]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Split out the first waiter attachment from lookup_pi_state()
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
4e857c58 270 smp_mb__after_atomic();
b0c29f79
DB
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
4e857c58 283 smp_mb__after_atomic();
11d4616b
LT
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
54a21788
TG
746/*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
e60cbc5c
TG
795
796/*
797 * Validate that the existing waiter has a pi_state and sanity check
798 * the pi_state against the user space value. If correct, attach to
799 * it.
800 */
801static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
802 struct futex_pi_state **ps)
c87e2837 803{
778e9a9c 804 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 805
e60cbc5c
TG
806 /*
807 * Userspace might have messed up non-PI and PI futexes [3]
808 */
809 if (unlikely(!pi_state))
810 return -EINVAL;
06a9ec29 811
e60cbc5c 812 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 813
e60cbc5c
TG
814 /*
815 * Handle the owner died case:
816 */
817 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 818 /*
e60cbc5c
TG
819 * exit_pi_state_list sets owner to NULL and wakes the
820 * topmost waiter. The task which acquires the
821 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 822 */
e60cbc5c 823 if (!pi_state->owner) {
59647b6a 824 /*
e60cbc5c
TG
825 * No pi state owner, but the user space TID
826 * is not 0. Inconsistent state. [5]
59647b6a 827 */
e60cbc5c
TG
828 if (pid)
829 return -EINVAL;
bd1dbcc6 830 /*
e60cbc5c 831 * Take a ref on the state and return success. [4]
866293ee 832 */
e60cbc5c 833 goto out_state;
c87e2837 834 }
bd1dbcc6
TG
835
836 /*
e60cbc5c
TG
837 * If TID is 0, then either the dying owner has not
838 * yet executed exit_pi_state_list() or some waiter
839 * acquired the rtmutex in the pi state, but did not
840 * yet fixup the TID in user space.
841 *
842 * Take a ref on the state and return success. [6]
843 */
844 if (!pid)
845 goto out_state;
846 } else {
847 /*
848 * If the owner died bit is not set, then the pi_state
849 * must have an owner. [7]
bd1dbcc6 850 */
e60cbc5c 851 if (!pi_state->owner)
bd1dbcc6 852 return -EINVAL;
c87e2837
IM
853 }
854
e60cbc5c
TG
855 /*
856 * Bail out if user space manipulated the futex value. If pi
857 * state exists then the owner TID must be the same as the
858 * user space TID. [9/10]
859 */
860 if (pid != task_pid_vnr(pi_state->owner))
861 return -EINVAL;
862out_state:
863 atomic_inc(&pi_state->refcount);
864 *ps = pi_state;
865 return 0;
866}
867
04e1b2e5
TG
868/*
869 * Lookup the task for the TID provided from user space and attach to
870 * it after doing proper sanity checks.
871 */
872static int attach_to_pi_owner(u32 uval, union futex_key *key,
873 struct futex_pi_state **ps)
e60cbc5c 874{
e60cbc5c 875 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
876 struct futex_pi_state *pi_state;
877 struct task_struct *p;
e60cbc5c 878
c87e2837 879 /*
e3f2ddea 880 * We are the first waiter - try to look up the real owner and attach
54a21788 881 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 882 */
778e9a9c 883 if (!pid)
e3f2ddea 884 return -ESRCH;
c87e2837 885 p = futex_find_get_task(pid);
7a0ea09a
MH
886 if (!p)
887 return -ESRCH;
778e9a9c 888
f0d71b3d
TG
889 if (!p->mm) {
890 put_task_struct(p);
891 return -EPERM;
892 }
893
778e9a9c
AK
894 /*
895 * We need to look at the task state flags to figure out,
896 * whether the task is exiting. To protect against the do_exit
897 * change of the task flags, we do this protected by
898 * p->pi_lock:
899 */
1d615482 900 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
901 if (unlikely(p->flags & PF_EXITING)) {
902 /*
903 * The task is on the way out. When PF_EXITPIDONE is
904 * set, we know that the task has finished the
905 * cleanup:
906 */
907 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
908
1d615482 909 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
910 put_task_struct(p);
911 return ret;
912 }
c87e2837 913
54a21788
TG
914 /*
915 * No existing pi state. First waiter. [2]
916 */
c87e2837
IM
917 pi_state = alloc_pi_state();
918
919 /*
04e1b2e5 920 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
921 * the owner of it:
922 */
923 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
924
925 /* Store the key for possible exit cleanups: */
d0aa7a70 926 pi_state->key = *key;
c87e2837 927
627371d7 928 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
929 list_add(&pi_state->list, &p->pi_state_list);
930 pi_state->owner = p;
1d615482 931 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
932
933 put_task_struct(p);
934
d0aa7a70 935 *ps = pi_state;
c87e2837
IM
936
937 return 0;
938}
939
04e1b2e5
TG
940static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
941 union futex_key *key, struct futex_pi_state **ps)
942{
943 struct futex_q *match = futex_top_waiter(hb, key);
944
945 /*
946 * If there is a waiter on that futex, validate it and
947 * attach to the pi_state when the validation succeeds.
948 */
949 if (match)
950 return attach_to_pi_state(uval, match->pi_state, ps);
951
952 /*
953 * We are the first waiter - try to look up the owner based on
954 * @uval and attach to it.
955 */
956 return attach_to_pi_owner(uval, key, ps);
957}
958
1a52084d 959/**
d96ee56c 960 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
961 * @uaddr: the pi futex user address
962 * @hb: the pi futex hash bucket
963 * @key: the futex key associated with uaddr and hb
964 * @ps: the pi_state pointer where we store the result of the
965 * lookup
966 * @task: the task to perform the atomic lock work for. This will
967 * be "current" except in the case of requeue pi.
968 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 969 *
6c23cbbd
RD
970 * Return:
971 * 0 - ready to wait;
972 * 1 - acquired the lock;
1a52084d
DH
973 * <0 - error
974 *
975 * The hb->lock and futex_key refs shall be held by the caller.
976 */
977static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
978 union futex_key *key,
979 struct futex_pi_state **ps,
bab5bc9e 980 struct task_struct *task, int set_waiters)
1a52084d 981{
59fa6245 982 int lock_taken, ret, force_take = 0;
c0c9ed15 983 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
984
985retry:
986 ret = lock_taken = 0;
987
988 /*
989 * To avoid races, we attempt to take the lock here again
990 * (by doing a 0 -> TID atomic cmpxchg), while holding all
991 * the locks. It will most likely not succeed.
992 */
c0c9ed15 993 newval = vpid;
bab5bc9e
DH
994 if (set_waiters)
995 newval |= FUTEX_WAITERS;
1a52084d 996
37a9d912 997 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
998 return -EFAULT;
999
1000 /*
1001 * Detect deadlocks.
1002 */
c0c9ed15 1003 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1004 return -EDEADLK;
1005
1006 /*
b3eaa9fc 1007 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 1008 */
b3eaa9fc
TG
1009 if (unlikely(!curval)) {
1010 /*
1011 * We verify whether there is kernel state for this
1012 * futex. If not, we can safely assume, that the 0 ->
1013 * TID transition is correct. If state exists, we do
1014 * not bother to fixup the user space state as it was
1015 * corrupted already.
1016 */
1017 return futex_top_waiter(hb, key) ? -EINVAL : 1;
1018 }
1a52084d
DH
1019
1020 uval = curval;
1021
1022 /*
1023 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1024 * to wake at the next unlock.
1025 */
1026 newval = curval | FUTEX_WAITERS;
1027
1028 /*
59fa6245 1029 * Should we force take the futex? See below.
1a52084d 1030 */
59fa6245
TG
1031 if (unlikely(force_take)) {
1032 /*
1033 * Keep the OWNER_DIED and the WAITERS bit and set the
1034 * new TID value.
1035 */
c0c9ed15 1036 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 1037 force_take = 0;
1a52084d
DH
1038 lock_taken = 1;
1039 }
1040
37a9d912 1041 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
1042 return -EFAULT;
1043 if (unlikely(curval != uval))
1044 goto retry;
1045
1046 /*
59fa6245 1047 * We took the lock due to forced take over.
1a52084d
DH
1048 */
1049 if (unlikely(lock_taken))
1050 return 1;
1051
1052 /*
1053 * We dont have the lock. Look up the PI state (or create it if
1054 * we are the first waiter):
1055 */
54a21788 1056 ret = lookup_pi_state(uval, hb, key, ps);
1a52084d
DH
1057
1058 if (unlikely(ret)) {
1059 switch (ret) {
1060 case -ESRCH:
1061 /*
59fa6245
TG
1062 * We failed to find an owner for this
1063 * futex. So we have no pi_state to block
1064 * on. This can happen in two cases:
1065 *
1066 * 1) The owner died
1067 * 2) A stale FUTEX_WAITERS bit
1068 *
1069 * Re-read the futex value.
1a52084d
DH
1070 */
1071 if (get_futex_value_locked(&curval, uaddr))
1072 return -EFAULT;
1073
1074 /*
59fa6245
TG
1075 * If the owner died or we have a stale
1076 * WAITERS bit the owner TID in the user space
1077 * futex is 0.
1a52084d 1078 */
59fa6245
TG
1079 if (!(curval & FUTEX_TID_MASK)) {
1080 force_take = 1;
1a52084d
DH
1081 goto retry;
1082 }
1083 default:
1084 break;
1085 }
1086 }
1087
1088 return ret;
1089}
1090
2e12978a
LJ
1091/**
1092 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1093 * @q: The futex_q to unqueue
1094 *
1095 * The q->lock_ptr must not be NULL and must be held by the caller.
1096 */
1097static void __unqueue_futex(struct futex_q *q)
1098{
1099 struct futex_hash_bucket *hb;
1100
29096202
SR
1101 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1102 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1103 return;
1104
1105 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1106 plist_del(&q->list, &hb->chain);
11d4616b 1107 hb_waiters_dec(hb);
2e12978a
LJ
1108}
1109
1da177e4
LT
1110/*
1111 * The hash bucket lock must be held when this is called.
1112 * Afterwards, the futex_q must not be accessed.
1113 */
1114static void wake_futex(struct futex_q *q)
1115{
f1a11e05
TG
1116 struct task_struct *p = q->task;
1117
aa10990e
DH
1118 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1119 return;
1120
1da177e4 1121 /*
f1a11e05 1122 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1123 * a non-futex wake up happens on another CPU then the task
1124 * might exit and p would dereference a non-existing task
f1a11e05
TG
1125 * struct. Prevent this by holding a reference on p across the
1126 * wake up.
1da177e4 1127 */
f1a11e05
TG
1128 get_task_struct(p);
1129
2e12978a 1130 __unqueue_futex(q);
1da177e4 1131 /*
f1a11e05
TG
1132 * The waiting task can free the futex_q as soon as
1133 * q->lock_ptr = NULL is written, without taking any locks. A
1134 * memory barrier is required here to prevent the following
1135 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1136 */
ccdea2f8 1137 smp_wmb();
1da177e4 1138 q->lock_ptr = NULL;
f1a11e05
TG
1139
1140 wake_up_state(p, TASK_NORMAL);
1141 put_task_struct(p);
1da177e4
LT
1142}
1143
c87e2837
IM
1144static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1145{
1146 struct task_struct *new_owner;
1147 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1148 u32 uninitialized_var(curval), newval;
13fbca4c 1149 int ret = 0;
c87e2837
IM
1150
1151 if (!pi_state)
1152 return -EINVAL;
1153
51246bfd
TG
1154 /*
1155 * If current does not own the pi_state then the futex is
1156 * inconsistent and user space fiddled with the futex value.
1157 */
1158 if (pi_state->owner != current)
1159 return -EINVAL;
1160
d209d74d 1161 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1162 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1163
1164 /*
f123c98e
SR
1165 * It is possible that the next waiter (the one that brought
1166 * this owner to the kernel) timed out and is no longer
1167 * waiting on the lock.
c87e2837
IM
1168 */
1169 if (!new_owner)
1170 new_owner = this->task;
1171
1172 /*
13fbca4c
TG
1173 * We pass it to the next owner. The WAITERS bit is always
1174 * kept enabled while there is PI state around. We cleanup the
1175 * owner died bit, because we are the owner.
c87e2837 1176 */
13fbca4c 1177 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1178
13fbca4c
TG
1179 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1180 ret = -EFAULT;
1181 else if (curval != uval)
1182 ret = -EINVAL;
1183 if (ret) {
1184 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1185 return ret;
e3f2ddea 1186 }
c87e2837 1187
1d615482 1188 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1189 WARN_ON(list_empty(&pi_state->list));
1190 list_del_init(&pi_state->list);
1d615482 1191 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1192
1d615482 1193 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1194 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1195 list_add(&pi_state->list, &new_owner->pi_state_list);
1196 pi_state->owner = new_owner;
1d615482 1197 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1198
d209d74d 1199 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1200 rt_mutex_unlock(&pi_state->pi_mutex);
1201
1202 return 0;
1203}
1204
8b8f319f
IM
1205/*
1206 * Express the locking dependencies for lockdep:
1207 */
1208static inline void
1209double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1210{
1211 if (hb1 <= hb2) {
1212 spin_lock(&hb1->lock);
1213 if (hb1 < hb2)
1214 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1215 } else { /* hb1 > hb2 */
1216 spin_lock(&hb2->lock);
1217 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1218 }
1219}
1220
5eb3dc62
DH
1221static inline void
1222double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1223{
f061d351 1224 spin_unlock(&hb1->lock);
88f502fe
IM
1225 if (hb1 != hb2)
1226 spin_unlock(&hb2->lock);
5eb3dc62
DH
1227}
1228
1da177e4 1229/*
b2d0994b 1230 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1231 */
b41277dc
DH
1232static int
1233futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1234{
e2970f2f 1235 struct futex_hash_bucket *hb;
1da177e4 1236 struct futex_q *this, *next;
38d47c1b 1237 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1238 int ret;
1239
cd689985
TG
1240 if (!bitset)
1241 return -EINVAL;
1242
9ea71503 1243 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1244 if (unlikely(ret != 0))
1245 goto out;
1246
e2970f2f 1247 hb = hash_futex(&key);
b0c29f79
DB
1248
1249 /* Make sure we really have tasks to wakeup */
1250 if (!hb_waiters_pending(hb))
1251 goto out_put_key;
1252
e2970f2f 1253 spin_lock(&hb->lock);
1da177e4 1254
0d00c7b2 1255 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1256 if (match_futex (&this->key, &key)) {
52400ba9 1257 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1258 ret = -EINVAL;
1259 break;
1260 }
cd689985
TG
1261
1262 /* Check if one of the bits is set in both bitsets */
1263 if (!(this->bitset & bitset))
1264 continue;
1265
1da177e4
LT
1266 wake_futex(this);
1267 if (++ret >= nr_wake)
1268 break;
1269 }
1270 }
1271
e2970f2f 1272 spin_unlock(&hb->lock);
b0c29f79 1273out_put_key:
ae791a2d 1274 put_futex_key(&key);
42d35d48 1275out:
1da177e4
LT
1276 return ret;
1277}
1278
4732efbe
JJ
1279/*
1280 * Wake up all waiters hashed on the physical page that is mapped
1281 * to this virtual address:
1282 */
e2970f2f 1283static int
b41277dc 1284futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1285 int nr_wake, int nr_wake2, int op)
4732efbe 1286{
38d47c1b 1287 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1288 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1289 struct futex_q *this, *next;
e4dc5b7a 1290 int ret, op_ret;
4732efbe 1291
e4dc5b7a 1292retry:
9ea71503 1293 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1294 if (unlikely(ret != 0))
1295 goto out;
9ea71503 1296 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1297 if (unlikely(ret != 0))
42d35d48 1298 goto out_put_key1;
4732efbe 1299
e2970f2f
IM
1300 hb1 = hash_futex(&key1);
1301 hb2 = hash_futex(&key2);
4732efbe 1302
e4dc5b7a 1303retry_private:
eaaea803 1304 double_lock_hb(hb1, hb2);
e2970f2f 1305 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1306 if (unlikely(op_ret < 0)) {
4732efbe 1307
5eb3dc62 1308 double_unlock_hb(hb1, hb2);
4732efbe 1309
7ee1dd3f 1310#ifndef CONFIG_MMU
e2970f2f
IM
1311 /*
1312 * we don't get EFAULT from MMU faults if we don't have an MMU,
1313 * but we might get them from range checking
1314 */
7ee1dd3f 1315 ret = op_ret;
42d35d48 1316 goto out_put_keys;
7ee1dd3f
DH
1317#endif
1318
796f8d9b
DG
1319 if (unlikely(op_ret != -EFAULT)) {
1320 ret = op_ret;
42d35d48 1321 goto out_put_keys;
796f8d9b
DG
1322 }
1323
d0725992 1324 ret = fault_in_user_writeable(uaddr2);
4732efbe 1325 if (ret)
de87fcc1 1326 goto out_put_keys;
4732efbe 1327
b41277dc 1328 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1329 goto retry_private;
1330
ae791a2d
TG
1331 put_futex_key(&key2);
1332 put_futex_key(&key1);
e4dc5b7a 1333 goto retry;
4732efbe
JJ
1334 }
1335
0d00c7b2 1336 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1337 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1338 if (this->pi_state || this->rt_waiter) {
1339 ret = -EINVAL;
1340 goto out_unlock;
1341 }
4732efbe
JJ
1342 wake_futex(this);
1343 if (++ret >= nr_wake)
1344 break;
1345 }
1346 }
1347
1348 if (op_ret > 0) {
4732efbe 1349 op_ret = 0;
0d00c7b2 1350 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1351 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1352 if (this->pi_state || this->rt_waiter) {
1353 ret = -EINVAL;
1354 goto out_unlock;
1355 }
4732efbe
JJ
1356 wake_futex(this);
1357 if (++op_ret >= nr_wake2)
1358 break;
1359 }
1360 }
1361 ret += op_ret;
1362 }
1363
aa10990e 1364out_unlock:
5eb3dc62 1365 double_unlock_hb(hb1, hb2);
42d35d48 1366out_put_keys:
ae791a2d 1367 put_futex_key(&key2);
42d35d48 1368out_put_key1:
ae791a2d 1369 put_futex_key(&key1);
42d35d48 1370out:
4732efbe
JJ
1371 return ret;
1372}
1373
9121e478
DH
1374/**
1375 * requeue_futex() - Requeue a futex_q from one hb to another
1376 * @q: the futex_q to requeue
1377 * @hb1: the source hash_bucket
1378 * @hb2: the target hash_bucket
1379 * @key2: the new key for the requeued futex_q
1380 */
1381static inline
1382void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1383 struct futex_hash_bucket *hb2, union futex_key *key2)
1384{
1385
1386 /*
1387 * If key1 and key2 hash to the same bucket, no need to
1388 * requeue.
1389 */
1390 if (likely(&hb1->chain != &hb2->chain)) {
1391 plist_del(&q->list, &hb1->chain);
11d4616b 1392 hb_waiters_dec(hb1);
9121e478 1393 plist_add(&q->list, &hb2->chain);
11d4616b 1394 hb_waiters_inc(hb2);
9121e478 1395 q->lock_ptr = &hb2->lock;
9121e478
DH
1396 }
1397 get_futex_key_refs(key2);
1398 q->key = *key2;
1399}
1400
52400ba9
DH
1401/**
1402 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1403 * @q: the futex_q
1404 * @key: the key of the requeue target futex
1405 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1406 *
1407 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1408 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1409 * to the requeue target futex so the waiter can detect the wakeup on the right
1410 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1411 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1412 * to protect access to the pi_state to fixup the owner later. Must be called
1413 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1414 */
1415static inline
beda2c7e
DH
1416void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1417 struct futex_hash_bucket *hb)
52400ba9 1418{
52400ba9
DH
1419 get_futex_key_refs(key);
1420 q->key = *key;
1421
2e12978a 1422 __unqueue_futex(q);
52400ba9
DH
1423
1424 WARN_ON(!q->rt_waiter);
1425 q->rt_waiter = NULL;
1426
beda2c7e 1427 q->lock_ptr = &hb->lock;
beda2c7e 1428
f1a11e05 1429 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1430}
1431
1432/**
1433 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1434 * @pifutex: the user address of the to futex
1435 * @hb1: the from futex hash bucket, must be locked by the caller
1436 * @hb2: the to futex hash bucket, must be locked by the caller
1437 * @key1: the from futex key
1438 * @key2: the to futex key
1439 * @ps: address to store the pi_state pointer
1440 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1441 *
1442 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1443 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1444 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1445 * hb1 and hb2 must be held by the caller.
52400ba9 1446 *
6c23cbbd
RD
1447 * Return:
1448 * 0 - failed to acquire the lock atomically;
866293ee 1449 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1450 * <0 - error
1451 */
1452static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1453 struct futex_hash_bucket *hb1,
1454 struct futex_hash_bucket *hb2,
1455 union futex_key *key1, union futex_key *key2,
bab5bc9e 1456 struct futex_pi_state **ps, int set_waiters)
52400ba9 1457{
bab5bc9e 1458 struct futex_q *top_waiter = NULL;
52400ba9 1459 u32 curval;
866293ee 1460 int ret, vpid;
52400ba9
DH
1461
1462 if (get_futex_value_locked(&curval, pifutex))
1463 return -EFAULT;
1464
bab5bc9e
DH
1465 /*
1466 * Find the top_waiter and determine if there are additional waiters.
1467 * If the caller intends to requeue more than 1 waiter to pifutex,
1468 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1469 * as we have means to handle the possible fault. If not, don't set
1470 * the bit unecessarily as it will force the subsequent unlock to enter
1471 * the kernel.
1472 */
52400ba9
DH
1473 top_waiter = futex_top_waiter(hb1, key1);
1474
1475 /* There are no waiters, nothing for us to do. */
1476 if (!top_waiter)
1477 return 0;
1478
84bc4af5
DH
1479 /* Ensure we requeue to the expected futex. */
1480 if (!match_futex(top_waiter->requeue_pi_key, key2))
1481 return -EINVAL;
1482
52400ba9 1483 /*
bab5bc9e
DH
1484 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1485 * the contended case or if set_waiters is 1. The pi_state is returned
1486 * in ps in contended cases.
52400ba9 1487 */
866293ee 1488 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1489 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1490 set_waiters);
866293ee 1491 if (ret == 1) {
beda2c7e 1492 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1493 return vpid;
1494 }
52400ba9
DH
1495 return ret;
1496}
1497
1498/**
1499 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1500 * @uaddr1: source futex user address
b41277dc 1501 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1502 * @uaddr2: target futex user address
1503 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1504 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1505 * @cmpval: @uaddr1 expected value (or %NULL)
1506 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1507 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1508 *
1509 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1510 * uaddr2 atomically on behalf of the top waiter.
1511 *
6c23cbbd
RD
1512 * Return:
1513 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1514 * <0 - on error
1da177e4 1515 */
b41277dc
DH
1516static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1517 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1518 u32 *cmpval, int requeue_pi)
1da177e4 1519{
38d47c1b 1520 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1521 int drop_count = 0, task_count = 0, ret;
1522 struct futex_pi_state *pi_state = NULL;
e2970f2f 1523 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1524 struct futex_q *this, *next;
52400ba9
DH
1525
1526 if (requeue_pi) {
e9c243a5
TG
1527 /*
1528 * Requeue PI only works on two distinct uaddrs. This
1529 * check is only valid for private futexes. See below.
1530 */
1531 if (uaddr1 == uaddr2)
1532 return -EINVAL;
1533
52400ba9
DH
1534 /*
1535 * requeue_pi requires a pi_state, try to allocate it now
1536 * without any locks in case it fails.
1537 */
1538 if (refill_pi_state_cache())
1539 return -ENOMEM;
1540 /*
1541 * requeue_pi must wake as many tasks as it can, up to nr_wake
1542 * + nr_requeue, since it acquires the rt_mutex prior to
1543 * returning to userspace, so as to not leave the rt_mutex with
1544 * waiters and no owner. However, second and third wake-ups
1545 * cannot be predicted as they involve race conditions with the
1546 * first wake and a fault while looking up the pi_state. Both
1547 * pthread_cond_signal() and pthread_cond_broadcast() should
1548 * use nr_wake=1.
1549 */
1550 if (nr_wake != 1)
1551 return -EINVAL;
1552 }
1da177e4 1553
42d35d48 1554retry:
52400ba9
DH
1555 if (pi_state != NULL) {
1556 /*
1557 * We will have to lookup the pi_state again, so free this one
1558 * to keep the accounting correct.
1559 */
1560 free_pi_state(pi_state);
1561 pi_state = NULL;
1562 }
1563
9ea71503 1564 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1565 if (unlikely(ret != 0))
1566 goto out;
9ea71503
SB
1567 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1568 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1569 if (unlikely(ret != 0))
42d35d48 1570 goto out_put_key1;
1da177e4 1571
e9c243a5
TG
1572 /*
1573 * The check above which compares uaddrs is not sufficient for
1574 * shared futexes. We need to compare the keys:
1575 */
1576 if (requeue_pi && match_futex(&key1, &key2)) {
1577 ret = -EINVAL;
1578 goto out_put_keys;
1579 }
1580
e2970f2f
IM
1581 hb1 = hash_futex(&key1);
1582 hb2 = hash_futex(&key2);
1da177e4 1583
e4dc5b7a 1584retry_private:
69cd9eba 1585 hb_waiters_inc(hb2);
8b8f319f 1586 double_lock_hb(hb1, hb2);
1da177e4 1587
e2970f2f
IM
1588 if (likely(cmpval != NULL)) {
1589 u32 curval;
1da177e4 1590
e2970f2f 1591 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1592
1593 if (unlikely(ret)) {
5eb3dc62 1594 double_unlock_hb(hb1, hb2);
69cd9eba 1595 hb_waiters_dec(hb2);
1da177e4 1596
e2970f2f 1597 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1598 if (ret)
1599 goto out_put_keys;
1da177e4 1600
b41277dc 1601 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1602 goto retry_private;
1da177e4 1603
ae791a2d
TG
1604 put_futex_key(&key2);
1605 put_futex_key(&key1);
e4dc5b7a 1606 goto retry;
1da177e4 1607 }
e2970f2f 1608 if (curval != *cmpval) {
1da177e4
LT
1609 ret = -EAGAIN;
1610 goto out_unlock;
1611 }
1612 }
1613
52400ba9 1614 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1615 /*
1616 * Attempt to acquire uaddr2 and wake the top waiter. If we
1617 * intend to requeue waiters, force setting the FUTEX_WAITERS
1618 * bit. We force this here where we are able to easily handle
1619 * faults rather in the requeue loop below.
1620 */
52400ba9 1621 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1622 &key2, &pi_state, nr_requeue);
52400ba9
DH
1623
1624 /*
1625 * At this point the top_waiter has either taken uaddr2 or is
1626 * waiting on it. If the former, then the pi_state will not
1627 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1628 * reference to it. If the lock was taken, ret contains the
1629 * vpid of the top waiter task.
52400ba9 1630 */
866293ee 1631 if (ret > 0) {
52400ba9 1632 WARN_ON(pi_state);
89061d3d 1633 drop_count++;
52400ba9 1634 task_count++;
866293ee
TG
1635 /*
1636 * If we acquired the lock, then the user
1637 * space value of uaddr2 should be vpid. It
1638 * cannot be changed by the top waiter as it
1639 * is blocked on hb2 lock if it tries to do
1640 * so. If something fiddled with it behind our
1641 * back the pi state lookup might unearth
1642 * it. So we rather use the known value than
1643 * rereading and handing potential crap to
1644 * lookup_pi_state.
1645 */
54a21788 1646 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1647 }
1648
1649 switch (ret) {
1650 case 0:
1651 break;
1652 case -EFAULT:
1653 double_unlock_hb(hb1, hb2);
69cd9eba 1654 hb_waiters_dec(hb2);
ae791a2d
TG
1655 put_futex_key(&key2);
1656 put_futex_key(&key1);
d0725992 1657 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1658 if (!ret)
1659 goto retry;
1660 goto out;
1661 case -EAGAIN:
1662 /* The owner was exiting, try again. */
1663 double_unlock_hb(hb1, hb2);
69cd9eba 1664 hb_waiters_dec(hb2);
ae791a2d
TG
1665 put_futex_key(&key2);
1666 put_futex_key(&key1);
52400ba9
DH
1667 cond_resched();
1668 goto retry;
1669 default:
1670 goto out_unlock;
1671 }
1672 }
1673
0d00c7b2 1674 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1675 if (task_count - nr_wake >= nr_requeue)
1676 break;
1677
1678 if (!match_futex(&this->key, &key1))
1da177e4 1679 continue;
52400ba9 1680
392741e0
DH
1681 /*
1682 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1683 * be paired with each other and no other futex ops.
aa10990e
DH
1684 *
1685 * We should never be requeueing a futex_q with a pi_state,
1686 * which is awaiting a futex_unlock_pi().
392741e0
DH
1687 */
1688 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1689 (!requeue_pi && this->rt_waiter) ||
1690 this->pi_state) {
392741e0
DH
1691 ret = -EINVAL;
1692 break;
1693 }
52400ba9
DH
1694
1695 /*
1696 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1697 * lock, we already woke the top_waiter. If not, it will be
1698 * woken by futex_unlock_pi().
1699 */
1700 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1701 wake_futex(this);
52400ba9
DH
1702 continue;
1703 }
1da177e4 1704
84bc4af5
DH
1705 /* Ensure we requeue to the expected futex for requeue_pi. */
1706 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1707 ret = -EINVAL;
1708 break;
1709 }
1710
52400ba9
DH
1711 /*
1712 * Requeue nr_requeue waiters and possibly one more in the case
1713 * of requeue_pi if we couldn't acquire the lock atomically.
1714 */
1715 if (requeue_pi) {
1716 /* Prepare the waiter to take the rt_mutex. */
1717 atomic_inc(&pi_state->refcount);
1718 this->pi_state = pi_state;
1719 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1720 this->rt_waiter,
c051b21f 1721 this->task);
52400ba9
DH
1722 if (ret == 1) {
1723 /* We got the lock. */
beda2c7e 1724 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1725 drop_count++;
52400ba9
DH
1726 continue;
1727 } else if (ret) {
1728 /* -EDEADLK */
1729 this->pi_state = NULL;
1730 free_pi_state(pi_state);
1731 goto out_unlock;
1732 }
1da177e4 1733 }
52400ba9
DH
1734 requeue_futex(this, hb1, hb2, &key2);
1735 drop_count++;
1da177e4
LT
1736 }
1737
1738out_unlock:
5eb3dc62 1739 double_unlock_hb(hb1, hb2);
69cd9eba 1740 hb_waiters_dec(hb2);
1da177e4 1741
cd84a42f
DH
1742 /*
1743 * drop_futex_key_refs() must be called outside the spinlocks. During
1744 * the requeue we moved futex_q's from the hash bucket at key1 to the
1745 * one at key2 and updated their key pointer. We no longer need to
1746 * hold the references to key1.
1747 */
1da177e4 1748 while (--drop_count >= 0)
9adef58b 1749 drop_futex_key_refs(&key1);
1da177e4 1750
42d35d48 1751out_put_keys:
ae791a2d 1752 put_futex_key(&key2);
42d35d48 1753out_put_key1:
ae791a2d 1754 put_futex_key(&key1);
42d35d48 1755out:
52400ba9
DH
1756 if (pi_state != NULL)
1757 free_pi_state(pi_state);
1758 return ret ? ret : task_count;
1da177e4
LT
1759}
1760
1761/* The key must be already stored in q->key. */
82af7aca 1762static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1763 __acquires(&hb->lock)
1da177e4 1764{
e2970f2f 1765 struct futex_hash_bucket *hb;
1da177e4 1766
e2970f2f 1767 hb = hash_futex(&q->key);
11d4616b
LT
1768
1769 /*
1770 * Increment the counter before taking the lock so that
1771 * a potential waker won't miss a to-be-slept task that is
1772 * waiting for the spinlock. This is safe as all queue_lock()
1773 * users end up calling queue_me(). Similarly, for housekeeping,
1774 * decrement the counter at queue_unlock() when some error has
1775 * occurred and we don't end up adding the task to the list.
1776 */
1777 hb_waiters_inc(hb);
1778
e2970f2f 1779 q->lock_ptr = &hb->lock;
1da177e4 1780
b0c29f79 1781 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1782 return hb;
1da177e4
LT
1783}
1784
d40d65c8 1785static inline void
0d00c7b2 1786queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1787 __releases(&hb->lock)
d40d65c8
DH
1788{
1789 spin_unlock(&hb->lock);
11d4616b 1790 hb_waiters_dec(hb);
d40d65c8
DH
1791}
1792
1793/**
1794 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1795 * @q: The futex_q to enqueue
1796 * @hb: The destination hash bucket
1797 *
1798 * The hb->lock must be held by the caller, and is released here. A call to
1799 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1800 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1801 * or nothing if the unqueue is done as part of the wake process and the unqueue
1802 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1803 * an example).
1804 */
82af7aca 1805static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1806 __releases(&hb->lock)
1da177e4 1807{
ec92d082
PP
1808 int prio;
1809
1810 /*
1811 * The priority used to register this element is
1812 * - either the real thread-priority for the real-time threads
1813 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1814 * - or MAX_RT_PRIO for non-RT threads.
1815 * Thus, all RT-threads are woken first in priority order, and
1816 * the others are woken last, in FIFO order.
1817 */
1818 prio = min(current->normal_prio, MAX_RT_PRIO);
1819
1820 plist_node_init(&q->list, prio);
ec92d082 1821 plist_add(&q->list, &hb->chain);
c87e2837 1822 q->task = current;
e2970f2f 1823 spin_unlock(&hb->lock);
1da177e4
LT
1824}
1825
d40d65c8
DH
1826/**
1827 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1828 * @q: The futex_q to unqueue
1829 *
1830 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1831 * be paired with exactly one earlier call to queue_me().
1832 *
6c23cbbd
RD
1833 * Return:
1834 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1835 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1836 */
1da177e4
LT
1837static int unqueue_me(struct futex_q *q)
1838{
1da177e4 1839 spinlock_t *lock_ptr;
e2970f2f 1840 int ret = 0;
1da177e4
LT
1841
1842 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1843retry:
1da177e4 1844 lock_ptr = q->lock_ptr;
e91467ec 1845 barrier();
c80544dc 1846 if (lock_ptr != NULL) {
1da177e4
LT
1847 spin_lock(lock_ptr);
1848 /*
1849 * q->lock_ptr can change between reading it and
1850 * spin_lock(), causing us to take the wrong lock. This
1851 * corrects the race condition.
1852 *
1853 * Reasoning goes like this: if we have the wrong lock,
1854 * q->lock_ptr must have changed (maybe several times)
1855 * between reading it and the spin_lock(). It can
1856 * change again after the spin_lock() but only if it was
1857 * already changed before the spin_lock(). It cannot,
1858 * however, change back to the original value. Therefore
1859 * we can detect whether we acquired the correct lock.
1860 */
1861 if (unlikely(lock_ptr != q->lock_ptr)) {
1862 spin_unlock(lock_ptr);
1863 goto retry;
1864 }
2e12978a 1865 __unqueue_futex(q);
c87e2837
IM
1866
1867 BUG_ON(q->pi_state);
1868
1da177e4
LT
1869 spin_unlock(lock_ptr);
1870 ret = 1;
1871 }
1872
9adef58b 1873 drop_futex_key_refs(&q->key);
1da177e4
LT
1874 return ret;
1875}
1876
c87e2837
IM
1877/*
1878 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1879 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1880 * and dropped here.
c87e2837 1881 */
d0aa7a70 1882static void unqueue_me_pi(struct futex_q *q)
15e408cd 1883 __releases(q->lock_ptr)
c87e2837 1884{
2e12978a 1885 __unqueue_futex(q);
c87e2837
IM
1886
1887 BUG_ON(!q->pi_state);
1888 free_pi_state(q->pi_state);
1889 q->pi_state = NULL;
1890
d0aa7a70 1891 spin_unlock(q->lock_ptr);
c87e2837
IM
1892}
1893
d0aa7a70 1894/*
cdf71a10 1895 * Fixup the pi_state owner with the new owner.
d0aa7a70 1896 *
778e9a9c
AK
1897 * Must be called with hash bucket lock held and mm->sem held for non
1898 * private futexes.
d0aa7a70 1899 */
778e9a9c 1900static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1901 struct task_struct *newowner)
d0aa7a70 1902{
cdf71a10 1903 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1904 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1905 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1906 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1907 int ret;
d0aa7a70
PP
1908
1909 /* Owner died? */
1b7558e4
TG
1910 if (!pi_state->owner)
1911 newtid |= FUTEX_OWNER_DIED;
1912
1913 /*
1914 * We are here either because we stole the rtmutex from the
8161239a
LJ
1915 * previous highest priority waiter or we are the highest priority
1916 * waiter but failed to get the rtmutex the first time.
1917 * We have to replace the newowner TID in the user space variable.
1918 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1919 *
b2d0994b
DH
1920 * Note: We write the user space value _before_ changing the pi_state
1921 * because we can fault here. Imagine swapped out pages or a fork
1922 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1923 *
1924 * Modifying pi_state _before_ the user space value would
1925 * leave the pi_state in an inconsistent state when we fault
1926 * here, because we need to drop the hash bucket lock to
1927 * handle the fault. This might be observed in the PID check
1928 * in lookup_pi_state.
1929 */
1930retry:
1931 if (get_futex_value_locked(&uval, uaddr))
1932 goto handle_fault;
1933
1934 while (1) {
1935 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1936
37a9d912 1937 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1938 goto handle_fault;
1939 if (curval == uval)
1940 break;
1941 uval = curval;
1942 }
1943
1944 /*
1945 * We fixed up user space. Now we need to fix the pi_state
1946 * itself.
1947 */
d0aa7a70 1948 if (pi_state->owner != NULL) {
1d615482 1949 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1950 WARN_ON(list_empty(&pi_state->list));
1951 list_del_init(&pi_state->list);
1d615482 1952 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1953 }
d0aa7a70 1954
cdf71a10 1955 pi_state->owner = newowner;
d0aa7a70 1956
1d615482 1957 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1958 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1959 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1960 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1961 return 0;
d0aa7a70 1962
d0aa7a70 1963 /*
1b7558e4 1964 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1965 * lock here. That gives the other task (either the highest priority
1966 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1967 * chance to try the fixup of the pi_state. So once we are
1968 * back from handling the fault we need to check the pi_state
1969 * after reacquiring the hash bucket lock and before trying to
1970 * do another fixup. When the fixup has been done already we
1971 * simply return.
d0aa7a70 1972 */
1b7558e4
TG
1973handle_fault:
1974 spin_unlock(q->lock_ptr);
778e9a9c 1975
d0725992 1976 ret = fault_in_user_writeable(uaddr);
778e9a9c 1977
1b7558e4 1978 spin_lock(q->lock_ptr);
778e9a9c 1979
1b7558e4
TG
1980 /*
1981 * Check if someone else fixed it for us:
1982 */
1983 if (pi_state->owner != oldowner)
1984 return 0;
1985
1986 if (ret)
1987 return ret;
1988
1989 goto retry;
d0aa7a70
PP
1990}
1991
72c1bbf3 1992static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1993
dd973998
DH
1994/**
1995 * fixup_owner() - Post lock pi_state and corner case management
1996 * @uaddr: user address of the futex
dd973998
DH
1997 * @q: futex_q (contains pi_state and access to the rt_mutex)
1998 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1999 *
2000 * After attempting to lock an rt_mutex, this function is called to cleanup
2001 * the pi_state owner as well as handle race conditions that may allow us to
2002 * acquire the lock. Must be called with the hb lock held.
2003 *
6c23cbbd
RD
2004 * Return:
2005 * 1 - success, lock taken;
2006 * 0 - success, lock not taken;
dd973998
DH
2007 * <0 - on error (-EFAULT)
2008 */
ae791a2d 2009static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2010{
2011 struct task_struct *owner;
2012 int ret = 0;
2013
2014 if (locked) {
2015 /*
2016 * Got the lock. We might not be the anticipated owner if we
2017 * did a lock-steal - fix up the PI-state in that case:
2018 */
2019 if (q->pi_state->owner != current)
ae791a2d 2020 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2021 goto out;
2022 }
2023
2024 /*
2025 * Catch the rare case, where the lock was released when we were on the
2026 * way back before we locked the hash bucket.
2027 */
2028 if (q->pi_state->owner == current) {
2029 /*
2030 * Try to get the rt_mutex now. This might fail as some other
2031 * task acquired the rt_mutex after we removed ourself from the
2032 * rt_mutex waiters list.
2033 */
2034 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2035 locked = 1;
2036 goto out;
2037 }
2038
2039 /*
2040 * pi_state is incorrect, some other task did a lock steal and
2041 * we returned due to timeout or signal without taking the
8161239a 2042 * rt_mutex. Too late.
dd973998 2043 */
8161239a 2044 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2045 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2046 if (!owner)
2047 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2048 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2049 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2050 goto out;
2051 }
2052
2053 /*
2054 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2055 * the owner of the rt_mutex.
dd973998
DH
2056 */
2057 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2058 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2059 "pi-state %p\n", ret,
2060 q->pi_state->pi_mutex.owner,
2061 q->pi_state->owner);
2062
2063out:
2064 return ret ? ret : locked;
2065}
2066
ca5f9524
DH
2067/**
2068 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2069 * @hb: the futex hash bucket, must be locked by the caller
2070 * @q: the futex_q to queue up on
2071 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2072 */
2073static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2074 struct hrtimer_sleeper *timeout)
ca5f9524 2075{
9beba3c5
DH
2076 /*
2077 * The task state is guaranteed to be set before another task can
2078 * wake it. set_current_state() is implemented using set_mb() and
2079 * queue_me() calls spin_unlock() upon completion, both serializing
2080 * access to the hash list and forcing another memory barrier.
2081 */
f1a11e05 2082 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2083 queue_me(q, hb);
ca5f9524
DH
2084
2085 /* Arm the timer */
2086 if (timeout) {
2087 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2088 if (!hrtimer_active(&timeout->timer))
2089 timeout->task = NULL;
2090 }
2091
2092 /*
0729e196
DH
2093 * If we have been removed from the hash list, then another task
2094 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2095 */
2096 if (likely(!plist_node_empty(&q->list))) {
2097 /*
2098 * If the timer has already expired, current will already be
2099 * flagged for rescheduling. Only call schedule if there
2100 * is no timeout, or if it has yet to expire.
2101 */
2102 if (!timeout || timeout->task)
88c8004f 2103 freezable_schedule();
ca5f9524
DH
2104 }
2105 __set_current_state(TASK_RUNNING);
2106}
2107
f801073f
DH
2108/**
2109 * futex_wait_setup() - Prepare to wait on a futex
2110 * @uaddr: the futex userspace address
2111 * @val: the expected value
b41277dc 2112 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2113 * @q: the associated futex_q
2114 * @hb: storage for hash_bucket pointer to be returned to caller
2115 *
2116 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2117 * compare it with the expected value. Handle atomic faults internally.
2118 * Return with the hb lock held and a q.key reference on success, and unlocked
2119 * with no q.key reference on failure.
2120 *
6c23cbbd
RD
2121 * Return:
2122 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2123 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2124 */
b41277dc 2125static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2126 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2127{
e2970f2f
IM
2128 u32 uval;
2129 int ret;
1da177e4 2130
1da177e4 2131 /*
b2d0994b 2132 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2133 * Order is important:
2134 *
2135 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2136 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2137 *
2138 * The basic logical guarantee of a futex is that it blocks ONLY
2139 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2140 * any cond. If we locked the hash-bucket after testing *uaddr, that
2141 * would open a race condition where we could block indefinitely with
1da177e4
LT
2142 * cond(var) false, which would violate the guarantee.
2143 *
8fe8f545
ML
2144 * On the other hand, we insert q and release the hash-bucket only
2145 * after testing *uaddr. This guarantees that futex_wait() will NOT
2146 * absorb a wakeup if *uaddr does not match the desired values
2147 * while the syscall executes.
1da177e4 2148 */
f801073f 2149retry:
9ea71503 2150 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2151 if (unlikely(ret != 0))
a5a2a0c7 2152 return ret;
f801073f
DH
2153
2154retry_private:
2155 *hb = queue_lock(q);
2156
e2970f2f 2157 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2158
f801073f 2159 if (ret) {
0d00c7b2 2160 queue_unlock(*hb);
1da177e4 2161
e2970f2f 2162 ret = get_user(uval, uaddr);
e4dc5b7a 2163 if (ret)
f801073f 2164 goto out;
1da177e4 2165
b41277dc 2166 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2167 goto retry_private;
2168
ae791a2d 2169 put_futex_key(&q->key);
e4dc5b7a 2170 goto retry;
1da177e4 2171 }
ca5f9524 2172
f801073f 2173 if (uval != val) {
0d00c7b2 2174 queue_unlock(*hb);
f801073f 2175 ret = -EWOULDBLOCK;
2fff78c7 2176 }
1da177e4 2177
f801073f
DH
2178out:
2179 if (ret)
ae791a2d 2180 put_futex_key(&q->key);
f801073f
DH
2181 return ret;
2182}
2183
b41277dc
DH
2184static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2185 ktime_t *abs_time, u32 bitset)
f801073f
DH
2186{
2187 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2188 struct restart_block *restart;
2189 struct futex_hash_bucket *hb;
5bdb05f9 2190 struct futex_q q = futex_q_init;
f801073f
DH
2191 int ret;
2192
2193 if (!bitset)
2194 return -EINVAL;
f801073f
DH
2195 q.bitset = bitset;
2196
2197 if (abs_time) {
2198 to = &timeout;
2199
b41277dc
DH
2200 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2201 CLOCK_REALTIME : CLOCK_MONOTONIC,
2202 HRTIMER_MODE_ABS);
f801073f
DH
2203 hrtimer_init_sleeper(to, current);
2204 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2205 current->timer_slack_ns);
2206 }
2207
d58e6576 2208retry:
7ada876a
DH
2209 /*
2210 * Prepare to wait on uaddr. On success, holds hb lock and increments
2211 * q.key refs.
2212 */
b41277dc 2213 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2214 if (ret)
2215 goto out;
2216
ca5f9524 2217 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2218 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2219
2220 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2221 ret = 0;
7ada876a 2222 /* unqueue_me() drops q.key ref */
1da177e4 2223 if (!unqueue_me(&q))
7ada876a 2224 goto out;
2fff78c7 2225 ret = -ETIMEDOUT;
ca5f9524 2226 if (to && !to->task)
7ada876a 2227 goto out;
72c1bbf3 2228
e2970f2f 2229 /*
d58e6576
TG
2230 * We expect signal_pending(current), but we might be the
2231 * victim of a spurious wakeup as well.
e2970f2f 2232 */
7ada876a 2233 if (!signal_pending(current))
d58e6576 2234 goto retry;
d58e6576 2235
2fff78c7 2236 ret = -ERESTARTSYS;
c19384b5 2237 if (!abs_time)
7ada876a 2238 goto out;
1da177e4 2239
2fff78c7
PZ
2240 restart = &current_thread_info()->restart_block;
2241 restart->fn = futex_wait_restart;
a3c74c52 2242 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2243 restart->futex.val = val;
2244 restart->futex.time = abs_time->tv64;
2245 restart->futex.bitset = bitset;
0cd9c649 2246 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2247
2fff78c7
PZ
2248 ret = -ERESTART_RESTARTBLOCK;
2249
42d35d48 2250out:
ca5f9524
DH
2251 if (to) {
2252 hrtimer_cancel(&to->timer);
2253 destroy_hrtimer_on_stack(&to->timer);
2254 }
c87e2837
IM
2255 return ret;
2256}
2257
72c1bbf3
NP
2258
2259static long futex_wait_restart(struct restart_block *restart)
2260{
a3c74c52 2261 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2262 ktime_t t, *tp = NULL;
72c1bbf3 2263
a72188d8
DH
2264 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2265 t.tv64 = restart->futex.time;
2266 tp = &t;
2267 }
72c1bbf3 2268 restart->fn = do_no_restart_syscall;
b41277dc
DH
2269
2270 return (long)futex_wait(uaddr, restart->futex.flags,
2271 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2272}
2273
2274
c87e2837
IM
2275/*
2276 * Userspace tried a 0 -> TID atomic transition of the futex value
2277 * and failed. The kernel side here does the whole locking operation:
2278 * if there are waiters then it will block, it does PI, etc. (Due to
2279 * races the kernel might see a 0 value of the futex too.)
2280 */
b41277dc
DH
2281static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2282 ktime_t *time, int trylock)
c87e2837 2283{
c5780e97 2284 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2285 struct futex_hash_bucket *hb;
5bdb05f9 2286 struct futex_q q = futex_q_init;
dd973998 2287 int res, ret;
c87e2837
IM
2288
2289 if (refill_pi_state_cache())
2290 return -ENOMEM;
2291
c19384b5 2292 if (time) {
c5780e97 2293 to = &timeout;
237fc6e7
TG
2294 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2295 HRTIMER_MODE_ABS);
c5780e97 2296 hrtimer_init_sleeper(to, current);
cc584b21 2297 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2298 }
2299
42d35d48 2300retry:
9ea71503 2301 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2302 if (unlikely(ret != 0))
42d35d48 2303 goto out;
c87e2837 2304
e4dc5b7a 2305retry_private:
82af7aca 2306 hb = queue_lock(&q);
c87e2837 2307
bab5bc9e 2308 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2309 if (unlikely(ret)) {
778e9a9c 2310 switch (ret) {
1a52084d
DH
2311 case 1:
2312 /* We got the lock. */
2313 ret = 0;
2314 goto out_unlock_put_key;
2315 case -EFAULT:
2316 goto uaddr_faulted;
778e9a9c
AK
2317 case -EAGAIN:
2318 /*
2319 * Task is exiting and we just wait for the
2320 * exit to complete.
2321 */
0d00c7b2 2322 queue_unlock(hb);
ae791a2d 2323 put_futex_key(&q.key);
778e9a9c
AK
2324 cond_resched();
2325 goto retry;
778e9a9c 2326 default:
42d35d48 2327 goto out_unlock_put_key;
c87e2837 2328 }
c87e2837
IM
2329 }
2330
2331 /*
2332 * Only actually queue now that the atomic ops are done:
2333 */
82af7aca 2334 queue_me(&q, hb);
c87e2837 2335
c87e2837
IM
2336 WARN_ON(!q.pi_state);
2337 /*
2338 * Block on the PI mutex:
2339 */
c051b21f
TG
2340 if (!trylock) {
2341 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2342 } else {
c87e2837
IM
2343 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2344 /* Fixup the trylock return value: */
2345 ret = ret ? 0 : -EWOULDBLOCK;
2346 }
2347
a99e4e41 2348 spin_lock(q.lock_ptr);
dd973998
DH
2349 /*
2350 * Fixup the pi_state owner and possibly acquire the lock if we
2351 * haven't already.
2352 */
ae791a2d 2353 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2354 /*
2355 * If fixup_owner() returned an error, proprogate that. If it acquired
2356 * the lock, clear our -ETIMEDOUT or -EINTR.
2357 */
2358 if (res)
2359 ret = (res < 0) ? res : 0;
c87e2837 2360
e8f6386c 2361 /*
dd973998
DH
2362 * If fixup_owner() faulted and was unable to handle the fault, unlock
2363 * it and return the fault to userspace.
e8f6386c
DH
2364 */
2365 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2366 rt_mutex_unlock(&q.pi_state->pi_mutex);
2367
778e9a9c
AK
2368 /* Unqueue and drop the lock */
2369 unqueue_me_pi(&q);
c87e2837 2370
5ecb01cf 2371 goto out_put_key;
c87e2837 2372
42d35d48 2373out_unlock_put_key:
0d00c7b2 2374 queue_unlock(hb);
c87e2837 2375
42d35d48 2376out_put_key:
ae791a2d 2377 put_futex_key(&q.key);
42d35d48 2378out:
237fc6e7
TG
2379 if (to)
2380 destroy_hrtimer_on_stack(&to->timer);
dd973998 2381 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2382
42d35d48 2383uaddr_faulted:
0d00c7b2 2384 queue_unlock(hb);
778e9a9c 2385
d0725992 2386 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2387 if (ret)
2388 goto out_put_key;
c87e2837 2389
b41277dc 2390 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2391 goto retry_private;
2392
ae791a2d 2393 put_futex_key(&q.key);
e4dc5b7a 2394 goto retry;
c87e2837
IM
2395}
2396
c87e2837
IM
2397/*
2398 * Userspace attempted a TID -> 0 atomic transition, and failed.
2399 * This is the in-kernel slowpath: we look up the PI state (if any),
2400 * and do the rt-mutex unlock.
2401 */
b41277dc 2402static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2403{
ccf9e6a8 2404 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2405 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2406 struct futex_hash_bucket *hb;
2407 struct futex_q *match;
e4dc5b7a 2408 int ret;
c87e2837
IM
2409
2410retry:
2411 if (get_user(uval, uaddr))
2412 return -EFAULT;
2413 /*
2414 * We release only a lock we actually own:
2415 */
c0c9ed15 2416 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2417 return -EPERM;
c87e2837 2418
9ea71503 2419 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2420 if (ret)
2421 return ret;
c87e2837
IM
2422
2423 hb = hash_futex(&key);
2424 spin_lock(&hb->lock);
2425
c87e2837 2426 /*
ccf9e6a8
TG
2427 * Check waiters first. We do not trust user space values at
2428 * all and we at least want to know if user space fiddled
2429 * with the futex value instead of blindly unlocking.
c87e2837 2430 */
ccf9e6a8
TG
2431 match = futex_top_waiter(hb, &key);
2432 if (match) {
2433 ret = wake_futex_pi(uaddr, uval, match);
c87e2837 2434 /*
ccf9e6a8
TG
2435 * The atomic access to the futex value generated a
2436 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2437 */
2438 if (ret == -EFAULT)
2439 goto pi_faulted;
2440 goto out_unlock;
2441 }
ccf9e6a8 2442
c87e2837 2443 /*
ccf9e6a8
TG
2444 * We have no kernel internal state, i.e. no waiters in the
2445 * kernel. Waiters which are about to queue themselves are stuck
2446 * on hb->lock. So we can safely ignore them. We do neither
2447 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2448 * owner.
c87e2837 2449 */
ccf9e6a8 2450 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2451 goto pi_faulted;
c87e2837 2452
ccf9e6a8
TG
2453 /*
2454 * If uval has changed, let user space handle it.
2455 */
2456 ret = (curval == uval) ? 0 : -EAGAIN;
2457
c87e2837
IM
2458out_unlock:
2459 spin_unlock(&hb->lock);
ae791a2d 2460 put_futex_key(&key);
c87e2837
IM
2461 return ret;
2462
2463pi_faulted:
778e9a9c 2464 spin_unlock(&hb->lock);
ae791a2d 2465 put_futex_key(&key);
c87e2837 2466
d0725992 2467 ret = fault_in_user_writeable(uaddr);
b5686363 2468 if (!ret)
c87e2837
IM
2469 goto retry;
2470
1da177e4
LT
2471 return ret;
2472}
2473
52400ba9
DH
2474/**
2475 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2476 * @hb: the hash_bucket futex_q was original enqueued on
2477 * @q: the futex_q woken while waiting to be requeued
2478 * @key2: the futex_key of the requeue target futex
2479 * @timeout: the timeout associated with the wait (NULL if none)
2480 *
2481 * Detect if the task was woken on the initial futex as opposed to the requeue
2482 * target futex. If so, determine if it was a timeout or a signal that caused
2483 * the wakeup and return the appropriate error code to the caller. Must be
2484 * called with the hb lock held.
2485 *
6c23cbbd
RD
2486 * Return:
2487 * 0 = no early wakeup detected;
2488 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2489 */
2490static inline
2491int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2492 struct futex_q *q, union futex_key *key2,
2493 struct hrtimer_sleeper *timeout)
2494{
2495 int ret = 0;
2496
2497 /*
2498 * With the hb lock held, we avoid races while we process the wakeup.
2499 * We only need to hold hb (and not hb2) to ensure atomicity as the
2500 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2501 * It can't be requeued from uaddr2 to something else since we don't
2502 * support a PI aware source futex for requeue.
2503 */
2504 if (!match_futex(&q->key, key2)) {
2505 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2506 /*
2507 * We were woken prior to requeue by a timeout or a signal.
2508 * Unqueue the futex_q and determine which it was.
2509 */
2e12978a 2510 plist_del(&q->list, &hb->chain);
11d4616b 2511 hb_waiters_dec(hb);
52400ba9 2512
d58e6576 2513 /* Handle spurious wakeups gracefully */
11df6ddd 2514 ret = -EWOULDBLOCK;
52400ba9
DH
2515 if (timeout && !timeout->task)
2516 ret = -ETIMEDOUT;
d58e6576 2517 else if (signal_pending(current))
1c840c14 2518 ret = -ERESTARTNOINTR;
52400ba9
DH
2519 }
2520 return ret;
2521}
2522
2523/**
2524 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2525 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2526 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2527 * the same type, no requeueing from private to shared, etc.
2528 * @val: the expected value of uaddr
2529 * @abs_time: absolute timeout
56ec1607 2530 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2531 * @uaddr2: the pi futex we will take prior to returning to user-space
2532 *
2533 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2534 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2535 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2536 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2537 * without one, the pi logic would not know which task to boost/deboost, if
2538 * there was a need to.
52400ba9
DH
2539 *
2540 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2541 * via the following--
52400ba9 2542 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2543 * 2) wakeup on uaddr2 after a requeue
2544 * 3) signal
2545 * 4) timeout
52400ba9 2546 *
cc6db4e6 2547 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2548 *
2549 * If 2, we may then block on trying to take the rt_mutex and return via:
2550 * 5) successful lock
2551 * 6) signal
2552 * 7) timeout
2553 * 8) other lock acquisition failure
2554 *
cc6db4e6 2555 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2556 *
2557 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2558 *
6c23cbbd
RD
2559 * Return:
2560 * 0 - On success;
52400ba9
DH
2561 * <0 - On error
2562 */
b41277dc 2563static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2564 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2565 u32 __user *uaddr2)
52400ba9
DH
2566{
2567 struct hrtimer_sleeper timeout, *to = NULL;
2568 struct rt_mutex_waiter rt_waiter;
2569 struct rt_mutex *pi_mutex = NULL;
52400ba9 2570 struct futex_hash_bucket *hb;
5bdb05f9
DH
2571 union futex_key key2 = FUTEX_KEY_INIT;
2572 struct futex_q q = futex_q_init;
52400ba9 2573 int res, ret;
52400ba9 2574
6f7b0a2a
DH
2575 if (uaddr == uaddr2)
2576 return -EINVAL;
2577
52400ba9
DH
2578 if (!bitset)
2579 return -EINVAL;
2580
2581 if (abs_time) {
2582 to = &timeout;
b41277dc
DH
2583 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2584 CLOCK_REALTIME : CLOCK_MONOTONIC,
2585 HRTIMER_MODE_ABS);
52400ba9
DH
2586 hrtimer_init_sleeper(to, current);
2587 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2588 current->timer_slack_ns);
2589 }
2590
2591 /*
2592 * The waiter is allocated on our stack, manipulated by the requeue
2593 * code while we sleep on uaddr.
2594 */
2595 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2596 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2597 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2598 rt_waiter.task = NULL;
2599
9ea71503 2600 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2601 if (unlikely(ret != 0))
2602 goto out;
2603
84bc4af5
DH
2604 q.bitset = bitset;
2605 q.rt_waiter = &rt_waiter;
2606 q.requeue_pi_key = &key2;
2607
7ada876a
DH
2608 /*
2609 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2610 * count.
2611 */
b41277dc 2612 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2613 if (ret)
2614 goto out_key2;
52400ba9 2615
e9c243a5
TG
2616 /*
2617 * The check above which compares uaddrs is not sufficient for
2618 * shared futexes. We need to compare the keys:
2619 */
2620 if (match_futex(&q.key, &key2)) {
2621 ret = -EINVAL;
2622 goto out_put_keys;
2623 }
2624
52400ba9 2625 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2626 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2627
2628 spin_lock(&hb->lock);
2629 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2630 spin_unlock(&hb->lock);
2631 if (ret)
2632 goto out_put_keys;
2633
2634 /*
2635 * In order for us to be here, we know our q.key == key2, and since
2636 * we took the hb->lock above, we also know that futex_requeue() has
2637 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2638 * race with the atomic proxy lock acquisition by the requeue code. The
2639 * futex_requeue dropped our key1 reference and incremented our key2
2640 * reference count.
52400ba9
DH
2641 */
2642
2643 /* Check if the requeue code acquired the second futex for us. */
2644 if (!q.rt_waiter) {
2645 /*
2646 * Got the lock. We might not be the anticipated owner if we
2647 * did a lock-steal - fix up the PI-state in that case.
2648 */
2649 if (q.pi_state && (q.pi_state->owner != current)) {
2650 spin_lock(q.lock_ptr);
ae791a2d 2651 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2652 spin_unlock(q.lock_ptr);
2653 }
2654 } else {
2655 /*
2656 * We have been woken up by futex_unlock_pi(), a timeout, or a
2657 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2658 * the pi_state.
2659 */
f27071cb 2660 WARN_ON(!q.pi_state);
52400ba9 2661 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2662 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2663 debug_rt_mutex_free_waiter(&rt_waiter);
2664
2665 spin_lock(q.lock_ptr);
2666 /*
2667 * Fixup the pi_state owner and possibly acquire the lock if we
2668 * haven't already.
2669 */
ae791a2d 2670 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2671 /*
2672 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2673 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2674 */
2675 if (res)
2676 ret = (res < 0) ? res : 0;
2677
2678 /* Unqueue and drop the lock. */
2679 unqueue_me_pi(&q);
2680 }
2681
2682 /*
2683 * If fixup_pi_state_owner() faulted and was unable to handle the
2684 * fault, unlock the rt_mutex and return the fault to userspace.
2685 */
2686 if (ret == -EFAULT) {
b6070a8d 2687 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2688 rt_mutex_unlock(pi_mutex);
2689 } else if (ret == -EINTR) {
52400ba9 2690 /*
cc6db4e6
DH
2691 * We've already been requeued, but cannot restart by calling
2692 * futex_lock_pi() directly. We could restart this syscall, but
2693 * it would detect that the user space "val" changed and return
2694 * -EWOULDBLOCK. Save the overhead of the restart and return
2695 * -EWOULDBLOCK directly.
52400ba9 2696 */
2070887f 2697 ret = -EWOULDBLOCK;
52400ba9
DH
2698 }
2699
2700out_put_keys:
ae791a2d 2701 put_futex_key(&q.key);
c8b15a70 2702out_key2:
ae791a2d 2703 put_futex_key(&key2);
52400ba9
DH
2704
2705out:
2706 if (to) {
2707 hrtimer_cancel(&to->timer);
2708 destroy_hrtimer_on_stack(&to->timer);
2709 }
2710 return ret;
2711}
2712
0771dfef
IM
2713/*
2714 * Support for robust futexes: the kernel cleans up held futexes at
2715 * thread exit time.
2716 *
2717 * Implementation: user-space maintains a per-thread list of locks it
2718 * is holding. Upon do_exit(), the kernel carefully walks this list,
2719 * and marks all locks that are owned by this thread with the
c87e2837 2720 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2721 * always manipulated with the lock held, so the list is private and
2722 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2723 * field, to allow the kernel to clean up if the thread dies after
2724 * acquiring the lock, but just before it could have added itself to
2725 * the list. There can only be one such pending lock.
2726 */
2727
2728/**
d96ee56c
DH
2729 * sys_set_robust_list() - Set the robust-futex list head of a task
2730 * @head: pointer to the list-head
2731 * @len: length of the list-head, as userspace expects
0771dfef 2732 */
836f92ad
HC
2733SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2734 size_t, len)
0771dfef 2735{
a0c1e907
TG
2736 if (!futex_cmpxchg_enabled)
2737 return -ENOSYS;
0771dfef
IM
2738 /*
2739 * The kernel knows only one size for now:
2740 */
2741 if (unlikely(len != sizeof(*head)))
2742 return -EINVAL;
2743
2744 current->robust_list = head;
2745
2746 return 0;
2747}
2748
2749/**
d96ee56c
DH
2750 * sys_get_robust_list() - Get the robust-futex list head of a task
2751 * @pid: pid of the process [zero for current task]
2752 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2753 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2754 */
836f92ad
HC
2755SYSCALL_DEFINE3(get_robust_list, int, pid,
2756 struct robust_list_head __user * __user *, head_ptr,
2757 size_t __user *, len_ptr)
0771dfef 2758{
ba46df98 2759 struct robust_list_head __user *head;
0771dfef 2760 unsigned long ret;
bdbb776f 2761 struct task_struct *p;
0771dfef 2762
a0c1e907
TG
2763 if (!futex_cmpxchg_enabled)
2764 return -ENOSYS;
2765
bdbb776f
KC
2766 rcu_read_lock();
2767
2768 ret = -ESRCH;
0771dfef 2769 if (!pid)
bdbb776f 2770 p = current;
0771dfef 2771 else {
228ebcbe 2772 p = find_task_by_vpid(pid);
0771dfef
IM
2773 if (!p)
2774 goto err_unlock;
0771dfef
IM
2775 }
2776
bdbb776f
KC
2777 ret = -EPERM;
2778 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2779 goto err_unlock;
2780
2781 head = p->robust_list;
2782 rcu_read_unlock();
2783
0771dfef
IM
2784 if (put_user(sizeof(*head), len_ptr))
2785 return -EFAULT;
2786 return put_user(head, head_ptr);
2787
2788err_unlock:
aaa2a97e 2789 rcu_read_unlock();
0771dfef
IM
2790
2791 return ret;
2792}
2793
2794/*
2795 * Process a futex-list entry, check whether it's owned by the
2796 * dying task, and do notification if so:
2797 */
e3f2ddea 2798int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2799{
7cfdaf38 2800 u32 uval, uninitialized_var(nval), mval;
0771dfef 2801
8f17d3a5
IM
2802retry:
2803 if (get_user(uval, uaddr))
0771dfef
IM
2804 return -1;
2805
b488893a 2806 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2807 /*
2808 * Ok, this dying thread is truly holding a futex
2809 * of interest. Set the OWNER_DIED bit atomically
2810 * via cmpxchg, and if the value had FUTEX_WAITERS
2811 * set, wake up a waiter (if any). (We have to do a
2812 * futex_wake() even if OWNER_DIED is already set -
2813 * to handle the rare but possible case of recursive
2814 * thread-death.) The rest of the cleanup is done in
2815 * userspace.
2816 */
e3f2ddea 2817 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2818 /*
2819 * We are not holding a lock here, but we want to have
2820 * the pagefault_disable/enable() protection because
2821 * we want to handle the fault gracefully. If the
2822 * access fails we try to fault in the futex with R/W
2823 * verification via get_user_pages. get_user() above
2824 * does not guarantee R/W access. If that fails we
2825 * give up and leave the futex locked.
2826 */
2827 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2828 if (fault_in_user_writeable(uaddr))
2829 return -1;
2830 goto retry;
2831 }
c87e2837 2832 if (nval != uval)
8f17d3a5 2833 goto retry;
0771dfef 2834
e3f2ddea
IM
2835 /*
2836 * Wake robust non-PI futexes here. The wakeup of
2837 * PI futexes happens in exit_pi_state():
2838 */
36cf3b5c 2839 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2840 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2841 }
2842 return 0;
2843}
2844
e3f2ddea
IM
2845/*
2846 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2847 */
2848static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2849 struct robust_list __user * __user *head,
1dcc41bb 2850 unsigned int *pi)
e3f2ddea
IM
2851{
2852 unsigned long uentry;
2853
ba46df98 2854 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2855 return -EFAULT;
2856
ba46df98 2857 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2858 *pi = uentry & 1;
2859
2860 return 0;
2861}
2862
0771dfef
IM
2863/*
2864 * Walk curr->robust_list (very carefully, it's a userspace list!)
2865 * and mark any locks found there dead, and notify any waiters.
2866 *
2867 * We silently return on any sign of list-walking problem.
2868 */
2869void exit_robust_list(struct task_struct *curr)
2870{
2871 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2872 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2873 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2874 unsigned int uninitialized_var(next_pi);
0771dfef 2875 unsigned long futex_offset;
9f96cb1e 2876 int rc;
0771dfef 2877
a0c1e907
TG
2878 if (!futex_cmpxchg_enabled)
2879 return;
2880
0771dfef
IM
2881 /*
2882 * Fetch the list head (which was registered earlier, via
2883 * sys_set_robust_list()):
2884 */
e3f2ddea 2885 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2886 return;
2887 /*
2888 * Fetch the relative futex offset:
2889 */
2890 if (get_user(futex_offset, &head->futex_offset))
2891 return;
2892 /*
2893 * Fetch any possibly pending lock-add first, and handle it
2894 * if it exists:
2895 */
e3f2ddea 2896 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2897 return;
e3f2ddea 2898
9f96cb1e 2899 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2900 while (entry != &head->list) {
9f96cb1e
MS
2901 /*
2902 * Fetch the next entry in the list before calling
2903 * handle_futex_death:
2904 */
2905 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2906 /*
2907 * A pending lock might already be on the list, so
c87e2837 2908 * don't process it twice:
0771dfef
IM
2909 */
2910 if (entry != pending)
ba46df98 2911 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2912 curr, pi))
0771dfef 2913 return;
9f96cb1e 2914 if (rc)
0771dfef 2915 return;
9f96cb1e
MS
2916 entry = next_entry;
2917 pi = next_pi;
0771dfef
IM
2918 /*
2919 * Avoid excessively long or circular lists:
2920 */
2921 if (!--limit)
2922 break;
2923
2924 cond_resched();
2925 }
9f96cb1e
MS
2926
2927 if (pending)
2928 handle_futex_death((void __user *)pending + futex_offset,
2929 curr, pip);
0771dfef
IM
2930}
2931
c19384b5 2932long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2933 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2934{
81b40539 2935 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2936 unsigned int flags = 0;
34f01cc1
ED
2937
2938 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2939 flags |= FLAGS_SHARED;
1da177e4 2940
b41277dc
DH
2941 if (op & FUTEX_CLOCK_REALTIME) {
2942 flags |= FLAGS_CLOCKRT;
2943 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2944 return -ENOSYS;
2945 }
1da177e4 2946
59263b51
TG
2947 switch (cmd) {
2948 case FUTEX_LOCK_PI:
2949 case FUTEX_UNLOCK_PI:
2950 case FUTEX_TRYLOCK_PI:
2951 case FUTEX_WAIT_REQUEUE_PI:
2952 case FUTEX_CMP_REQUEUE_PI:
2953 if (!futex_cmpxchg_enabled)
2954 return -ENOSYS;
2955 }
2956
34f01cc1 2957 switch (cmd) {
1da177e4 2958 case FUTEX_WAIT:
cd689985
TG
2959 val3 = FUTEX_BITSET_MATCH_ANY;
2960 case FUTEX_WAIT_BITSET:
81b40539 2961 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2962 case FUTEX_WAKE:
cd689985
TG
2963 val3 = FUTEX_BITSET_MATCH_ANY;
2964 case FUTEX_WAKE_BITSET:
81b40539 2965 return futex_wake(uaddr, flags, val, val3);
1da177e4 2966 case FUTEX_REQUEUE:
81b40539 2967 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2968 case FUTEX_CMP_REQUEUE:
81b40539 2969 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2970 case FUTEX_WAKE_OP:
81b40539 2971 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2972 case FUTEX_LOCK_PI:
81b40539 2973 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2974 case FUTEX_UNLOCK_PI:
81b40539 2975 return futex_unlock_pi(uaddr, flags);
c87e2837 2976 case FUTEX_TRYLOCK_PI:
81b40539 2977 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2978 case FUTEX_WAIT_REQUEUE_PI:
2979 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2980 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2981 uaddr2);
52400ba9 2982 case FUTEX_CMP_REQUEUE_PI:
81b40539 2983 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2984 }
81b40539 2985 return -ENOSYS;
1da177e4
LT
2986}
2987
2988
17da2bd9
HC
2989SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2990 struct timespec __user *, utime, u32 __user *, uaddr2,
2991 u32, val3)
1da177e4 2992{
c19384b5
PP
2993 struct timespec ts;
2994 ktime_t t, *tp = NULL;
e2970f2f 2995 u32 val2 = 0;
34f01cc1 2996 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2997
cd689985 2998 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2999 cmd == FUTEX_WAIT_BITSET ||
3000 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 3001 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3002 return -EFAULT;
c19384b5 3003 if (!timespec_valid(&ts))
9741ef96 3004 return -EINVAL;
c19384b5
PP
3005
3006 t = timespec_to_ktime(ts);
34f01cc1 3007 if (cmd == FUTEX_WAIT)
5a7780e7 3008 t = ktime_add_safe(ktime_get(), t);
c19384b5 3009 tp = &t;
1da177e4
LT
3010 }
3011 /*
52400ba9 3012 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3013 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3014 */
f54f0986 3015 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3016 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3017 val2 = (u32) (unsigned long) utime;
1da177e4 3018
c19384b5 3019 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3020}
3021
03b8c7b6 3022static void __init futex_detect_cmpxchg(void)
1da177e4 3023{
03b8c7b6 3024#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3025 u32 curval;
03b8c7b6
HC
3026
3027 /*
3028 * This will fail and we want it. Some arch implementations do
3029 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3030 * functionality. We want to know that before we call in any
3031 * of the complex code paths. Also we want to prevent
3032 * registration of robust lists in that case. NULL is
3033 * guaranteed to fault and we get -EFAULT on functional
3034 * implementation, the non-functional ones will return
3035 * -ENOSYS.
3036 */
3037 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3038 futex_cmpxchg_enabled = 1;
3039#endif
3040}
3041
3042static int __init futex_init(void)
3043{
63b1a816 3044 unsigned int futex_shift;
a52b89eb
DB
3045 unsigned long i;
3046
3047#if CONFIG_BASE_SMALL
3048 futex_hashsize = 16;
3049#else
3050 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3051#endif
3052
3053 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3054 futex_hashsize, 0,
3055 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3056 &futex_shift, NULL,
3057 futex_hashsize, futex_hashsize);
3058 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3059
3060 futex_detect_cmpxchg();
a0c1e907 3061
a52b89eb 3062 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3063 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3064 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3065 spin_lock_init(&futex_queues[i].lock);
3066 }
3067
1da177e4
LT
3068 return 0;
3069}
f6d107fb 3070__initcall(futex_init);