */
d0aa7a70 1854static void unqueue_me_pi(struct futex_q *q)
15e408cd 1855 __releases(q->lock_ptr)
c87e2837 1856{
2e12978a 1857 __unqueue_futex(q);
c87e2837
IM
1858
1859 BUG_ON(!q->pi_state);
1860 free_pi_state(q->pi_state);
1861 q->pi_state = NULL;
1862
d0aa7a70 1863 spin_unlock(q->lock_ptr);
c87e2837
IM
1864}
1865
d0aa7a70 1866/*
cdf71a10 1867 * Fixup the pi_state owner with the new owner.
d0aa7a70 1868 *
778e9a9c
AK
1869 * Must be called with hash bucket lock held and mm->sem held for non
1870 * private futexes.
d0aa7a70 1871 */
778e9a9c 1872static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1873 struct task_struct *newowner)
d0aa7a70 1874{
cdf71a10 1875 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1876 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1877 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1878 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1879 int ret;
d0aa7a70
PP
1880
1881 /* Owner died? */
1b7558e4
TG
1882 if (!pi_state->owner)
1883 newtid |= FUTEX_OWNER_DIED;
1884
1885 /*
1886 * We are here either because we stole the rtmutex from the
8161239a
LJ
1887 * previous highest priority waiter or we are the highest priority
1888 * waiter but failed to get the rtmutex the first time.
1889 * We have to replace the newowner TID in the user space variable.
1890 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1891 *
b2d0994b
DH
1892 * Note: We write the user space value _before_ changing the pi_state
1893 * because we can fault here. Imagine swapped out pages or a fork
1894 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1895 *
1896 * Modifying pi_state _before_ the user space value would
1897 * leave the pi_state in an inconsistent state when we fault
1898 * here, because we need to drop the hash bucket lock to
1899 * handle the fault. This might be observed in the PID check
1900 * in lookup_pi_state.
1901 */
1902retry:
1903 if (get_futex_value_locked(&uval, uaddr))
1904 goto handle_fault;
1905
1906 while (1) {
1907 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1908
37a9d912 1909 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1910 goto handle_fault;
1911 if (curval == uval)
1912 break;
1913 uval = curval;
1914 }
1915
1916 /*
1917 * We fixed up user space. Now we need to fix the pi_state
1918 * itself.
1919 */
d0aa7a70 1920 if (pi_state->owner != NULL) {
1d615482 1921 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1922 WARN_ON(list_empty(&pi_state->list));
1923 list_del_init(&pi_state->list);
1d615482 1924 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1925 }
d0aa7a70 1926
cdf71a10 1927 pi_state->owner = newowner;
d0aa7a70 1928
1d615482 1929 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1930 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1931 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1932 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1933 return 0;
d0aa7a70 1934
d0aa7a70 1935 /*
1b7558e4 1936 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1937 * lock here. That gives the other task (either the highest priority
1938 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1939 * chance to try the fixup of the pi_state. So once we are
1940 * back from handling the fault we need to check the pi_state
1941 * after reacquiring the hash bucket lock and before trying to
1942 * do another fixup. When the fixup has been done already we
1943 * simply return.
d0aa7a70 1944 */
1b7558e4
TG
1945handle_fault:
1946 spin_unlock(q->lock_ptr);
778e9a9c 1947
d0725992 1948 ret = fault_in_user_writeable(uaddr);
778e9a9c 1949
1b7558e4 1950 spin_lock(q->lock_ptr);
778e9a9c 1951
1b7558e4
TG
1952 /*
1953 * Check if someone else fixed it for us:
1954 */
1955 if (pi_state->owner != oldowner)
1956 return 0;
1957
1958 if (ret)
1959 return ret;
1960
1961 goto retry;
d0aa7a70
PP
1962}
1963
72c1bbf3 1964static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1965
dd973998
DH
1966/**
1967 * fixup_owner() - Post lock pi_state and corner case management
1968 * @uaddr: user address of the futex
dd973998
DH
1969 * @q: futex_q (contains pi_state and access to the rt_mutex)
1970 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1971 *
1972 * After attempting to lock an rt_mutex, this function is called to cleanup
1973 * the pi_state owner as well as handle race conditions that may allow us to
1974 * acquire the lock. Must be called with the hb lock held.
1975 *
6c23cbbd
RD
1976 * Return:
1977 * 1 - success, lock taken;
1978 * 0 - success, lock not taken;
dd973998
DH
1979 * <0 - on error (-EFAULT)
1980 */
ae791a2d 1981static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1982{
1983 struct task_struct *owner;
1984 int ret = 0;
1985
1986 if (locked) {
1987 /*
1988 * Got the lock. We might not be the anticipated owner if we
1989 * did a lock-steal - fix up the PI-state in that case:
1990 */
1991 if (q->pi_state->owner != current)
ae791a2d 1992 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1993 goto out;
1994 }
1995
1996 /*
1997 * Catch the rare case, where the lock was released when we were on the
1998 * way back before we locked the hash bucket.
1999 */
2000 if (q->pi_state->owner == current) {
2001 /*
2002 * Try to get the rt_mutex now. This might fail as some other
2003 * task acquired the rt_mutex after we removed ourself from the
2004 * rt_mutex waiters list.
2005 */
2006 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2007 locked = 1;
2008 goto out;
2009 }
2010
2011 /*
2012 * pi_state is incorrect, some other task did a lock steal and
2013 * we returned due to timeout or signal without taking the
8161239a 2014 * rt_mutex. Too late.
dd973998 2015 */
8161239a 2016 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2017 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2018 if (!owner)
2019 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2020 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2021 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2022 goto out;
2023 }
2024
2025 /*
2026 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2027 * the owner of the rt_mutex.
dd973998
DH
2028 */
2029 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2030 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2031 "pi-state %p\n", ret,
2032 q->pi_state->pi_mutex.owner,
2033 q->pi_state->owner);
2034
2035out:
2036 return ret ? ret : locked;
2037}
2038
ca5f9524
DH
2039/**
2040 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2041 * @hb: the futex hash bucket, must be locked by the caller
2042 * @q: the futex_q to queue up on
2043 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2044 */
2045static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2046 struct hrtimer_sleeper *timeout)
ca5f9524 2047{
9beba3c5
DH
2048 /*
2049 * The task state is guaranteed to be set before another task can
2050 * wake it. set_current_state() is implemented using set_mb() and
2051 * queue_me() calls spin_unlock() upon completion, both serializing
2052 * access to the hash list and forcing another memory barrier.
2053 */
f1a11e05 2054 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2055 queue_me(q, hb);
ca5f9524
DH
2056
2057 /* Arm the timer */
2058 if (timeout) {
2059 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2060 if (!hrtimer_active(&timeout->timer))
2061 timeout->task = NULL;
2062 }
2063
2064 /*
0729e196
DH
2065 * If we have been removed from the hash list, then another task
2066 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2067 */
2068 if (likely(!plist_node_empty(&q->list))) {
2069 /*
2070 * If the timer has already expired, current will already be
2071 * flagged for rescheduling. Only call schedule if there
2072 * is no timeout, or if it has yet to expire.
2073 */
2074 if (!timeout || timeout->task)
88c8004f 2075 freezable_schedule();
ca5f9524
DH
2076 }
2077 __set_current_state(TASK_RUNNING);
2078}
2079
f801073f
DH
2080/**
2081 * futex_wait_setup() - Prepare to wait on a futex
2082 * @uaddr: the futex userspace address
2083 * @val: the expected value
b41277dc 2084 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2085 * @q: the associated futex_q
2086 * @hb: storage for hash_bucket pointer to be returned to caller
2087 *
2088 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2089 * compare it with the expected value. Handle atomic faults internally.
2090 * Return with the hb lock held and a q.key reference on success, and unlocked
2091 * with no q.key reference on failure.
2092 *
6c23cbbd
RD
2093 * Return:
2094 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2095 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2096 */
b41277dc 2097static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2098 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2099{
e2970f2f
IM
2100 u32 uval;
2101 int ret;
1da177e4 2102
1da177e4 2103 /*
b2d0994b 2104 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2105 * Order is important:
2106 *
2107 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2108 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2109 *
2110 * The basic logical guarantee of a futex is that it blocks ONLY
2111 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2112 * any cond. If we locked the hash-bucket after testing *uaddr, that
2113 * would open a race condition where we could block indefinitely with
1da177e4
LT
2114 * cond(var) false, which would violate the guarantee.
2115 *
8fe8f545
ML
2116 * On the other hand, we insert q and release the hash-bucket only
2117 * after testing *uaddr. This guarantees that futex_wait() will NOT
2118 * absorb a wakeup if *uaddr does not match the desired values
2119 * while the syscall executes.
1da177e4 2120 */
f801073f 2121retry:
9ea71503 2122 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2123 if (unlikely(ret != 0))
a5a2a0c7 2124 return ret;
f801073f
DH
2125
2126retry_private:
2127 *hb = queue_lock(q);
2128
e2970f2f 2129 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2130
f801073f 2131 if (ret) {
0d00c7b2 2132 queue_unlock(*hb);
1da177e4 2133
e2970f2f 2134 ret = get_user(uval, uaddr);
e4dc5b7a 2135 if (ret)
f801073f 2136 goto out;
1da177e4 2137
b41277dc 2138 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2139 goto retry_private;
2140
ae791a2d 2141 put_futex_key(&q->key);
e4dc5b7a 2142 goto retry;
1da177e4 2143 }
ca5f9524 2144
f801073f 2145 if (uval != val) {
0d00c7b2 2146 queue_unlock(*hb);
f801073f 2147 ret = -EWOULDBLOCK;
2fff78c7 2148 }
1da177e4 2149
f801073f
DH
2150out:
2151 if (ret)
ae791a2d 2152 put_futex_key(&q->key);
f801073f
DH
2153 return ret;
2154}
2155
b41277dc
DH
2156static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2157 ktime_t *abs_time, u32 bitset)
f801073f
DH
2158{
2159 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2160 struct restart_block *restart;
2161 struct futex_hash_bucket *hb;
5bdb05f9 2162 struct futex_q q = futex_q_init;
f801073f
DH
2163 int ret;
2164
2165 if (!bitset)
2166 return -EINVAL;
f801073f
DH
2167 q.bitset = bitset;
2168
2169 if (abs_time) {
2170 to = &timeout;
2171
b41277dc
DH
2172 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2173 CLOCK_REALTIME : CLOCK_MONOTONIC,
2174 HRTIMER_MODE_ABS);
f801073f
DH
2175 hrtimer_init_sleeper(to, current);
2176 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2177 current->timer_slack_ns);
2178 }
2179
d58e6576 2180retry:
7ada876a
DH
2181 /*
2182 * Prepare to wait on uaddr. On success, holds hb lock and increments
2183 * q.key refs.
2184 */
b41277dc 2185 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2186 if (ret)
2187 goto out;
2188
ca5f9524 2189 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2190 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2191
2192 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2193 ret = 0;
7ada876a 2194 /* unqueue_me() drops q.key ref */
1da177e4 2195 if (!unqueue_me(&q))
7ada876a 2196 goto out;
2fff78c7 2197 ret = -ETIMEDOUT;
ca5f9524 2198 if (to && !to->task)
7ada876a 2199 goto out;
72c1bbf3 2200
e2970f2f 2201 /*
d58e6576
TG
2202 * We expect signal_pending(current), but we might be the
2203 * victim of a spurious wakeup as well.
e2970f2f 2204 */
7ada876a 2205 if (!signal_pending(current))
d58e6576 2206 goto retry;
d58e6576 2207
2fff78c7 2208 ret = -ERESTARTSYS;
c19384b5 2209 if (!abs_time)
7ada876a 2210 goto out;
1da177e4 2211
2fff78c7
PZ
2212 restart = &current_thread_info()->restart_block;
2213 restart->fn = futex_wait_restart;
a3c74c52 2214 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2215 restart->futex.val = val;
2216 restart->futex.time = abs_time->tv64;
2217 restart->futex.bitset = bitset;
0cd9c649 2218 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2219
2fff78c7
PZ
2220 ret = -ERESTART_RESTARTBLOCK;
2221
42d35d48 2222out:
ca5f9524
DH
2223 if (to) {
2224 hrtimer_cancel(&to->timer);
2225 destroy_hrtimer_on_stack(&to->timer);
2226 }
c87e2837
IM
2227 return ret;
2228}
2229
72c1bbf3
NP
2230
2231static long futex_wait_restart(struct restart_block *restart)
2232{
a3c74c52 2233 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2234 ktime_t t, *tp = NULL;
72c1bbf3 2235
a72188d8
DH
2236 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2237 t.tv64 = restart->futex.time;
2238 tp = &t;
2239 }
72c1bbf3 2240 restart->fn = do_no_restart_syscall;
b41277dc
DH
2241
2242 return (long)futex_wait(uaddr, restart->futex.flags,
2243 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2244}
2245
2246
c87e2837
IM
2247/*
2248 * Userspace tried a 0 -> TID atomic transition of the futex value
2249 * and failed. The kernel side here does the whole locking operation:
2250 * if there are waiters then it will block, it does PI, etc. (Due to
2251 * races the kernel might see a 0 value of the futex too.)
2252 */
b41277dc
DH
2253static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2254 ktime_t *time, int trylock)
c87e2837 2255{
c5780e97 2256 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2257 struct futex_hash_bucket *hb;
5bdb05f9 2258 struct futex_q q = futex_q_init;
dd973998 2259 int res, ret;
c87e2837
IM
2260
2261 if (refill_pi_state_cache())
2262 return -ENOMEM;
2263
c19384b5 2264 if (time) {
c5780e97 2265 to = &timeout;
237fc6e7
TG
2266 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2267 HRTIMER_MODE_ABS);
c5780e97 2268 hrtimer_init_sleeper(to, current);
cc584b21 2269 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2270 }
2271
42d35d48 2272retry:
9ea71503 2273 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2274 if (unlikely(ret != 0))
42d35d48 2275 goto out;
c87e2837 2276
e4dc5b7a 2277retry_private:
82af7aca 2278 hb = queue_lock(&q);
c87e2837 2279
bab5bc9e 2280 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2281 if (unlikely(ret)) {
778e9a9c 2282 switch (ret) {
1a52084d
DH
2283 case 1:
2284 /* We got the lock. */
2285 ret = 0;
2286 goto out_unlock_put_key;
2287 case -EFAULT:
2288 goto uaddr_faulted;
778e9a9c
AK
2289 case -EAGAIN:
2290 /*
af54d6a1
TG
2291 * Two reasons for this:
2292 * - Task is exiting and we just wait for the
2293 * exit to complete.
2294 * - The user space value changed.
778e9a9c 2295 */
0d00c7b2 2296 queue_unlock(hb);
ae791a2d 2297 put_futex_key(&q.key);
778e9a9c
AK
2298 cond_resched();
2299 goto retry;
778e9a9c 2300 default:
42d35d48 2301 goto out_unlock_put_key;
c87e2837 2302 }
c87e2837
IM
2303 }
2304
2305 /*
2306 * Only actually queue now that the atomic ops are done:
2307 */
82af7aca 2308 queue_me(&q, hb);
c87e2837 2309
c87e2837
IM
2310 WARN_ON(!q.pi_state);
2311 /*
2312 * Block on the PI mutex:
2313 */
c051b21f
TG
2314 if (!trylock) {
2315 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2316 } else {
c87e2837
IM
2317 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2318 /* Fixup the trylock return value: */
2319 ret = ret ? 0 : -EWOULDBLOCK;
2320 }
2321
a99e4e41 2322 spin_lock(q.lock_ptr);
dd973998
DH
2323 /*
2324 * Fixup the pi_state owner and possibly acquire the lock if we
2325 * haven't already.
2326 */
ae791a2d 2327 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2328 /*
2329 * If fixup_owner() returned an error, proprogate that. If it acquired
2330 * the lock, clear our -ETIMEDOUT or -EINTR.
2331 */
2332 if (res)
2333 ret = (res < 0) ? res : 0;
c87e2837 2334
e8f6386c 2335 /*
dd973998
DH
2336 * If fixup_owner() faulted and was unable to handle the fault, unlock
2337 * it and return the fault to userspace.
e8f6386c
DH
2338 */
2339 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2340 rt_mutex_unlock(&q.pi_state->pi_mutex);
2341
778e9a9c
AK
2342 /* Unqueue and drop the lock */
2343 unqueue_me_pi(&q);
c87e2837 2344
5ecb01cf 2345 goto out_put_key;
c87e2837 2346
42d35d48 2347out_unlock_put_key:
0d00c7b2 2348 queue_unlock(hb);
c87e2837 2349
42d35d48 2350out_put_key:
ae791a2d 2351 put_futex_key(&q.key);
42d35d48 2352out:
237fc6e7
TG
2353 if (to)
2354 destroy_hrtimer_on_stack(&to->timer);
dd973998 2355 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2356
42d35d48 2357uaddr_faulted:
0d00c7b2 2358 queue_unlock(hb);
778e9a9c 2359
d0725992 2360 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2361 if (ret)
2362 goto out_put_key;
c87e2837 2363
b41277dc 2364 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2365 goto retry_private;
2366
ae791a2d 2367 put_futex_key(&q.key);
e4dc5b7a 2368 goto retry;
c87e2837
IM
2369}
2370
c87e2837
IM
2371/*
2372 * Userspace attempted a TID -> 0 atomic transition, and failed.
2373 * This is the in-kernel slowpath: we look up the PI state (if any),
2374 * and do the rt-mutex unlock.
2375 */
b41277dc 2376static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2377{
ccf9e6a8 2378 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2379 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2380 struct futex_hash_bucket *hb;
2381 struct futex_q *match;
e4dc5b7a 2382 int ret;
c87e2837
IM
2383
2384retry:
2385 if (get_user(uval, uaddr))
2386 return -EFAULT;
2387 /*
2388 * We release only a lock we actually own:
2389 */
c0c9ed15 2390 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2391 return -EPERM;
c87e2837 2392
9ea71503 2393 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2394 if (ret)
2395 return ret;
c87e2837
IM
2396
2397 hb = hash_futex(&key);
2398 spin_lock(&hb->lock);
2399
c87e2837 2400 /*
ccf9e6a8
TG
2401 * Check waiters first. We do not trust user space values at
2402 * all and we at least want to know if user space fiddled
2403 * with the futex value instead of blindly unlocking.
c87e2837 2404 */
ccf9e6a8
TG
2405 match = futex_top_waiter(hb, &key);
2406 if (match) {
2407 ret = wake_futex_pi(uaddr, uval, match);
c87e2837 2408 /*
ccf9e6a8
TG
2409 * The atomic access to the futex value generated a
2410 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2411 */
2412 if (ret == -EFAULT)
2413 goto pi_faulted;
2414 goto out_unlock;
2415 }
ccf9e6a8 2416
c87e2837 2417 /*
ccf9e6a8
TG
2418 * We have no kernel internal state, i.e. no waiters in the
2419 * kernel. Waiters which are about to queue themselves are stuck
2420 * on hb->lock. So we can safely ignore them. We do neither
2421 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2422 * owner.
c87e2837 2423 */
ccf9e6a8 2424 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2425 goto pi_faulted;
c87e2837 2426
ccf9e6a8
TG
2427 /*
2428 * If uval has changed, let user space handle it.
2429 */
2430 ret = (curval == uval) ? 0 : -EAGAIN;
2431
c87e2837
IM
2432out_unlock:
2433 spin_unlock(&hb->lock);
ae791a2d 2434 put_futex_key(&key);
c87e2837
IM
2435 return ret;
2436
2437pi_faulted:
778e9a9c 2438 spin_unlock(&hb->lock);
ae791a2d 2439 put_futex_key(&key);
c87e2837 2440
d0725992 2441 ret = fault_in_user_writeable(uaddr);
b5686363 2442 if (!ret)
c87e2837
IM
2443 goto retry;
2444
1da177e4
LT
2445 return ret;
2446}
2447
52400ba9
DH
2448/**
2449 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2450 * @hb: the hash_bucket futex_q was original enqueued on
2451 * @q: the futex_q woken while waiting to be requeued
2452 * @key2: the futex_key of the requeue target futex
2453 * @timeout: the timeout associated with the wait (NULL if none)
2454 *
2455 * Detect if the task was woken on the initial futex as opposed to the requeue
2456 * target futex. If so, determine if it was a timeout or a signal that caused
2457 * the wakeup and return the appropriate error code to the caller. Must be
2458 * called with the hb lock held.
2459 *
6c23cbbd
RD
2460 * Return:
2461 * 0 = no early wakeup detected;
2462 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2463 */
2464static inline
2465int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2466 struct futex_q *q, union futex_key *key2,
2467 struct hrtimer_sleeper *timeout)
2468{
2469 int ret = 0;
2470
2471 /*
2472 * With the hb lock held, we avoid races while we process the wakeup.
2473 * We only need to hold hb (and not hb2) to ensure atomicity as the
2474 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2475 * It can't be requeued from uaddr2 to something else since we don't
2476 * support a PI aware source futex for requeue.
2477 */
2478 if (!match_futex(&q->key, key2)) {
2479 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2480 /*
2481 * We were woken prior to requeue by a timeout or a signal.
2482 * Unqueue the futex_q and determine which it was.
2483 */
2e12978a 2484 plist_del(&q->list, &hb->chain);
11d4616b 2485 hb_waiters_dec(hb);
52400ba9 2486
d58e6576 2487 /* Handle spurious wakeups gracefully */
11df6ddd 2488 ret = -EWOULDBLOCK;
52400ba9
DH
2489 if (timeout && !timeout->task)
2490 ret = -ETIMEDOUT;
d58e6576 2491 else if (signal_pending(current))
1c840c14 2492 ret = -ERESTARTNOINTR;
52400ba9
DH
2493 }
2494 return ret;
2495}
2496
2497/**
2498 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2499 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2500 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2501 * the same type, no requeueing from private to shared, etc.
2502 * @val: the expected value of uaddr
2503 * @abs_time: absolute timeout
56ec1607 2504 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2505 * @uaddr2: the pi futex we will take prior to returning to user-space
2506 *
2507 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2508 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2509 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2510 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2511 * without one, the pi logic would not know which task to boost/deboost, if
2512 * there was a need to.
52400ba9
DH
2513 *
2514 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2515 * via the following--
52400ba9 2516 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2517 * 2) wakeup on uaddr2 after a requeue
2518 * 3) signal
2519 * 4) timeout
52400ba9 2520 *
cc6db4e6 2521 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2522 *
2523 * If 2, we may then block on trying to take the rt_mutex and return via:
2524 * 5) successful lock
2525 * 6) signal
2526 * 7) timeout
2527 * 8) other lock acquisition failure
2528 *
cc6db4e6 2529 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2530 *
2531 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2532 *
6c23cbbd
RD
2533 * Return:
2534 * 0 - On success;
52400ba9
DH
2535 * <0 - On error
2536 */
b41277dc 2537static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2538 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2539 u32 __user *uaddr2)
52400ba9
DH
2540{
2541 struct hrtimer_sleeper timeout, *to = NULL;
2542 struct rt_mutex_waiter rt_waiter;
2543 struct rt_mutex *pi_mutex = NULL;
52400ba9 2544 struct futex_hash_bucket *hb;
5bdb05f9
DH
2545 union futex_key key2 = FUTEX_KEY_INIT;
2546 struct futex_q q = futex_q_init;
52400ba9 2547 int res, ret;
52400ba9 2548
6f7b0a2a
DH
2549 if (uaddr == uaddr2)
2550 return -EINVAL;
2551
52400ba9
DH
2552 if (!bitset)
2553 return -EINVAL;
2554
2555 if (abs_time) {
2556 to = &timeout;
b41277dc
DH
2557 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2558 CLOCK_REALTIME : CLOCK_MONOTONIC,
2559 HRTIMER_MODE_ABS);
52400ba9
DH
2560 hrtimer_init_sleeper(to, current);
2561 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2562 current->timer_slack_ns);
2563 }
2564
2565 /*
2566 * The waiter is allocated on our stack, manipulated by the requeue
2567 * code while we sleep on uaddr.
2568 */
2569 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2570 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2571 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2572 rt_waiter.task = NULL;
2573
9ea71503 2574 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2575 if (unlikely(ret != 0))
2576 goto out;
2577
84bc4af5
DH
2578 q.bitset = bitset;
2579 q.rt_waiter = &rt_waiter;
2580 q.requeue_pi_key = &key2;
2581
7ada876a
DH
2582 /*
2583 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2584 * count.
2585 */
b41277dc 2586 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2587 if (ret)
2588 goto out_key2;
52400ba9 2589
e9c243a5
TG
2590 /*
2591 * The check above which compares uaddrs is not sufficient for
2592 * shared futexes. We need to compare the keys:
2593 */
2594 if (match_futex(&q.key, &key2)) {
13c42c2f 2595 queue_unlock(hb);
e9c243a5
TG
2596 ret = -EINVAL;
2597 goto out_put_keys;
2598 }
2599
52400ba9 2600 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2601 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2602
2603 spin_lock(&hb->lock);
2604 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2605 spin_unlock(&hb->lock);
2606 if (ret)
2607 goto out_put_keys;
2608
2609 /*
2610 * In order for us to be here, we know our q.key == key2, and since
2611 * we took the hb->lock above, we also know that futex_requeue() has
2612 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2613 * race with the atomic proxy lock acquisition by the requeue code. The
2614 * futex_requeue dropped our key1 reference and incremented our key2
2615 * reference count.
52400ba9
DH
2616 */
2617
2618 /* Check if the requeue code acquired the second futex for us. */
2619 if (!q.rt_waiter) {
2620 /*
2621 * Got the lock. We might not be the anticipated owner if we
2622 * did a lock-steal - fix up the PI-state in that case.
2623 */
2624 if (q.pi_state && (q.pi_state->owner != current)) {
2625 spin_lock(q.lock_ptr);
ae791a2d 2626 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2627 spin_unlock(q.lock_ptr);
2628 }
2629 } else {
2630 /*
2631 * We have been woken up by futex_unlock_pi(), a timeout, or a
2632 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2633 * the pi_state.
2634 */
f27071cb 2635 WARN_ON(!q.pi_state);
52400ba9 2636 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2637 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2638 debug_rt_mutex_free_waiter(&rt_waiter);
2639
2640 spin_lock(q.lock_ptr);
2641 /*
2642 * Fixup the pi_state owner and possibly acquire the lock if we
2643 * haven't already.
2644 */
ae791a2d 2645 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2646 /*
2647 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2648 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2649 */
2650 if (res)
2651 ret = (res < 0) ? res : 0;
2652
2653 /* Unqueue and drop the lock. */
2654 unqueue_me_pi(&q);
2655 }
2656
2657 /*
2658 * If fixup_pi_state_owner() faulted and was unable to handle the
2659 * fault, unlock the rt_mutex and return the fault to userspace.
2660 */
2661 if (ret == -EFAULT) {
b6070a8d 2662 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2663 rt_mutex_unlock(pi_mutex);
2664 } else if (ret == -EINTR) {
52400ba9 2665 /*
cc6db4e6
DH
2666 * We've already been requeued, but cannot restart by calling
2667 * futex_lock_pi() directly. We could restart this syscall, but
2668 * it would detect that the user space "val" changed and return
2669 * -EWOULDBLOCK. Save the overhead of the restart and return
2670 * -EWOULDBLOCK directly.
52400ba9 2671 */
2070887f 2672 ret = -EWOULDBLOCK;
52400ba9
DH
2673 }
2674
2675out_put_keys:
ae791a2d 2676 put_futex_key(&q.key);
c8b15a70 2677out_key2:
ae791a2d 2678 put_futex_key(&key2);
52400ba9
DH
2679
2680out:
2681 if (to) {
2682 hrtimer_cancel(&to->timer);
2683 destroy_hrtimer_on_stack(&to->timer);
2684 }
2685 return ret;
2686}
2687
0771dfef
IM
2688/*
2689 * Support for robust futexes: the kernel cleans up held futexes at
2690 * thread exit time.
2691 *
2692 * Implementation: user-space maintains a per-thread list of locks it
2693 * is holding. Upon do_exit(), the kernel carefully walks this list,
2694 * and marks all locks that are owned by this thread with the
c87e2837 2695 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2696 * always manipulated with the lock held, so the list is private and
2697 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2698 * field, to allow the kernel to clean up if the thread dies after
2699 * acquiring the lock, but just before it could have added itself to
2700 * the list. There can only be one such pending lock.
2701 */
2702
2703/**
d96ee56c
DH
2704 * sys_set_robust_list() - Set the robust-futex list head of a task
2705 * @head: pointer to the list-head
2706 * @len: length of the list-head, as userspace expects
0771dfef 2707 */
836f92ad
HC
2708SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2709 size_t, len)
0771dfef 2710{
a0c1e907
TG
2711 if (!futex_cmpxchg_enabled)
2712 return -ENOSYS;
0771dfef
IM
2713 /*
2714 * The kernel knows only one size for now:
2715 */
2716 if (unlikely(len != sizeof(*head)))
2717 return -EINVAL;
2718
2719 current->robust_list = head;
2720
2721 return 0;
2722}
2723
2724/**
d96ee56c
DH
2725 * sys_get_robust_list() - Get the robust-futex list head of a task
2726 * @pid: pid of the process [zero for current task]
2727 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2728 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2729 */
836f92ad
HC
2730SYSCALL_DEFINE3(get_robust_list, int, pid,
2731 struct robust_list_head __user * __user *, head_ptr,
2732 size_t __user *, len_ptr)
0771dfef 2733{
ba46df98 2734 struct robust_list_head __user *head;
0771dfef 2735 unsigned long ret;
bdbb776f 2736 struct task_struct *p;
0771dfef 2737
a0c1e907
TG
2738 if (!futex_cmpxchg_enabled)
2739 return -ENOSYS;
2740
bdbb776f
KC
2741 rcu_read_lock();
2742
2743 ret = -ESRCH;
0771dfef 2744 if (!pid)
bdbb776f 2745 p = current;
0771dfef 2746 else {
228ebcbe 2747 p = find_task_by_vpid(pid);
0771dfef
IM
2748 if (!p)
2749 goto err_unlock;
0771dfef
IM
2750 }
2751
bdbb776f
KC
2752 ret = -EPERM;
2753 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2754 goto err_unlock;
2755
2756 head = p->robust_list;
2757 rcu_read_unlock();
2758
0771dfef
IM
2759 if (put_user(sizeof(*head), len_ptr))
2760 return -EFAULT;
2761 return put_user(head, head_ptr);
2762
2763err_unlock:
aaa2a97e 2764 rcu_read_unlock();
0771dfef
IM
2765
2766 return ret;
2767}
2768
2769/*
2770 * Process a futex-list entry, check whether it's owned by the
2771 * dying task, and do notification if so:
2772 */
e3f2ddea 2773int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2774{
7cfdaf38 2775 u32 uval, uninitialized_var(nval), mval;
0771dfef 2776
8f17d3a5
IM
2777retry:
2778 if (get_user(uval, uaddr))
0771dfef
IM
2779 return -1;
2780
b488893a 2781 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2782 /*
2783 * Ok, this dying thread is truly holding a futex
2784 * of interest. Set the OWNER_DIED bit atomically
2785 * via cmpxchg, and if the value had FUTEX_WAITERS
2786 * set, wake up a waiter (if any). (We have to do a
2787 * futex_wake() even if OWNER_DIED is already set -
2788 * to handle the rare but possible case of recursive
2789 * thread-death.) The rest of the cleanup is done in
2790 * userspace.
2791 */
e3f2ddea 2792 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2793 /*
2794 * We are not holding a lock here, but we want to have
2795 * the pagefault_disable/enable() protection because
2796 * we want to handle the fault gracefully. If the
2797 * access fails we try to fault in the futex with R/W
2798 * verification via get_user_pages. get_user() above
2799 * does not guarantee R/W access. If that fails we
2800 * give up and leave the futex locked.
2801 */
2802 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2803 if (fault_in_user_writeable(uaddr))
2804 return -1;
2805 goto retry;
2806 }
c87e2837 2807 if (nval != uval)
8f17d3a5 2808 goto retry;
0771dfef 2809
e3f2ddea
IM
2810 /*
2811 * Wake robust non-PI futexes here. The wakeup of
2812 * PI futexes happens in exit_pi_state():
2813 */
36cf3b5c 2814 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2815 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2816 }
2817 return 0;
2818}
2819
e3f2ddea
IM
2820/*
2821 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2822 */
2823static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2824 struct robust_list __user * __user *head,
1dcc41bb 2825 unsigned int *pi)
e3f2ddea
IM
2826{
2827 unsigned long uentry;
2828
ba46df98 2829 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2830 return -EFAULT;
2831
ba46df98 2832 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2833 *pi = uentry & 1;
2834
2835 return 0;
2836}
2837
0771dfef
IM
2838/*
2839 * Walk curr->robust_list (very carefully, it's a userspace list!)
2840 * and mark any locks found there dead, and notify any waiters.
2841 *
2842 * We silently return on any sign of list-walking problem.
2843 */
2844void exit_robust_list(struct task_struct *curr)
2845{
2846 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2847 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2848 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2849 unsigned int uninitialized_var(next_pi);
0771dfef 2850 unsigned long futex_offset;
9f96cb1e 2851 int rc;
0771dfef 2852
a0c1e907
TG
2853 if (!futex_cmpxchg_enabled)
2854 return;
2855
0771dfef
IM
2856 /*
2857 * Fetch the list head (which was registered earlier, via
2858 * sys_set_robust_list()):
2859 */
e3f2ddea 2860 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2861 return;
2862 /*
2863 * Fetch the relative futex offset:
2864 */
2865 if (get_user(futex_offset, &head->futex_offset))
2866 return;
2867 /*
2868 * Fetch any possibly pending lock-add first, and handle it
2869 * if it exists:
2870 */
e3f2ddea 2871 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2872 return;
e3f2ddea 2873
9f96cb1e 2874 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2875 while (entry != &head->list) {
9f96cb1e
MS
2876 /*
2877 * Fetch the next entry in the list before calling
2878 * handle_futex_death:
2879 */
2880 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2881 /*
2882 * A pending lock might already be on the list, so
c87e2837 2883 * don't process it twice:
0771dfef
IM
2884 */
2885 if (entry != pending)
ba46df98 2886 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2887 curr, pi))
0771dfef 2888 return;
9f96cb1e 2889 if (rc)
0771dfef 2890 return;
9f96cb1e
MS
2891 entry = next_entry;
2892 pi = next_pi;
0771dfef
IM
2893 /*
2894 * Avoid excessively long or circular lists:
2895 */
2896 if (!--limit)
2897 break;
2898
2899 cond_resched();
2900 }
9f96cb1e
MS
2901
2902 if (pending)
2903 handle_futex_death((void __user *)pending + futex_offset,
2904 curr, pip);
0771dfef
IM
2905}
2906
c19384b5 2907long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2908 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2909{
81b40539 2910 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2911 unsigned int flags = 0;
34f01cc1
ED
2912
2913 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2914 flags |= FLAGS_SHARED;
1da177e4 2915
b41277dc
DH
2916 if (op & FUTEX_CLOCK_REALTIME) {
2917 flags |= FLAGS_CLOCKRT;
2918 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2919 return -ENOSYS;
2920 }
1da177e4 2921
59263b51
TG
2922 switch (cmd) {
2923 case FUTEX_LOCK_PI:
2924 case FUTEX_UNLOCK_PI:
2925 case FUTEX_TRYLOCK_PI:
2926 case FUTEX_WAIT_REQUEUE_PI:
2927 case FUTEX_CMP_REQUEUE_PI:
2928 if (!futex_cmpxchg_enabled)
2929 return -ENOSYS;
2930 }
2931
34f01cc1 2932 switch (cmd) {
1da177e4 2933 case FUTEX_WAIT:
cd689985
TG
2934 val3 = FUTEX_BITSET_MATCH_ANY;
2935 case FUTEX_WAIT_BITSET:
81b40539 2936 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2937 case FUTEX_WAKE:
cd689985
TG
2938 val3 = FUTEX_BITSET_MATCH_ANY;
2939 case FUTEX_WAKE_BITSET:
81b40539 2940 return futex_wake(uaddr, flags, val, val3);
1da177e4 2941 case FUTEX_REQUEUE:
81b40539 2942 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2943 case FUTEX_CMP_REQUEUE:
81b40539 2944 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2945 case FUTEX_WAKE_OP:
81b40539 2946 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2947 case FUTEX_LOCK_PI:
81b40539 2948 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2949 case FUTEX_UNLOCK_PI:
81b40539 2950 return futex_unlock_pi(uaddr, flags);
c87e2837 2951 case FUTEX_TRYLOCK_PI:
81b40539 2952 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2953 case FUTEX_WAIT_REQUEUE_PI:
2954 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2955 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2956 uaddr2);
52400ba9 2957 case FUTEX_CMP_REQUEUE_PI:
81b40539 2958 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2959 }
81b40539 2960 return -ENOSYS;
1da177e4
LT
2961}
2962
2963
17da2bd9
HC
2964SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2965 struct timespec __user *, utime, u32 __user *, uaddr2,
2966 u32, val3)
1da177e4 2967{
c19384b5
PP
2968 struct timespec ts;
2969 ktime_t t, *tp = NULL;
e2970f2f 2970 u32 val2 = 0;
34f01cc1 2971 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2972
cd689985 2973 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2974 cmd == FUTEX_WAIT_BITSET ||
2975 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2976 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2977 return -EFAULT;
c19384b5 2978 if (!timespec_valid(&ts))
9741ef96 2979 return -EINVAL;
c19384b5
PP
2980
2981 t = timespec_to_ktime(ts);
34f01cc1 2982 if (cmd == FUTEX_WAIT)
5a7780e7 2983 t = ktime_add_safe(ktime_get(), t);
c19384b5 2984 tp = &t;
1da177e4
LT
2985 }
2986 /*
52400ba9 2987 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2988 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2989 */
f54f0986 2990 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2991 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2992 val2 = (u32) (unsigned long) utime;
1da177e4 2993
c19384b5 2994 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2995}
2996
03b8c7b6 2997static void __init futex_detect_cmpxchg(void)
1da177e4 2998{
03b8c7b6 2999#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3000 u32 curval;
03b8c7b6
HC
3001
3002 /*
3003 * This will fail and we want it. Some arch implementations do
3004 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3005 * functionality. We want to know that before we call in any
3006 * of the complex code paths. Also we want to prevent
3007 * registration of robust lists in that case. NULL is
3008 * guaranteed to fault and we get -EFAULT on functional
3009 * implementation, the non-functional ones will return
3010 * -ENOSYS.
3011 */
3012 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3013 futex_cmpxchg_enabled = 1;
3014#endif
3015}
3016
3017static int __init futex_init(void)
3018{
63b1a816 3019 unsigned int futex_shift;
a52b89eb
DB
3020 unsigned long i;
3021
3022#if CONFIG_BASE_SMALL
3023 futex_hashsize = 16;
3024#else
3025 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3026#endif
3027
3028 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3029 futex_hashsize, 0,
3030 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3031 &futex_shift, NULL,
3032 futex_hashsize, futex_hashsize);
3033 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3034
3035 futex_detect_cmpxchg();
a0c1e907 3036
a52b89eb 3037 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3038 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3039 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3040 spin_lock_init(&futex_queues[i].lock);
3041 }
3042
1da177e4
LT
3043 return 0;
3044}
f6d107fb 3045__initcall(futex_init);