]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/futex.c
[PATCH] pi-futex: rt mutex futex api
[mirror_ubuntu-hirsute-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
1da177e4
LT
15 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
16 * enough at me, Linus for the original (flawed) idea, Matthew
17 * Kirkwood for proof-of-concept implementation.
18 *
19 * "The futexes are also cursed."
20 * "But they come in a choice of three flavours!"
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License as published by
24 * the Free Software Foundation; either version 2 of the License, or
25 * (at your option) any later version.
26 *
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
31 *
32 * You should have received a copy of the GNU General Public License
33 * along with this program; if not, write to the Free Software
34 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 */
36#include <linux/slab.h>
37#include <linux/poll.h>
38#include <linux/fs.h>
39#include <linux/file.h>
40#include <linux/jhash.h>
41#include <linux/init.h>
42#include <linux/futex.h>
43#include <linux/mount.h>
44#include <linux/pagemap.h>
45#include <linux/syscalls.h>
7ed20e1a 46#include <linux/signal.h>
4732efbe 47#include <asm/futex.h>
1da177e4
LT
48
49#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
50
51/*
52 * Futexes are matched on equal values of this key.
53 * The key type depends on whether it's a shared or private mapping.
54 * Don't rearrange members without looking at hash_futex().
55 *
56 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
57 * We set bit 0 to indicate if it's an inode-based key.
58 */
59union futex_key {
60 struct {
61 unsigned long pgoff;
62 struct inode *inode;
63 int offset;
64 } shared;
65 struct {
e2970f2f 66 unsigned long address;
1da177e4
LT
67 struct mm_struct *mm;
68 int offset;
69 } private;
70 struct {
71 unsigned long word;
72 void *ptr;
73 int offset;
74 } both;
75};
76
77/*
78 * We use this hashed waitqueue instead of a normal wait_queue_t, so
79 * we can wake only the relevant ones (hashed queues may be shared).
80 *
81 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
82 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
83 * The order of wakup is always to make the first condition true, then
84 * wake up q->waiters, then make the second condition true.
85 */
86struct futex_q {
87 struct list_head list;
88 wait_queue_head_t waiters;
89
e2970f2f 90 /* Which hash list lock to use: */
1da177e4
LT
91 spinlock_t *lock_ptr;
92
e2970f2f 93 /* Key which the futex is hashed on: */
1da177e4
LT
94 union futex_key key;
95
e2970f2f 96 /* For fd, sigio sent using these: */
1da177e4
LT
97 int fd;
98 struct file *filp;
99};
100
101/*
102 * Split the global futex_lock into every hash list lock.
103 */
104struct futex_hash_bucket {
105 spinlock_t lock;
106 struct list_head chain;
107};
108
109static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
110
111/* Futex-fs vfsmount entry: */
112static struct vfsmount *futex_mnt;
113
114/*
115 * We hash on the keys returned from get_futex_key (see below).
116 */
117static struct futex_hash_bucket *hash_futex(union futex_key *key)
118{
119 u32 hash = jhash2((u32*)&key->both.word,
120 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
121 key->both.offset);
122 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
123}
124
125/*
126 * Return 1 if two futex_keys are equal, 0 otherwise.
127 */
128static inline int match_futex(union futex_key *key1, union futex_key *key2)
129{
130 return (key1->both.word == key2->both.word
131 && key1->both.ptr == key2->both.ptr
132 && key1->both.offset == key2->both.offset);
133}
134
135/*
136 * Get parameters which are the keys for a futex.
137 *
138 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
139 * offset_within_page). For private mappings, it's (uaddr, current->mm).
140 * We can usually work out the index without swapping in the page.
141 *
142 * Returns: 0, or negative error code.
143 * The key words are stored in *key on success.
144 *
145 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
146 */
e2970f2f 147static int get_futex_key(u32 __user *uaddr, union futex_key *key)
1da177e4 148{
e2970f2f 149 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
150 struct mm_struct *mm = current->mm;
151 struct vm_area_struct *vma;
152 struct page *page;
153 int err;
154
155 /*
156 * The futex address must be "naturally" aligned.
157 */
e2970f2f 158 key->both.offset = address % PAGE_SIZE;
1da177e4
LT
159 if (unlikely((key->both.offset % sizeof(u32)) != 0))
160 return -EINVAL;
e2970f2f 161 address -= key->both.offset;
1da177e4
LT
162
163 /*
164 * The futex is hashed differently depending on whether
165 * it's in a shared or private mapping. So check vma first.
166 */
e2970f2f 167 vma = find_extend_vma(mm, address);
1da177e4
LT
168 if (unlikely(!vma))
169 return -EFAULT;
170
171 /*
172 * Permissions.
173 */
174 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
175 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
176
177 /*
178 * Private mappings are handled in a simple way.
179 *
180 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
181 * it's a read-only handle, it's expected that futexes attach to
182 * the object not the particular process. Therefore we use
183 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
184 * mappings of _writable_ handles.
185 */
186 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
187 key->private.mm = mm;
e2970f2f 188 key->private.address = address;
1da177e4
LT
189 return 0;
190 }
191
192 /*
193 * Linear file mappings are also simple.
194 */
195 key->shared.inode = vma->vm_file->f_dentry->d_inode;
196 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
197 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 198 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
199 + vma->vm_pgoff);
200 return 0;
201 }
202
203 /*
204 * We could walk the page table to read the non-linear
205 * pte, and get the page index without fetching the page
206 * from swap. But that's a lot of code to duplicate here
207 * for a rare case, so we simply fetch the page.
208 */
e2970f2f 209 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
210 if (err >= 0) {
211 key->shared.pgoff =
212 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
213 put_page(page);
214 return 0;
215 }
216 return err;
217}
218
219/*
220 * Take a reference to the resource addressed by a key.
221 * Can be called while holding spinlocks.
222 *
223 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
224 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
225 */
226static inline void get_key_refs(union futex_key *key)
227{
228 if (key->both.ptr != 0) {
229 if (key->both.offset & 1)
230 atomic_inc(&key->shared.inode->i_count);
231 else
232 atomic_inc(&key->private.mm->mm_count);
233 }
234}
235
236/*
237 * Drop a reference to the resource addressed by a key.
238 * The hash bucket spinlock must not be held.
239 */
240static void drop_key_refs(union futex_key *key)
241{
242 if (key->both.ptr != 0) {
243 if (key->both.offset & 1)
244 iput(key->shared.inode);
245 else
246 mmdrop(key->private.mm);
247 }
248}
249
e2970f2f 250static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
251{
252 int ret;
253
254 inc_preempt_count();
e2970f2f 255 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
1da177e4
LT
256 dec_preempt_count();
257
258 return ret ? -EFAULT : 0;
259}
260
261/*
262 * The hash bucket lock must be held when this is called.
263 * Afterwards, the futex_q must not be accessed.
264 */
265static void wake_futex(struct futex_q *q)
266{
267 list_del_init(&q->list);
268 if (q->filp)
269 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
270 /*
271 * The lock in wake_up_all() is a crucial memory barrier after the
272 * list_del_init() and also before assigning to q->lock_ptr.
273 */
274 wake_up_all(&q->waiters);
275 /*
276 * The waiting task can free the futex_q as soon as this is written,
277 * without taking any locks. This must come last.
8e31108b
AM
278 *
279 * A memory barrier is required here to prevent the following store
280 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
281 * at the end of wake_up_all() does not prevent this store from
282 * moving.
1da177e4 283 */
8e31108b 284 wmb();
1da177e4
LT
285 q->lock_ptr = NULL;
286}
287
288/*
289 * Wake up all waiters hashed on the physical page that is mapped
290 * to this virtual address:
291 */
e2970f2f 292static int futex_wake(u32 __user *uaddr, int nr_wake)
1da177e4 293{
e2970f2f 294 struct futex_hash_bucket *hb;
1da177e4 295 struct futex_q *this, *next;
e2970f2f
IM
296 struct list_head *head;
297 union futex_key key;
1da177e4
LT
298 int ret;
299
300 down_read(&current->mm->mmap_sem);
301
302 ret = get_futex_key(uaddr, &key);
303 if (unlikely(ret != 0))
304 goto out;
305
e2970f2f
IM
306 hb = hash_futex(&key);
307 spin_lock(&hb->lock);
308 head = &hb->chain;
1da177e4
LT
309
310 list_for_each_entry_safe(this, next, head, list) {
311 if (match_futex (&this->key, &key)) {
312 wake_futex(this);
313 if (++ret >= nr_wake)
314 break;
315 }
316 }
317
e2970f2f 318 spin_unlock(&hb->lock);
1da177e4
LT
319out:
320 up_read(&current->mm->mmap_sem);
321 return ret;
322}
323
4732efbe
JJ
324/*
325 * Wake up all waiters hashed on the physical page that is mapped
326 * to this virtual address:
327 */
e2970f2f
IM
328static int
329futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
330 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
331{
332 union futex_key key1, key2;
e2970f2f 333 struct futex_hash_bucket *hb1, *hb2;
4732efbe
JJ
334 struct list_head *head;
335 struct futex_q *this, *next;
336 int ret, op_ret, attempt = 0;
337
338retryfull:
339 down_read(&current->mm->mmap_sem);
340
341 ret = get_futex_key(uaddr1, &key1);
342 if (unlikely(ret != 0))
343 goto out;
344 ret = get_futex_key(uaddr2, &key2);
345 if (unlikely(ret != 0))
346 goto out;
347
e2970f2f
IM
348 hb1 = hash_futex(&key1);
349 hb2 = hash_futex(&key2);
4732efbe
JJ
350
351retry:
e2970f2f
IM
352 if (hb1 < hb2)
353 spin_lock(&hb1->lock);
354 spin_lock(&hb2->lock);
355 if (hb1 > hb2)
356 spin_lock(&hb1->lock);
4732efbe 357
e2970f2f 358 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 359 if (unlikely(op_ret < 0)) {
e2970f2f 360 u32 dummy;
4732efbe 361
e2970f2f
IM
362 spin_unlock(&hb1->lock);
363 if (hb1 != hb2)
364 spin_unlock(&hb2->lock);
4732efbe 365
7ee1dd3f 366#ifndef CONFIG_MMU
e2970f2f
IM
367 /*
368 * we don't get EFAULT from MMU faults if we don't have an MMU,
369 * but we might get them from range checking
370 */
7ee1dd3f
DH
371 ret = op_ret;
372 goto out;
373#endif
374
796f8d9b
DG
375 if (unlikely(op_ret != -EFAULT)) {
376 ret = op_ret;
377 goto out;
378 }
379
e2970f2f
IM
380 /*
381 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
382 * *(int __user *)uaddr2, but we can't modify it
383 * non-atomically. Therefore, if get_user below is not
384 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
385 * still holding the mmap_sem.
386 */
4732efbe
JJ
387 if (attempt++) {
388 struct vm_area_struct * vma;
389 struct mm_struct *mm = current->mm;
e2970f2f 390 unsigned long address = (unsigned long)uaddr2;
4732efbe
JJ
391
392 ret = -EFAULT;
393 if (attempt >= 2 ||
e2970f2f
IM
394 !(vma = find_vma(mm, address)) ||
395 vma->vm_start > address ||
4732efbe
JJ
396 !(vma->vm_flags & VM_WRITE))
397 goto out;
398
e2970f2f 399 switch (handle_mm_fault(mm, vma, address, 1)) {
4732efbe
JJ
400 case VM_FAULT_MINOR:
401 current->min_flt++;
402 break;
403 case VM_FAULT_MAJOR:
404 current->maj_flt++;
405 break;
406 default:
407 goto out;
408 }
409 goto retry;
410 }
411
e2970f2f
IM
412 /*
413 * If we would have faulted, release mmap_sem,
414 * fault it in and start all over again.
415 */
4732efbe
JJ
416 up_read(&current->mm->mmap_sem);
417
e2970f2f 418 ret = get_user(dummy, uaddr2);
4732efbe
JJ
419 if (ret)
420 return ret;
421
422 goto retryfull;
423 }
424
e2970f2f 425 head = &hb1->chain;
4732efbe
JJ
426
427 list_for_each_entry_safe(this, next, head, list) {
428 if (match_futex (&this->key, &key1)) {
429 wake_futex(this);
430 if (++ret >= nr_wake)
431 break;
432 }
433 }
434
435 if (op_ret > 0) {
e2970f2f 436 head = &hb2->chain;
4732efbe
JJ
437
438 op_ret = 0;
439 list_for_each_entry_safe(this, next, head, list) {
440 if (match_futex (&this->key, &key2)) {
441 wake_futex(this);
442 if (++op_ret >= nr_wake2)
443 break;
444 }
445 }
446 ret += op_ret;
447 }
448
e2970f2f
IM
449 spin_unlock(&hb1->lock);
450 if (hb1 != hb2)
451 spin_unlock(&hb2->lock);
4732efbe
JJ
452out:
453 up_read(&current->mm->mmap_sem);
454 return ret;
455}
456
1da177e4
LT
457/*
458 * Requeue all waiters hashed on one physical page to another
459 * physical page.
460 */
e2970f2f
IM
461static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
462 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
463{
464 union futex_key key1, key2;
e2970f2f 465 struct futex_hash_bucket *hb1, *hb2;
1da177e4
LT
466 struct list_head *head1;
467 struct futex_q *this, *next;
468 int ret, drop_count = 0;
469
470 retry:
471 down_read(&current->mm->mmap_sem);
472
473 ret = get_futex_key(uaddr1, &key1);
474 if (unlikely(ret != 0))
475 goto out;
476 ret = get_futex_key(uaddr2, &key2);
477 if (unlikely(ret != 0))
478 goto out;
479
e2970f2f
IM
480 hb1 = hash_futex(&key1);
481 hb2 = hash_futex(&key2);
1da177e4 482
e2970f2f
IM
483 if (hb1 < hb2)
484 spin_lock(&hb1->lock);
485 spin_lock(&hb2->lock);
486 if (hb1 > hb2)
487 spin_lock(&hb1->lock);
1da177e4 488
e2970f2f
IM
489 if (likely(cmpval != NULL)) {
490 u32 curval;
1da177e4 491
e2970f2f 492 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
493
494 if (unlikely(ret)) {
e2970f2f
IM
495 spin_unlock(&hb1->lock);
496 if (hb1 != hb2)
497 spin_unlock(&hb2->lock);
1da177e4 498
e2970f2f
IM
499 /*
500 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
501 * it in and start all over again.
502 */
503 up_read(&current->mm->mmap_sem);
504
e2970f2f 505 ret = get_user(curval, uaddr1);
1da177e4
LT
506
507 if (!ret)
508 goto retry;
509
510 return ret;
511 }
e2970f2f 512 if (curval != *cmpval) {
1da177e4
LT
513 ret = -EAGAIN;
514 goto out_unlock;
515 }
516 }
517
e2970f2f 518 head1 = &hb1->chain;
1da177e4
LT
519 list_for_each_entry_safe(this, next, head1, list) {
520 if (!match_futex (&this->key, &key1))
521 continue;
522 if (++ret <= nr_wake) {
523 wake_futex(this);
524 } else {
e2970f2f
IM
525 list_move_tail(&this->list, &hb2->chain);
526 this->lock_ptr = &hb2->lock;
1da177e4
LT
527 this->key = key2;
528 get_key_refs(&key2);
529 drop_count++;
530
531 if (ret - nr_wake >= nr_requeue)
532 break;
e2970f2f
IM
533 /* Make sure to stop if key1 == key2: */
534 if (head1 == &hb2->chain && head1 != &next->list)
1da177e4
LT
535 head1 = &this->list;
536 }
537 }
538
539out_unlock:
e2970f2f
IM
540 spin_unlock(&hb1->lock);
541 if (hb1 != hb2)
542 spin_unlock(&hb2->lock);
1da177e4
LT
543
544 /* drop_key_refs() must be called outside the spinlocks. */
545 while (--drop_count >= 0)
546 drop_key_refs(&key1);
547
548out:
549 up_read(&current->mm->mmap_sem);
550 return ret;
551}
552
553/* The key must be already stored in q->key. */
554static inline struct futex_hash_bucket *
555queue_lock(struct futex_q *q, int fd, struct file *filp)
556{
e2970f2f 557 struct futex_hash_bucket *hb;
1da177e4
LT
558
559 q->fd = fd;
560 q->filp = filp;
561
562 init_waitqueue_head(&q->waiters);
563
564 get_key_refs(&q->key);
e2970f2f
IM
565 hb = hash_futex(&q->key);
566 q->lock_ptr = &hb->lock;
1da177e4 567
e2970f2f
IM
568 spin_lock(&hb->lock);
569 return hb;
1da177e4
LT
570}
571
e2970f2f 572static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 573{
e2970f2f
IM
574 list_add_tail(&q->list, &hb->chain);
575 spin_unlock(&hb->lock);
1da177e4
LT
576}
577
578static inline void
e2970f2f 579queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 580{
e2970f2f 581 spin_unlock(&hb->lock);
1da177e4
LT
582 drop_key_refs(&q->key);
583}
584
585/*
586 * queue_me and unqueue_me must be called as a pair, each
587 * exactly once. They are called with the hashed spinlock held.
588 */
589
590/* The key must be already stored in q->key. */
591static void queue_me(struct futex_q *q, int fd, struct file *filp)
592{
e2970f2f
IM
593 struct futex_hash_bucket *hb;
594
595 hb = queue_lock(q, fd, filp);
596 __queue_me(q, hb);
1da177e4
LT
597}
598
599/* Return 1 if we were still queued (ie. 0 means we were woken) */
600static int unqueue_me(struct futex_q *q)
601{
1da177e4 602 spinlock_t *lock_ptr;
e2970f2f 603 int ret = 0;
1da177e4
LT
604
605 /* In the common case we don't take the spinlock, which is nice. */
606 retry:
607 lock_ptr = q->lock_ptr;
608 if (lock_ptr != 0) {
609 spin_lock(lock_ptr);
610 /*
611 * q->lock_ptr can change between reading it and
612 * spin_lock(), causing us to take the wrong lock. This
613 * corrects the race condition.
614 *
615 * Reasoning goes like this: if we have the wrong lock,
616 * q->lock_ptr must have changed (maybe several times)
617 * between reading it and the spin_lock(). It can
618 * change again after the spin_lock() but only if it was
619 * already changed before the spin_lock(). It cannot,
620 * however, change back to the original value. Therefore
621 * we can detect whether we acquired the correct lock.
622 */
623 if (unlikely(lock_ptr != q->lock_ptr)) {
624 spin_unlock(lock_ptr);
625 goto retry;
626 }
627 WARN_ON(list_empty(&q->list));
628 list_del(&q->list);
629 spin_unlock(lock_ptr);
630 ret = 1;
631 }
632
633 drop_key_refs(&q->key);
634 return ret;
635}
636
e2970f2f 637static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
1da177e4
LT
638{
639 DECLARE_WAITQUEUE(wait, current);
e2970f2f 640 struct futex_hash_bucket *hb;
1da177e4 641 struct futex_q q;
e2970f2f
IM
642 u32 uval;
643 int ret;
1da177e4
LT
644
645 retry:
646 down_read(&current->mm->mmap_sem);
647
648 ret = get_futex_key(uaddr, &q.key);
649 if (unlikely(ret != 0))
650 goto out_release_sem;
651
e2970f2f 652 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
653
654 /*
655 * Access the page AFTER the futex is queued.
656 * Order is important:
657 *
658 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
659 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
660 *
661 * The basic logical guarantee of a futex is that it blocks ONLY
662 * if cond(var) is known to be true at the time of blocking, for
663 * any cond. If we queued after testing *uaddr, that would open
664 * a race condition where we could block indefinitely with
665 * cond(var) false, which would violate the guarantee.
666 *
667 * A consequence is that futex_wait() can return zero and absorb
668 * a wakeup when *uaddr != val on entry to the syscall. This is
669 * rare, but normal.
670 *
671 * We hold the mmap semaphore, so the mapping cannot have changed
672 * since we looked it up in get_futex_key.
673 */
e2970f2f 674 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
675
676 if (unlikely(ret)) {
e2970f2f 677 queue_unlock(&q, hb);
1da177e4 678
e2970f2f
IM
679 /*
680 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
681 * start all over again.
682 */
683 up_read(&current->mm->mmap_sem);
684
e2970f2f 685 ret = get_user(uval, uaddr);
1da177e4
LT
686
687 if (!ret)
688 goto retry;
689 return ret;
690 }
e2970f2f 691 if (uval != val) {
1da177e4 692 ret = -EWOULDBLOCK;
e2970f2f 693 queue_unlock(&q, hb);
1da177e4
LT
694 goto out_release_sem;
695 }
696
697 /* Only actually queue if *uaddr contained val. */
e2970f2f 698 __queue_me(&q, hb);
1da177e4
LT
699
700 /*
701 * Now the futex is queued and we have checked the data, we
702 * don't want to hold mmap_sem while we sleep.
703 */
704 up_read(&current->mm->mmap_sem);
705
706 /*
707 * There might have been scheduling since the queue_me(), as we
708 * cannot hold a spinlock across the get_user() in case it
709 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
710 * queueing ourselves into the futex hash. This code thus has to
711 * rely on the futex_wake() code removing us from hash when it
712 * wakes us up.
713 */
714
715 /* add_wait_queue is the barrier after __set_current_state. */
716 __set_current_state(TASK_INTERRUPTIBLE);
717 add_wait_queue(&q.waiters, &wait);
718 /*
719 * !list_empty() is safe here without any lock.
720 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
721 */
722 if (likely(!list_empty(&q.list)))
723 time = schedule_timeout(time);
724 __set_current_state(TASK_RUNNING);
725
726 /*
727 * NOTE: we don't remove ourselves from the waitqueue because
728 * we are the only user of it.
729 */
730
731 /* If we were woken (and unqueued), we succeeded, whatever. */
732 if (!unqueue_me(&q))
733 return 0;
734 if (time == 0)
735 return -ETIMEDOUT;
e2970f2f
IM
736 /*
737 * We expect signal_pending(current), but another thread may
738 * have handled it for us already.
739 */
1da177e4
LT
740 return -EINTR;
741
742 out_release_sem:
743 up_read(&current->mm->mmap_sem);
744 return ret;
745}
746
747static int futex_close(struct inode *inode, struct file *filp)
748{
749 struct futex_q *q = filp->private_data;
750
751 unqueue_me(q);
752 kfree(q);
e2970f2f 753
1da177e4
LT
754 return 0;
755}
756
757/* This is one-shot: once it's gone off you need a new fd */
758static unsigned int futex_poll(struct file *filp,
759 struct poll_table_struct *wait)
760{
761 struct futex_q *q = filp->private_data;
762 int ret = 0;
763
764 poll_wait(filp, &q->waiters, wait);
765
766 /*
767 * list_empty() is safe here without any lock.
768 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
769 */
770 if (list_empty(&q->list))
771 ret = POLLIN | POLLRDNORM;
772
773 return ret;
774}
775
776static struct file_operations futex_fops = {
777 .release = futex_close,
778 .poll = futex_poll,
779};
780
781/*
782 * Signal allows caller to avoid the race which would occur if they
783 * set the sigio stuff up afterwards.
784 */
e2970f2f 785static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
786{
787 struct futex_q *q;
788 struct file *filp;
789 int ret, err;
790
791 ret = -EINVAL;
7ed20e1a 792 if (!valid_signal(signal))
1da177e4
LT
793 goto out;
794
795 ret = get_unused_fd();
796 if (ret < 0)
797 goto out;
798 filp = get_empty_filp();
799 if (!filp) {
800 put_unused_fd(ret);
801 ret = -ENFILE;
802 goto out;
803 }
804 filp->f_op = &futex_fops;
805 filp->f_vfsmnt = mntget(futex_mnt);
806 filp->f_dentry = dget(futex_mnt->mnt_root);
807 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
808
809 if (signal) {
1da177e4
LT
810 err = f_setown(filp, current->pid, 1);
811 if (err < 0) {
39ed3fde 812 goto error;
1da177e4
LT
813 }
814 filp->f_owner.signum = signal;
815 }
816
817 q = kmalloc(sizeof(*q), GFP_KERNEL);
818 if (!q) {
39ed3fde
PE
819 err = -ENOMEM;
820 goto error;
1da177e4
LT
821 }
822
823 down_read(&current->mm->mmap_sem);
824 err = get_futex_key(uaddr, &q->key);
825
826 if (unlikely(err != 0)) {
827 up_read(&current->mm->mmap_sem);
1da177e4 828 kfree(q);
39ed3fde 829 goto error;
1da177e4
LT
830 }
831
832 /*
833 * queue_me() must be called before releasing mmap_sem, because
834 * key->shared.inode needs to be referenced while holding it.
835 */
836 filp->private_data = q;
837
838 queue_me(q, ret, filp);
839 up_read(&current->mm->mmap_sem);
840
841 /* Now we map fd to filp, so userspace can access it */
842 fd_install(ret, filp);
843out:
844 return ret;
39ed3fde
PE
845error:
846 put_unused_fd(ret);
847 put_filp(filp);
848 ret = err;
849 goto out;
1da177e4
LT
850}
851
0771dfef
IM
852/*
853 * Support for robust futexes: the kernel cleans up held futexes at
854 * thread exit time.
855 *
856 * Implementation: user-space maintains a per-thread list of locks it
857 * is holding. Upon do_exit(), the kernel carefully walks this list,
858 * and marks all locks that are owned by this thread with the
859 * FUTEX_OWNER_DEAD bit, and wakes up a waiter (if any). The list is
860 * always manipulated with the lock held, so the list is private and
861 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
862 * field, to allow the kernel to clean up if the thread dies after
863 * acquiring the lock, but just before it could have added itself to
864 * the list. There can only be one such pending lock.
865 */
866
867/**
868 * sys_set_robust_list - set the robust-futex list head of a task
869 * @head: pointer to the list-head
870 * @len: length of the list-head, as userspace expects
871 */
872asmlinkage long
873sys_set_robust_list(struct robust_list_head __user *head,
874 size_t len)
875{
876 /*
877 * The kernel knows only one size for now:
878 */
879 if (unlikely(len != sizeof(*head)))
880 return -EINVAL;
881
882 current->robust_list = head;
883
884 return 0;
885}
886
887/**
888 * sys_get_robust_list - get the robust-futex list head of a task
889 * @pid: pid of the process [zero for current task]
890 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
891 * @len_ptr: pointer to a length field, the kernel fills in the header size
892 */
893asmlinkage long
894sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
895 size_t __user *len_ptr)
896{
897 struct robust_list_head *head;
898 unsigned long ret;
899
900 if (!pid)
901 head = current->robust_list;
902 else {
903 struct task_struct *p;
904
905 ret = -ESRCH;
906 read_lock(&tasklist_lock);
907 p = find_task_by_pid(pid);
908 if (!p)
909 goto err_unlock;
910 ret = -EPERM;
911 if ((current->euid != p->euid) && (current->euid != p->uid) &&
912 !capable(CAP_SYS_PTRACE))
913 goto err_unlock;
914 head = p->robust_list;
915 read_unlock(&tasklist_lock);
916 }
917
918 if (put_user(sizeof(*head), len_ptr))
919 return -EFAULT;
920 return put_user(head, head_ptr);
921
922err_unlock:
923 read_unlock(&tasklist_lock);
924
925 return ret;
926}
927
928/*
929 * Process a futex-list entry, check whether it's owned by the
930 * dying task, and do notification if so:
931 */
8f17d3a5 932int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
0771dfef 933{
8f17d3a5 934 u32 uval;
0771dfef 935
8f17d3a5
IM
936retry:
937 if (get_user(uval, uaddr))
0771dfef
IM
938 return -1;
939
8f17d3a5 940 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
941 /*
942 * Ok, this dying thread is truly holding a futex
943 * of interest. Set the OWNER_DIED bit atomically
944 * via cmpxchg, and if the value had FUTEX_WAITERS
945 * set, wake up a waiter (if any). (We have to do a
946 * futex_wake() even if OWNER_DIED is already set -
947 * to handle the rare but possible case of recursive
948 * thread-death.) The rest of the cleanup is done in
949 * userspace.
950 */
8f17d3a5
IM
951 if (futex_atomic_cmpxchg_inatomic(uaddr, uval,
952 uval | FUTEX_OWNER_DIED) != uval)
953 goto retry;
0771dfef 954
8f17d3a5 955 if (uval & FUTEX_WAITERS)
e2970f2f 956 futex_wake(uaddr, 1);
0771dfef
IM
957 }
958 return 0;
959}
960
961/*
962 * Walk curr->robust_list (very carefully, it's a userspace list!)
963 * and mark any locks found there dead, and notify any waiters.
964 *
965 * We silently return on any sign of list-walking problem.
966 */
967void exit_robust_list(struct task_struct *curr)
968{
969 struct robust_list_head __user *head = curr->robust_list;
970 struct robust_list __user *entry, *pending;
971 unsigned int limit = ROBUST_LIST_LIMIT;
972 unsigned long futex_offset;
973
974 /*
975 * Fetch the list head (which was registered earlier, via
976 * sys_set_robust_list()):
977 */
978 if (get_user(entry, &head->list.next))
979 return;
980 /*
981 * Fetch the relative futex offset:
982 */
983 if (get_user(futex_offset, &head->futex_offset))
984 return;
985 /*
986 * Fetch any possibly pending lock-add first, and handle it
987 * if it exists:
988 */
989 if (get_user(pending, &head->list_op_pending))
990 return;
991 if (pending)
992 handle_futex_death((void *)pending + futex_offset, curr);
993
994 while (entry != &head->list) {
995 /*
996 * A pending lock might already be on the list, so
997 * dont process it twice:
998 */
999 if (entry != pending)
1000 if (handle_futex_death((void *)entry + futex_offset,
1001 curr))
1002 return;
0771dfef
IM
1003 /*
1004 * Fetch the next entry in the list:
1005 */
1006 if (get_user(entry, &entry->next))
1007 return;
1008 /*
1009 * Avoid excessively long or circular lists:
1010 */
1011 if (!--limit)
1012 break;
1013
1014 cond_resched();
1015 }
1016}
1017
e2970f2f
IM
1018long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1019 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
1020{
1021 int ret;
1022
1023 switch (op) {
1024 case FUTEX_WAIT:
1025 ret = futex_wait(uaddr, val, timeout);
1026 break;
1027 case FUTEX_WAKE:
1028 ret = futex_wake(uaddr, val);
1029 break;
1030 case FUTEX_FD:
1031 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1032 ret = futex_fd(uaddr, val);
1033 break;
1034 case FUTEX_REQUEUE:
1035 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1036 break;
1037 case FUTEX_CMP_REQUEUE:
1038 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1039 break;
4732efbe
JJ
1040 case FUTEX_WAKE_OP:
1041 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1042 break;
1da177e4
LT
1043 default:
1044 ret = -ENOSYS;
1045 }
1046 return ret;
1047}
1048
1049
e2970f2f 1050asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1051 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1052 u32 val3)
1da177e4
LT
1053{
1054 struct timespec t;
1055 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
e2970f2f 1056 u32 val2 = 0;
1da177e4 1057
9741ef96 1058 if (utime && (op == FUTEX_WAIT)) {
1da177e4
LT
1059 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1060 return -EFAULT;
9741ef96
TG
1061 if (!timespec_valid(&t))
1062 return -EINVAL;
1da177e4
LT
1063 timeout = timespec_to_jiffies(&t) + 1;
1064 }
1065 /*
1066 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1067 */
1068 if (op >= FUTEX_REQUEUE)
e2970f2f 1069 val2 = (u32) (unsigned long) utime;
1da177e4 1070
e2970f2f 1071 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1da177e4
LT
1072}
1073
454e2398
DH
1074static int futexfs_get_sb(struct file_system_type *fs_type,
1075 int flags, const char *dev_name, void *data,
1076 struct vfsmount *mnt)
1da177e4 1077{
454e2398 1078 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1da177e4
LT
1079}
1080
1081static struct file_system_type futex_fs_type = {
1082 .name = "futexfs",
1083 .get_sb = futexfs_get_sb,
1084 .kill_sb = kill_anon_super,
1085};
1086
1087static int __init init(void)
1088{
1089 unsigned int i;
1090
1091 register_filesystem(&futex_fs_type);
1092 futex_mnt = kern_mount(&futex_fs_type);
1093
1094 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1095 INIT_LIST_HEAD(&futex_queues[i].chain);
1096 spin_lock_init(&futex_queues[i].lock);
1097 }
1098 return 0;
1099}
1100__initcall(init);