]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
fuse: add blksize field to fuse_attr
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
4732efbe 56#include <asm/futex.h>
1da177e4 57
c87e2837
IM
58#include "rtmutex_common.h"
59
1da177e4
LT
60#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
61
c87e2837
IM
62/*
63 * Priority Inheritance state:
64 */
65struct futex_pi_state {
66 /*
67 * list of 'owned' pi_state instances - these have to be
68 * cleaned up in do_exit() if the task exits prematurely:
69 */
70 struct list_head list;
71
72 /*
73 * The PI object:
74 */
75 struct rt_mutex pi_mutex;
76
77 struct task_struct *owner;
78 atomic_t refcount;
79
80 union futex_key key;
81};
82
1da177e4
LT
83/*
84 * We use this hashed waitqueue instead of a normal wait_queue_t, so
85 * we can wake only the relevant ones (hashed queues may be shared).
86 *
87 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 88 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
89 * The order of wakup is always to make the first condition true, then
90 * wake up q->waiters, then make the second condition true.
91 */
92struct futex_q {
ec92d082 93 struct plist_node list;
1da177e4
LT
94 wait_queue_head_t waiters;
95
e2970f2f 96 /* Which hash list lock to use: */
1da177e4
LT
97 spinlock_t *lock_ptr;
98
e2970f2f 99 /* Key which the futex is hashed on: */
1da177e4
LT
100 union futex_key key;
101
e2970f2f 102 /* For fd, sigio sent using these: */
1da177e4
LT
103 int fd;
104 struct file *filp;
c87e2837
IM
105
106 /* Optional priority inheritance state: */
107 struct futex_pi_state *pi_state;
108 struct task_struct *task;
1da177e4
LT
109};
110
111/*
112 * Split the global futex_lock into every hash list lock.
113 */
114struct futex_hash_bucket {
ec92d082
PP
115 spinlock_t lock;
116 struct plist_head chain;
1da177e4
LT
117};
118
119static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
120
121/* Futex-fs vfsmount entry: */
122static struct vfsmount *futex_mnt;
123
36cf3b5c
TG
124/*
125 * Take mm->mmap_sem, when futex is shared
126 */
127static inline void futex_lock_mm(struct rw_semaphore *fshared)
128{
129 if (fshared)
130 down_read(fshared);
131}
132
133/*
134 * Release mm->mmap_sem, when the futex is shared
135 */
136static inline void futex_unlock_mm(struct rw_semaphore *fshared)
137{
138 if (fshared)
139 up_read(fshared);
140}
141
1da177e4
LT
142/*
143 * We hash on the keys returned from get_futex_key (see below).
144 */
145static struct futex_hash_bucket *hash_futex(union futex_key *key)
146{
147 u32 hash = jhash2((u32*)&key->both.word,
148 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
149 key->both.offset);
150 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
151}
152
153/*
154 * Return 1 if two futex_keys are equal, 0 otherwise.
155 */
156static inline int match_futex(union futex_key *key1, union futex_key *key2)
157{
158 return (key1->both.word == key2->both.word
159 && key1->both.ptr == key2->both.ptr
160 && key1->both.offset == key2->both.offset);
161}
162
34f01cc1
ED
163/**
164 * get_futex_key - Get parameters which are the keys for a futex.
165 * @uaddr: virtual address of the futex
166 * @shared: NULL for a PROCESS_PRIVATE futex,
167 * &current->mm->mmap_sem for a PROCESS_SHARED futex
168 * @key: address where result is stored.
169 *
170 * Returns a negative error code or 0
171 * The key words are stored in *key on success.
1da177e4 172 *
f3a43f3f 173 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
174 * offset_within_page). For private mappings, it's (uaddr, current->mm).
175 * We can usually work out the index without swapping in the page.
176 *
34f01cc1
ED
177 * fshared is NULL for PROCESS_PRIVATE futexes
178 * For other futexes, it points to &current->mm->mmap_sem and
179 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 180 */
34f01cc1
ED
181int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
182 union futex_key *key)
1da177e4 183{
e2970f2f 184 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
185 struct mm_struct *mm = current->mm;
186 struct vm_area_struct *vma;
187 struct page *page;
188 int err;
189
190 /*
191 * The futex address must be "naturally" aligned.
192 */
e2970f2f 193 key->both.offset = address % PAGE_SIZE;
34f01cc1 194 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 195 return -EINVAL;
e2970f2f 196 address -= key->both.offset;
1da177e4 197
34f01cc1
ED
198 /*
199 * PROCESS_PRIVATE futexes are fast.
200 * As the mm cannot disappear under us and the 'key' only needs
201 * virtual address, we dont even have to find the underlying vma.
202 * Note : We do have to check 'uaddr' is a valid user address,
203 * but access_ok() should be faster than find_vma()
204 */
205 if (!fshared) {
206 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
207 return -EFAULT;
208 key->private.mm = mm;
209 key->private.address = address;
210 return 0;
211 }
1da177e4
LT
212 /*
213 * The futex is hashed differently depending on whether
214 * it's in a shared or private mapping. So check vma first.
215 */
e2970f2f 216 vma = find_extend_vma(mm, address);
1da177e4
LT
217 if (unlikely(!vma))
218 return -EFAULT;
219
220 /*
221 * Permissions.
222 */
223 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
224 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
225
226 /*
227 * Private mappings are handled in a simple way.
228 *
229 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
230 * it's a read-only handle, it's expected that futexes attach to
231 * the object not the particular process. Therefore we use
232 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
233 * mappings of _writable_ handles.
234 */
235 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
34f01cc1 236 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
1da177e4 237 key->private.mm = mm;
e2970f2f 238 key->private.address = address;
1da177e4
LT
239 return 0;
240 }
241
242 /*
243 * Linear file mappings are also simple.
244 */
f3a43f3f 245 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
34f01cc1 246 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
1da177e4 247 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 248 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
249 + vma->vm_pgoff);
250 return 0;
251 }
252
253 /*
254 * We could walk the page table to read the non-linear
255 * pte, and get the page index without fetching the page
256 * from swap. But that's a lot of code to duplicate here
257 * for a rare case, so we simply fetch the page.
258 */
e2970f2f 259 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
260 if (err >= 0) {
261 key->shared.pgoff =
262 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
263 put_page(page);
264 return 0;
265 }
266 return err;
267}
9adef58b 268EXPORT_SYMBOL_GPL(get_futex_key);
1da177e4
LT
269
270/*
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
273 *
1da177e4 274 */
9adef58b 275inline void get_futex_key_refs(union futex_key *key)
1da177e4 276{
34f01cc1
ED
277 if (key->both.ptr == 0)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
1da177e4 281 atomic_inc(&key->shared.inode->i_count);
34f01cc1
ED
282 break;
283 case FUT_OFF_MMSHARED:
1da177e4 284 atomic_inc(&key->private.mm->mm_count);
34f01cc1 285 break;
1da177e4
LT
286 }
287}
9adef58b 288EXPORT_SYMBOL_GPL(get_futex_key_refs);
1da177e4
LT
289
290/*
291 * Drop a reference to the resource addressed by a key.
292 * The hash bucket spinlock must not be held.
293 */
9adef58b 294void drop_futex_key_refs(union futex_key *key)
1da177e4 295{
34f01cc1
ED
296 if (key->both.ptr == 0)
297 return;
298 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
299 case FUT_OFF_INODE:
1da177e4 300 iput(key->shared.inode);
34f01cc1
ED
301 break;
302 case FUT_OFF_MMSHARED:
1da177e4 303 mmdrop(key->private.mm);
34f01cc1 304 break;
1da177e4
LT
305 }
306}
9adef58b 307EXPORT_SYMBOL_GPL(drop_futex_key_refs);
1da177e4 308
36cf3b5c
TG
309static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
310{
311 u32 curval;
312
313 pagefault_disable();
314 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
315 pagefault_enable();
316
317 return curval;
318}
319
320static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
321{
322 int ret;
323
a866374a 324 pagefault_disable();
e2970f2f 325 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 326 pagefault_enable();
1da177e4
LT
327
328 return ret ? -EFAULT : 0;
329}
330
c87e2837 331/*
34f01cc1
ED
332 * Fault handling.
333 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 334 */
34f01cc1
ED
335static int futex_handle_fault(unsigned long address,
336 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
337{
338 struct vm_area_struct * vma;
339 struct mm_struct *mm = current->mm;
34f01cc1 340 int ret = -EFAULT;
c87e2837 341
34f01cc1
ED
342 if (attempt > 2)
343 return ret;
c87e2837 344
34f01cc1
ED
345 if (!fshared)
346 down_read(&mm->mmap_sem);
347 vma = find_vma(mm, address);
348 if (vma && address >= vma->vm_start &&
349 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
350 int fault;
351 fault = handle_mm_fault(mm, vma, address, 1);
352 if (unlikely((fault & VM_FAULT_ERROR))) {
353#if 0
354 /* XXX: let's do this when we verify it is OK */
355 if (ret & VM_FAULT_OOM)
356 ret = -ENOMEM;
357#endif
358 } else {
34f01cc1 359 ret = 0;
83c54070
NP
360 if (fault & VM_FAULT_MAJOR)
361 current->maj_flt++;
362 else
363 current->min_flt++;
34f01cc1 364 }
c87e2837 365 }
34f01cc1
ED
366 if (!fshared)
367 up_read(&mm->mmap_sem);
368 return ret;
c87e2837
IM
369}
370
371/*
372 * PI code:
373 */
374static int refill_pi_state_cache(void)
375{
376 struct futex_pi_state *pi_state;
377
378 if (likely(current->pi_state_cache))
379 return 0;
380
4668edc3 381 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
382
383 if (!pi_state)
384 return -ENOMEM;
385
c87e2837
IM
386 INIT_LIST_HEAD(&pi_state->list);
387 /* pi_mutex gets initialized later */
388 pi_state->owner = NULL;
389 atomic_set(&pi_state->refcount, 1);
390
391 current->pi_state_cache = pi_state;
392
393 return 0;
394}
395
396static struct futex_pi_state * alloc_pi_state(void)
397{
398 struct futex_pi_state *pi_state = current->pi_state_cache;
399
400 WARN_ON(!pi_state);
401 current->pi_state_cache = NULL;
402
403 return pi_state;
404}
405
406static void free_pi_state(struct futex_pi_state *pi_state)
407{
408 if (!atomic_dec_and_test(&pi_state->refcount))
409 return;
410
411 /*
412 * If pi_state->owner is NULL, the owner is most probably dying
413 * and has cleaned up the pi_state already
414 */
415 if (pi_state->owner) {
416 spin_lock_irq(&pi_state->owner->pi_lock);
417 list_del_init(&pi_state->list);
418 spin_unlock_irq(&pi_state->owner->pi_lock);
419
420 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
421 }
422
423 if (current->pi_state_cache)
424 kfree(pi_state);
425 else {
426 /*
427 * pi_state->list is already empty.
428 * clear pi_state->owner.
429 * refcount is at 0 - put it back to 1.
430 */
431 pi_state->owner = NULL;
432 atomic_set(&pi_state->refcount, 1);
433 current->pi_state_cache = pi_state;
434 }
435}
436
437/*
438 * Look up the task based on what TID userspace gave us.
439 * We dont trust it.
440 */
441static struct task_struct * futex_find_get_task(pid_t pid)
442{
443 struct task_struct *p;
444
d359b549 445 rcu_read_lock();
c87e2837 446 p = find_task_by_pid(pid);
a06381fe
TG
447
448 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
449 p = ERR_PTR(-ESRCH);
450 else
451 get_task_struct(p);
452
d359b549 453 rcu_read_unlock();
c87e2837
IM
454
455 return p;
456}
457
458/*
459 * This task is holding PI mutexes at exit time => bad.
460 * Kernel cleans up PI-state, but userspace is likely hosed.
461 * (Robust-futex cleanup is separate and might save the day for userspace.)
462 */
463void exit_pi_state_list(struct task_struct *curr)
464{
c87e2837
IM
465 struct list_head *next, *head = &curr->pi_state_list;
466 struct futex_pi_state *pi_state;
627371d7 467 struct futex_hash_bucket *hb;
c87e2837
IM
468 union futex_key key;
469
470 /*
471 * We are a ZOMBIE and nobody can enqueue itself on
472 * pi_state_list anymore, but we have to be careful
627371d7 473 * versus waiters unqueueing themselves:
c87e2837
IM
474 */
475 spin_lock_irq(&curr->pi_lock);
476 while (!list_empty(head)) {
477
478 next = head->next;
479 pi_state = list_entry(next, struct futex_pi_state, list);
480 key = pi_state->key;
627371d7 481 hb = hash_futex(&key);
c87e2837
IM
482 spin_unlock_irq(&curr->pi_lock);
483
c87e2837
IM
484 spin_lock(&hb->lock);
485
486 spin_lock_irq(&curr->pi_lock);
627371d7
IM
487 /*
488 * We dropped the pi-lock, so re-check whether this
489 * task still owns the PI-state:
490 */
c87e2837
IM
491 if (head->next != next) {
492 spin_unlock(&hb->lock);
493 continue;
494 }
495
c87e2837 496 WARN_ON(pi_state->owner != curr);
627371d7
IM
497 WARN_ON(list_empty(&pi_state->list));
498 list_del_init(&pi_state->list);
c87e2837
IM
499 pi_state->owner = NULL;
500 spin_unlock_irq(&curr->pi_lock);
501
502 rt_mutex_unlock(&pi_state->pi_mutex);
503
504 spin_unlock(&hb->lock);
505
506 spin_lock_irq(&curr->pi_lock);
507 }
508 spin_unlock_irq(&curr->pi_lock);
509}
510
511static int
d0aa7a70
PP
512lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
513 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
514{
515 struct futex_pi_state *pi_state = NULL;
516 struct futex_q *this, *next;
ec92d082 517 struct plist_head *head;
c87e2837 518 struct task_struct *p;
778e9a9c 519 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
520
521 head = &hb->chain;
522
ec92d082 523 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 524 if (match_futex(&this->key, key)) {
c87e2837
IM
525 /*
526 * Another waiter already exists - bump up
527 * the refcount and return its pi_state:
528 */
529 pi_state = this->pi_state;
06a9ec29
TG
530 /*
531 * Userspace might have messed up non PI and PI futexes
532 */
533 if (unlikely(!pi_state))
534 return -EINVAL;
535
627371d7 536 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
537 WARN_ON(pid && pi_state->owner &&
538 pi_state->owner->pid != pid);
627371d7 539
c87e2837 540 atomic_inc(&pi_state->refcount);
d0aa7a70 541 *ps = pi_state;
c87e2837
IM
542
543 return 0;
544 }
545 }
546
547 /*
e3f2ddea 548 * We are the first waiter - try to look up the real owner and attach
778e9a9c 549 * the new pi_state to it, but bail out when TID = 0
c87e2837 550 */
778e9a9c 551 if (!pid)
e3f2ddea 552 return -ESRCH;
c87e2837 553 p = futex_find_get_task(pid);
778e9a9c
AK
554 if (IS_ERR(p))
555 return PTR_ERR(p);
556
557 /*
558 * We need to look at the task state flags to figure out,
559 * whether the task is exiting. To protect against the do_exit
560 * change of the task flags, we do this protected by
561 * p->pi_lock:
562 */
563 spin_lock_irq(&p->pi_lock);
564 if (unlikely(p->flags & PF_EXITING)) {
565 /*
566 * The task is on the way out. When PF_EXITPIDONE is
567 * set, we know that the task has finished the
568 * cleanup:
569 */
570 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
571
572 spin_unlock_irq(&p->pi_lock);
573 put_task_struct(p);
574 return ret;
575 }
c87e2837
IM
576
577 pi_state = alloc_pi_state();
578
579 /*
580 * Initialize the pi_mutex in locked state and make 'p'
581 * the owner of it:
582 */
583 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
584
585 /* Store the key for possible exit cleanups: */
d0aa7a70 586 pi_state->key = *key;
c87e2837 587
627371d7 588 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
589 list_add(&pi_state->list, &p->pi_state_list);
590 pi_state->owner = p;
591 spin_unlock_irq(&p->pi_lock);
592
593 put_task_struct(p);
594
d0aa7a70 595 *ps = pi_state;
c87e2837
IM
596
597 return 0;
598}
599
1da177e4
LT
600/*
601 * The hash bucket lock must be held when this is called.
602 * Afterwards, the futex_q must not be accessed.
603 */
604static void wake_futex(struct futex_q *q)
605{
ec92d082 606 plist_del(&q->list, &q->list.plist);
1da177e4
LT
607 if (q->filp)
608 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
609 /*
610 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 611 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
612 */
613 wake_up_all(&q->waiters);
614 /*
615 * The waiting task can free the futex_q as soon as this is written,
616 * without taking any locks. This must come last.
8e31108b
AM
617 *
618 * A memory barrier is required here to prevent the following store
619 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
620 * at the end of wake_up_all() does not prevent this store from
621 * moving.
1da177e4 622 */
ccdea2f8 623 smp_wmb();
1da177e4
LT
624 q->lock_ptr = NULL;
625}
626
c87e2837
IM
627static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
628{
629 struct task_struct *new_owner;
630 struct futex_pi_state *pi_state = this->pi_state;
631 u32 curval, newval;
632
633 if (!pi_state)
634 return -EINVAL;
635
21778867 636 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
637 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
638
639 /*
640 * This happens when we have stolen the lock and the original
641 * pending owner did not enqueue itself back on the rt_mutex.
642 * Thats not a tragedy. We know that way, that a lock waiter
643 * is on the fly. We make the futex_q waiter the pending owner.
644 */
645 if (!new_owner)
646 new_owner = this->task;
647
648 /*
649 * We pass it to the next owner. (The WAITERS bit is always
650 * kept enabled while there is PI state around. We must also
651 * preserve the owner died bit.)
652 */
e3f2ddea 653 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
654 int ret = 0;
655
e3f2ddea
IM
656 newval = FUTEX_WAITERS | new_owner->pid;
657
36cf3b5c 658 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 659
e3f2ddea 660 if (curval == -EFAULT)
778e9a9c 661 ret = -EFAULT;
e3f2ddea 662 if (curval != uval)
778e9a9c
AK
663 ret = -EINVAL;
664 if (ret) {
665 spin_unlock(&pi_state->pi_mutex.wait_lock);
666 return ret;
667 }
e3f2ddea 668 }
c87e2837 669
627371d7
IM
670 spin_lock_irq(&pi_state->owner->pi_lock);
671 WARN_ON(list_empty(&pi_state->list));
672 list_del_init(&pi_state->list);
673 spin_unlock_irq(&pi_state->owner->pi_lock);
674
675 spin_lock_irq(&new_owner->pi_lock);
676 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
677 list_add(&pi_state->list, &new_owner->pi_state_list);
678 pi_state->owner = new_owner;
627371d7
IM
679 spin_unlock_irq(&new_owner->pi_lock);
680
21778867 681 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
682 rt_mutex_unlock(&pi_state->pi_mutex);
683
684 return 0;
685}
686
687static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
688{
689 u32 oldval;
690
691 /*
692 * There is no waiter, so we unlock the futex. The owner died
693 * bit has not to be preserved here. We are the owner:
694 */
36cf3b5c 695 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
696
697 if (oldval == -EFAULT)
698 return oldval;
699 if (oldval != uval)
700 return -EAGAIN;
701
702 return 0;
703}
704
8b8f319f
IM
705/*
706 * Express the locking dependencies for lockdep:
707 */
708static inline void
709double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
710{
711 if (hb1 <= hb2) {
712 spin_lock(&hb1->lock);
713 if (hb1 < hb2)
714 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
715 } else { /* hb1 > hb2 */
716 spin_lock(&hb2->lock);
717 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
718 }
719}
720
1da177e4
LT
721/*
722 * Wake up all waiters hashed on the physical page that is mapped
723 * to this virtual address:
724 */
34f01cc1
ED
725static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
726 int nr_wake)
1da177e4 727{
e2970f2f 728 struct futex_hash_bucket *hb;
1da177e4 729 struct futex_q *this, *next;
ec92d082 730 struct plist_head *head;
e2970f2f 731 union futex_key key;
1da177e4
LT
732 int ret;
733
36cf3b5c 734 futex_lock_mm(fshared);
1da177e4 735
34f01cc1 736 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
737 if (unlikely(ret != 0))
738 goto out;
739
e2970f2f
IM
740 hb = hash_futex(&key);
741 spin_lock(&hb->lock);
742 head = &hb->chain;
1da177e4 743
ec92d082 744 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 745 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
746 if (this->pi_state) {
747 ret = -EINVAL;
748 break;
749 }
1da177e4
LT
750 wake_futex(this);
751 if (++ret >= nr_wake)
752 break;
753 }
754 }
755
e2970f2f 756 spin_unlock(&hb->lock);
1da177e4 757out:
36cf3b5c 758 futex_unlock_mm(fshared);
1da177e4
LT
759 return ret;
760}
761
4732efbe
JJ
762/*
763 * Wake up all waiters hashed on the physical page that is mapped
764 * to this virtual address:
765 */
e2970f2f 766static int
34f01cc1
ED
767futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
768 u32 __user *uaddr2,
e2970f2f 769 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
770{
771 union futex_key key1, key2;
e2970f2f 772 struct futex_hash_bucket *hb1, *hb2;
ec92d082 773 struct plist_head *head;
4732efbe
JJ
774 struct futex_q *this, *next;
775 int ret, op_ret, attempt = 0;
776
777retryfull:
36cf3b5c 778 futex_lock_mm(fshared);
4732efbe 779
34f01cc1 780 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
781 if (unlikely(ret != 0))
782 goto out;
34f01cc1 783 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
784 if (unlikely(ret != 0))
785 goto out;
786
e2970f2f
IM
787 hb1 = hash_futex(&key1);
788 hb2 = hash_futex(&key2);
4732efbe
JJ
789
790retry:
8b8f319f 791 double_lock_hb(hb1, hb2);
4732efbe 792
e2970f2f 793 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 794 if (unlikely(op_ret < 0)) {
e2970f2f 795 u32 dummy;
4732efbe 796
e2970f2f
IM
797 spin_unlock(&hb1->lock);
798 if (hb1 != hb2)
799 spin_unlock(&hb2->lock);
4732efbe 800
7ee1dd3f 801#ifndef CONFIG_MMU
e2970f2f
IM
802 /*
803 * we don't get EFAULT from MMU faults if we don't have an MMU,
804 * but we might get them from range checking
805 */
7ee1dd3f
DH
806 ret = op_ret;
807 goto out;
808#endif
809
796f8d9b
DG
810 if (unlikely(op_ret != -EFAULT)) {
811 ret = op_ret;
812 goto out;
813 }
814
e2970f2f
IM
815 /*
816 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
817 * *(int __user *)uaddr2, but we can't modify it
818 * non-atomically. Therefore, if get_user below is not
819 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
820 * still holding the mmap_sem.
821 */
4732efbe 822 if (attempt++) {
34f01cc1 823 ret = futex_handle_fault((unsigned long)uaddr2,
36cf3b5c 824 fshared, attempt);
34f01cc1 825 if (ret)
4732efbe 826 goto out;
4732efbe
JJ
827 goto retry;
828 }
829
e2970f2f
IM
830 /*
831 * If we would have faulted, release mmap_sem,
832 * fault it in and start all over again.
833 */
36cf3b5c 834 futex_unlock_mm(fshared);
4732efbe 835
e2970f2f 836 ret = get_user(dummy, uaddr2);
4732efbe
JJ
837 if (ret)
838 return ret;
839
840 goto retryfull;
841 }
842
e2970f2f 843 head = &hb1->chain;
4732efbe 844
ec92d082 845 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
846 if (match_futex (&this->key, &key1)) {
847 wake_futex(this);
848 if (++ret >= nr_wake)
849 break;
850 }
851 }
852
853 if (op_ret > 0) {
e2970f2f 854 head = &hb2->chain;
4732efbe
JJ
855
856 op_ret = 0;
ec92d082 857 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
858 if (match_futex (&this->key, &key2)) {
859 wake_futex(this);
860 if (++op_ret >= nr_wake2)
861 break;
862 }
863 }
864 ret += op_ret;
865 }
866
e2970f2f
IM
867 spin_unlock(&hb1->lock);
868 if (hb1 != hb2)
869 spin_unlock(&hb2->lock);
4732efbe 870out:
36cf3b5c
TG
871 futex_unlock_mm(fshared);
872
4732efbe
JJ
873 return ret;
874}
875
1da177e4
LT
876/*
877 * Requeue all waiters hashed on one physical page to another
878 * physical page.
879 */
34f01cc1
ED
880static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
881 u32 __user *uaddr2,
e2970f2f 882 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
883{
884 union futex_key key1, key2;
e2970f2f 885 struct futex_hash_bucket *hb1, *hb2;
ec92d082 886 struct plist_head *head1;
1da177e4
LT
887 struct futex_q *this, *next;
888 int ret, drop_count = 0;
889
890 retry:
36cf3b5c 891 futex_lock_mm(fshared);
1da177e4 892
34f01cc1 893 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
894 if (unlikely(ret != 0))
895 goto out;
34f01cc1 896 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
897 if (unlikely(ret != 0))
898 goto out;
899
e2970f2f
IM
900 hb1 = hash_futex(&key1);
901 hb2 = hash_futex(&key2);
1da177e4 902
8b8f319f 903 double_lock_hb(hb1, hb2);
1da177e4 904
e2970f2f
IM
905 if (likely(cmpval != NULL)) {
906 u32 curval;
1da177e4 907
e2970f2f 908 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
909
910 if (unlikely(ret)) {
e2970f2f
IM
911 spin_unlock(&hb1->lock);
912 if (hb1 != hb2)
913 spin_unlock(&hb2->lock);
1da177e4 914
e2970f2f
IM
915 /*
916 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
917 * it in and start all over again.
918 */
36cf3b5c 919 futex_unlock_mm(fshared);
1da177e4 920
e2970f2f 921 ret = get_user(curval, uaddr1);
1da177e4
LT
922
923 if (!ret)
924 goto retry;
925
926 return ret;
927 }
e2970f2f 928 if (curval != *cmpval) {
1da177e4
LT
929 ret = -EAGAIN;
930 goto out_unlock;
931 }
932 }
933
e2970f2f 934 head1 = &hb1->chain;
ec92d082 935 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
936 if (!match_futex (&this->key, &key1))
937 continue;
938 if (++ret <= nr_wake) {
939 wake_futex(this);
940 } else {
59e0e0ac
SD
941 /*
942 * If key1 and key2 hash to the same bucket, no need to
943 * requeue.
944 */
945 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
946 plist_del(&this->list, &hb1->chain);
947 plist_add(&this->list, &hb2->chain);
59e0e0ac 948 this->lock_ptr = &hb2->lock;
ec92d082
PP
949#ifdef CONFIG_DEBUG_PI_LIST
950 this->list.plist.lock = &hb2->lock;
951#endif
778e9a9c 952 }
1da177e4 953 this->key = key2;
9adef58b 954 get_futex_key_refs(&key2);
1da177e4
LT
955 drop_count++;
956
957 if (ret - nr_wake >= nr_requeue)
958 break;
1da177e4
LT
959 }
960 }
961
962out_unlock:
e2970f2f
IM
963 spin_unlock(&hb1->lock);
964 if (hb1 != hb2)
965 spin_unlock(&hb2->lock);
1da177e4 966
9adef58b 967 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 968 while (--drop_count >= 0)
9adef58b 969 drop_futex_key_refs(&key1);
1da177e4
LT
970
971out:
36cf3b5c 972 futex_unlock_mm(fshared);
1da177e4
LT
973 return ret;
974}
975
976/* The key must be already stored in q->key. */
977static inline struct futex_hash_bucket *
978queue_lock(struct futex_q *q, int fd, struct file *filp)
979{
e2970f2f 980 struct futex_hash_bucket *hb;
1da177e4
LT
981
982 q->fd = fd;
983 q->filp = filp;
984
985 init_waitqueue_head(&q->waiters);
986
9adef58b 987 get_futex_key_refs(&q->key);
e2970f2f
IM
988 hb = hash_futex(&q->key);
989 q->lock_ptr = &hb->lock;
1da177e4 990
e2970f2f
IM
991 spin_lock(&hb->lock);
992 return hb;
1da177e4
LT
993}
994
e2970f2f 995static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 996{
ec92d082
PP
997 int prio;
998
999 /*
1000 * The priority used to register this element is
1001 * - either the real thread-priority for the real-time threads
1002 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1003 * - or MAX_RT_PRIO for non-RT threads.
1004 * Thus, all RT-threads are woken first in priority order, and
1005 * the others are woken last, in FIFO order.
1006 */
1007 prio = min(current->normal_prio, MAX_RT_PRIO);
1008
1009 plist_node_init(&q->list, prio);
1010#ifdef CONFIG_DEBUG_PI_LIST
1011 q->list.plist.lock = &hb->lock;
1012#endif
1013 plist_add(&q->list, &hb->chain);
c87e2837 1014 q->task = current;
e2970f2f 1015 spin_unlock(&hb->lock);
1da177e4
LT
1016}
1017
1018static inline void
e2970f2f 1019queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1020{
e2970f2f 1021 spin_unlock(&hb->lock);
9adef58b 1022 drop_futex_key_refs(&q->key);
1da177e4
LT
1023}
1024
1025/*
1026 * queue_me and unqueue_me must be called as a pair, each
1027 * exactly once. They are called with the hashed spinlock held.
1028 */
1029
1030/* The key must be already stored in q->key. */
1031static void queue_me(struct futex_q *q, int fd, struct file *filp)
1032{
e2970f2f
IM
1033 struct futex_hash_bucket *hb;
1034
1035 hb = queue_lock(q, fd, filp);
1036 __queue_me(q, hb);
1da177e4
LT
1037}
1038
1039/* Return 1 if we were still queued (ie. 0 means we were woken) */
1040static int unqueue_me(struct futex_q *q)
1041{
1da177e4 1042 spinlock_t *lock_ptr;
e2970f2f 1043 int ret = 0;
1da177e4
LT
1044
1045 /* In the common case we don't take the spinlock, which is nice. */
1046 retry:
1047 lock_ptr = q->lock_ptr;
e91467ec 1048 barrier();
1da177e4
LT
1049 if (lock_ptr != 0) {
1050 spin_lock(lock_ptr);
1051 /*
1052 * q->lock_ptr can change between reading it and
1053 * spin_lock(), causing us to take the wrong lock. This
1054 * corrects the race condition.
1055 *
1056 * Reasoning goes like this: if we have the wrong lock,
1057 * q->lock_ptr must have changed (maybe several times)
1058 * between reading it and the spin_lock(). It can
1059 * change again after the spin_lock() but only if it was
1060 * already changed before the spin_lock(). It cannot,
1061 * however, change back to the original value. Therefore
1062 * we can detect whether we acquired the correct lock.
1063 */
1064 if (unlikely(lock_ptr != q->lock_ptr)) {
1065 spin_unlock(lock_ptr);
1066 goto retry;
1067 }
ec92d082
PP
1068 WARN_ON(plist_node_empty(&q->list));
1069 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1070
1071 BUG_ON(q->pi_state);
1072
1da177e4
LT
1073 spin_unlock(lock_ptr);
1074 ret = 1;
1075 }
1076
9adef58b 1077 drop_futex_key_refs(&q->key);
1da177e4
LT
1078 return ret;
1079}
1080
c87e2837
IM
1081/*
1082 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1083 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1084 * and dropped here.
c87e2837 1085 */
d0aa7a70 1086static void unqueue_me_pi(struct futex_q *q)
c87e2837 1087{
ec92d082
PP
1088 WARN_ON(plist_node_empty(&q->list));
1089 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1090
1091 BUG_ON(!q->pi_state);
1092 free_pi_state(q->pi_state);
1093 q->pi_state = NULL;
1094
d0aa7a70 1095 spin_unlock(q->lock_ptr);
c87e2837 1096
9adef58b 1097 drop_futex_key_refs(&q->key);
c87e2837
IM
1098}
1099
d0aa7a70
PP
1100/*
1101 * Fixup the pi_state owner with current.
1102 *
778e9a9c
AK
1103 * Must be called with hash bucket lock held and mm->sem held for non
1104 * private futexes.
d0aa7a70 1105 */
778e9a9c 1106static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
d0aa7a70
PP
1107 struct task_struct *curr)
1108{
1109 u32 newtid = curr->pid | FUTEX_WAITERS;
1110 struct futex_pi_state *pi_state = q->pi_state;
1111 u32 uval, curval, newval;
1112 int ret;
1113
1114 /* Owner died? */
1115 if (pi_state->owner != NULL) {
1116 spin_lock_irq(&pi_state->owner->pi_lock);
1117 WARN_ON(list_empty(&pi_state->list));
1118 list_del_init(&pi_state->list);
1119 spin_unlock_irq(&pi_state->owner->pi_lock);
1120 } else
1121 newtid |= FUTEX_OWNER_DIED;
1122
1123 pi_state->owner = curr;
1124
1125 spin_lock_irq(&curr->pi_lock);
1126 WARN_ON(!list_empty(&pi_state->list));
1127 list_add(&pi_state->list, &curr->pi_state_list);
1128 spin_unlock_irq(&curr->pi_lock);
1129
d0aa7a70
PP
1130 /*
1131 * We own it, so we have to replace the pending owner
1132 * TID. This must be atomic as we have preserve the
1133 * owner died bit here.
1134 */
778e9a9c
AK
1135 ret = get_futex_value_locked(&uval, uaddr);
1136
d0aa7a70
PP
1137 while (!ret) {
1138 newval = (uval & FUTEX_OWNER_DIED) | newtid;
778e9a9c 1139
36cf3b5c 1140 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 1141
d0aa7a70 1142 if (curval == -EFAULT)
778e9a9c 1143 ret = -EFAULT;
d0aa7a70
PP
1144 if (curval == uval)
1145 break;
1146 uval = curval;
1147 }
1148 return ret;
1149}
1150
34f01cc1
ED
1151/*
1152 * In case we must use restart_block to restart a futex_wait,
1153 * we encode in the 'arg3' shared capability
1154 */
1155#define ARG3_SHARED 1
1156
72c1bbf3 1157static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1158
34f01cc1
ED
1159static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1160 u32 val, ktime_t *abs_time)
1da177e4 1161{
c87e2837
IM
1162 struct task_struct *curr = current;
1163 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1164 struct futex_hash_bucket *hb;
1da177e4 1165 struct futex_q q;
e2970f2f
IM
1166 u32 uval;
1167 int ret;
bd197234 1168 struct hrtimer_sleeper t;
c19384b5 1169 int rem = 0;
1da177e4 1170
c87e2837 1171 q.pi_state = NULL;
1da177e4 1172 retry:
36cf3b5c 1173 futex_lock_mm(fshared);
1da177e4 1174
34f01cc1 1175 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1176 if (unlikely(ret != 0))
1177 goto out_release_sem;
1178
e2970f2f 1179 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1180
1181 /*
1182 * Access the page AFTER the futex is queued.
1183 * Order is important:
1184 *
1185 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1186 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1187 *
1188 * The basic logical guarantee of a futex is that it blocks ONLY
1189 * if cond(var) is known to be true at the time of blocking, for
1190 * any cond. If we queued after testing *uaddr, that would open
1191 * a race condition where we could block indefinitely with
1192 * cond(var) false, which would violate the guarantee.
1193 *
1194 * A consequence is that futex_wait() can return zero and absorb
1195 * a wakeup when *uaddr != val on entry to the syscall. This is
1196 * rare, but normal.
1197 *
34f01cc1
ED
1198 * for shared futexes, we hold the mmap semaphore, so the mapping
1199 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1200 */
e2970f2f 1201 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1202
1203 if (unlikely(ret)) {
e2970f2f 1204 queue_unlock(&q, hb);
1da177e4 1205
e2970f2f
IM
1206 /*
1207 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1208 * start all over again.
1209 */
36cf3b5c 1210 futex_unlock_mm(fshared);
1da177e4 1211
e2970f2f 1212 ret = get_user(uval, uaddr);
1da177e4
LT
1213
1214 if (!ret)
1215 goto retry;
1216 return ret;
1217 }
c87e2837
IM
1218 ret = -EWOULDBLOCK;
1219 if (uval != val)
1220 goto out_unlock_release_sem;
1da177e4
LT
1221
1222 /* Only actually queue if *uaddr contained val. */
e2970f2f 1223 __queue_me(&q, hb);
1da177e4
LT
1224
1225 /*
1226 * Now the futex is queued and we have checked the data, we
1227 * don't want to hold mmap_sem while we sleep.
c87e2837 1228 */
36cf3b5c 1229 futex_unlock_mm(fshared);
1da177e4
LT
1230
1231 /*
1232 * There might have been scheduling since the queue_me(), as we
1233 * cannot hold a spinlock across the get_user() in case it
1234 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1235 * queueing ourselves into the futex hash. This code thus has to
1236 * rely on the futex_wake() code removing us from hash when it
1237 * wakes us up.
1238 */
1239
1240 /* add_wait_queue is the barrier after __set_current_state. */
1241 __set_current_state(TASK_INTERRUPTIBLE);
1242 add_wait_queue(&q.waiters, &wait);
1243 /*
ec92d082 1244 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1245 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1246 */
ec92d082 1247 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1248 if (!abs_time)
1249 schedule();
1250 else {
1251 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1252 hrtimer_init_sleeper(&t, current);
1253 t.timer.expires = *abs_time;
1254
1255 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1256
1257 /*
1258 * the timer could have already expired, in which
1259 * case current would be flagged for rescheduling.
1260 * Don't bother calling schedule.
1261 */
1262 if (likely(t.task))
1263 schedule();
1264
1265 hrtimer_cancel(&t.timer);
72c1bbf3 1266
c19384b5
PP
1267 /* Flag if a timeout occured */
1268 rem = (t.task == NULL);
1269 }
72c1bbf3 1270 }
1da177e4
LT
1271 __set_current_state(TASK_RUNNING);
1272
1273 /*
1274 * NOTE: we don't remove ourselves from the waitqueue because
1275 * we are the only user of it.
1276 */
1277
1278 /* If we were woken (and unqueued), we succeeded, whatever. */
1279 if (!unqueue_me(&q))
1280 return 0;
c19384b5 1281 if (rem)
1da177e4 1282 return -ETIMEDOUT;
72c1bbf3 1283
e2970f2f
IM
1284 /*
1285 * We expect signal_pending(current), but another thread may
1286 * have handled it for us already.
1287 */
c19384b5 1288 if (!abs_time)
72c1bbf3
NP
1289 return -ERESTARTSYS;
1290 else {
1291 struct restart_block *restart;
1292 restart = &current_thread_info()->restart_block;
1293 restart->fn = futex_wait_restart;
1294 restart->arg0 = (unsigned long)uaddr;
1295 restart->arg1 = (unsigned long)val;
c19384b5 1296 restart->arg2 = (unsigned long)abs_time;
34f01cc1
ED
1297 restart->arg3 = 0;
1298 if (fshared)
1299 restart->arg3 |= ARG3_SHARED;
72c1bbf3
NP
1300 return -ERESTART_RESTARTBLOCK;
1301 }
1da177e4 1302
c87e2837
IM
1303 out_unlock_release_sem:
1304 queue_unlock(&q, hb);
1305
1da177e4 1306 out_release_sem:
36cf3b5c 1307 futex_unlock_mm(fshared);
c87e2837
IM
1308 return ret;
1309}
1310
72c1bbf3
NP
1311
1312static long futex_wait_restart(struct restart_block *restart)
1313{
1314 u32 __user *uaddr = (u32 __user *)restart->arg0;
1315 u32 val = (u32)restart->arg1;
c19384b5 1316 ktime_t *abs_time = (ktime_t *)restart->arg2;
34f01cc1 1317 struct rw_semaphore *fshared = NULL;
72c1bbf3
NP
1318
1319 restart->fn = do_no_restart_syscall;
34f01cc1
ED
1320 if (restart->arg3 & ARG3_SHARED)
1321 fshared = &current->mm->mmap_sem;
1322 return (long)futex_wait(uaddr, fshared, val, abs_time);
72c1bbf3
NP
1323}
1324
1325
c87e2837
IM
1326/*
1327 * Userspace tried a 0 -> TID atomic transition of the futex value
1328 * and failed. The kernel side here does the whole locking operation:
1329 * if there are waiters then it will block, it does PI, etc. (Due to
1330 * races the kernel might see a 0 value of the futex too.)
1331 */
34f01cc1
ED
1332static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1333 int detect, ktime_t *time, int trylock)
c87e2837 1334{
c5780e97 1335 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1336 struct task_struct *curr = current;
1337 struct futex_hash_bucket *hb;
1338 u32 uval, newval, curval;
1339 struct futex_q q;
778e9a9c 1340 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1341
1342 if (refill_pi_state_cache())
1343 return -ENOMEM;
1344
c19384b5 1345 if (time) {
c5780e97 1346 to = &timeout;
c9cb2e3d 1347 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
c5780e97 1348 hrtimer_init_sleeper(to, current);
c19384b5 1349 to->timer.expires = *time;
c5780e97
TG
1350 }
1351
c87e2837
IM
1352 q.pi_state = NULL;
1353 retry:
36cf3b5c 1354 futex_lock_mm(fshared);
c87e2837 1355
34f01cc1 1356 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1357 if (unlikely(ret != 0))
1358 goto out_release_sem;
1359
778e9a9c 1360 retry_unlocked:
c87e2837
IM
1361 hb = queue_lock(&q, -1, NULL);
1362
1363 retry_locked:
778e9a9c 1364 ret = lock_taken = 0;
d0aa7a70 1365
c87e2837
IM
1366 /*
1367 * To avoid races, we attempt to take the lock here again
1368 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369 * the locks. It will most likely not succeed.
1370 */
1371 newval = current->pid;
1372
36cf3b5c 1373 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1374
1375 if (unlikely(curval == -EFAULT))
1376 goto uaddr_faulted;
1377
778e9a9c
AK
1378 /*
1379 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380 * situation and we return success to user space.
1381 */
c87e2837 1382 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
bd197234 1383 ret = -EDEADLK;
c87e2837
IM
1384 goto out_unlock_release_sem;
1385 }
1386
1387 /*
778e9a9c 1388 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1389 */
1390 if (unlikely(!curval))
1391 goto out_unlock_release_sem;
1392
1393 uval = curval;
778e9a9c 1394
d0aa7a70 1395 /*
778e9a9c
AK
1396 * Set the WAITERS flag, so the owner will know it has someone
1397 * to wake at next unlock
d0aa7a70 1398 */
778e9a9c
AK
1399 newval = curval | FUTEX_WAITERS;
1400
1401 /*
1402 * There are two cases, where a futex might have no owner (the
bd197234
TG
1403 * owner TID is 0): OWNER_DIED. We take over the futex in this
1404 * case. We also do an unconditional take over, when the owner
1405 * of the futex died.
778e9a9c
AK
1406 *
1407 * This is safe as we are protected by the hash bucket lock !
1408 */
1409 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1410 /* Keep the OWNER_DIED bit */
778e9a9c
AK
1411 newval = (curval & ~FUTEX_TID_MASK) | current->pid;
1412 ownerdied = 0;
1413 lock_taken = 1;
1414 }
c87e2837 1415
36cf3b5c 1416 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1417
1418 if (unlikely(curval == -EFAULT))
1419 goto uaddr_faulted;
1420 if (unlikely(curval != uval))
1421 goto retry_locked;
1422
778e9a9c 1423 /*
bd197234 1424 * We took the lock due to owner died take over.
778e9a9c 1425 */
bd197234 1426 if (unlikely(lock_taken))
d0aa7a70 1427 goto out_unlock_release_sem;
d0aa7a70 1428
c87e2837
IM
1429 /*
1430 * We dont have the lock. Look up the PI state (or create it if
1431 * we are the first waiter):
1432 */
d0aa7a70 1433 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1434
1435 if (unlikely(ret)) {
778e9a9c 1436 switch (ret) {
c87e2837 1437
778e9a9c
AK
1438 case -EAGAIN:
1439 /*
1440 * Task is exiting and we just wait for the
1441 * exit to complete.
1442 */
1443 queue_unlock(&q, hb);
36cf3b5c 1444 futex_unlock_mm(fshared);
778e9a9c
AK
1445 cond_resched();
1446 goto retry;
c87e2837 1447
778e9a9c
AK
1448 case -ESRCH:
1449 /*
1450 * No owner found for this futex. Check if the
1451 * OWNER_DIED bit is set to figure out whether
1452 * this is a robust futex or not.
1453 */
1454 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1455 goto uaddr_faulted;
778e9a9c
AK
1456
1457 /*
1458 * We simply start over in case of a robust
1459 * futex. The code above will take the futex
1460 * and return happy.
1461 */
1462 if (curval & FUTEX_OWNER_DIED) {
1463 ownerdied = 1;
c87e2837 1464 goto retry_locked;
778e9a9c
AK
1465 }
1466 default:
1467 goto out_unlock_release_sem;
c87e2837 1468 }
c87e2837
IM
1469 }
1470
1471 /*
1472 * Only actually queue now that the atomic ops are done:
1473 */
1474 __queue_me(&q, hb);
1475
1476 /*
1477 * Now the futex is queued and we have checked the data, we
1478 * don't want to hold mmap_sem while we sleep.
1479 */
36cf3b5c 1480 futex_unlock_mm(fshared);
c87e2837
IM
1481
1482 WARN_ON(!q.pi_state);
1483 /*
1484 * Block on the PI mutex:
1485 */
1486 if (!trylock)
1487 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1488 else {
1489 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1490 /* Fixup the trylock return value: */
1491 ret = ret ? 0 : -EWOULDBLOCK;
1492 }
1493
36cf3b5c 1494 futex_lock_mm(fshared);
a99e4e41 1495 spin_lock(q.lock_ptr);
c87e2837 1496
778e9a9c
AK
1497 if (!ret) {
1498 /*
1499 * Got the lock. We might not be the anticipated owner
1500 * if we did a lock-steal - fix up the PI-state in
1501 * that case:
1502 */
1503 if (q.pi_state->owner != curr)
1504 ret = fixup_pi_state_owner(uaddr, &q, curr);
1505 } else {
c87e2837
IM
1506 /*
1507 * Catch the rare case, where the lock was released
778e9a9c
AK
1508 * when we were on the way back before we locked the
1509 * hash bucket.
c87e2837 1510 */
778e9a9c
AK
1511 if (q.pi_state->owner == curr &&
1512 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1513 ret = 0;
1514 } else {
1515 /*
1516 * Paranoia check. If we did not take the lock
1517 * in the trylock above, then we should not be
1518 * the owner of the rtmutex, neither the real
1519 * nor the pending one:
1520 */
1521 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1522 printk(KERN_ERR "futex_lock_pi: ret = %d "
1523 "pi-mutex: %p pi-state %p\n", ret,
1524 q.pi_state->pi_mutex.owner,
1525 q.pi_state->owner);
c87e2837 1526 }
c87e2837
IM
1527 }
1528
778e9a9c
AK
1529 /* Unqueue and drop the lock */
1530 unqueue_me_pi(&q);
36cf3b5c 1531 futex_unlock_mm(fshared);
c87e2837 1532
c5780e97 1533 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1534
1535 out_unlock_release_sem:
1536 queue_unlock(&q, hb);
1537
1538 out_release_sem:
36cf3b5c 1539 futex_unlock_mm(fshared);
c87e2837
IM
1540 return ret;
1541
1542 uaddr_faulted:
1543 /*
1544 * We have to r/w *(int __user *)uaddr, but we can't modify it
1545 * non-atomically. Therefore, if get_user below is not
1546 * enough, we need to handle the fault ourselves, while
1547 * still holding the mmap_sem.
778e9a9c
AK
1548 *
1549 * ... and hb->lock. :-) --ANK
c87e2837 1550 */
778e9a9c
AK
1551 queue_unlock(&q, hb);
1552
c87e2837 1553 if (attempt++) {
34f01cc1
ED
1554 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1555 attempt);
1556 if (ret)
778e9a9c
AK
1557 goto out_release_sem;
1558 goto retry_unlocked;
c87e2837
IM
1559 }
1560
36cf3b5c 1561 futex_unlock_mm(fshared);
c87e2837
IM
1562
1563 ret = get_user(uval, uaddr);
1564 if (!ret && (uval != -EFAULT))
1565 goto retry;
1566
1567 return ret;
1568}
1569
c87e2837
IM
1570/*
1571 * Userspace attempted a TID -> 0 atomic transition, and failed.
1572 * This is the in-kernel slowpath: we look up the PI state (if any),
1573 * and do the rt-mutex unlock.
1574 */
34f01cc1 1575static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1576{
1577 struct futex_hash_bucket *hb;
1578 struct futex_q *this, *next;
1579 u32 uval;
ec92d082 1580 struct plist_head *head;
c87e2837
IM
1581 union futex_key key;
1582 int ret, attempt = 0;
1583
1584retry:
1585 if (get_user(uval, uaddr))
1586 return -EFAULT;
1587 /*
1588 * We release only a lock we actually own:
1589 */
1590 if ((uval & FUTEX_TID_MASK) != current->pid)
1591 return -EPERM;
1592 /*
1593 * First take all the futex related locks:
1594 */
36cf3b5c 1595 futex_lock_mm(fshared);
c87e2837 1596
34f01cc1 1597 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1598 if (unlikely(ret != 0))
1599 goto out;
1600
1601 hb = hash_futex(&key);
778e9a9c 1602retry_unlocked:
c87e2837
IM
1603 spin_lock(&hb->lock);
1604
c87e2837
IM
1605 /*
1606 * To avoid races, try to do the TID -> 0 atomic transition
1607 * again. If it succeeds then we can return without waking
1608 * anyone else up:
1609 */
36cf3b5c
TG
1610 if (!(uval & FUTEX_OWNER_DIED))
1611 uval = cmpxchg_futex_value_locked(uaddr, current->pid, 0);
1612
c87e2837
IM
1613
1614 if (unlikely(uval == -EFAULT))
1615 goto pi_faulted;
1616 /*
1617 * Rare case: we managed to release the lock atomically,
1618 * no need to wake anyone else up:
1619 */
1620 if (unlikely(uval == current->pid))
1621 goto out_unlock;
1622
1623 /*
1624 * Ok, other tasks may need to be woken up - check waiters
1625 * and do the wakeup if necessary:
1626 */
1627 head = &hb->chain;
1628
ec92d082 1629 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1630 if (!match_futex (&this->key, &key))
1631 continue;
1632 ret = wake_futex_pi(uaddr, uval, this);
1633 /*
1634 * The atomic access to the futex value
1635 * generated a pagefault, so retry the
1636 * user-access and the wakeup:
1637 */
1638 if (ret == -EFAULT)
1639 goto pi_faulted;
1640 goto out_unlock;
1641 }
1642 /*
1643 * No waiters - kernel unlocks the futex:
1644 */
e3f2ddea
IM
1645 if (!(uval & FUTEX_OWNER_DIED)) {
1646 ret = unlock_futex_pi(uaddr, uval);
1647 if (ret == -EFAULT)
1648 goto pi_faulted;
1649 }
c87e2837
IM
1650
1651out_unlock:
1652 spin_unlock(&hb->lock);
1653out:
36cf3b5c 1654 futex_unlock_mm(fshared);
c87e2837
IM
1655
1656 return ret;
1657
1658pi_faulted:
1659 /*
1660 * We have to r/w *(int __user *)uaddr, but we can't modify it
1661 * non-atomically. Therefore, if get_user below is not
1662 * enough, we need to handle the fault ourselves, while
1663 * still holding the mmap_sem.
778e9a9c
AK
1664 *
1665 * ... and hb->lock. --ANK
c87e2837 1666 */
778e9a9c
AK
1667 spin_unlock(&hb->lock);
1668
c87e2837 1669 if (attempt++) {
34f01cc1
ED
1670 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1671 attempt);
1672 if (ret)
778e9a9c 1673 goto out;
187226f5 1674 uval = 0;
778e9a9c 1675 goto retry_unlocked;
c87e2837
IM
1676 }
1677
36cf3b5c 1678 futex_unlock_mm(fshared);
c87e2837
IM
1679
1680 ret = get_user(uval, uaddr);
1681 if (!ret && (uval != -EFAULT))
1682 goto retry;
1683
1da177e4
LT
1684 return ret;
1685}
1686
1687static int futex_close(struct inode *inode, struct file *filp)
1688{
1689 struct futex_q *q = filp->private_data;
1690
1691 unqueue_me(q);
1692 kfree(q);
e2970f2f 1693
1da177e4
LT
1694 return 0;
1695}
1696
1697/* This is one-shot: once it's gone off you need a new fd */
1698static unsigned int futex_poll(struct file *filp,
1699 struct poll_table_struct *wait)
1700{
1701 struct futex_q *q = filp->private_data;
1702 int ret = 0;
1703
1704 poll_wait(filp, &q->waiters, wait);
1705
1706 /*
ec92d082 1707 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1708 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1709 */
ec92d082 1710 if (plist_node_empty(&q->list))
1da177e4
LT
1711 ret = POLLIN | POLLRDNORM;
1712
1713 return ret;
1714}
1715
15ad7cdc 1716static const struct file_operations futex_fops = {
1da177e4
LT
1717 .release = futex_close,
1718 .poll = futex_poll,
1719};
1720
1721/*
1722 * Signal allows caller to avoid the race which would occur if they
1723 * set the sigio stuff up afterwards.
1724 */
e2970f2f 1725static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1726{
1727 struct futex_q *q;
1728 struct file *filp;
1729 int ret, err;
34f01cc1 1730 struct rw_semaphore *fshared;
19c6b6ed
AM
1731 static unsigned long printk_interval;
1732
1733 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1734 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
36cf3b5c
TG
1735 "will be removed from the kernel in June 2007\n",
1736 current->comm);
19c6b6ed 1737 }
1da177e4
LT
1738
1739 ret = -EINVAL;
7ed20e1a 1740 if (!valid_signal(signal))
1da177e4
LT
1741 goto out;
1742
1743 ret = get_unused_fd();
1744 if (ret < 0)
1745 goto out;
1746 filp = get_empty_filp();
1747 if (!filp) {
1748 put_unused_fd(ret);
1749 ret = -ENFILE;
1750 goto out;
1751 }
1752 filp->f_op = &futex_fops;
f3a43f3f
JJS
1753 filp->f_path.mnt = mntget(futex_mnt);
1754 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1755 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1756
1757 if (signal) {
609d7fa9 1758 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1759 if (err < 0) {
39ed3fde 1760 goto error;
1da177e4
LT
1761 }
1762 filp->f_owner.signum = signal;
1763 }
1764
1765 q = kmalloc(sizeof(*q), GFP_KERNEL);
1766 if (!q) {
39ed3fde
PE
1767 err = -ENOMEM;
1768 goto error;
1da177e4 1769 }
c87e2837 1770 q->pi_state = NULL;
1da177e4 1771
34f01cc1
ED
1772 fshared = &current->mm->mmap_sem;
1773 down_read(fshared);
1774 err = get_futex_key(uaddr, fshared, &q->key);
1da177e4
LT
1775
1776 if (unlikely(err != 0)) {
34f01cc1 1777 up_read(fshared);
1da177e4 1778 kfree(q);
39ed3fde 1779 goto error;
1da177e4
LT
1780 }
1781
1782 /*
1783 * queue_me() must be called before releasing mmap_sem, because
1784 * key->shared.inode needs to be referenced while holding it.
1785 */
1786 filp->private_data = q;
1787
1788 queue_me(q, ret, filp);
34f01cc1 1789 up_read(fshared);
1da177e4
LT
1790
1791 /* Now we map fd to filp, so userspace can access it */
1792 fd_install(ret, filp);
1793out:
1794 return ret;
39ed3fde
PE
1795error:
1796 put_unused_fd(ret);
1797 put_filp(filp);
1798 ret = err;
1799 goto out;
1da177e4
LT
1800}
1801
0771dfef
IM
1802/*
1803 * Support for robust futexes: the kernel cleans up held futexes at
1804 * thread exit time.
1805 *
1806 * Implementation: user-space maintains a per-thread list of locks it
1807 * is holding. Upon do_exit(), the kernel carefully walks this list,
1808 * and marks all locks that are owned by this thread with the
c87e2837 1809 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1810 * always manipulated with the lock held, so the list is private and
1811 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1812 * field, to allow the kernel to clean up if the thread dies after
1813 * acquiring the lock, but just before it could have added itself to
1814 * the list. There can only be one such pending lock.
1815 */
1816
1817/**
1818 * sys_set_robust_list - set the robust-futex list head of a task
1819 * @head: pointer to the list-head
1820 * @len: length of the list-head, as userspace expects
1821 */
1822asmlinkage long
1823sys_set_robust_list(struct robust_list_head __user *head,
1824 size_t len)
1825{
1826 /*
1827 * The kernel knows only one size for now:
1828 */
1829 if (unlikely(len != sizeof(*head)))
1830 return -EINVAL;
1831
1832 current->robust_list = head;
1833
1834 return 0;
1835}
1836
1837/**
1838 * sys_get_robust_list - get the robust-futex list head of a task
1839 * @pid: pid of the process [zero for current task]
1840 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1841 * @len_ptr: pointer to a length field, the kernel fills in the header size
1842 */
1843asmlinkage long
ba46df98 1844sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1845 size_t __user *len_ptr)
1846{
ba46df98 1847 struct robust_list_head __user *head;
0771dfef
IM
1848 unsigned long ret;
1849
1850 if (!pid)
1851 head = current->robust_list;
1852 else {
1853 struct task_struct *p;
1854
1855 ret = -ESRCH;
aaa2a97e 1856 rcu_read_lock();
0771dfef
IM
1857 p = find_task_by_pid(pid);
1858 if (!p)
1859 goto err_unlock;
1860 ret = -EPERM;
1861 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1862 !capable(CAP_SYS_PTRACE))
1863 goto err_unlock;
1864 head = p->robust_list;
aaa2a97e 1865 rcu_read_unlock();
0771dfef
IM
1866 }
1867
1868 if (put_user(sizeof(*head), len_ptr))
1869 return -EFAULT;
1870 return put_user(head, head_ptr);
1871
1872err_unlock:
aaa2a97e 1873 rcu_read_unlock();
0771dfef
IM
1874
1875 return ret;
1876}
1877
1878/*
1879 * Process a futex-list entry, check whether it's owned by the
1880 * dying task, and do notification if so:
1881 */
e3f2ddea 1882int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1883{
e3f2ddea 1884 u32 uval, nval, mval;
0771dfef 1885
8f17d3a5
IM
1886retry:
1887 if (get_user(uval, uaddr))
0771dfef
IM
1888 return -1;
1889
8f17d3a5 1890 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
1891 /*
1892 * Ok, this dying thread is truly holding a futex
1893 * of interest. Set the OWNER_DIED bit atomically
1894 * via cmpxchg, and if the value had FUTEX_WAITERS
1895 * set, wake up a waiter (if any). (We have to do a
1896 * futex_wake() even if OWNER_DIED is already set -
1897 * to handle the rare but possible case of recursive
1898 * thread-death.) The rest of the cleanup is done in
1899 * userspace.
1900 */
e3f2ddea
IM
1901 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1902 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1903
c87e2837
IM
1904 if (nval == -EFAULT)
1905 return -1;
1906
1907 if (nval != uval)
8f17d3a5 1908 goto retry;
0771dfef 1909
e3f2ddea
IM
1910 /*
1911 * Wake robust non-PI futexes here. The wakeup of
1912 * PI futexes happens in exit_pi_state():
1913 */
36cf3b5c 1914 if (!pi && (uval & FUTEX_WAITERS))
34f01cc1 1915 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
0771dfef
IM
1916 }
1917 return 0;
1918}
1919
e3f2ddea
IM
1920/*
1921 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1922 */
1923static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1924 struct robust_list __user * __user *head,
1925 int *pi)
e3f2ddea
IM
1926{
1927 unsigned long uentry;
1928
ba46df98 1929 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1930 return -EFAULT;
1931
ba46df98 1932 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1933 *pi = uentry & 1;
1934
1935 return 0;
1936}
1937
0771dfef
IM
1938/*
1939 * Walk curr->robust_list (very carefully, it's a userspace list!)
1940 * and mark any locks found there dead, and notify any waiters.
1941 *
1942 * We silently return on any sign of list-walking problem.
1943 */
1944void exit_robust_list(struct task_struct *curr)
1945{
1946 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1947 struct robust_list __user *entry, *next_entry, *pending;
1948 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1949 unsigned long futex_offset;
9f96cb1e 1950 int rc;
0771dfef
IM
1951
1952 /*
1953 * Fetch the list head (which was registered earlier, via
1954 * sys_set_robust_list()):
1955 */
e3f2ddea 1956 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1957 return;
1958 /*
1959 * Fetch the relative futex offset:
1960 */
1961 if (get_user(futex_offset, &head->futex_offset))
1962 return;
1963 /*
1964 * Fetch any possibly pending lock-add first, and handle it
1965 * if it exists:
1966 */
e3f2ddea 1967 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1968 return;
e3f2ddea 1969
9f96cb1e 1970 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1971 while (entry != &head->list) {
9f96cb1e
MS
1972 /*
1973 * Fetch the next entry in the list before calling
1974 * handle_futex_death:
1975 */
1976 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1977 /*
1978 * A pending lock might already be on the list, so
c87e2837 1979 * don't process it twice:
0771dfef
IM
1980 */
1981 if (entry != pending)
ba46df98 1982 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1983 curr, pi))
0771dfef 1984 return;
9f96cb1e 1985 if (rc)
0771dfef 1986 return;
9f96cb1e
MS
1987 entry = next_entry;
1988 pi = next_pi;
0771dfef
IM
1989 /*
1990 * Avoid excessively long or circular lists:
1991 */
1992 if (!--limit)
1993 break;
1994
1995 cond_resched();
1996 }
9f96cb1e
MS
1997
1998 if (pending)
1999 handle_futex_death((void __user *)pending + futex_offset,
2000 curr, pip);
0771dfef
IM
2001}
2002
c19384b5 2003long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2004 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
2005{
2006 int ret;
34f01cc1
ED
2007 int cmd = op & FUTEX_CMD_MASK;
2008 struct rw_semaphore *fshared = NULL;
2009
2010 if (!(op & FUTEX_PRIVATE_FLAG))
2011 fshared = &current->mm->mmap_sem;
1da177e4 2012
34f01cc1 2013 switch (cmd) {
1da177e4 2014 case FUTEX_WAIT:
34f01cc1 2015 ret = futex_wait(uaddr, fshared, val, timeout);
1da177e4
LT
2016 break;
2017 case FUTEX_WAKE:
34f01cc1 2018 ret = futex_wake(uaddr, fshared, val);
1da177e4
LT
2019 break;
2020 case FUTEX_FD:
2021 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2022 ret = futex_fd(uaddr, val);
2023 break;
2024 case FUTEX_REQUEUE:
34f01cc1 2025 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
2026 break;
2027 case FUTEX_CMP_REQUEUE:
34f01cc1 2028 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2029 break;
4732efbe 2030 case FUTEX_WAKE_OP:
34f01cc1 2031 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2032 break;
c87e2837 2033 case FUTEX_LOCK_PI:
34f01cc1 2034 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2035 break;
2036 case FUTEX_UNLOCK_PI:
34f01cc1 2037 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2038 break;
2039 case FUTEX_TRYLOCK_PI:
34f01cc1 2040 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2041 break;
1da177e4
LT
2042 default:
2043 ret = -ENOSYS;
2044 }
2045 return ret;
2046}
2047
2048
e2970f2f 2049asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 2050 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 2051 u32 val3)
1da177e4 2052{
c19384b5
PP
2053 struct timespec ts;
2054 ktime_t t, *tp = NULL;
e2970f2f 2055 u32 val2 = 0;
34f01cc1 2056 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2057
34f01cc1 2058 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
c19384b5 2059 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2060 return -EFAULT;
c19384b5 2061 if (!timespec_valid(&ts))
9741ef96 2062 return -EINVAL;
c19384b5
PP
2063
2064 t = timespec_to_ktime(ts);
34f01cc1 2065 if (cmd == FUTEX_WAIT)
c19384b5
PP
2066 t = ktime_add(ktime_get(), t);
2067 tp = &t;
1da177e4
LT
2068 }
2069 /*
34f01cc1 2070 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2071 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2072 */
f54f0986
AS
2073 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2074 cmd == FUTEX_WAKE_OP)
e2970f2f 2075 val2 = (u32) (unsigned long) utime;
1da177e4 2076
c19384b5 2077 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2078}
2079
454e2398
DH
2080static int futexfs_get_sb(struct file_system_type *fs_type,
2081 int flags, const char *dev_name, void *data,
2082 struct vfsmount *mnt)
1da177e4 2083{
fd5eea42 2084 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
1da177e4
LT
2085}
2086
2087static struct file_system_type futex_fs_type = {
2088 .name = "futexfs",
2089 .get_sb = futexfs_get_sb,
2090 .kill_sb = kill_anon_super,
2091};
2092
2093static int __init init(void)
2094{
95362fa9
AM
2095 int i = register_filesystem(&futex_fs_type);
2096
2097 if (i)
2098 return i;
1da177e4 2099
1da177e4 2100 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
2101 if (IS_ERR(futex_mnt)) {
2102 unregister_filesystem(&futex_fs_type);
2103 return PTR_ERR(futex_mnt);
2104 }
1da177e4
LT
2105
2106 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
ec92d082 2107 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1da177e4
LT
2108 spin_lock_init(&futex_queues[i].lock);
2109 }
2110 return 0;
2111}
2112__initcall(init);