]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Always cleanup owner tid in unlock_pi
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
11d4616b
LT
283 smp_mb__after_atomic_inc();
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
746static int
d0aa7a70 747lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
866293ee
TG
748 union futex_key *key, struct futex_pi_state **ps,
749 struct task_struct *task)
c87e2837
IM
750{
751 struct futex_pi_state *pi_state = NULL;
752 struct futex_q *this, *next;
c87e2837 753 struct task_struct *p;
778e9a9c 754 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 755
0d00c7b2 756 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 757 if (match_futex(&this->key, key)) {
c87e2837
IM
758 /*
759 * Another waiter already exists - bump up
760 * the refcount and return its pi_state:
761 */
762 pi_state = this->pi_state;
06a9ec29 763 /*
fb62db2b 764 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
765 */
766 if (unlikely(!pi_state))
767 return -EINVAL;
768
627371d7 769 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
770
771 /*
772 * When pi_state->owner is NULL then the owner died
773 * and another waiter is on the fly. pi_state->owner
774 * is fixed up by the task which acquires
775 * pi_state->rt_mutex.
776 *
777 * We do not check for pid == 0 which can happen when
778 * the owner died and robust_list_exit() cleared the
779 * TID.
780 */
781 if (pid && pi_state->owner) {
782 /*
783 * Bail out if user space manipulated the
784 * futex value.
785 */
786 if (pid != task_pid_vnr(pi_state->owner))
787 return -EINVAL;
788 }
627371d7 789
866293ee
TG
790 /*
791 * Protect against a corrupted uval. If uval
792 * is 0x80000000 then pid is 0 and the waiter
793 * bit is set. So the deadlock check in the
794 * calling code has failed and we did not fall
795 * into the check above due to !pid.
796 */
797 if (task && pi_state->owner == task)
798 return -EDEADLK;
799
c87e2837 800 atomic_inc(&pi_state->refcount);
d0aa7a70 801 *ps = pi_state;
c87e2837
IM
802
803 return 0;
804 }
805 }
806
807 /*
e3f2ddea 808 * We are the first waiter - try to look up the real owner and attach
778e9a9c 809 * the new pi_state to it, but bail out when TID = 0
c87e2837 810 */
778e9a9c 811 if (!pid)
e3f2ddea 812 return -ESRCH;
c87e2837 813 p = futex_find_get_task(pid);
7a0ea09a
MH
814 if (!p)
815 return -ESRCH;
778e9a9c 816
f0d71b3d
TG
817 if (!p->mm) {
818 put_task_struct(p);
819 return -EPERM;
820 }
821
778e9a9c
AK
822 /*
823 * We need to look at the task state flags to figure out,
824 * whether the task is exiting. To protect against the do_exit
825 * change of the task flags, we do this protected by
826 * p->pi_lock:
827 */
1d615482 828 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
829 if (unlikely(p->flags & PF_EXITING)) {
830 /*
831 * The task is on the way out. When PF_EXITPIDONE is
832 * set, we know that the task has finished the
833 * cleanup:
834 */
835 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
1d615482 837 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
838 put_task_struct(p);
839 return ret;
840 }
c87e2837
IM
841
842 pi_state = alloc_pi_state();
843
844 /*
845 * Initialize the pi_mutex in locked state and make 'p'
846 * the owner of it:
847 */
848 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850 /* Store the key for possible exit cleanups: */
d0aa7a70 851 pi_state->key = *key;
c87e2837 852
627371d7 853 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
854 list_add(&pi_state->list, &p->pi_state_list);
855 pi_state->owner = p;
1d615482 856 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
857
858 put_task_struct(p);
859
d0aa7a70 860 *ps = pi_state;
c87e2837
IM
861
862 return 0;
863}
864
1a52084d 865/**
d96ee56c 866 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
867 * @uaddr: the pi futex user address
868 * @hb: the pi futex hash bucket
869 * @key: the futex key associated with uaddr and hb
870 * @ps: the pi_state pointer where we store the result of the
871 * lookup
872 * @task: the task to perform the atomic lock work for. This will
873 * be "current" except in the case of requeue pi.
874 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 875 *
6c23cbbd
RD
876 * Return:
877 * 0 - ready to wait;
878 * 1 - acquired the lock;
1a52084d
DH
879 * <0 - error
880 *
881 * The hb->lock and futex_key refs shall be held by the caller.
882 */
883static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884 union futex_key *key,
885 struct futex_pi_state **ps,
bab5bc9e 886 struct task_struct *task, int set_waiters)
1a52084d 887{
59fa6245 888 int lock_taken, ret, force_take = 0;
c0c9ed15 889 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
890
891retry:
892 ret = lock_taken = 0;
893
894 /*
895 * To avoid races, we attempt to take the lock here again
896 * (by doing a 0 -> TID atomic cmpxchg), while holding all
897 * the locks. It will most likely not succeed.
898 */
c0c9ed15 899 newval = vpid;
bab5bc9e
DH
900 if (set_waiters)
901 newval |= FUTEX_WAITERS;
1a52084d 902
37a9d912 903 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
904 return -EFAULT;
905
906 /*
907 * Detect deadlocks.
908 */
c0c9ed15 909 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
910 return -EDEADLK;
911
912 /*
b3eaa9fc 913 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 914 */
b3eaa9fc
TG
915 if (unlikely(!curval)) {
916 /*
917 * We verify whether there is kernel state for this
918 * futex. If not, we can safely assume, that the 0 ->
919 * TID transition is correct. If state exists, we do
920 * not bother to fixup the user space state as it was
921 * corrupted already.
922 */
923 return futex_top_waiter(hb, key) ? -EINVAL : 1;
924 }
1a52084d
DH
925
926 uval = curval;
927
928 /*
929 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
930 * to wake at the next unlock.
931 */
932 newval = curval | FUTEX_WAITERS;
933
934 /*
59fa6245 935 * Should we force take the futex? See below.
1a52084d 936 */
59fa6245
TG
937 if (unlikely(force_take)) {
938 /*
939 * Keep the OWNER_DIED and the WAITERS bit and set the
940 * new TID value.
941 */
c0c9ed15 942 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 943 force_take = 0;
1a52084d
DH
944 lock_taken = 1;
945 }
946
37a9d912 947 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
948 return -EFAULT;
949 if (unlikely(curval != uval))
950 goto retry;
951
952 /*
59fa6245 953 * We took the lock due to forced take over.
1a52084d
DH
954 */
955 if (unlikely(lock_taken))
956 return 1;
957
958 /*
959 * We dont have the lock. Look up the PI state (or create it if
960 * we are the first waiter):
961 */
866293ee 962 ret = lookup_pi_state(uval, hb, key, ps, task);
1a52084d
DH
963
964 if (unlikely(ret)) {
965 switch (ret) {
966 case -ESRCH:
967 /*
59fa6245
TG
968 * We failed to find an owner for this
969 * futex. So we have no pi_state to block
970 * on. This can happen in two cases:
971 *
972 * 1) The owner died
973 * 2) A stale FUTEX_WAITERS bit
974 *
975 * Re-read the futex value.
1a52084d
DH
976 */
977 if (get_futex_value_locked(&curval, uaddr))
978 return -EFAULT;
979
980 /*
59fa6245
TG
981 * If the owner died or we have a stale
982 * WAITERS bit the owner TID in the user space
983 * futex is 0.
1a52084d 984 */
59fa6245
TG
985 if (!(curval & FUTEX_TID_MASK)) {
986 force_take = 1;
1a52084d
DH
987 goto retry;
988 }
989 default:
990 break;
991 }
992 }
993
994 return ret;
995}
996
2e12978a
LJ
997/**
998 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
999 * @q: The futex_q to unqueue
1000 *
1001 * The q->lock_ptr must not be NULL and must be held by the caller.
1002 */
1003static void __unqueue_futex(struct futex_q *q)
1004{
1005 struct futex_hash_bucket *hb;
1006
29096202
SR
1007 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1008 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1009 return;
1010
1011 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1012 plist_del(&q->list, &hb->chain);
11d4616b 1013 hb_waiters_dec(hb);
2e12978a
LJ
1014}
1015
1da177e4
LT
1016/*
1017 * The hash bucket lock must be held when this is called.
1018 * Afterwards, the futex_q must not be accessed.
1019 */
1020static void wake_futex(struct futex_q *q)
1021{
f1a11e05
TG
1022 struct task_struct *p = q->task;
1023
aa10990e
DH
1024 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1025 return;
1026
1da177e4 1027 /*
f1a11e05 1028 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1029 * a non-futex wake up happens on another CPU then the task
1030 * might exit and p would dereference a non-existing task
f1a11e05
TG
1031 * struct. Prevent this by holding a reference on p across the
1032 * wake up.
1da177e4 1033 */
f1a11e05
TG
1034 get_task_struct(p);
1035
2e12978a 1036 __unqueue_futex(q);
1da177e4 1037 /*
f1a11e05
TG
1038 * The waiting task can free the futex_q as soon as
1039 * q->lock_ptr = NULL is written, without taking any locks. A
1040 * memory barrier is required here to prevent the following
1041 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1042 */
ccdea2f8 1043 smp_wmb();
1da177e4 1044 q->lock_ptr = NULL;
f1a11e05
TG
1045
1046 wake_up_state(p, TASK_NORMAL);
1047 put_task_struct(p);
1da177e4
LT
1048}
1049
c87e2837
IM
1050static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1051{
1052 struct task_struct *new_owner;
1053 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1054 u32 uninitialized_var(curval), newval;
13fbca4c 1055 int ret = 0;
c87e2837
IM
1056
1057 if (!pi_state)
1058 return -EINVAL;
1059
51246bfd
TG
1060 /*
1061 * If current does not own the pi_state then the futex is
1062 * inconsistent and user space fiddled with the futex value.
1063 */
1064 if (pi_state->owner != current)
1065 return -EINVAL;
1066
d209d74d 1067 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1068 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1069
1070 /*
f123c98e
SR
1071 * It is possible that the next waiter (the one that brought
1072 * this owner to the kernel) timed out and is no longer
1073 * waiting on the lock.
c87e2837
IM
1074 */
1075 if (!new_owner)
1076 new_owner = this->task;
1077
1078 /*
13fbca4c
TG
1079 * We pass it to the next owner. The WAITERS bit is always
1080 * kept enabled while there is PI state around. We cleanup the
1081 * owner died bit, because we are the owner.
c87e2837 1082 */
13fbca4c 1083 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1084
13fbca4c
TG
1085 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1086 ret = -EFAULT;
1087 else if (curval != uval)
1088 ret = -EINVAL;
1089 if (ret) {
1090 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1091 return ret;
e3f2ddea 1092 }
c87e2837 1093
1d615482 1094 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1095 WARN_ON(list_empty(&pi_state->list));
1096 list_del_init(&pi_state->list);
1d615482 1097 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1098
1d615482 1099 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1100 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1101 list_add(&pi_state->list, &new_owner->pi_state_list);
1102 pi_state->owner = new_owner;
1d615482 1103 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1104
d209d74d 1105 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1106 rt_mutex_unlock(&pi_state->pi_mutex);
1107
1108 return 0;
1109}
1110
1111static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1112{
7cfdaf38 1113 u32 uninitialized_var(oldval);
c87e2837
IM
1114
1115 /*
1116 * There is no waiter, so we unlock the futex. The owner died
1117 * bit has not to be preserved here. We are the owner:
1118 */
37a9d912
ML
1119 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1120 return -EFAULT;
c87e2837
IM
1121 if (oldval != uval)
1122 return -EAGAIN;
1123
1124 return 0;
1125}
1126
8b8f319f
IM
1127/*
1128 * Express the locking dependencies for lockdep:
1129 */
1130static inline void
1131double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1132{
1133 if (hb1 <= hb2) {
1134 spin_lock(&hb1->lock);
1135 if (hb1 < hb2)
1136 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1137 } else { /* hb1 > hb2 */
1138 spin_lock(&hb2->lock);
1139 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1140 }
1141}
1142
5eb3dc62
DH
1143static inline void
1144double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1145{
f061d351 1146 spin_unlock(&hb1->lock);
88f502fe
IM
1147 if (hb1 != hb2)
1148 spin_unlock(&hb2->lock);
5eb3dc62
DH
1149}
1150
1da177e4 1151/*
b2d0994b 1152 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1153 */
b41277dc
DH
1154static int
1155futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1156{
e2970f2f 1157 struct futex_hash_bucket *hb;
1da177e4 1158 struct futex_q *this, *next;
38d47c1b 1159 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1160 int ret;
1161
cd689985
TG
1162 if (!bitset)
1163 return -EINVAL;
1164
9ea71503 1165 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1166 if (unlikely(ret != 0))
1167 goto out;
1168
e2970f2f 1169 hb = hash_futex(&key);
b0c29f79
DB
1170
1171 /* Make sure we really have tasks to wakeup */
1172 if (!hb_waiters_pending(hb))
1173 goto out_put_key;
1174
e2970f2f 1175 spin_lock(&hb->lock);
1da177e4 1176
0d00c7b2 1177 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1178 if (match_futex (&this->key, &key)) {
52400ba9 1179 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1180 ret = -EINVAL;
1181 break;
1182 }
cd689985
TG
1183
1184 /* Check if one of the bits is set in both bitsets */
1185 if (!(this->bitset & bitset))
1186 continue;
1187
1da177e4
LT
1188 wake_futex(this);
1189 if (++ret >= nr_wake)
1190 break;
1191 }
1192 }
1193
e2970f2f 1194 spin_unlock(&hb->lock);
b0c29f79 1195out_put_key:
ae791a2d 1196 put_futex_key(&key);
42d35d48 1197out:
1da177e4
LT
1198 return ret;
1199}
1200
4732efbe
JJ
1201/*
1202 * Wake up all waiters hashed on the physical page that is mapped
1203 * to this virtual address:
1204 */
e2970f2f 1205static int
b41277dc 1206futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1207 int nr_wake, int nr_wake2, int op)
4732efbe 1208{
38d47c1b 1209 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1210 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1211 struct futex_q *this, *next;
e4dc5b7a 1212 int ret, op_ret;
4732efbe 1213
e4dc5b7a 1214retry:
9ea71503 1215 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1216 if (unlikely(ret != 0))
1217 goto out;
9ea71503 1218 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1219 if (unlikely(ret != 0))
42d35d48 1220 goto out_put_key1;
4732efbe 1221
e2970f2f
IM
1222 hb1 = hash_futex(&key1);
1223 hb2 = hash_futex(&key2);
4732efbe 1224
e4dc5b7a 1225retry_private:
eaaea803 1226 double_lock_hb(hb1, hb2);
e2970f2f 1227 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1228 if (unlikely(op_ret < 0)) {
4732efbe 1229
5eb3dc62 1230 double_unlock_hb(hb1, hb2);
4732efbe 1231
7ee1dd3f 1232#ifndef CONFIG_MMU
e2970f2f
IM
1233 /*
1234 * we don't get EFAULT from MMU faults if we don't have an MMU,
1235 * but we might get them from range checking
1236 */
7ee1dd3f 1237 ret = op_ret;
42d35d48 1238 goto out_put_keys;
7ee1dd3f
DH
1239#endif
1240
796f8d9b
DG
1241 if (unlikely(op_ret != -EFAULT)) {
1242 ret = op_ret;
42d35d48 1243 goto out_put_keys;
796f8d9b
DG
1244 }
1245
d0725992 1246 ret = fault_in_user_writeable(uaddr2);
4732efbe 1247 if (ret)
de87fcc1 1248 goto out_put_keys;
4732efbe 1249
b41277dc 1250 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1251 goto retry_private;
1252
ae791a2d
TG
1253 put_futex_key(&key2);
1254 put_futex_key(&key1);
e4dc5b7a 1255 goto retry;
4732efbe
JJ
1256 }
1257
0d00c7b2 1258 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1259 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1260 if (this->pi_state || this->rt_waiter) {
1261 ret = -EINVAL;
1262 goto out_unlock;
1263 }
4732efbe
JJ
1264 wake_futex(this);
1265 if (++ret >= nr_wake)
1266 break;
1267 }
1268 }
1269
1270 if (op_ret > 0) {
4732efbe 1271 op_ret = 0;
0d00c7b2 1272 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1273 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1274 if (this->pi_state || this->rt_waiter) {
1275 ret = -EINVAL;
1276 goto out_unlock;
1277 }
4732efbe
JJ
1278 wake_futex(this);
1279 if (++op_ret >= nr_wake2)
1280 break;
1281 }
1282 }
1283 ret += op_ret;
1284 }
1285
aa10990e 1286out_unlock:
5eb3dc62 1287 double_unlock_hb(hb1, hb2);
42d35d48 1288out_put_keys:
ae791a2d 1289 put_futex_key(&key2);
42d35d48 1290out_put_key1:
ae791a2d 1291 put_futex_key(&key1);
42d35d48 1292out:
4732efbe
JJ
1293 return ret;
1294}
1295
9121e478
DH
1296/**
1297 * requeue_futex() - Requeue a futex_q from one hb to another
1298 * @q: the futex_q to requeue
1299 * @hb1: the source hash_bucket
1300 * @hb2: the target hash_bucket
1301 * @key2: the new key for the requeued futex_q
1302 */
1303static inline
1304void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1305 struct futex_hash_bucket *hb2, union futex_key *key2)
1306{
1307
1308 /*
1309 * If key1 and key2 hash to the same bucket, no need to
1310 * requeue.
1311 */
1312 if (likely(&hb1->chain != &hb2->chain)) {
1313 plist_del(&q->list, &hb1->chain);
11d4616b 1314 hb_waiters_dec(hb1);
9121e478 1315 plist_add(&q->list, &hb2->chain);
11d4616b 1316 hb_waiters_inc(hb2);
9121e478 1317 q->lock_ptr = &hb2->lock;
9121e478
DH
1318 }
1319 get_futex_key_refs(key2);
1320 q->key = *key2;
1321}
1322
52400ba9
DH
1323/**
1324 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1325 * @q: the futex_q
1326 * @key: the key of the requeue target futex
1327 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1328 *
1329 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1330 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1331 * to the requeue target futex so the waiter can detect the wakeup on the right
1332 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1333 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1334 * to protect access to the pi_state to fixup the owner later. Must be called
1335 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1336 */
1337static inline
beda2c7e
DH
1338void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1339 struct futex_hash_bucket *hb)
52400ba9 1340{
52400ba9
DH
1341 get_futex_key_refs(key);
1342 q->key = *key;
1343
2e12978a 1344 __unqueue_futex(q);
52400ba9
DH
1345
1346 WARN_ON(!q->rt_waiter);
1347 q->rt_waiter = NULL;
1348
beda2c7e 1349 q->lock_ptr = &hb->lock;
beda2c7e 1350
f1a11e05 1351 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1352}
1353
1354/**
1355 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1356 * @pifutex: the user address of the to futex
1357 * @hb1: the from futex hash bucket, must be locked by the caller
1358 * @hb2: the to futex hash bucket, must be locked by the caller
1359 * @key1: the from futex key
1360 * @key2: the to futex key
1361 * @ps: address to store the pi_state pointer
1362 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1363 *
1364 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1365 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1366 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1367 * hb1 and hb2 must be held by the caller.
52400ba9 1368 *
6c23cbbd
RD
1369 * Return:
1370 * 0 - failed to acquire the lock atomically;
866293ee 1371 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1372 * <0 - error
1373 */
1374static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1375 struct futex_hash_bucket *hb1,
1376 struct futex_hash_bucket *hb2,
1377 union futex_key *key1, union futex_key *key2,
bab5bc9e 1378 struct futex_pi_state **ps, int set_waiters)
52400ba9 1379{
bab5bc9e 1380 struct futex_q *top_waiter = NULL;
52400ba9 1381 u32 curval;
866293ee 1382 int ret, vpid;
52400ba9
DH
1383
1384 if (get_futex_value_locked(&curval, pifutex))
1385 return -EFAULT;
1386
bab5bc9e
DH
1387 /*
1388 * Find the top_waiter and determine if there are additional waiters.
1389 * If the caller intends to requeue more than 1 waiter to pifutex,
1390 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1391 * as we have means to handle the possible fault. If not, don't set
1392 * the bit unecessarily as it will force the subsequent unlock to enter
1393 * the kernel.
1394 */
52400ba9
DH
1395 top_waiter = futex_top_waiter(hb1, key1);
1396
1397 /* There are no waiters, nothing for us to do. */
1398 if (!top_waiter)
1399 return 0;
1400
84bc4af5
DH
1401 /* Ensure we requeue to the expected futex. */
1402 if (!match_futex(top_waiter->requeue_pi_key, key2))
1403 return -EINVAL;
1404
52400ba9 1405 /*
bab5bc9e
DH
1406 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1407 * the contended case or if set_waiters is 1. The pi_state is returned
1408 * in ps in contended cases.
52400ba9 1409 */
866293ee 1410 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1411 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1412 set_waiters);
866293ee 1413 if (ret == 1) {
beda2c7e 1414 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1415 return vpid;
1416 }
52400ba9
DH
1417 return ret;
1418}
1419
1420/**
1421 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1422 * @uaddr1: source futex user address
b41277dc 1423 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1424 * @uaddr2: target futex user address
1425 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1426 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1427 * @cmpval: @uaddr1 expected value (or %NULL)
1428 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1429 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1430 *
1431 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1432 * uaddr2 atomically on behalf of the top waiter.
1433 *
6c23cbbd
RD
1434 * Return:
1435 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1436 * <0 - on error
1da177e4 1437 */
b41277dc
DH
1438static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1439 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1440 u32 *cmpval, int requeue_pi)
1da177e4 1441{
38d47c1b 1442 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1443 int drop_count = 0, task_count = 0, ret;
1444 struct futex_pi_state *pi_state = NULL;
e2970f2f 1445 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1446 struct futex_q *this, *next;
52400ba9
DH
1447
1448 if (requeue_pi) {
e9c243a5
TG
1449 /*
1450 * Requeue PI only works on two distinct uaddrs. This
1451 * check is only valid for private futexes. See below.
1452 */
1453 if (uaddr1 == uaddr2)
1454 return -EINVAL;
1455
52400ba9
DH
1456 /*
1457 * requeue_pi requires a pi_state, try to allocate it now
1458 * without any locks in case it fails.
1459 */
1460 if (refill_pi_state_cache())
1461 return -ENOMEM;
1462 /*
1463 * requeue_pi must wake as many tasks as it can, up to nr_wake
1464 * + nr_requeue, since it acquires the rt_mutex prior to
1465 * returning to userspace, so as to not leave the rt_mutex with
1466 * waiters and no owner. However, second and third wake-ups
1467 * cannot be predicted as they involve race conditions with the
1468 * first wake and a fault while looking up the pi_state. Both
1469 * pthread_cond_signal() and pthread_cond_broadcast() should
1470 * use nr_wake=1.
1471 */
1472 if (nr_wake != 1)
1473 return -EINVAL;
1474 }
1da177e4 1475
42d35d48 1476retry:
52400ba9
DH
1477 if (pi_state != NULL) {
1478 /*
1479 * We will have to lookup the pi_state again, so free this one
1480 * to keep the accounting correct.
1481 */
1482 free_pi_state(pi_state);
1483 pi_state = NULL;
1484 }
1485
9ea71503 1486 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1487 if (unlikely(ret != 0))
1488 goto out;
9ea71503
SB
1489 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1490 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1491 if (unlikely(ret != 0))
42d35d48 1492 goto out_put_key1;
1da177e4 1493
e9c243a5
TG
1494 /*
1495 * The check above which compares uaddrs is not sufficient for
1496 * shared futexes. We need to compare the keys:
1497 */
1498 if (requeue_pi && match_futex(&key1, &key2)) {
1499 ret = -EINVAL;
1500 goto out_put_keys;
1501 }
1502
e2970f2f
IM
1503 hb1 = hash_futex(&key1);
1504 hb2 = hash_futex(&key2);
1da177e4 1505
e4dc5b7a 1506retry_private:
69cd9eba 1507 hb_waiters_inc(hb2);
8b8f319f 1508 double_lock_hb(hb1, hb2);
1da177e4 1509
e2970f2f
IM
1510 if (likely(cmpval != NULL)) {
1511 u32 curval;
1da177e4 1512
e2970f2f 1513 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1514
1515 if (unlikely(ret)) {
5eb3dc62 1516 double_unlock_hb(hb1, hb2);
69cd9eba 1517 hb_waiters_dec(hb2);
1da177e4 1518
e2970f2f 1519 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1520 if (ret)
1521 goto out_put_keys;
1da177e4 1522
b41277dc 1523 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1524 goto retry_private;
1da177e4 1525
ae791a2d
TG
1526 put_futex_key(&key2);
1527 put_futex_key(&key1);
e4dc5b7a 1528 goto retry;
1da177e4 1529 }
e2970f2f 1530 if (curval != *cmpval) {
1da177e4
LT
1531 ret = -EAGAIN;
1532 goto out_unlock;
1533 }
1534 }
1535
52400ba9 1536 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1537 /*
1538 * Attempt to acquire uaddr2 and wake the top waiter. If we
1539 * intend to requeue waiters, force setting the FUTEX_WAITERS
1540 * bit. We force this here where we are able to easily handle
1541 * faults rather in the requeue loop below.
1542 */
52400ba9 1543 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1544 &key2, &pi_state, nr_requeue);
52400ba9
DH
1545
1546 /*
1547 * At this point the top_waiter has either taken uaddr2 or is
1548 * waiting on it. If the former, then the pi_state will not
1549 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1550 * reference to it. If the lock was taken, ret contains the
1551 * vpid of the top waiter task.
52400ba9 1552 */
866293ee 1553 if (ret > 0) {
52400ba9 1554 WARN_ON(pi_state);
89061d3d 1555 drop_count++;
52400ba9 1556 task_count++;
866293ee
TG
1557 /*
1558 * If we acquired the lock, then the user
1559 * space value of uaddr2 should be vpid. It
1560 * cannot be changed by the top waiter as it
1561 * is blocked on hb2 lock if it tries to do
1562 * so. If something fiddled with it behind our
1563 * back the pi state lookup might unearth
1564 * it. So we rather use the known value than
1565 * rereading and handing potential crap to
1566 * lookup_pi_state.
1567 */
1568 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
52400ba9
DH
1569 }
1570
1571 switch (ret) {
1572 case 0:
1573 break;
1574 case -EFAULT:
1575 double_unlock_hb(hb1, hb2);
69cd9eba 1576 hb_waiters_dec(hb2);
ae791a2d
TG
1577 put_futex_key(&key2);
1578 put_futex_key(&key1);
d0725992 1579 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1580 if (!ret)
1581 goto retry;
1582 goto out;
1583 case -EAGAIN:
1584 /* The owner was exiting, try again. */
1585 double_unlock_hb(hb1, hb2);
69cd9eba 1586 hb_waiters_dec(hb2);
ae791a2d
TG
1587 put_futex_key(&key2);
1588 put_futex_key(&key1);
52400ba9
DH
1589 cond_resched();
1590 goto retry;
1591 default:
1592 goto out_unlock;
1593 }
1594 }
1595
0d00c7b2 1596 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1597 if (task_count - nr_wake >= nr_requeue)
1598 break;
1599
1600 if (!match_futex(&this->key, &key1))
1da177e4 1601 continue;
52400ba9 1602
392741e0
DH
1603 /*
1604 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1605 * be paired with each other and no other futex ops.
aa10990e
DH
1606 *
1607 * We should never be requeueing a futex_q with a pi_state,
1608 * which is awaiting a futex_unlock_pi().
392741e0
DH
1609 */
1610 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1611 (!requeue_pi && this->rt_waiter) ||
1612 this->pi_state) {
392741e0
DH
1613 ret = -EINVAL;
1614 break;
1615 }
52400ba9
DH
1616
1617 /*
1618 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1619 * lock, we already woke the top_waiter. If not, it will be
1620 * woken by futex_unlock_pi().
1621 */
1622 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1623 wake_futex(this);
52400ba9
DH
1624 continue;
1625 }
1da177e4 1626
84bc4af5
DH
1627 /* Ensure we requeue to the expected futex for requeue_pi. */
1628 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1629 ret = -EINVAL;
1630 break;
1631 }
1632
52400ba9
DH
1633 /*
1634 * Requeue nr_requeue waiters and possibly one more in the case
1635 * of requeue_pi if we couldn't acquire the lock atomically.
1636 */
1637 if (requeue_pi) {
1638 /* Prepare the waiter to take the rt_mutex. */
1639 atomic_inc(&pi_state->refcount);
1640 this->pi_state = pi_state;
1641 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1642 this->rt_waiter,
1643 this->task, 1);
1644 if (ret == 1) {
1645 /* We got the lock. */
beda2c7e 1646 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1647 drop_count++;
52400ba9
DH
1648 continue;
1649 } else if (ret) {
1650 /* -EDEADLK */
1651 this->pi_state = NULL;
1652 free_pi_state(pi_state);
1653 goto out_unlock;
1654 }
1da177e4 1655 }
52400ba9
DH
1656 requeue_futex(this, hb1, hb2, &key2);
1657 drop_count++;
1da177e4
LT
1658 }
1659
1660out_unlock:
5eb3dc62 1661 double_unlock_hb(hb1, hb2);
69cd9eba 1662 hb_waiters_dec(hb2);
1da177e4 1663
cd84a42f
DH
1664 /*
1665 * drop_futex_key_refs() must be called outside the spinlocks. During
1666 * the requeue we moved futex_q's from the hash bucket at key1 to the
1667 * one at key2 and updated their key pointer. We no longer need to
1668 * hold the references to key1.
1669 */
1da177e4 1670 while (--drop_count >= 0)
9adef58b 1671 drop_futex_key_refs(&key1);
1da177e4 1672
42d35d48 1673out_put_keys:
ae791a2d 1674 put_futex_key(&key2);
42d35d48 1675out_put_key1:
ae791a2d 1676 put_futex_key(&key1);
42d35d48 1677out:
52400ba9
DH
1678 if (pi_state != NULL)
1679 free_pi_state(pi_state);
1680 return ret ? ret : task_count;
1da177e4
LT
1681}
1682
1683/* The key must be already stored in q->key. */
82af7aca 1684static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1685 __acquires(&hb->lock)
1da177e4 1686{
e2970f2f 1687 struct futex_hash_bucket *hb;
1da177e4 1688
e2970f2f 1689 hb = hash_futex(&q->key);
11d4616b
LT
1690
1691 /*
1692 * Increment the counter before taking the lock so that
1693 * a potential waker won't miss a to-be-slept task that is
1694 * waiting for the spinlock. This is safe as all queue_lock()
1695 * users end up calling queue_me(). Similarly, for housekeeping,
1696 * decrement the counter at queue_unlock() when some error has
1697 * occurred and we don't end up adding the task to the list.
1698 */
1699 hb_waiters_inc(hb);
1700
e2970f2f 1701 q->lock_ptr = &hb->lock;
1da177e4 1702
b0c29f79 1703 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1704 return hb;
1da177e4
LT
1705}
1706
d40d65c8 1707static inline void
0d00c7b2 1708queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1709 __releases(&hb->lock)
d40d65c8
DH
1710{
1711 spin_unlock(&hb->lock);
11d4616b 1712 hb_waiters_dec(hb);
d40d65c8
DH
1713}
1714
1715/**
1716 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1717 * @q: The futex_q to enqueue
1718 * @hb: The destination hash bucket
1719 *
1720 * The hb->lock must be held by the caller, and is released here. A call to
1721 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1722 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1723 * or nothing if the unqueue is done as part of the wake process and the unqueue
1724 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1725 * an example).
1726 */
82af7aca 1727static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1728 __releases(&hb->lock)
1da177e4 1729{
ec92d082
PP
1730 int prio;
1731
1732 /*
1733 * The priority used to register this element is
1734 * - either the real thread-priority for the real-time threads
1735 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1736 * - or MAX_RT_PRIO for non-RT threads.
1737 * Thus, all RT-threads are woken first in priority order, and
1738 * the others are woken last, in FIFO order.
1739 */
1740 prio = min(current->normal_prio, MAX_RT_PRIO);
1741
1742 plist_node_init(&q->list, prio);
ec92d082 1743 plist_add(&q->list, &hb->chain);
c87e2837 1744 q->task = current;
e2970f2f 1745 spin_unlock(&hb->lock);
1da177e4
LT
1746}
1747
d40d65c8
DH
1748/**
1749 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1750 * @q: The futex_q to unqueue
1751 *
1752 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1753 * be paired with exactly one earlier call to queue_me().
1754 *
6c23cbbd
RD
1755 * Return:
1756 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1757 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1758 */
1da177e4
LT
1759static int unqueue_me(struct futex_q *q)
1760{
1da177e4 1761 spinlock_t *lock_ptr;
e2970f2f 1762 int ret = 0;
1da177e4
LT
1763
1764 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1765retry:
1da177e4 1766 lock_ptr = q->lock_ptr;
e91467ec 1767 barrier();
c80544dc 1768 if (lock_ptr != NULL) {
1da177e4
LT
1769 spin_lock(lock_ptr);
1770 /*
1771 * q->lock_ptr can change between reading it and
1772 * spin_lock(), causing us to take the wrong lock. This
1773 * corrects the race condition.
1774 *
1775 * Reasoning goes like this: if we have the wrong lock,
1776 * q->lock_ptr must have changed (maybe several times)
1777 * between reading it and the spin_lock(). It can
1778 * change again after the spin_lock() but only if it was
1779 * already changed before the spin_lock(). It cannot,
1780 * however, change back to the original value. Therefore
1781 * we can detect whether we acquired the correct lock.
1782 */
1783 if (unlikely(lock_ptr != q->lock_ptr)) {
1784 spin_unlock(lock_ptr);
1785 goto retry;
1786 }
2e12978a 1787 __unqueue_futex(q);
c87e2837
IM
1788
1789 BUG_ON(q->pi_state);
1790
1da177e4
LT
1791 spin_unlock(lock_ptr);
1792 ret = 1;
1793 }
1794
9adef58b 1795 drop_futex_key_refs(&q->key);
1da177e4
LT
1796 return ret;
1797}
1798
c87e2837
IM
1799/*
1800 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1801 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1802 * and dropped here.
c87e2837 1803 */
d0aa7a70 1804static void unqueue_me_pi(struct futex_q *q)
15e408cd 1805 __releases(q->lock_ptr)
c87e2837 1806{
2e12978a 1807 __unqueue_futex(q);
c87e2837
IM
1808
1809 BUG_ON(!q->pi_state);
1810 free_pi_state(q->pi_state);
1811 q->pi_state = NULL;
1812
d0aa7a70 1813 spin_unlock(q->lock_ptr);
c87e2837
IM
1814}
1815
d0aa7a70 1816/*
cdf71a10 1817 * Fixup the pi_state owner with the new owner.
d0aa7a70 1818 *
778e9a9c
AK
1819 * Must be called with hash bucket lock held and mm->sem held for non
1820 * private futexes.
d0aa7a70 1821 */
778e9a9c 1822static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1823 struct task_struct *newowner)
d0aa7a70 1824{
cdf71a10 1825 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1826 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1827 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1828 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1829 int ret;
d0aa7a70
PP
1830
1831 /* Owner died? */
1b7558e4
TG
1832 if (!pi_state->owner)
1833 newtid |= FUTEX_OWNER_DIED;
1834
1835 /*
1836 * We are here either because we stole the rtmutex from the
8161239a
LJ
1837 * previous highest priority waiter or we are the highest priority
1838 * waiter but failed to get the rtmutex the first time.
1839 * We have to replace the newowner TID in the user space variable.
1840 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1841 *
b2d0994b
DH
1842 * Note: We write the user space value _before_ changing the pi_state
1843 * because we can fault here. Imagine swapped out pages or a fork
1844 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1845 *
1846 * Modifying pi_state _before_ the user space value would
1847 * leave the pi_state in an inconsistent state when we fault
1848 * here, because we need to drop the hash bucket lock to
1849 * handle the fault. This might be observed in the PID check
1850 * in lookup_pi_state.
1851 */
1852retry:
1853 if (get_futex_value_locked(&uval, uaddr))
1854 goto handle_fault;
1855
1856 while (1) {
1857 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1858
37a9d912 1859 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1860 goto handle_fault;
1861 if (curval == uval)
1862 break;
1863 uval = curval;
1864 }
1865
1866 /*
1867 * We fixed up user space. Now we need to fix the pi_state
1868 * itself.
1869 */
d0aa7a70 1870 if (pi_state->owner != NULL) {
1d615482 1871 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1872 WARN_ON(list_empty(&pi_state->list));
1873 list_del_init(&pi_state->list);
1d615482 1874 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1875 }
d0aa7a70 1876
cdf71a10 1877 pi_state->owner = newowner;
d0aa7a70 1878
1d615482 1879 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1880 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1881 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1882 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1883 return 0;
d0aa7a70 1884
d0aa7a70 1885 /*
1b7558e4 1886 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1887 * lock here. That gives the other task (either the highest priority
1888 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1889 * chance to try the fixup of the pi_state. So once we are
1890 * back from handling the fault we need to check the pi_state
1891 * after reacquiring the hash bucket lock and before trying to
1892 * do another fixup. When the fixup has been done already we
1893 * simply return.
d0aa7a70 1894 */
1b7558e4
TG
1895handle_fault:
1896 spin_unlock(q->lock_ptr);
778e9a9c 1897
d0725992 1898 ret = fault_in_user_writeable(uaddr);
778e9a9c 1899
1b7558e4 1900 spin_lock(q->lock_ptr);
778e9a9c 1901
1b7558e4
TG
1902 /*
1903 * Check if someone else fixed it for us:
1904 */
1905 if (pi_state->owner != oldowner)
1906 return 0;
1907
1908 if (ret)
1909 return ret;
1910
1911 goto retry;
d0aa7a70
PP
1912}
1913
72c1bbf3 1914static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1915
dd973998
DH
1916/**
1917 * fixup_owner() - Post lock pi_state and corner case management
1918 * @uaddr: user address of the futex
dd973998
DH
1919 * @q: futex_q (contains pi_state and access to the rt_mutex)
1920 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1921 *
1922 * After attempting to lock an rt_mutex, this function is called to cleanup
1923 * the pi_state owner as well as handle race conditions that may allow us to
1924 * acquire the lock. Must be called with the hb lock held.
1925 *
6c23cbbd
RD
1926 * Return:
1927 * 1 - success, lock taken;
1928 * 0 - success, lock not taken;
dd973998
DH
1929 * <0 - on error (-EFAULT)
1930 */
ae791a2d 1931static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1932{
1933 struct task_struct *owner;
1934 int ret = 0;
1935
1936 if (locked) {
1937 /*
1938 * Got the lock. We might not be the anticipated owner if we
1939 * did a lock-steal - fix up the PI-state in that case:
1940 */
1941 if (q->pi_state->owner != current)
ae791a2d 1942 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1943 goto out;
1944 }
1945
1946 /*
1947 * Catch the rare case, where the lock was released when we were on the
1948 * way back before we locked the hash bucket.
1949 */
1950 if (q->pi_state->owner == current) {
1951 /*
1952 * Try to get the rt_mutex now. This might fail as some other
1953 * task acquired the rt_mutex after we removed ourself from the
1954 * rt_mutex waiters list.
1955 */
1956 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1957 locked = 1;
1958 goto out;
1959 }
1960
1961 /*
1962 * pi_state is incorrect, some other task did a lock steal and
1963 * we returned due to timeout or signal without taking the
8161239a 1964 * rt_mutex. Too late.
dd973998 1965 */
8161239a 1966 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1967 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1968 if (!owner)
1969 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1970 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1971 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1972 goto out;
1973 }
1974
1975 /*
1976 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1977 * the owner of the rt_mutex.
dd973998
DH
1978 */
1979 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1980 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1981 "pi-state %p\n", ret,
1982 q->pi_state->pi_mutex.owner,
1983 q->pi_state->owner);
1984
1985out:
1986 return ret ? ret : locked;
1987}
1988
ca5f9524
DH
1989/**
1990 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1991 * @hb: the futex hash bucket, must be locked by the caller
1992 * @q: the futex_q to queue up on
1993 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1994 */
1995static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1996 struct hrtimer_sleeper *timeout)
ca5f9524 1997{
9beba3c5
DH
1998 /*
1999 * The task state is guaranteed to be set before another task can
2000 * wake it. set_current_state() is implemented using set_mb() and
2001 * queue_me() calls spin_unlock() upon completion, both serializing
2002 * access to the hash list and forcing another memory barrier.
2003 */
f1a11e05 2004 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2005 queue_me(q, hb);
ca5f9524
DH
2006
2007 /* Arm the timer */
2008 if (timeout) {
2009 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2010 if (!hrtimer_active(&timeout->timer))
2011 timeout->task = NULL;
2012 }
2013
2014 /*
0729e196
DH
2015 * If we have been removed from the hash list, then another task
2016 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2017 */
2018 if (likely(!plist_node_empty(&q->list))) {
2019 /*
2020 * If the timer has already expired, current will already be
2021 * flagged for rescheduling. Only call schedule if there
2022 * is no timeout, or if it has yet to expire.
2023 */
2024 if (!timeout || timeout->task)
88c8004f 2025 freezable_schedule();
ca5f9524
DH
2026 }
2027 __set_current_state(TASK_RUNNING);
2028}
2029
f801073f
DH
2030/**
2031 * futex_wait_setup() - Prepare to wait on a futex
2032 * @uaddr: the futex userspace address
2033 * @val: the expected value
b41277dc 2034 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2035 * @q: the associated futex_q
2036 * @hb: storage for hash_bucket pointer to be returned to caller
2037 *
2038 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2039 * compare it with the expected value. Handle atomic faults internally.
2040 * Return with the hb lock held and a q.key reference on success, and unlocked
2041 * with no q.key reference on failure.
2042 *
6c23cbbd
RD
2043 * Return:
2044 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2045 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2046 */
b41277dc 2047static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2048 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2049{
e2970f2f
IM
2050 u32 uval;
2051 int ret;
1da177e4 2052
1da177e4 2053 /*
b2d0994b 2054 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2055 * Order is important:
2056 *
2057 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2058 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2059 *
2060 * The basic logical guarantee of a futex is that it blocks ONLY
2061 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2062 * any cond. If we locked the hash-bucket after testing *uaddr, that
2063 * would open a race condition where we could block indefinitely with
1da177e4
LT
2064 * cond(var) false, which would violate the guarantee.
2065 *
8fe8f545
ML
2066 * On the other hand, we insert q and release the hash-bucket only
2067 * after testing *uaddr. This guarantees that futex_wait() will NOT
2068 * absorb a wakeup if *uaddr does not match the desired values
2069 * while the syscall executes.
1da177e4 2070 */
f801073f 2071retry:
9ea71503 2072 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2073 if (unlikely(ret != 0))
a5a2a0c7 2074 return ret;
f801073f
DH
2075
2076retry_private:
2077 *hb = queue_lock(q);
2078
e2970f2f 2079 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2080
f801073f 2081 if (ret) {
0d00c7b2 2082 queue_unlock(*hb);
1da177e4 2083
e2970f2f 2084 ret = get_user(uval, uaddr);
e4dc5b7a 2085 if (ret)
f801073f 2086 goto out;
1da177e4 2087
b41277dc 2088 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2089 goto retry_private;
2090
ae791a2d 2091 put_futex_key(&q->key);
e4dc5b7a 2092 goto retry;
1da177e4 2093 }
ca5f9524 2094
f801073f 2095 if (uval != val) {
0d00c7b2 2096 queue_unlock(*hb);
f801073f 2097 ret = -EWOULDBLOCK;
2fff78c7 2098 }
1da177e4 2099
f801073f
DH
2100out:
2101 if (ret)
ae791a2d 2102 put_futex_key(&q->key);
f801073f
DH
2103 return ret;
2104}
2105
b41277dc
DH
2106static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2107 ktime_t *abs_time, u32 bitset)
f801073f
DH
2108{
2109 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2110 struct restart_block *restart;
2111 struct futex_hash_bucket *hb;
5bdb05f9 2112 struct futex_q q = futex_q_init;
f801073f
DH
2113 int ret;
2114
2115 if (!bitset)
2116 return -EINVAL;
f801073f
DH
2117 q.bitset = bitset;
2118
2119 if (abs_time) {
2120 to = &timeout;
2121
b41277dc
DH
2122 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2123 CLOCK_REALTIME : CLOCK_MONOTONIC,
2124 HRTIMER_MODE_ABS);
f801073f
DH
2125 hrtimer_init_sleeper(to, current);
2126 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2127 current->timer_slack_ns);
2128 }
2129
d58e6576 2130retry:
7ada876a
DH
2131 /*
2132 * Prepare to wait on uaddr. On success, holds hb lock and increments
2133 * q.key refs.
2134 */
b41277dc 2135 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2136 if (ret)
2137 goto out;
2138
ca5f9524 2139 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2140 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2141
2142 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2143 ret = 0;
7ada876a 2144 /* unqueue_me() drops q.key ref */
1da177e4 2145 if (!unqueue_me(&q))
7ada876a 2146 goto out;
2fff78c7 2147 ret = -ETIMEDOUT;
ca5f9524 2148 if (to && !to->task)
7ada876a 2149 goto out;
72c1bbf3 2150
e2970f2f 2151 /*
d58e6576
TG
2152 * We expect signal_pending(current), but we might be the
2153 * victim of a spurious wakeup as well.
e2970f2f 2154 */
7ada876a 2155 if (!signal_pending(current))
d58e6576 2156 goto retry;
d58e6576 2157
2fff78c7 2158 ret = -ERESTARTSYS;
c19384b5 2159 if (!abs_time)
7ada876a 2160 goto out;
1da177e4 2161
2fff78c7
PZ
2162 restart = &current_thread_info()->restart_block;
2163 restart->fn = futex_wait_restart;
a3c74c52 2164 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2165 restart->futex.val = val;
2166 restart->futex.time = abs_time->tv64;
2167 restart->futex.bitset = bitset;
0cd9c649 2168 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2169
2fff78c7
PZ
2170 ret = -ERESTART_RESTARTBLOCK;
2171
42d35d48 2172out:
ca5f9524
DH
2173 if (to) {
2174 hrtimer_cancel(&to->timer);
2175 destroy_hrtimer_on_stack(&to->timer);
2176 }
c87e2837
IM
2177 return ret;
2178}
2179
72c1bbf3
NP
2180
2181static long futex_wait_restart(struct restart_block *restart)
2182{
a3c74c52 2183 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2184 ktime_t t, *tp = NULL;
72c1bbf3 2185
a72188d8
DH
2186 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2187 t.tv64 = restart->futex.time;
2188 tp = &t;
2189 }
72c1bbf3 2190 restart->fn = do_no_restart_syscall;
b41277dc
DH
2191
2192 return (long)futex_wait(uaddr, restart->futex.flags,
2193 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2194}
2195
2196
c87e2837
IM
2197/*
2198 * Userspace tried a 0 -> TID atomic transition of the futex value
2199 * and failed. The kernel side here does the whole locking operation:
2200 * if there are waiters then it will block, it does PI, etc. (Due to
2201 * races the kernel might see a 0 value of the futex too.)
2202 */
b41277dc
DH
2203static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2204 ktime_t *time, int trylock)
c87e2837 2205{
c5780e97 2206 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2207 struct futex_hash_bucket *hb;
5bdb05f9 2208 struct futex_q q = futex_q_init;
dd973998 2209 int res, ret;
c87e2837
IM
2210
2211 if (refill_pi_state_cache())
2212 return -ENOMEM;
2213
c19384b5 2214 if (time) {
c5780e97 2215 to = &timeout;
237fc6e7
TG
2216 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2217 HRTIMER_MODE_ABS);
c5780e97 2218 hrtimer_init_sleeper(to, current);
cc584b21 2219 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2220 }
2221
42d35d48 2222retry:
9ea71503 2223 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2224 if (unlikely(ret != 0))
42d35d48 2225 goto out;
c87e2837 2226
e4dc5b7a 2227retry_private:
82af7aca 2228 hb = queue_lock(&q);
c87e2837 2229
bab5bc9e 2230 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2231 if (unlikely(ret)) {
778e9a9c 2232 switch (ret) {
1a52084d
DH
2233 case 1:
2234 /* We got the lock. */
2235 ret = 0;
2236 goto out_unlock_put_key;
2237 case -EFAULT:
2238 goto uaddr_faulted;
778e9a9c
AK
2239 case -EAGAIN:
2240 /*
2241 * Task is exiting and we just wait for the
2242 * exit to complete.
2243 */
0d00c7b2 2244 queue_unlock(hb);
ae791a2d 2245 put_futex_key(&q.key);
778e9a9c
AK
2246 cond_resched();
2247 goto retry;
778e9a9c 2248 default:
42d35d48 2249 goto out_unlock_put_key;
c87e2837 2250 }
c87e2837
IM
2251 }
2252
2253 /*
2254 * Only actually queue now that the atomic ops are done:
2255 */
82af7aca 2256 queue_me(&q, hb);
c87e2837 2257
c87e2837
IM
2258 WARN_ON(!q.pi_state);
2259 /*
2260 * Block on the PI mutex:
2261 */
2262 if (!trylock)
2263 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2264 else {
2265 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2266 /* Fixup the trylock return value: */
2267 ret = ret ? 0 : -EWOULDBLOCK;
2268 }
2269
a99e4e41 2270 spin_lock(q.lock_ptr);
dd973998
DH
2271 /*
2272 * Fixup the pi_state owner and possibly acquire the lock if we
2273 * haven't already.
2274 */
ae791a2d 2275 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2276 /*
2277 * If fixup_owner() returned an error, proprogate that. If it acquired
2278 * the lock, clear our -ETIMEDOUT or -EINTR.
2279 */
2280 if (res)
2281 ret = (res < 0) ? res : 0;
c87e2837 2282
e8f6386c 2283 /*
dd973998
DH
2284 * If fixup_owner() faulted and was unable to handle the fault, unlock
2285 * it and return the fault to userspace.
e8f6386c
DH
2286 */
2287 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2288 rt_mutex_unlock(&q.pi_state->pi_mutex);
2289
778e9a9c
AK
2290 /* Unqueue and drop the lock */
2291 unqueue_me_pi(&q);
c87e2837 2292
5ecb01cf 2293 goto out_put_key;
c87e2837 2294
42d35d48 2295out_unlock_put_key:
0d00c7b2 2296 queue_unlock(hb);
c87e2837 2297
42d35d48 2298out_put_key:
ae791a2d 2299 put_futex_key(&q.key);
42d35d48 2300out:
237fc6e7
TG
2301 if (to)
2302 destroy_hrtimer_on_stack(&to->timer);
dd973998 2303 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2304
42d35d48 2305uaddr_faulted:
0d00c7b2 2306 queue_unlock(hb);
778e9a9c 2307
d0725992 2308 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2309 if (ret)
2310 goto out_put_key;
c87e2837 2311
b41277dc 2312 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2313 goto retry_private;
2314
ae791a2d 2315 put_futex_key(&q.key);
e4dc5b7a 2316 goto retry;
c87e2837
IM
2317}
2318
c87e2837
IM
2319/*
2320 * Userspace attempted a TID -> 0 atomic transition, and failed.
2321 * This is the in-kernel slowpath: we look up the PI state (if any),
2322 * and do the rt-mutex unlock.
2323 */
b41277dc 2324static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2325{
2326 struct futex_hash_bucket *hb;
2327 struct futex_q *this, *next;
38d47c1b 2328 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2329 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2330 int ret;
c87e2837
IM
2331
2332retry:
2333 if (get_user(uval, uaddr))
2334 return -EFAULT;
2335 /*
2336 * We release only a lock we actually own:
2337 */
c0c9ed15 2338 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2339 return -EPERM;
c87e2837 2340
9ea71503 2341 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2342 if (unlikely(ret != 0))
2343 goto out;
2344
2345 hb = hash_futex(&key);
2346 spin_lock(&hb->lock);
2347
c87e2837
IM
2348 /*
2349 * To avoid races, try to do the TID -> 0 atomic transition
2350 * again. If it succeeds then we can return without waking
13fbca4c
TG
2351 * anyone else up. We only try this if neither the waiters nor
2352 * the owner died bit are set.
c87e2837 2353 */
13fbca4c 2354 if (!(uval & ~FUTEX_TID_MASK) &&
37a9d912 2355 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2356 goto pi_faulted;
2357 /*
2358 * Rare case: we managed to release the lock atomically,
2359 * no need to wake anyone else up:
2360 */
c0c9ed15 2361 if (unlikely(uval == vpid))
c87e2837
IM
2362 goto out_unlock;
2363
2364 /*
2365 * Ok, other tasks may need to be woken up - check waiters
2366 * and do the wakeup if necessary:
2367 */
0d00c7b2 2368 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2369 if (!match_futex (&this->key, &key))
2370 continue;
2371 ret = wake_futex_pi(uaddr, uval, this);
2372 /*
2373 * The atomic access to the futex value
2374 * generated a pagefault, so retry the
2375 * user-access and the wakeup:
2376 */
2377 if (ret == -EFAULT)
2378 goto pi_faulted;
2379 goto out_unlock;
2380 }
2381 /*
2382 * No waiters - kernel unlocks the futex:
2383 */
13fbca4c
TG
2384 ret = unlock_futex_pi(uaddr, uval);
2385 if (ret == -EFAULT)
2386 goto pi_faulted;
c87e2837
IM
2387
2388out_unlock:
2389 spin_unlock(&hb->lock);
ae791a2d 2390 put_futex_key(&key);
c87e2837 2391
42d35d48 2392out:
c87e2837
IM
2393 return ret;
2394
2395pi_faulted:
778e9a9c 2396 spin_unlock(&hb->lock);
ae791a2d 2397 put_futex_key(&key);
c87e2837 2398
d0725992 2399 ret = fault_in_user_writeable(uaddr);
b5686363 2400 if (!ret)
c87e2837
IM
2401 goto retry;
2402
1da177e4
LT
2403 return ret;
2404}
2405
52400ba9
DH
2406/**
2407 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2408 * @hb: the hash_bucket futex_q was original enqueued on
2409 * @q: the futex_q woken while waiting to be requeued
2410 * @key2: the futex_key of the requeue target futex
2411 * @timeout: the timeout associated with the wait (NULL if none)
2412 *
2413 * Detect if the task was woken on the initial futex as opposed to the requeue
2414 * target futex. If so, determine if it was a timeout or a signal that caused
2415 * the wakeup and return the appropriate error code to the caller. Must be
2416 * called with the hb lock held.
2417 *
6c23cbbd
RD
2418 * Return:
2419 * 0 = no early wakeup detected;
2420 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2421 */
2422static inline
2423int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2424 struct futex_q *q, union futex_key *key2,
2425 struct hrtimer_sleeper *timeout)
2426{
2427 int ret = 0;
2428
2429 /*
2430 * With the hb lock held, we avoid races while we process the wakeup.
2431 * We only need to hold hb (and not hb2) to ensure atomicity as the
2432 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2433 * It can't be requeued from uaddr2 to something else since we don't
2434 * support a PI aware source futex for requeue.
2435 */
2436 if (!match_futex(&q->key, key2)) {
2437 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2438 /*
2439 * We were woken prior to requeue by a timeout or a signal.
2440 * Unqueue the futex_q and determine which it was.
2441 */
2e12978a 2442 plist_del(&q->list, &hb->chain);
11d4616b 2443 hb_waiters_dec(hb);
52400ba9 2444
d58e6576 2445 /* Handle spurious wakeups gracefully */
11df6ddd 2446 ret = -EWOULDBLOCK;
52400ba9
DH
2447 if (timeout && !timeout->task)
2448 ret = -ETIMEDOUT;
d58e6576 2449 else if (signal_pending(current))
1c840c14 2450 ret = -ERESTARTNOINTR;
52400ba9
DH
2451 }
2452 return ret;
2453}
2454
2455/**
2456 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2457 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2458 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2459 * the same type, no requeueing from private to shared, etc.
2460 * @val: the expected value of uaddr
2461 * @abs_time: absolute timeout
56ec1607 2462 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2463 * @uaddr2: the pi futex we will take prior to returning to user-space
2464 *
2465 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2466 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2467 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2468 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2469 * without one, the pi logic would not know which task to boost/deboost, if
2470 * there was a need to.
52400ba9
DH
2471 *
2472 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2473 * via the following--
52400ba9 2474 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2475 * 2) wakeup on uaddr2 after a requeue
2476 * 3) signal
2477 * 4) timeout
52400ba9 2478 *
cc6db4e6 2479 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2480 *
2481 * If 2, we may then block on trying to take the rt_mutex and return via:
2482 * 5) successful lock
2483 * 6) signal
2484 * 7) timeout
2485 * 8) other lock acquisition failure
2486 *
cc6db4e6 2487 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2488 *
2489 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2490 *
6c23cbbd
RD
2491 * Return:
2492 * 0 - On success;
52400ba9
DH
2493 * <0 - On error
2494 */
b41277dc 2495static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2496 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2497 u32 __user *uaddr2)
52400ba9
DH
2498{
2499 struct hrtimer_sleeper timeout, *to = NULL;
2500 struct rt_mutex_waiter rt_waiter;
2501 struct rt_mutex *pi_mutex = NULL;
52400ba9 2502 struct futex_hash_bucket *hb;
5bdb05f9
DH
2503 union futex_key key2 = FUTEX_KEY_INIT;
2504 struct futex_q q = futex_q_init;
52400ba9 2505 int res, ret;
52400ba9 2506
6f7b0a2a
DH
2507 if (uaddr == uaddr2)
2508 return -EINVAL;
2509
52400ba9
DH
2510 if (!bitset)
2511 return -EINVAL;
2512
2513 if (abs_time) {
2514 to = &timeout;
b41277dc
DH
2515 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2516 CLOCK_REALTIME : CLOCK_MONOTONIC,
2517 HRTIMER_MODE_ABS);
52400ba9
DH
2518 hrtimer_init_sleeper(to, current);
2519 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2520 current->timer_slack_ns);
2521 }
2522
2523 /*
2524 * The waiter is allocated on our stack, manipulated by the requeue
2525 * code while we sleep on uaddr.
2526 */
2527 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2528 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2529 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2530 rt_waiter.task = NULL;
2531
9ea71503 2532 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2533 if (unlikely(ret != 0))
2534 goto out;
2535
84bc4af5
DH
2536 q.bitset = bitset;
2537 q.rt_waiter = &rt_waiter;
2538 q.requeue_pi_key = &key2;
2539
7ada876a
DH
2540 /*
2541 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2542 * count.
2543 */
b41277dc 2544 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2545 if (ret)
2546 goto out_key2;
52400ba9 2547
e9c243a5
TG
2548 /*
2549 * The check above which compares uaddrs is not sufficient for
2550 * shared futexes. We need to compare the keys:
2551 */
2552 if (match_futex(&q.key, &key2)) {
2553 ret = -EINVAL;
2554 goto out_put_keys;
2555 }
2556
52400ba9 2557 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2558 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2559
2560 spin_lock(&hb->lock);
2561 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2562 spin_unlock(&hb->lock);
2563 if (ret)
2564 goto out_put_keys;
2565
2566 /*
2567 * In order for us to be here, we know our q.key == key2, and since
2568 * we took the hb->lock above, we also know that futex_requeue() has
2569 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2570 * race with the atomic proxy lock acquisition by the requeue code. The
2571 * futex_requeue dropped our key1 reference and incremented our key2
2572 * reference count.
52400ba9
DH
2573 */
2574
2575 /* Check if the requeue code acquired the second futex for us. */
2576 if (!q.rt_waiter) {
2577 /*
2578 * Got the lock. We might not be the anticipated owner if we
2579 * did a lock-steal - fix up the PI-state in that case.
2580 */
2581 if (q.pi_state && (q.pi_state->owner != current)) {
2582 spin_lock(q.lock_ptr);
ae791a2d 2583 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2584 spin_unlock(q.lock_ptr);
2585 }
2586 } else {
2587 /*
2588 * We have been woken up by futex_unlock_pi(), a timeout, or a
2589 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2590 * the pi_state.
2591 */
f27071cb 2592 WARN_ON(!q.pi_state);
52400ba9
DH
2593 pi_mutex = &q.pi_state->pi_mutex;
2594 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2595 debug_rt_mutex_free_waiter(&rt_waiter);
2596
2597 spin_lock(q.lock_ptr);
2598 /*
2599 * Fixup the pi_state owner and possibly acquire the lock if we
2600 * haven't already.
2601 */
ae791a2d 2602 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2603 /*
2604 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2605 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2606 */
2607 if (res)
2608 ret = (res < 0) ? res : 0;
2609
2610 /* Unqueue and drop the lock. */
2611 unqueue_me_pi(&q);
2612 }
2613
2614 /*
2615 * If fixup_pi_state_owner() faulted and was unable to handle the
2616 * fault, unlock the rt_mutex and return the fault to userspace.
2617 */
2618 if (ret == -EFAULT) {
b6070a8d 2619 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2620 rt_mutex_unlock(pi_mutex);
2621 } else if (ret == -EINTR) {
52400ba9 2622 /*
cc6db4e6
DH
2623 * We've already been requeued, but cannot restart by calling
2624 * futex_lock_pi() directly. We could restart this syscall, but
2625 * it would detect that the user space "val" changed and return
2626 * -EWOULDBLOCK. Save the overhead of the restart and return
2627 * -EWOULDBLOCK directly.
52400ba9 2628 */
2070887f 2629 ret = -EWOULDBLOCK;
52400ba9
DH
2630 }
2631
2632out_put_keys:
ae791a2d 2633 put_futex_key(&q.key);
c8b15a70 2634out_key2:
ae791a2d 2635 put_futex_key(&key2);
52400ba9
DH
2636
2637out:
2638 if (to) {
2639 hrtimer_cancel(&to->timer);
2640 destroy_hrtimer_on_stack(&to->timer);
2641 }
2642 return ret;
2643}
2644
0771dfef
IM
2645/*
2646 * Support for robust futexes: the kernel cleans up held futexes at
2647 * thread exit time.
2648 *
2649 * Implementation: user-space maintains a per-thread list of locks it
2650 * is holding. Upon do_exit(), the kernel carefully walks this list,
2651 * and marks all locks that are owned by this thread with the
c87e2837 2652 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2653 * always manipulated with the lock held, so the list is private and
2654 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2655 * field, to allow the kernel to clean up if the thread dies after
2656 * acquiring the lock, but just before it could have added itself to
2657 * the list. There can only be one such pending lock.
2658 */
2659
2660/**
d96ee56c
DH
2661 * sys_set_robust_list() - Set the robust-futex list head of a task
2662 * @head: pointer to the list-head
2663 * @len: length of the list-head, as userspace expects
0771dfef 2664 */
836f92ad
HC
2665SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2666 size_t, len)
0771dfef 2667{
a0c1e907
TG
2668 if (!futex_cmpxchg_enabled)
2669 return -ENOSYS;
0771dfef
IM
2670 /*
2671 * The kernel knows only one size for now:
2672 */
2673 if (unlikely(len != sizeof(*head)))
2674 return -EINVAL;
2675
2676 current->robust_list = head;
2677
2678 return 0;
2679}
2680
2681/**
d96ee56c
DH
2682 * sys_get_robust_list() - Get the robust-futex list head of a task
2683 * @pid: pid of the process [zero for current task]
2684 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2685 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2686 */
836f92ad
HC
2687SYSCALL_DEFINE3(get_robust_list, int, pid,
2688 struct robust_list_head __user * __user *, head_ptr,
2689 size_t __user *, len_ptr)
0771dfef 2690{
ba46df98 2691 struct robust_list_head __user *head;
0771dfef 2692 unsigned long ret;
bdbb776f 2693 struct task_struct *p;
0771dfef 2694
a0c1e907
TG
2695 if (!futex_cmpxchg_enabled)
2696 return -ENOSYS;
2697
bdbb776f
KC
2698 rcu_read_lock();
2699
2700 ret = -ESRCH;
0771dfef 2701 if (!pid)
bdbb776f 2702 p = current;
0771dfef 2703 else {
228ebcbe 2704 p = find_task_by_vpid(pid);
0771dfef
IM
2705 if (!p)
2706 goto err_unlock;
0771dfef
IM
2707 }
2708
bdbb776f
KC
2709 ret = -EPERM;
2710 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2711 goto err_unlock;
2712
2713 head = p->robust_list;
2714 rcu_read_unlock();
2715
0771dfef
IM
2716 if (put_user(sizeof(*head), len_ptr))
2717 return -EFAULT;
2718 return put_user(head, head_ptr);
2719
2720err_unlock:
aaa2a97e 2721 rcu_read_unlock();
0771dfef
IM
2722
2723 return ret;
2724}
2725
2726/*
2727 * Process a futex-list entry, check whether it's owned by the
2728 * dying task, and do notification if so:
2729 */
e3f2ddea 2730int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2731{
7cfdaf38 2732 u32 uval, uninitialized_var(nval), mval;
0771dfef 2733
8f17d3a5
IM
2734retry:
2735 if (get_user(uval, uaddr))
0771dfef
IM
2736 return -1;
2737
b488893a 2738 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2739 /*
2740 * Ok, this dying thread is truly holding a futex
2741 * of interest. Set the OWNER_DIED bit atomically
2742 * via cmpxchg, and if the value had FUTEX_WAITERS
2743 * set, wake up a waiter (if any). (We have to do a
2744 * futex_wake() even if OWNER_DIED is already set -
2745 * to handle the rare but possible case of recursive
2746 * thread-death.) The rest of the cleanup is done in
2747 * userspace.
2748 */
e3f2ddea 2749 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2750 /*
2751 * We are not holding a lock here, but we want to have
2752 * the pagefault_disable/enable() protection because
2753 * we want to handle the fault gracefully. If the
2754 * access fails we try to fault in the futex with R/W
2755 * verification via get_user_pages. get_user() above
2756 * does not guarantee R/W access. If that fails we
2757 * give up and leave the futex locked.
2758 */
2759 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2760 if (fault_in_user_writeable(uaddr))
2761 return -1;
2762 goto retry;
2763 }
c87e2837 2764 if (nval != uval)
8f17d3a5 2765 goto retry;
0771dfef 2766
e3f2ddea
IM
2767 /*
2768 * Wake robust non-PI futexes here. The wakeup of
2769 * PI futexes happens in exit_pi_state():
2770 */
36cf3b5c 2771 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2772 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2773 }
2774 return 0;
2775}
2776
e3f2ddea
IM
2777/*
2778 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2779 */
2780static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2781 struct robust_list __user * __user *head,
1dcc41bb 2782 unsigned int *pi)
e3f2ddea
IM
2783{
2784 unsigned long uentry;
2785
ba46df98 2786 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2787 return -EFAULT;
2788
ba46df98 2789 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2790 *pi = uentry & 1;
2791
2792 return 0;
2793}
2794
0771dfef
IM
2795/*
2796 * Walk curr->robust_list (very carefully, it's a userspace list!)
2797 * and mark any locks found there dead, and notify any waiters.
2798 *
2799 * We silently return on any sign of list-walking problem.
2800 */
2801void exit_robust_list(struct task_struct *curr)
2802{
2803 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2804 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2805 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2806 unsigned int uninitialized_var(next_pi);
0771dfef 2807 unsigned long futex_offset;
9f96cb1e 2808 int rc;
0771dfef 2809
a0c1e907
TG
2810 if (!futex_cmpxchg_enabled)
2811 return;
2812
0771dfef
IM
2813 /*
2814 * Fetch the list head (which was registered earlier, via
2815 * sys_set_robust_list()):
2816 */
e3f2ddea 2817 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2818 return;
2819 /*
2820 * Fetch the relative futex offset:
2821 */
2822 if (get_user(futex_offset, &head->futex_offset))
2823 return;
2824 /*
2825 * Fetch any possibly pending lock-add first, and handle it
2826 * if it exists:
2827 */
e3f2ddea 2828 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2829 return;
e3f2ddea 2830
9f96cb1e 2831 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2832 while (entry != &head->list) {
9f96cb1e
MS
2833 /*
2834 * Fetch the next entry in the list before calling
2835 * handle_futex_death:
2836 */
2837 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2838 /*
2839 * A pending lock might already be on the list, so
c87e2837 2840 * don't process it twice:
0771dfef
IM
2841 */
2842 if (entry != pending)
ba46df98 2843 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2844 curr, pi))
0771dfef 2845 return;
9f96cb1e 2846 if (rc)
0771dfef 2847 return;
9f96cb1e
MS
2848 entry = next_entry;
2849 pi = next_pi;
0771dfef
IM
2850 /*
2851 * Avoid excessively long or circular lists:
2852 */
2853 if (!--limit)
2854 break;
2855
2856 cond_resched();
2857 }
9f96cb1e
MS
2858
2859 if (pending)
2860 handle_futex_death((void __user *)pending + futex_offset,
2861 curr, pip);
0771dfef
IM
2862}
2863
c19384b5 2864long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2865 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2866{
81b40539 2867 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2868 unsigned int flags = 0;
34f01cc1
ED
2869
2870 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2871 flags |= FLAGS_SHARED;
1da177e4 2872
b41277dc
DH
2873 if (op & FUTEX_CLOCK_REALTIME) {
2874 flags |= FLAGS_CLOCKRT;
2875 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2876 return -ENOSYS;
2877 }
1da177e4 2878
59263b51
TG
2879 switch (cmd) {
2880 case FUTEX_LOCK_PI:
2881 case FUTEX_UNLOCK_PI:
2882 case FUTEX_TRYLOCK_PI:
2883 case FUTEX_WAIT_REQUEUE_PI:
2884 case FUTEX_CMP_REQUEUE_PI:
2885 if (!futex_cmpxchg_enabled)
2886 return -ENOSYS;
2887 }
2888
34f01cc1 2889 switch (cmd) {
1da177e4 2890 case FUTEX_WAIT:
cd689985
TG
2891 val3 = FUTEX_BITSET_MATCH_ANY;
2892 case FUTEX_WAIT_BITSET:
81b40539 2893 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2894 case FUTEX_WAKE:
cd689985
TG
2895 val3 = FUTEX_BITSET_MATCH_ANY;
2896 case FUTEX_WAKE_BITSET:
81b40539 2897 return futex_wake(uaddr, flags, val, val3);
1da177e4 2898 case FUTEX_REQUEUE:
81b40539 2899 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2900 case FUTEX_CMP_REQUEUE:
81b40539 2901 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2902 case FUTEX_WAKE_OP:
81b40539 2903 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2904 case FUTEX_LOCK_PI:
81b40539 2905 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2906 case FUTEX_UNLOCK_PI:
81b40539 2907 return futex_unlock_pi(uaddr, flags);
c87e2837 2908 case FUTEX_TRYLOCK_PI:
81b40539 2909 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2910 case FUTEX_WAIT_REQUEUE_PI:
2911 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2912 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2913 uaddr2);
52400ba9 2914 case FUTEX_CMP_REQUEUE_PI:
81b40539 2915 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2916 }
81b40539 2917 return -ENOSYS;
1da177e4
LT
2918}
2919
2920
17da2bd9
HC
2921SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2922 struct timespec __user *, utime, u32 __user *, uaddr2,
2923 u32, val3)
1da177e4 2924{
c19384b5
PP
2925 struct timespec ts;
2926 ktime_t t, *tp = NULL;
e2970f2f 2927 u32 val2 = 0;
34f01cc1 2928 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2929
cd689985 2930 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2931 cmd == FUTEX_WAIT_BITSET ||
2932 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2933 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2934 return -EFAULT;
c19384b5 2935 if (!timespec_valid(&ts))
9741ef96 2936 return -EINVAL;
c19384b5
PP
2937
2938 t = timespec_to_ktime(ts);
34f01cc1 2939 if (cmd == FUTEX_WAIT)
5a7780e7 2940 t = ktime_add_safe(ktime_get(), t);
c19384b5 2941 tp = &t;
1da177e4
LT
2942 }
2943 /*
52400ba9 2944 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2945 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2946 */
f54f0986 2947 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2948 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2949 val2 = (u32) (unsigned long) utime;
1da177e4 2950
c19384b5 2951 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2952}
2953
03b8c7b6 2954static void __init futex_detect_cmpxchg(void)
1da177e4 2955{
03b8c7b6 2956#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2957 u32 curval;
03b8c7b6
HC
2958
2959 /*
2960 * This will fail and we want it. Some arch implementations do
2961 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2962 * functionality. We want to know that before we call in any
2963 * of the complex code paths. Also we want to prevent
2964 * registration of robust lists in that case. NULL is
2965 * guaranteed to fault and we get -EFAULT on functional
2966 * implementation, the non-functional ones will return
2967 * -ENOSYS.
2968 */
2969 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2970 futex_cmpxchg_enabled = 1;
2971#endif
2972}
2973
2974static int __init futex_init(void)
2975{
63b1a816 2976 unsigned int futex_shift;
a52b89eb
DB
2977 unsigned long i;
2978
2979#if CONFIG_BASE_SMALL
2980 futex_hashsize = 16;
2981#else
2982 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2983#endif
2984
2985 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2986 futex_hashsize, 0,
2987 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2988 &futex_shift, NULL,
2989 futex_hashsize, futex_hashsize);
2990 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
2991
2992 futex_detect_cmpxchg();
a0c1e907 2993
a52b89eb 2994 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2995 atomic_set(&futex_queues[i].waiters, 0);
732375c6 2996 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2997 spin_lock_init(&futex_queues[i].lock);
2998 }
2999
1da177e4
LT
3000 return 0;
3001}
f6d107fb 3002__initcall(futex_init);