]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/futex.c
futex: Split futex_mm_release() for exit/exec
[mirror_ubuntu-kernels.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4
LT
35#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
7ed20e1a 45#include <linux/signal.h>
9984de1a 46#include <linux/export.h>
fd5eea42 47#include <linux/magic.h>
b488893a
PE
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
bdbb776f 50#include <linux/ptrace.h>
8bd75c77 51#include <linux/sched/rt.h>
84f001e1 52#include <linux/sched/wake_q.h>
6e84f315 53#include <linux/sched/mm.h>
13d60f4b 54#include <linux/hugetlb.h>
88c8004f 55#include <linux/freezer.h>
57c8a661 56#include <linux/memblock.h>
ab51fbab 57#include <linux/fault-inject.h>
49262de2 58#include <linux/refcount.h>
b488893a 59
4732efbe 60#include <asm/futex.h>
1da177e4 61
1696a8be 62#include "locking/rtmutex_common.h"
c87e2837 63
99b60ce6 64/*
d7e8af1a
DB
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
99b60ce6
TG
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
99b60ce6
TG
76 *
77 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
99b60ce6 81 *
b0c29f79
DB
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 107 *
b0c29f79
DB
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
99b60ce6
TG
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
b0c29f79 116 *
d7e8af1a 117 * waiters++; (a)
8ad7b378
DB
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
99b60ce6 128 * if (uval == val)
b0c29f79 129 * queue();
99b60ce6 130 * unlock(hash_bucket(futex));
b0c29f79
DB
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
d7e8af1a
DB
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 135 *
d7e8af1a
DB
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
d7e8af1a
DB
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
163 */
164
04e7712f
AB
165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166#define futex_cmpxchg_enabled 1
167#else
168static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 169#endif
a0c1e907 170
b41277dc
DH
171/*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
784bdf3b
TG
175#ifdef CONFIG_MMU
176# define FLAGS_SHARED 0x01
177#else
178/*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182# define FLAGS_SHARED 0x00
183#endif
b41277dc
DH
184#define FLAGS_CLOCKRT 0x02
185#define FLAGS_HAS_TIMEOUT 0x04
186
c87e2837
IM
187/*
188 * Priority Inheritance state:
189 */
190struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
49262de2 203 refcount_t refcount;
c87e2837
IM
204
205 union futex_key key;
3859a271 206} __randomize_layout;
c87e2837 207
d8d88fbb
DH
208/**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 210 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
ac6424b9 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 224 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
229 */
230struct futex_q {
ec92d082 231 struct plist_node list;
1da177e4 232
d8d88fbb 233 struct task_struct *task;
1da177e4 234 spinlock_t *lock_ptr;
1da177e4 235 union futex_key key;
c87e2837 236 struct futex_pi_state *pi_state;
52400ba9 237 struct rt_mutex_waiter *rt_waiter;
84bc4af5 238 union futex_key *requeue_pi_key;
cd689985 239 u32 bitset;
3859a271 240} __randomize_layout;
1da177e4 241
5bdb05f9
DH
242static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246};
247
1da177e4 248/*
b2d0994b
DH
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
1da177e4
LT
252 */
253struct futex_hash_bucket {
11d4616b 254 atomic_t waiters;
ec92d082
PP
255 spinlock_t lock;
256 struct plist_head chain;
a52b89eb 257} ____cacheline_aligned_in_smp;
1da177e4 258
ac742d37
RV
259/*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267} __futex_data __read_mostly __aligned(2*sizeof(long));
268#define futex_queues (__futex_data.queues)
269#define futex_hashsize (__futex_data.hashsize)
a52b89eb 270
1da177e4 271
ab51fbab
DB
272/*
273 * Fault injections for futexes.
274 */
275#ifdef CONFIG_FAIL_FUTEX
276
277static struct {
278 struct fault_attr attr;
279
621a5f7a 280 bool ignore_private;
ab51fbab
DB
281} fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 283 .ignore_private = false,
ab51fbab
DB
284};
285
286static int __init setup_fail_futex(char *str)
287{
288 return setup_fault_attr(&fail_futex.attr, str);
289}
290__setup("fail_futex=", setup_fail_futex);
291
5d285a7f 292static bool should_fail_futex(bool fshared)
ab51fbab
DB
293{
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298}
299
300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302static int __init fail_futex_debugfs(void)
303{
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
0365aeba
GKH
312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
ab51fbab
DB
314 return 0;
315}
316
317late_initcall(fail_futex_debugfs);
318
319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321#else
322static inline bool should_fail_futex(bool fshared)
323{
324 return false;
325}
326#endif /* CONFIG_FAIL_FUTEX */
327
ba31c1a4
TG
328#ifdef CONFIG_COMPAT
329static void compat_exit_robust_list(struct task_struct *curr);
330#else
331static inline void compat_exit_robust_list(struct task_struct *curr) { }
332#endif
333
b0c29f79
DB
334static inline void futex_get_mm(union futex_key *key)
335{
f1f10076 336 mmgrab(key->private.mm);
b0c29f79
DB
337 /*
338 * Ensure futex_get_mm() implies a full barrier such that
339 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 340 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 341 */
4e857c58 342 smp_mb__after_atomic();
b0c29f79
DB
343}
344
11d4616b
LT
345/*
346 * Reflects a new waiter being added to the waitqueue.
347 */
348static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
349{
350#ifdef CONFIG_SMP
11d4616b 351 atomic_inc(&hb->waiters);
b0c29f79 352 /*
11d4616b 353 * Full barrier (A), see the ordering comment above.
b0c29f79 354 */
4e857c58 355 smp_mb__after_atomic();
11d4616b
LT
356#endif
357}
358
359/*
360 * Reflects a waiter being removed from the waitqueue by wakeup
361 * paths.
362 */
363static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364{
365#ifdef CONFIG_SMP
366 atomic_dec(&hb->waiters);
367#endif
368}
b0c29f79 369
11d4616b
LT
370static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 return atomic_read(&hb->waiters);
b0c29f79 374#else
11d4616b 375 return 1;
b0c29f79
DB
376#endif
377}
378
e8b61b3f
TG
379/**
380 * hash_futex - Return the hash bucket in the global hash
381 * @key: Pointer to the futex key for which the hash is calculated
382 *
383 * We hash on the keys returned from get_futex_key (see below) and return the
384 * corresponding hash bucket in the global hash.
1da177e4
LT
385 */
386static struct futex_hash_bucket *hash_futex(union futex_key *key)
387{
388 u32 hash = jhash2((u32*)&key->both.word,
389 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390 key->both.offset);
a52b89eb 391 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
392}
393
e8b61b3f
TG
394
395/**
396 * match_futex - Check whether two futex keys are equal
397 * @key1: Pointer to key1
398 * @key2: Pointer to key2
399 *
1da177e4
LT
400 * Return 1 if two futex_keys are equal, 0 otherwise.
401 */
402static inline int match_futex(union futex_key *key1, union futex_key *key2)
403{
2bc87203
DH
404 return (key1 && key2
405 && key1->both.word == key2->both.word
1da177e4
LT
406 && key1->both.ptr == key2->both.ptr
407 && key1->both.offset == key2->both.offset);
408}
409
38d47c1b
PZ
410/*
411 * Take a reference to the resource addressed by a key.
412 * Can be called while holding spinlocks.
413 *
414 */
415static void get_futex_key_refs(union futex_key *key)
416{
417 if (!key->both.ptr)
418 return;
419
784bdf3b
TG
420 /*
421 * On MMU less systems futexes are always "private" as there is no per
422 * process address space. We need the smp wmb nevertheless - yes,
423 * arch/blackfin has MMU less SMP ...
424 */
425 if (!IS_ENABLED(CONFIG_MMU)) {
426 smp_mb(); /* explicit smp_mb(); (B) */
427 return;
428 }
429
38d47c1b
PZ
430 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431 case FUT_OFF_INODE:
8ad7b378 432 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
433 break;
434 case FUT_OFF_MMSHARED:
8ad7b378 435 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 436 break;
76835b0e 437 default:
993b2ff2
DB
438 /*
439 * Private futexes do not hold reference on an inode or
440 * mm, therefore the only purpose of calling get_futex_key_refs
441 * is because we need the barrier for the lockless waiter check.
442 */
8ad7b378 443 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
444 }
445}
446
447/*
448 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
449 * The hash bucket spinlock must not be held. This is
450 * a no-op for private futexes, see comment in the get
451 * counterpart.
38d47c1b
PZ
452 */
453static void drop_futex_key_refs(union futex_key *key)
454{
90621c40
DH
455 if (!key->both.ptr) {
456 /* If we're here then we tried to put a key we failed to get */
457 WARN_ON_ONCE(1);
38d47c1b 458 return;
90621c40 459 }
38d47c1b 460
784bdf3b
TG
461 if (!IS_ENABLED(CONFIG_MMU))
462 return;
463
38d47c1b
PZ
464 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465 case FUT_OFF_INODE:
466 iput(key->shared.inode);
467 break;
468 case FUT_OFF_MMSHARED:
469 mmdrop(key->private.mm);
470 break;
471 }
472}
473
96d4f267
LT
474enum futex_access {
475 FUTEX_READ,
476 FUTEX_WRITE
477};
478
5ca584d9
WL
479/**
480 * futex_setup_timer - set up the sleeping hrtimer.
481 * @time: ptr to the given timeout value
482 * @timeout: the hrtimer_sleeper structure to be set up
483 * @flags: futex flags
484 * @range_ns: optional range in ns
485 *
486 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487 * value given
488 */
489static inline struct hrtimer_sleeper *
490futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491 int flags, u64 range_ns)
492{
493 if (!time)
494 return NULL;
495
dbc1625f
SAS
496 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497 CLOCK_REALTIME : CLOCK_MONOTONIC,
498 HRTIMER_MODE_ABS);
5ca584d9
WL
499 /*
500 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501 * effectively the same as calling hrtimer_set_expires().
502 */
503 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505 return timeout;
506}
507
34f01cc1 508/**
d96ee56c
DH
509 * get_futex_key() - Get parameters which are the keys for a futex
510 * @uaddr: virtual address of the futex
511 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512 * @key: address where result is stored.
96d4f267
LT
513 * @rw: mapping needs to be read/write (values: FUTEX_READ,
514 * FUTEX_WRITE)
34f01cc1 515 *
6c23cbbd
RD
516 * Return: a negative error code or 0
517 *
7b4ff1ad 518 * The key words are stored in @key on success.
1da177e4 519 *
6131ffaa 520 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
521 * offset_within_page). For private mappings, it's (uaddr, current->mm).
522 * We can usually work out the index without swapping in the page.
523 *
b2d0994b 524 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 525 */
64d1304a 526static int
96d4f267 527get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 528{
e2970f2f 529 unsigned long address = (unsigned long)uaddr;
1da177e4 530 struct mm_struct *mm = current->mm;
077fa7ae 531 struct page *page, *tail;
14d27abd 532 struct address_space *mapping;
9ea71503 533 int err, ro = 0;
1da177e4
LT
534
535 /*
536 * The futex address must be "naturally" aligned.
537 */
e2970f2f 538 key->both.offset = address % PAGE_SIZE;
34f01cc1 539 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 540 return -EINVAL;
e2970f2f 541 address -= key->both.offset;
1da177e4 542
96d4f267 543 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
544 return -EFAULT;
545
ab51fbab
DB
546 if (unlikely(should_fail_futex(fshared)))
547 return -EFAULT;
548
34f01cc1
ED
549 /*
550 * PROCESS_PRIVATE futexes are fast.
551 * As the mm cannot disappear under us and the 'key' only needs
552 * virtual address, we dont even have to find the underlying vma.
553 * Note : We do have to check 'uaddr' is a valid user address,
554 * but access_ok() should be faster than find_vma()
555 */
556 if (!fshared) {
34f01cc1
ED
557 key->private.mm = mm;
558 key->private.address = address;
8ad7b378 559 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
560 return 0;
561 }
1da177e4 562
38d47c1b 563again:
ab51fbab
DB
564 /* Ignore any VERIFY_READ mapping (futex common case) */
565 if (unlikely(should_fail_futex(fshared)))
566 return -EFAULT;
567
73b0140b 568 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
569 /*
570 * If write access is not required (eg. FUTEX_WAIT), try
571 * and get read-only access.
572 */
96d4f267 573 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
574 err = get_user_pages_fast(address, 1, 0, &page);
575 ro = 1;
576 }
38d47c1b
PZ
577 if (err < 0)
578 return err;
9ea71503
SB
579 else
580 err = 0;
38d47c1b 581
65d8fc77
MG
582 /*
583 * The treatment of mapping from this point on is critical. The page
584 * lock protects many things but in this context the page lock
585 * stabilizes mapping, prevents inode freeing in the shared
586 * file-backed region case and guards against movement to swap cache.
587 *
588 * Strictly speaking the page lock is not needed in all cases being
589 * considered here and page lock forces unnecessarily serialization
590 * From this point on, mapping will be re-verified if necessary and
591 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
592 *
593 * Mapping checks require the head page for any compound page so the
594 * head page and mapping is looked up now. For anonymous pages, it
595 * does not matter if the page splits in the future as the key is
596 * based on the address. For filesystem-backed pages, the tail is
597 * required as the index of the page determines the key. For
598 * base pages, there is no tail page and tail == page.
65d8fc77 599 */
077fa7ae 600 tail = page;
65d8fc77
MG
601 page = compound_head(page);
602 mapping = READ_ONCE(page->mapping);
603
e6780f72 604 /*
14d27abd 605 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
606 * page; but it might be the ZERO_PAGE or in the gate area or
607 * in a special mapping (all cases which we are happy to fail);
608 * or it may have been a good file page when get_user_pages_fast
609 * found it, but truncated or holepunched or subjected to
610 * invalidate_complete_page2 before we got the page lock (also
611 * cases which we are happy to fail). And we hold a reference,
612 * so refcount care in invalidate_complete_page's remove_mapping
613 * prevents drop_caches from setting mapping to NULL beneath us.
614 *
615 * The case we do have to guard against is when memory pressure made
616 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 617 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 618 */
65d8fc77
MG
619 if (unlikely(!mapping)) {
620 int shmem_swizzled;
621
622 /*
623 * Page lock is required to identify which special case above
624 * applies. If this is really a shmem page then the page lock
625 * will prevent unexpected transitions.
626 */
627 lock_page(page);
628 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
629 unlock_page(page);
630 put_page(page);
65d8fc77 631
e6780f72
HD
632 if (shmem_swizzled)
633 goto again;
65d8fc77 634
e6780f72 635 return -EFAULT;
38d47c1b 636 }
1da177e4
LT
637
638 /*
639 * Private mappings are handled in a simple way.
640 *
65d8fc77
MG
641 * If the futex key is stored on an anonymous page, then the associated
642 * object is the mm which is implicitly pinned by the calling process.
643 *
1da177e4
LT
644 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 646 * the object not the particular process.
1da177e4 647 */
14d27abd 648 if (PageAnon(page)) {
9ea71503
SB
649 /*
650 * A RO anonymous page will never change and thus doesn't make
651 * sense for futex operations.
652 */
ab51fbab 653 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
654 err = -EFAULT;
655 goto out;
656 }
657
38d47c1b 658 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 659 key->private.mm = mm;
e2970f2f 660 key->private.address = address;
65d8fc77
MG
661
662 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
38d47c1b 664 } else {
65d8fc77
MG
665 struct inode *inode;
666
667 /*
668 * The associated futex object in this case is the inode and
669 * the page->mapping must be traversed. Ordinarily this should
670 * be stabilised under page lock but it's not strictly
671 * necessary in this case as we just want to pin the inode, not
672 * update the radix tree or anything like that.
673 *
674 * The RCU read lock is taken as the inode is finally freed
675 * under RCU. If the mapping still matches expectations then the
676 * mapping->host can be safely accessed as being a valid inode.
677 */
678 rcu_read_lock();
679
680 if (READ_ONCE(page->mapping) != mapping) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 inode = READ_ONCE(mapping->host);
688 if (!inode) {
689 rcu_read_unlock();
690 put_page(page);
691
692 goto again;
693 }
694
695 /*
696 * Take a reference unless it is about to be freed. Previously
697 * this reference was taken by ihold under the page lock
698 * pinning the inode in place so i_lock was unnecessary. The
699 * only way for this check to fail is if the inode was
48fb6f4d
MG
700 * truncated in parallel which is almost certainly an
701 * application bug. In such a case, just retry.
65d8fc77
MG
702 *
703 * We are not calling into get_futex_key_refs() in file-backed
704 * cases, therefore a successful atomic_inc return below will
705 * guarantee that get_futex_key() will still imply smp_mb(); (B).
706 */
48fb6f4d 707 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
708 rcu_read_unlock();
709 put_page(page);
710
711 goto again;
712 }
713
714 /* Should be impossible but lets be paranoid for now */
715 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716 err = -EFAULT;
717 rcu_read_unlock();
718 iput(inode);
719
720 goto out;
721 }
722
38d47c1b 723 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 724 key->shared.inode = inode;
077fa7ae 725 key->shared.pgoff = basepage_index(tail);
65d8fc77 726 rcu_read_unlock();
1da177e4
LT
727 }
728
9ea71503 729out:
14d27abd 730 put_page(page);
9ea71503 731 return err;
1da177e4
LT
732}
733
ae791a2d 734static inline void put_futex_key(union futex_key *key)
1da177e4 735{
38d47c1b 736 drop_futex_key_refs(key);
1da177e4
LT
737}
738
d96ee56c
DH
739/**
740 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
741 * @uaddr: pointer to faulting user space address
742 *
743 * Slow path to fixup the fault we just took in the atomic write
744 * access to @uaddr.
745 *
fb62db2b 746 * We have no generic implementation of a non-destructive write to the
d0725992
TG
747 * user address. We know that we faulted in the atomic pagefault
748 * disabled section so we can as well avoid the #PF overhead by
749 * calling get_user_pages() right away.
750 */
751static int fault_in_user_writeable(u32 __user *uaddr)
752{
722d0172
AK
753 struct mm_struct *mm = current->mm;
754 int ret;
755
756 down_read(&mm->mmap_sem);
2efaca92 757 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 758 FAULT_FLAG_WRITE, NULL);
722d0172
AK
759 up_read(&mm->mmap_sem);
760
d0725992
TG
761 return ret < 0 ? ret : 0;
762}
763
4b1c486b
DH
764/**
765 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
766 * @hb: the hash bucket the futex_q's reside in
767 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
768 *
769 * Must be called with the hb lock held.
770 */
771static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772 union futex_key *key)
773{
774 struct futex_q *this;
775
776 plist_for_each_entry(this, &hb->chain, list) {
777 if (match_futex(&this->key, key))
778 return this;
779 }
780 return NULL;
781}
782
37a9d912
ML
783static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784 u32 uval, u32 newval)
36cf3b5c 785{
37a9d912 786 int ret;
36cf3b5c
TG
787
788 pagefault_disable();
37a9d912 789 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
790 pagefault_enable();
791
37a9d912 792 return ret;
36cf3b5c
TG
793}
794
795static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
796{
797 int ret;
798
a866374a 799 pagefault_disable();
bd28b145 800 ret = __get_user(*dest, from);
a866374a 801 pagefault_enable();
1da177e4
LT
802
803 return ret ? -EFAULT : 0;
804}
805
c87e2837
IM
806
807/*
808 * PI code:
809 */
810static int refill_pi_state_cache(void)
811{
812 struct futex_pi_state *pi_state;
813
814 if (likely(current->pi_state_cache))
815 return 0;
816
4668edc3 817 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
818
819 if (!pi_state)
820 return -ENOMEM;
821
c87e2837
IM
822 INIT_LIST_HEAD(&pi_state->list);
823 /* pi_mutex gets initialized later */
824 pi_state->owner = NULL;
49262de2 825 refcount_set(&pi_state->refcount, 1);
38d47c1b 826 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
827
828 current->pi_state_cache = pi_state;
829
830 return 0;
831}
832
bf92cf3a 833static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
834{
835 struct futex_pi_state *pi_state = current->pi_state_cache;
836
837 WARN_ON(!pi_state);
838 current->pi_state_cache = NULL;
839
840 return pi_state;
841}
842
bf92cf3a
PZ
843static void get_pi_state(struct futex_pi_state *pi_state)
844{
49262de2 845 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
846}
847
30a6b803 848/*
29e9ee5d
TG
849 * Drops a reference to the pi_state object and frees or caches it
850 * when the last reference is gone.
30a6b803 851 */
29e9ee5d 852static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 853{
30a6b803
BS
854 if (!pi_state)
855 return;
856
49262de2 857 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
858 return;
859
860 /*
861 * If pi_state->owner is NULL, the owner is most probably dying
862 * and has cleaned up the pi_state already
863 */
864 if (pi_state->owner) {
c74aef2d 865 struct task_struct *owner;
c87e2837 866
c74aef2d
PZ
867 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868 owner = pi_state->owner;
869 if (owner) {
870 raw_spin_lock(&owner->pi_lock);
871 list_del_init(&pi_state->list);
872 raw_spin_unlock(&owner->pi_lock);
873 }
874 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
876 }
877
c74aef2d 878 if (current->pi_state_cache) {
c87e2837 879 kfree(pi_state);
c74aef2d 880 } else {
c87e2837
IM
881 /*
882 * pi_state->list is already empty.
883 * clear pi_state->owner.
884 * refcount is at 0 - put it back to 1.
885 */
886 pi_state->owner = NULL;
49262de2 887 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
888 current->pi_state_cache = pi_state;
889 }
890}
891
bc2eecd7
NP
892#ifdef CONFIG_FUTEX_PI
893
c87e2837
IM
894/*
895 * This task is holding PI mutexes at exit time => bad.
896 * Kernel cleans up PI-state, but userspace is likely hosed.
897 * (Robust-futex cleanup is separate and might save the day for userspace.)
898 */
ba31c1a4 899static void exit_pi_state_list(struct task_struct *curr)
c87e2837 900{
c87e2837
IM
901 struct list_head *next, *head = &curr->pi_state_list;
902 struct futex_pi_state *pi_state;
627371d7 903 struct futex_hash_bucket *hb;
38d47c1b 904 union futex_key key = FUTEX_KEY_INIT;
c87e2837 905
a0c1e907
TG
906 if (!futex_cmpxchg_enabled)
907 return;
c87e2837
IM
908 /*
909 * We are a ZOMBIE and nobody can enqueue itself on
910 * pi_state_list anymore, but we have to be careful
627371d7 911 * versus waiters unqueueing themselves:
c87e2837 912 */
1d615482 913 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 914 while (!list_empty(head)) {
c87e2837
IM
915 next = head->next;
916 pi_state = list_entry(next, struct futex_pi_state, list);
917 key = pi_state->key;
627371d7 918 hb = hash_futex(&key);
153fbd12
PZ
919
920 /*
921 * We can race against put_pi_state() removing itself from the
922 * list (a waiter going away). put_pi_state() will first
923 * decrement the reference count and then modify the list, so
924 * its possible to see the list entry but fail this reference
925 * acquire.
926 *
927 * In that case; drop the locks to let put_pi_state() make
928 * progress and retry the loop.
929 */
49262de2 930 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
931 raw_spin_unlock_irq(&curr->pi_lock);
932 cpu_relax();
933 raw_spin_lock_irq(&curr->pi_lock);
934 continue;
935 }
1d615482 936 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 937
c87e2837 938 spin_lock(&hb->lock);
c74aef2d
PZ
939 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 raw_spin_lock(&curr->pi_lock);
627371d7
IM
941 /*
942 * We dropped the pi-lock, so re-check whether this
943 * task still owns the PI-state:
944 */
c87e2837 945 if (head->next != next) {
153fbd12 946 /* retain curr->pi_lock for the loop invariant */
c74aef2d 947 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 948 spin_unlock(&hb->lock);
153fbd12 949 put_pi_state(pi_state);
c87e2837
IM
950 continue;
951 }
952
c87e2837 953 WARN_ON(pi_state->owner != curr);
627371d7
IM
954 WARN_ON(list_empty(&pi_state->list));
955 list_del_init(&pi_state->list);
c87e2837 956 pi_state->owner = NULL;
c87e2837 957
153fbd12 958 raw_spin_unlock(&curr->pi_lock);
c74aef2d 959 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
960 spin_unlock(&hb->lock);
961
16ffa12d
PZ
962 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 put_pi_state(pi_state);
964
1d615482 965 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 966 }
1d615482 967 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 968}
ba31c1a4
TG
969#else
970static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
971#endif
972
54a21788
TG
973/*
974 * We need to check the following states:
975 *
976 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
977 *
978 * [1] NULL | --- | --- | 0 | 0/1 | Valid
979 * [2] NULL | --- | --- | >0 | 0/1 | Valid
980 *
981 * [3] Found | NULL | -- | Any | 0/1 | Invalid
982 *
983 * [4] Found | Found | NULL | 0 | 1 | Valid
984 * [5] Found | Found | NULL | >0 | 1 | Invalid
985 *
986 * [6] Found | Found | task | 0 | 1 | Valid
987 *
988 * [7] Found | Found | NULL | Any | 0 | Invalid
989 *
990 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
991 * [9] Found | Found | task | 0 | 0 | Invalid
992 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
993 *
994 * [1] Indicates that the kernel can acquire the futex atomically. We
995 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996 *
997 * [2] Valid, if TID does not belong to a kernel thread. If no matching
998 * thread is found then it indicates that the owner TID has died.
999 *
1000 * [3] Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4] Valid state after exit_robust_list(), which sets the user space
1003 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5] The user space value got manipulated between exit_robust_list()
1006 * and exit_pi_state_list()
1007 *
1008 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1009 * the pi_state but cannot access the user space value.
1010 *
1011 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8] Owner and user space value match
1014 *
1015 * [9] There is no transient state which sets the user space TID to 0
1016 * except exit_robust_list(), but this is indicated by the
1017 * FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 * TID out of sync.
734009e9
PZ
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 * hb -> futex_q, relation
1028 * futex_q -> pi_state, relation
1029 *
1030 * (cannot be raw because hb can contain arbitrary amount
1031 * of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 * {uval, pi_state}
1036 *
1037 * (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 * p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
54a21788 1054 */
e60cbc5c
TG
1055
1056/*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
734009e9
PZ
1061static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
e60cbc5c 1063 struct futex_pi_state **ps)
c87e2837 1064{
778e9a9c 1065 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1066 u32 uval2;
1067 int ret;
c87e2837 1068
e60cbc5c
TG
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
06a9ec29 1074
734009e9
PZ
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
16ffa12d
PZ
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
734009e9 1086 */
49262de2 1087 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1088
734009e9
PZ
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
e60cbc5c
TG
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1111 /*
e60cbc5c
TG
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1115 */
e60cbc5c 1116 if (!pi_state->owner) {
59647b6a 1117 /*
e60cbc5c
TG
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
59647b6a 1120 */
e60cbc5c 1121 if (pid)
734009e9 1122 goto out_einval;
bd1dbcc6 1123 /*
e60cbc5c 1124 * Take a ref on the state and return success. [4]
866293ee 1125 */
734009e9 1126 goto out_attach;
c87e2837 1127 }
bd1dbcc6
TG
1128
1129 /*
e60cbc5c
TG
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
734009e9 1138 goto out_attach;
e60cbc5c
TG
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
bd1dbcc6 1143 */
e60cbc5c 1144 if (!pi_state->owner)
734009e9 1145 goto out_einval;
c87e2837
IM
1146 }
1147
e60cbc5c
TG
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1154 goto out_einval;
1155
1156out_attach:
bf92cf3a 1157 get_pi_state(pi_state);
734009e9 1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1159 *ps = pi_state;
1160 return 0;
734009e9
PZ
1161
1162out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
e60cbc5c
TG
1177}
1178
da791a66
TG
1179static int handle_exit_race(u32 __user *uaddr, u32 uval,
1180 struct task_struct *tsk)
1181{
1182 u32 uval2;
1183
1184 /*
3d4775df
TG
1185 * If the futex exit state is not yet FUTEX_STATE_DEAD, wait
1186 * for it to finish.
da791a66 1187 */
3d4775df 1188 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
da791a66
TG
1189 return -EAGAIN;
1190
1191 /*
1192 * Reread the user space value to handle the following situation:
1193 *
1194 * CPU0 CPU1
1195 *
1196 * sys_exit() sys_futex()
1197 * do_exit() futex_lock_pi()
1198 * futex_lock_pi_atomic()
1199 * exit_signals(tsk) No waiters:
1200 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1201 * mm_release(tsk) Set waiter bit
1202 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1203 * Set owner died attach_to_pi_owner() {
1204 * *uaddr = 0xC0000000; tsk = get_task(PID);
1205 * } if (!tsk->flags & PF_EXITING) {
1206 * ... attach();
3d4775df
TG
1207 * tsk->futex_state = } else {
1208 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1209 * FUTEX_STATE_DEAD)
da791a66
TG
1210 * return -EAGAIN;
1211 * return -ESRCH; <--- FAIL
1212 * }
1213 *
1214 * Returning ESRCH unconditionally is wrong here because the
1215 * user space value has been changed by the exiting task.
1216 *
1217 * The same logic applies to the case where the exiting task is
1218 * already gone.
1219 */
1220 if (get_futex_value_locked(&uval2, uaddr))
1221 return -EFAULT;
1222
1223 /* If the user space value has changed, try again. */
1224 if (uval2 != uval)
1225 return -EAGAIN;
1226
1227 /*
1228 * The exiting task did not have a robust list, the robust list was
1229 * corrupted or the user space value in *uaddr is simply bogus.
1230 * Give up and tell user space.
1231 */
1232 return -ESRCH;
1233}
1234
04e1b2e5
TG
1235/*
1236 * Lookup the task for the TID provided from user space and attach to
1237 * it after doing proper sanity checks.
1238 */
da791a66 1239static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1240 struct futex_pi_state **ps)
e60cbc5c 1241{
e60cbc5c 1242 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1243 struct futex_pi_state *pi_state;
1244 struct task_struct *p;
e60cbc5c 1245
c87e2837 1246 /*
e3f2ddea 1247 * We are the first waiter - try to look up the real owner and attach
54a21788 1248 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1249 *
1250 * The !pid check is paranoid. None of the call sites should end up
1251 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1252 */
778e9a9c 1253 if (!pid)
da791a66 1254 return -EAGAIN;
2ee08260 1255 p = find_get_task_by_vpid(pid);
7a0ea09a 1256 if (!p)
da791a66 1257 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1258
a2129464 1259 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1260 put_task_struct(p);
1261 return -EPERM;
1262 }
1263
778e9a9c 1264 /*
3d4775df
TG
1265 * We need to look at the task state to figure out, whether the
1266 * task is exiting. To protect against the change of the task state
1267 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1268 */
1d615482 1269 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1270 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1271 /*
3d4775df
TG
1272 * The task is on the way out. When the futex state is
1273 * FUTEX_STATE_DEAD, we know that the task has finished
1274 * the cleanup:
778e9a9c 1275 */
da791a66 1276 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1277
1d615482 1278 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1279 put_task_struct(p);
1280 return ret;
1281 }
c87e2837 1282
54a21788
TG
1283 /*
1284 * No existing pi state. First waiter. [2]
734009e9
PZ
1285 *
1286 * This creates pi_state, we have hb->lock held, this means nothing can
1287 * observe this state, wait_lock is irrelevant.
54a21788 1288 */
c87e2837
IM
1289 pi_state = alloc_pi_state();
1290
1291 /*
04e1b2e5 1292 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1293 * the owner of it:
1294 */
1295 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1296
1297 /* Store the key for possible exit cleanups: */
d0aa7a70 1298 pi_state->key = *key;
c87e2837 1299
627371d7 1300 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1301 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1302 /*
1303 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1304 * because there is no concurrency as the object is not published yet.
1305 */
c87e2837 1306 pi_state->owner = p;
1d615482 1307 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1308
1309 put_task_struct(p);
1310
d0aa7a70 1311 *ps = pi_state;
c87e2837
IM
1312
1313 return 0;
1314}
1315
734009e9
PZ
1316static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1317 struct futex_hash_bucket *hb,
04e1b2e5
TG
1318 union futex_key *key, struct futex_pi_state **ps)
1319{
499f5aca 1320 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1321
1322 /*
1323 * If there is a waiter on that futex, validate it and
1324 * attach to the pi_state when the validation succeeds.
1325 */
499f5aca 1326 if (top_waiter)
734009e9 1327 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1328
1329 /*
1330 * We are the first waiter - try to look up the owner based on
1331 * @uval and attach to it.
1332 */
da791a66 1333 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1334}
1335
af54d6a1
TG
1336static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1337{
6b4f4bc9 1338 int err;
af54d6a1
TG
1339 u32 uninitialized_var(curval);
1340
ab51fbab
DB
1341 if (unlikely(should_fail_futex(true)))
1342 return -EFAULT;
1343
6b4f4bc9
WD
1344 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1345 if (unlikely(err))
1346 return err;
af54d6a1 1347
734009e9 1348 /* If user space value changed, let the caller retry */
af54d6a1
TG
1349 return curval != uval ? -EAGAIN : 0;
1350}
1351
1a52084d 1352/**
d96ee56c 1353 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1354 * @uaddr: the pi futex user address
1355 * @hb: the pi futex hash bucket
1356 * @key: the futex key associated with uaddr and hb
1357 * @ps: the pi_state pointer where we store the result of the
1358 * lookup
1359 * @task: the task to perform the atomic lock work for. This will
1360 * be "current" except in the case of requeue pi.
1361 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1362 *
6c23cbbd 1363 * Return:
7b4ff1ad
MCC
1364 * - 0 - ready to wait;
1365 * - 1 - acquired the lock;
1366 * - <0 - error
1a52084d
DH
1367 *
1368 * The hb->lock and futex_key refs shall be held by the caller.
1369 */
1370static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1371 union futex_key *key,
1372 struct futex_pi_state **ps,
bab5bc9e 1373 struct task_struct *task, int set_waiters)
1a52084d 1374{
af54d6a1 1375 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1376 struct futex_q *top_waiter;
af54d6a1 1377 int ret;
1a52084d
DH
1378
1379 /*
af54d6a1
TG
1380 * Read the user space value first so we can validate a few
1381 * things before proceeding further.
1a52084d 1382 */
af54d6a1 1383 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1384 return -EFAULT;
1385
ab51fbab
DB
1386 if (unlikely(should_fail_futex(true)))
1387 return -EFAULT;
1388
1a52084d
DH
1389 /*
1390 * Detect deadlocks.
1391 */
af54d6a1 1392 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1393 return -EDEADLK;
1394
ab51fbab
DB
1395 if ((unlikely(should_fail_futex(true))))
1396 return -EDEADLK;
1397
1a52084d 1398 /*
af54d6a1
TG
1399 * Lookup existing state first. If it exists, try to attach to
1400 * its pi_state.
1a52084d 1401 */
499f5aca
PZ
1402 top_waiter = futex_top_waiter(hb, key);
1403 if (top_waiter)
734009e9 1404 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1405
1406 /*
af54d6a1
TG
1407 * No waiter and user TID is 0. We are here because the
1408 * waiters or the owner died bit is set or called from
1409 * requeue_cmp_pi or for whatever reason something took the
1410 * syscall.
1a52084d 1411 */
af54d6a1 1412 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1413 /*
af54d6a1
TG
1414 * We take over the futex. No other waiters and the user space
1415 * TID is 0. We preserve the owner died bit.
59fa6245 1416 */
af54d6a1
TG
1417 newval = uval & FUTEX_OWNER_DIED;
1418 newval |= vpid;
1a52084d 1419
af54d6a1
TG
1420 /* The futex requeue_pi code can enforce the waiters bit */
1421 if (set_waiters)
1422 newval |= FUTEX_WAITERS;
1423
1424 ret = lock_pi_update_atomic(uaddr, uval, newval);
1425 /* If the take over worked, return 1 */
1426 return ret < 0 ? ret : 1;
1427 }
1a52084d
DH
1428
1429 /*
af54d6a1
TG
1430 * First waiter. Set the waiters bit before attaching ourself to
1431 * the owner. If owner tries to unlock, it will be forced into
1432 * the kernel and blocked on hb->lock.
1a52084d 1433 */
af54d6a1
TG
1434 newval = uval | FUTEX_WAITERS;
1435 ret = lock_pi_update_atomic(uaddr, uval, newval);
1436 if (ret)
1437 return ret;
1a52084d 1438 /*
af54d6a1
TG
1439 * If the update of the user space value succeeded, we try to
1440 * attach to the owner. If that fails, no harm done, we only
1441 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1442 */
da791a66 1443 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1444}
1445
2e12978a
LJ
1446/**
1447 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1448 * @q: The futex_q to unqueue
1449 *
1450 * The q->lock_ptr must not be NULL and must be held by the caller.
1451 */
1452static void __unqueue_futex(struct futex_q *q)
1453{
1454 struct futex_hash_bucket *hb;
1455
4de1a293 1456 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1457 return;
4de1a293 1458 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1459
1460 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1461 plist_del(&q->list, &hb->chain);
11d4616b 1462 hb_waiters_dec(hb);
2e12978a
LJ
1463}
1464
1da177e4
LT
1465/*
1466 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1467 * Afterwards, the futex_q must not be accessed. Callers
1468 * must ensure to later call wake_up_q() for the actual
1469 * wakeups to occur.
1da177e4 1470 */
1d0dcb3a 1471static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1472{
f1a11e05
TG
1473 struct task_struct *p = q->task;
1474
aa10990e
DH
1475 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1476 return;
1477
b061c38b 1478 get_task_struct(p);
2e12978a 1479 __unqueue_futex(q);
1da177e4 1480 /*
38fcd06e
DHV
1481 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1482 * is written, without taking any locks. This is possible in the event
1483 * of a spurious wakeup, for example. A memory barrier is required here
1484 * to prevent the following store to lock_ptr from getting ahead of the
1485 * plist_del in __unqueue_futex().
1da177e4 1486 */
1b367ece 1487 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1488
1489 /*
1490 * Queue the task for later wakeup for after we've released
75145904 1491 * the hb->lock.
b061c38b 1492 */
07879c6a 1493 wake_q_add_safe(wake_q, p);
1da177e4
LT
1494}
1495
16ffa12d
PZ
1496/*
1497 * Caller must hold a reference on @pi_state.
1498 */
1499static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1500{
7cfdaf38 1501 u32 uninitialized_var(curval), newval;
16ffa12d 1502 struct task_struct *new_owner;
aa2bfe55 1503 bool postunlock = false;
194a6b5b 1504 DEFINE_WAKE_Q(wake_q);
13fbca4c 1505 int ret = 0;
c87e2837 1506
c87e2837 1507 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1508 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1509 /*
bebe5b51 1510 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1511 *
1512 * When this happens, give up our locks and try again, giving
1513 * the futex_lock_pi() instance time to complete, either by
1514 * waiting on the rtmutex or removing itself from the futex
1515 * queue.
1516 */
1517 ret = -EAGAIN;
1518 goto out_unlock;
73d786bd 1519 }
c87e2837
IM
1520
1521 /*
16ffa12d
PZ
1522 * We pass it to the next owner. The WAITERS bit is always kept
1523 * enabled while there is PI state around. We cleanup the owner
1524 * died bit, because we are the owner.
c87e2837 1525 */
13fbca4c 1526 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1527
ab51fbab
DB
1528 if (unlikely(should_fail_futex(true)))
1529 ret = -EFAULT;
1530
6b4f4bc9
WD
1531 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532 if (!ret && (curval != uval)) {
89e9e66b
SAS
1533 /*
1534 * If a unconditional UNLOCK_PI operation (user space did not
1535 * try the TID->0 transition) raced with a waiter setting the
1536 * FUTEX_WAITERS flag between get_user() and locking the hash
1537 * bucket lock, retry the operation.
1538 */
1539 if ((FUTEX_TID_MASK & curval) == uval)
1540 ret = -EAGAIN;
1541 else
1542 ret = -EINVAL;
1543 }
734009e9 1544
16ffa12d
PZ
1545 if (ret)
1546 goto out_unlock;
c87e2837 1547
94ffac5d
PZ
1548 /*
1549 * This is a point of no return; once we modify the uval there is no
1550 * going back and subsequent operations must not fail.
1551 */
1552
b4abf910 1553 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1554 WARN_ON(list_empty(&pi_state->list));
1555 list_del_init(&pi_state->list);
b4abf910 1556 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1557
b4abf910 1558 raw_spin_lock(&new_owner->pi_lock);
627371d7 1559 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1560 list_add(&pi_state->list, &new_owner->pi_state_list);
1561 pi_state->owner = new_owner;
b4abf910 1562 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1563
aa2bfe55 1564 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1565
16ffa12d 1566out_unlock:
5293c2ef 1567 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1568
aa2bfe55
PZ
1569 if (postunlock)
1570 rt_mutex_postunlock(&wake_q);
c87e2837 1571
16ffa12d 1572 return ret;
c87e2837
IM
1573}
1574
8b8f319f
IM
1575/*
1576 * Express the locking dependencies for lockdep:
1577 */
1578static inline void
1579double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580{
1581 if (hb1 <= hb2) {
1582 spin_lock(&hb1->lock);
1583 if (hb1 < hb2)
1584 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1585 } else { /* hb1 > hb2 */
1586 spin_lock(&hb2->lock);
1587 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1588 }
1589}
1590
5eb3dc62
DH
1591static inline void
1592double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1593{
f061d351 1594 spin_unlock(&hb1->lock);
88f502fe
IM
1595 if (hb1 != hb2)
1596 spin_unlock(&hb2->lock);
5eb3dc62
DH
1597}
1598
1da177e4 1599/*
b2d0994b 1600 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1601 */
b41277dc
DH
1602static int
1603futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1604{
e2970f2f 1605 struct futex_hash_bucket *hb;
1da177e4 1606 struct futex_q *this, *next;
38d47c1b 1607 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1608 int ret;
194a6b5b 1609 DEFINE_WAKE_Q(wake_q);
1da177e4 1610
cd689985
TG
1611 if (!bitset)
1612 return -EINVAL;
1613
96d4f267 1614 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1615 if (unlikely(ret != 0))
1616 goto out;
1617
e2970f2f 1618 hb = hash_futex(&key);
b0c29f79
DB
1619
1620 /* Make sure we really have tasks to wakeup */
1621 if (!hb_waiters_pending(hb))
1622 goto out_put_key;
1623
e2970f2f 1624 spin_lock(&hb->lock);
1da177e4 1625
0d00c7b2 1626 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1627 if (match_futex (&this->key, &key)) {
52400ba9 1628 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1629 ret = -EINVAL;
1630 break;
1631 }
cd689985
TG
1632
1633 /* Check if one of the bits is set in both bitsets */
1634 if (!(this->bitset & bitset))
1635 continue;
1636
1d0dcb3a 1637 mark_wake_futex(&wake_q, this);
1da177e4
LT
1638 if (++ret >= nr_wake)
1639 break;
1640 }
1641 }
1642
e2970f2f 1643 spin_unlock(&hb->lock);
1d0dcb3a 1644 wake_up_q(&wake_q);
b0c29f79 1645out_put_key:
ae791a2d 1646 put_futex_key(&key);
42d35d48 1647out:
1da177e4
LT
1648 return ret;
1649}
1650
30d6e0a4
JS
1651static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1652{
1653 unsigned int op = (encoded_op & 0x70000000) >> 28;
1654 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1655 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1656 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1657 int oldval, ret;
1658
1659 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1660 if (oparg < 0 || oparg > 31) {
1661 char comm[sizeof(current->comm)];
1662 /*
1663 * kill this print and return -EINVAL when userspace
1664 * is sane again
1665 */
1666 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1667 get_task_comm(comm, current), oparg);
1668 oparg &= 31;
1669 }
30d6e0a4
JS
1670 oparg = 1 << oparg;
1671 }
1672
96d4f267 1673 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1674 return -EFAULT;
1675
1676 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1677 if (ret)
1678 return ret;
1679
1680 switch (cmp) {
1681 case FUTEX_OP_CMP_EQ:
1682 return oldval == cmparg;
1683 case FUTEX_OP_CMP_NE:
1684 return oldval != cmparg;
1685 case FUTEX_OP_CMP_LT:
1686 return oldval < cmparg;
1687 case FUTEX_OP_CMP_GE:
1688 return oldval >= cmparg;
1689 case FUTEX_OP_CMP_LE:
1690 return oldval <= cmparg;
1691 case FUTEX_OP_CMP_GT:
1692 return oldval > cmparg;
1693 default:
1694 return -ENOSYS;
1695 }
1696}
1697
4732efbe
JJ
1698/*
1699 * Wake up all waiters hashed on the physical page that is mapped
1700 * to this virtual address:
1701 */
e2970f2f 1702static int
b41277dc 1703futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1704 int nr_wake, int nr_wake2, int op)
4732efbe 1705{
38d47c1b 1706 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1707 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1708 struct futex_q *this, *next;
e4dc5b7a 1709 int ret, op_ret;
194a6b5b 1710 DEFINE_WAKE_Q(wake_q);
4732efbe 1711
e4dc5b7a 1712retry:
96d4f267 1713 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1714 if (unlikely(ret != 0))
1715 goto out;
96d4f267 1716 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1717 if (unlikely(ret != 0))
42d35d48 1718 goto out_put_key1;
4732efbe 1719
e2970f2f
IM
1720 hb1 = hash_futex(&key1);
1721 hb2 = hash_futex(&key2);
4732efbe 1722
e4dc5b7a 1723retry_private:
eaaea803 1724 double_lock_hb(hb1, hb2);
e2970f2f 1725 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1726 if (unlikely(op_ret < 0)) {
5eb3dc62 1727 double_unlock_hb(hb1, hb2);
4732efbe 1728
6b4f4bc9
WD
1729 if (!IS_ENABLED(CONFIG_MMU) ||
1730 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1731 /*
1732 * we don't get EFAULT from MMU faults if we don't have
1733 * an MMU, but we might get them from range checking
1734 */
796f8d9b 1735 ret = op_ret;
42d35d48 1736 goto out_put_keys;
796f8d9b
DG
1737 }
1738
6b4f4bc9
WD
1739 if (op_ret == -EFAULT) {
1740 ret = fault_in_user_writeable(uaddr2);
1741 if (ret)
1742 goto out_put_keys;
1743 }
4732efbe 1744
6b4f4bc9
WD
1745 if (!(flags & FLAGS_SHARED)) {
1746 cond_resched();
e4dc5b7a 1747 goto retry_private;
6b4f4bc9 1748 }
e4dc5b7a 1749
ae791a2d
TG
1750 put_futex_key(&key2);
1751 put_futex_key(&key1);
6b4f4bc9 1752 cond_resched();
e4dc5b7a 1753 goto retry;
4732efbe
JJ
1754 }
1755
0d00c7b2 1756 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1757 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1758 if (this->pi_state || this->rt_waiter) {
1759 ret = -EINVAL;
1760 goto out_unlock;
1761 }
1d0dcb3a 1762 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1763 if (++ret >= nr_wake)
1764 break;
1765 }
1766 }
1767
1768 if (op_ret > 0) {
4732efbe 1769 op_ret = 0;
0d00c7b2 1770 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1771 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1772 if (this->pi_state || this->rt_waiter) {
1773 ret = -EINVAL;
1774 goto out_unlock;
1775 }
1d0dcb3a 1776 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1777 if (++op_ret >= nr_wake2)
1778 break;
1779 }
1780 }
1781 ret += op_ret;
1782 }
1783
aa10990e 1784out_unlock:
5eb3dc62 1785 double_unlock_hb(hb1, hb2);
1d0dcb3a 1786 wake_up_q(&wake_q);
42d35d48 1787out_put_keys:
ae791a2d 1788 put_futex_key(&key2);
42d35d48 1789out_put_key1:
ae791a2d 1790 put_futex_key(&key1);
42d35d48 1791out:
4732efbe
JJ
1792 return ret;
1793}
1794
9121e478
DH
1795/**
1796 * requeue_futex() - Requeue a futex_q from one hb to another
1797 * @q: the futex_q to requeue
1798 * @hb1: the source hash_bucket
1799 * @hb2: the target hash_bucket
1800 * @key2: the new key for the requeued futex_q
1801 */
1802static inline
1803void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1804 struct futex_hash_bucket *hb2, union futex_key *key2)
1805{
1806
1807 /*
1808 * If key1 and key2 hash to the same bucket, no need to
1809 * requeue.
1810 */
1811 if (likely(&hb1->chain != &hb2->chain)) {
1812 plist_del(&q->list, &hb1->chain);
11d4616b 1813 hb_waiters_dec(hb1);
11d4616b 1814 hb_waiters_inc(hb2);
fe1bce9e 1815 plist_add(&q->list, &hb2->chain);
9121e478 1816 q->lock_ptr = &hb2->lock;
9121e478
DH
1817 }
1818 get_futex_key_refs(key2);
1819 q->key = *key2;
1820}
1821
52400ba9
DH
1822/**
1823 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1824 * @q: the futex_q
1825 * @key: the key of the requeue target futex
1826 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1827 *
1828 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1829 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1830 * to the requeue target futex so the waiter can detect the wakeup on the right
1831 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1832 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1833 * to protect access to the pi_state to fixup the owner later. Must be called
1834 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1835 */
1836static inline
beda2c7e
DH
1837void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1838 struct futex_hash_bucket *hb)
52400ba9 1839{
52400ba9
DH
1840 get_futex_key_refs(key);
1841 q->key = *key;
1842
2e12978a 1843 __unqueue_futex(q);
52400ba9
DH
1844
1845 WARN_ON(!q->rt_waiter);
1846 q->rt_waiter = NULL;
1847
beda2c7e 1848 q->lock_ptr = &hb->lock;
beda2c7e 1849
f1a11e05 1850 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1851}
1852
1853/**
1854 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1855 * @pifutex: the user address of the to futex
1856 * @hb1: the from futex hash bucket, must be locked by the caller
1857 * @hb2: the to futex hash bucket, must be locked by the caller
1858 * @key1: the from futex key
1859 * @key2: the to futex key
1860 * @ps: address to store the pi_state pointer
1861 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1862 *
1863 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1864 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1865 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1866 * hb1 and hb2 must be held by the caller.
52400ba9 1867 *
6c23cbbd 1868 * Return:
7b4ff1ad
MCC
1869 * - 0 - failed to acquire the lock atomically;
1870 * - >0 - acquired the lock, return value is vpid of the top_waiter
1871 * - <0 - error
52400ba9
DH
1872 */
1873static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1874 struct futex_hash_bucket *hb1,
1875 struct futex_hash_bucket *hb2,
1876 union futex_key *key1, union futex_key *key2,
bab5bc9e 1877 struct futex_pi_state **ps, int set_waiters)
52400ba9 1878{
bab5bc9e 1879 struct futex_q *top_waiter = NULL;
52400ba9 1880 u32 curval;
866293ee 1881 int ret, vpid;
52400ba9
DH
1882
1883 if (get_futex_value_locked(&curval, pifutex))
1884 return -EFAULT;
1885
ab51fbab
DB
1886 if (unlikely(should_fail_futex(true)))
1887 return -EFAULT;
1888
bab5bc9e
DH
1889 /*
1890 * Find the top_waiter and determine if there are additional waiters.
1891 * If the caller intends to requeue more than 1 waiter to pifutex,
1892 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1893 * as we have means to handle the possible fault. If not, don't set
1894 * the bit unecessarily as it will force the subsequent unlock to enter
1895 * the kernel.
1896 */
52400ba9
DH
1897 top_waiter = futex_top_waiter(hb1, key1);
1898
1899 /* There are no waiters, nothing for us to do. */
1900 if (!top_waiter)
1901 return 0;
1902
84bc4af5
DH
1903 /* Ensure we requeue to the expected futex. */
1904 if (!match_futex(top_waiter->requeue_pi_key, key2))
1905 return -EINVAL;
1906
52400ba9 1907 /*
bab5bc9e
DH
1908 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1909 * the contended case or if set_waiters is 1. The pi_state is returned
1910 * in ps in contended cases.
52400ba9 1911 */
866293ee 1912 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1913 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1914 set_waiters);
866293ee 1915 if (ret == 1) {
beda2c7e 1916 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1917 return vpid;
1918 }
52400ba9
DH
1919 return ret;
1920}
1921
1922/**
1923 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1924 * @uaddr1: source futex user address
b41277dc 1925 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1926 * @uaddr2: target futex user address
1927 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1928 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1929 * @cmpval: @uaddr1 expected value (or %NULL)
1930 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1931 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1932 *
1933 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1934 * uaddr2 atomically on behalf of the top waiter.
1935 *
6c23cbbd 1936 * Return:
7b4ff1ad
MCC
1937 * - >=0 - on success, the number of tasks requeued or woken;
1938 * - <0 - on error
1da177e4 1939 */
b41277dc
DH
1940static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1941 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1942 u32 *cmpval, int requeue_pi)
1da177e4 1943{
38d47c1b 1944 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1945 int drop_count = 0, task_count = 0, ret;
1946 struct futex_pi_state *pi_state = NULL;
e2970f2f 1947 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1948 struct futex_q *this, *next;
194a6b5b 1949 DEFINE_WAKE_Q(wake_q);
52400ba9 1950
fbe0e839
LJ
1951 if (nr_wake < 0 || nr_requeue < 0)
1952 return -EINVAL;
1953
bc2eecd7
NP
1954 /*
1955 * When PI not supported: return -ENOSYS if requeue_pi is true,
1956 * consequently the compiler knows requeue_pi is always false past
1957 * this point which will optimize away all the conditional code
1958 * further down.
1959 */
1960 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1961 return -ENOSYS;
1962
52400ba9 1963 if (requeue_pi) {
e9c243a5
TG
1964 /*
1965 * Requeue PI only works on two distinct uaddrs. This
1966 * check is only valid for private futexes. See below.
1967 */
1968 if (uaddr1 == uaddr2)
1969 return -EINVAL;
1970
52400ba9
DH
1971 /*
1972 * requeue_pi requires a pi_state, try to allocate it now
1973 * without any locks in case it fails.
1974 */
1975 if (refill_pi_state_cache())
1976 return -ENOMEM;
1977 /*
1978 * requeue_pi must wake as many tasks as it can, up to nr_wake
1979 * + nr_requeue, since it acquires the rt_mutex prior to
1980 * returning to userspace, so as to not leave the rt_mutex with
1981 * waiters and no owner. However, second and third wake-ups
1982 * cannot be predicted as they involve race conditions with the
1983 * first wake and a fault while looking up the pi_state. Both
1984 * pthread_cond_signal() and pthread_cond_broadcast() should
1985 * use nr_wake=1.
1986 */
1987 if (nr_wake != 1)
1988 return -EINVAL;
1989 }
1da177e4 1990
42d35d48 1991retry:
96d4f267 1992 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1993 if (unlikely(ret != 0))
1994 goto out;
9ea71503 1995 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1996 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1997 if (unlikely(ret != 0))
42d35d48 1998 goto out_put_key1;
1da177e4 1999
e9c243a5
TG
2000 /*
2001 * The check above which compares uaddrs is not sufficient for
2002 * shared futexes. We need to compare the keys:
2003 */
2004 if (requeue_pi && match_futex(&key1, &key2)) {
2005 ret = -EINVAL;
2006 goto out_put_keys;
2007 }
2008
e2970f2f
IM
2009 hb1 = hash_futex(&key1);
2010 hb2 = hash_futex(&key2);
1da177e4 2011
e4dc5b7a 2012retry_private:
69cd9eba 2013 hb_waiters_inc(hb2);
8b8f319f 2014 double_lock_hb(hb1, hb2);
1da177e4 2015
e2970f2f
IM
2016 if (likely(cmpval != NULL)) {
2017 u32 curval;
1da177e4 2018
e2970f2f 2019 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2020
2021 if (unlikely(ret)) {
5eb3dc62 2022 double_unlock_hb(hb1, hb2);
69cd9eba 2023 hb_waiters_dec(hb2);
1da177e4 2024
e2970f2f 2025 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2026 if (ret)
2027 goto out_put_keys;
1da177e4 2028
b41277dc 2029 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2030 goto retry_private;
1da177e4 2031
ae791a2d
TG
2032 put_futex_key(&key2);
2033 put_futex_key(&key1);
e4dc5b7a 2034 goto retry;
1da177e4 2035 }
e2970f2f 2036 if (curval != *cmpval) {
1da177e4
LT
2037 ret = -EAGAIN;
2038 goto out_unlock;
2039 }
2040 }
2041
52400ba9 2042 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2043 /*
2044 * Attempt to acquire uaddr2 and wake the top waiter. If we
2045 * intend to requeue waiters, force setting the FUTEX_WAITERS
2046 * bit. We force this here where we are able to easily handle
2047 * faults rather in the requeue loop below.
2048 */
52400ba9 2049 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2050 &key2, &pi_state, nr_requeue);
52400ba9
DH
2051
2052 /*
2053 * At this point the top_waiter has either taken uaddr2 or is
2054 * waiting on it. If the former, then the pi_state will not
2055 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2056 * reference to it. If the lock was taken, ret contains the
2057 * vpid of the top waiter task.
ecb38b78
TG
2058 * If the lock was not taken, we have pi_state and an initial
2059 * refcount on it. In case of an error we have nothing.
52400ba9 2060 */
866293ee 2061 if (ret > 0) {
52400ba9 2062 WARN_ON(pi_state);
89061d3d 2063 drop_count++;
52400ba9 2064 task_count++;
866293ee 2065 /*
ecb38b78
TG
2066 * If we acquired the lock, then the user space value
2067 * of uaddr2 should be vpid. It cannot be changed by
2068 * the top waiter as it is blocked on hb2 lock if it
2069 * tries to do so. If something fiddled with it behind
2070 * our back the pi state lookup might unearth it. So
2071 * we rather use the known value than rereading and
2072 * handing potential crap to lookup_pi_state.
2073 *
2074 * If that call succeeds then we have pi_state and an
2075 * initial refcount on it.
866293ee 2076 */
734009e9 2077 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2078 }
2079
2080 switch (ret) {
2081 case 0:
ecb38b78 2082 /* We hold a reference on the pi state. */
52400ba9 2083 break;
4959f2de
TG
2084
2085 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2086 case -EFAULT:
2087 double_unlock_hb(hb1, hb2);
69cd9eba 2088 hb_waiters_dec(hb2);
ae791a2d
TG
2089 put_futex_key(&key2);
2090 put_futex_key(&key1);
d0725992 2091 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2092 if (!ret)
2093 goto retry;
2094 goto out;
2095 case -EAGAIN:
af54d6a1
TG
2096 /*
2097 * Two reasons for this:
2098 * - Owner is exiting and we just wait for the
2099 * exit to complete.
2100 * - The user space value changed.
2101 */
52400ba9 2102 double_unlock_hb(hb1, hb2);
69cd9eba 2103 hb_waiters_dec(hb2);
ae791a2d
TG
2104 put_futex_key(&key2);
2105 put_futex_key(&key1);
52400ba9
DH
2106 cond_resched();
2107 goto retry;
2108 default:
2109 goto out_unlock;
2110 }
2111 }
2112
0d00c7b2 2113 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2114 if (task_count - nr_wake >= nr_requeue)
2115 break;
2116
2117 if (!match_futex(&this->key, &key1))
1da177e4 2118 continue;
52400ba9 2119
392741e0
DH
2120 /*
2121 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2122 * be paired with each other and no other futex ops.
aa10990e
DH
2123 *
2124 * We should never be requeueing a futex_q with a pi_state,
2125 * which is awaiting a futex_unlock_pi().
392741e0
DH
2126 */
2127 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2128 (!requeue_pi && this->rt_waiter) ||
2129 this->pi_state) {
392741e0
DH
2130 ret = -EINVAL;
2131 break;
2132 }
52400ba9
DH
2133
2134 /*
2135 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2136 * lock, we already woke the top_waiter. If not, it will be
2137 * woken by futex_unlock_pi().
2138 */
2139 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2140 mark_wake_futex(&wake_q, this);
52400ba9
DH
2141 continue;
2142 }
1da177e4 2143
84bc4af5
DH
2144 /* Ensure we requeue to the expected futex for requeue_pi. */
2145 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2146 ret = -EINVAL;
2147 break;
2148 }
2149
52400ba9
DH
2150 /*
2151 * Requeue nr_requeue waiters and possibly one more in the case
2152 * of requeue_pi if we couldn't acquire the lock atomically.
2153 */
2154 if (requeue_pi) {
ecb38b78
TG
2155 /*
2156 * Prepare the waiter to take the rt_mutex. Take a
2157 * refcount on the pi_state and store the pointer in
2158 * the futex_q object of the waiter.
2159 */
bf92cf3a 2160 get_pi_state(pi_state);
52400ba9
DH
2161 this->pi_state = pi_state;
2162 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2163 this->rt_waiter,
c051b21f 2164 this->task);
52400ba9 2165 if (ret == 1) {
ecb38b78
TG
2166 /*
2167 * We got the lock. We do neither drop the
2168 * refcount on pi_state nor clear
2169 * this->pi_state because the waiter needs the
2170 * pi_state for cleaning up the user space
2171 * value. It will drop the refcount after
2172 * doing so.
2173 */
beda2c7e 2174 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2175 drop_count++;
52400ba9
DH
2176 continue;
2177 } else if (ret) {
ecb38b78
TG
2178 /*
2179 * rt_mutex_start_proxy_lock() detected a
2180 * potential deadlock when we tried to queue
2181 * that waiter. Drop the pi_state reference
2182 * which we took above and remove the pointer
2183 * to the state from the waiters futex_q
2184 * object.
2185 */
52400ba9 2186 this->pi_state = NULL;
29e9ee5d 2187 put_pi_state(pi_state);
885c2cb7
TG
2188 /*
2189 * We stop queueing more waiters and let user
2190 * space deal with the mess.
2191 */
2192 break;
52400ba9 2193 }
1da177e4 2194 }
52400ba9
DH
2195 requeue_futex(this, hb1, hb2, &key2);
2196 drop_count++;
1da177e4
LT
2197 }
2198
ecb38b78
TG
2199 /*
2200 * We took an extra initial reference to the pi_state either
2201 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2202 * need to drop it here again.
2203 */
29e9ee5d 2204 put_pi_state(pi_state);
885c2cb7
TG
2205
2206out_unlock:
5eb3dc62 2207 double_unlock_hb(hb1, hb2);
1d0dcb3a 2208 wake_up_q(&wake_q);
69cd9eba 2209 hb_waiters_dec(hb2);
1da177e4 2210
cd84a42f
DH
2211 /*
2212 * drop_futex_key_refs() must be called outside the spinlocks. During
2213 * the requeue we moved futex_q's from the hash bucket at key1 to the
2214 * one at key2 and updated their key pointer. We no longer need to
2215 * hold the references to key1.
2216 */
1da177e4 2217 while (--drop_count >= 0)
9adef58b 2218 drop_futex_key_refs(&key1);
1da177e4 2219
42d35d48 2220out_put_keys:
ae791a2d 2221 put_futex_key(&key2);
42d35d48 2222out_put_key1:
ae791a2d 2223 put_futex_key(&key1);
42d35d48 2224out:
52400ba9 2225 return ret ? ret : task_count;
1da177e4
LT
2226}
2227
2228/* The key must be already stored in q->key. */
82af7aca 2229static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2230 __acquires(&hb->lock)
1da177e4 2231{
e2970f2f 2232 struct futex_hash_bucket *hb;
1da177e4 2233
e2970f2f 2234 hb = hash_futex(&q->key);
11d4616b
LT
2235
2236 /*
2237 * Increment the counter before taking the lock so that
2238 * a potential waker won't miss a to-be-slept task that is
2239 * waiting for the spinlock. This is safe as all queue_lock()
2240 * users end up calling queue_me(). Similarly, for housekeeping,
2241 * decrement the counter at queue_unlock() when some error has
2242 * occurred and we don't end up adding the task to the list.
2243 */
6f568ebe 2244 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2245
e2970f2f 2246 q->lock_ptr = &hb->lock;
1da177e4 2247
6f568ebe 2248 spin_lock(&hb->lock);
e2970f2f 2249 return hb;
1da177e4
LT
2250}
2251
d40d65c8 2252static inline void
0d00c7b2 2253queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2254 __releases(&hb->lock)
d40d65c8
DH
2255{
2256 spin_unlock(&hb->lock);
11d4616b 2257 hb_waiters_dec(hb);
d40d65c8
DH
2258}
2259
cfafcd11 2260static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2261{
ec92d082
PP
2262 int prio;
2263
2264 /*
2265 * The priority used to register this element is
2266 * - either the real thread-priority for the real-time threads
2267 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2268 * - or MAX_RT_PRIO for non-RT threads.
2269 * Thus, all RT-threads are woken first in priority order, and
2270 * the others are woken last, in FIFO order.
2271 */
2272 prio = min(current->normal_prio, MAX_RT_PRIO);
2273
2274 plist_node_init(&q->list, prio);
ec92d082 2275 plist_add(&q->list, &hb->chain);
c87e2837 2276 q->task = current;
cfafcd11
PZ
2277}
2278
2279/**
2280 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2281 * @q: The futex_q to enqueue
2282 * @hb: The destination hash bucket
2283 *
2284 * The hb->lock must be held by the caller, and is released here. A call to
2285 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2286 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2287 * or nothing if the unqueue is done as part of the wake process and the unqueue
2288 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2289 * an example).
2290 */
2291static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2292 __releases(&hb->lock)
2293{
2294 __queue_me(q, hb);
e2970f2f 2295 spin_unlock(&hb->lock);
1da177e4
LT
2296}
2297
d40d65c8
DH
2298/**
2299 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2300 * @q: The futex_q to unqueue
2301 *
2302 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2303 * be paired with exactly one earlier call to queue_me().
2304 *
6c23cbbd 2305 * Return:
7b4ff1ad
MCC
2306 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2307 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2308 */
1da177e4
LT
2309static int unqueue_me(struct futex_q *q)
2310{
1da177e4 2311 spinlock_t *lock_ptr;
e2970f2f 2312 int ret = 0;
1da177e4
LT
2313
2314 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2315retry:
29b75eb2
JZ
2316 /*
2317 * q->lock_ptr can change between this read and the following spin_lock.
2318 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2319 * optimizing lock_ptr out of the logic below.
2320 */
2321 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2322 if (lock_ptr != NULL) {
1da177e4
LT
2323 spin_lock(lock_ptr);
2324 /*
2325 * q->lock_ptr can change between reading it and
2326 * spin_lock(), causing us to take the wrong lock. This
2327 * corrects the race condition.
2328 *
2329 * Reasoning goes like this: if we have the wrong lock,
2330 * q->lock_ptr must have changed (maybe several times)
2331 * between reading it and the spin_lock(). It can
2332 * change again after the spin_lock() but only if it was
2333 * already changed before the spin_lock(). It cannot,
2334 * however, change back to the original value. Therefore
2335 * we can detect whether we acquired the correct lock.
2336 */
2337 if (unlikely(lock_ptr != q->lock_ptr)) {
2338 spin_unlock(lock_ptr);
2339 goto retry;
2340 }
2e12978a 2341 __unqueue_futex(q);
c87e2837
IM
2342
2343 BUG_ON(q->pi_state);
2344
1da177e4
LT
2345 spin_unlock(lock_ptr);
2346 ret = 1;
2347 }
2348
9adef58b 2349 drop_futex_key_refs(&q->key);
1da177e4
LT
2350 return ret;
2351}
2352
c87e2837
IM
2353/*
2354 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2355 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2356 * and dropped here.
c87e2837 2357 */
d0aa7a70 2358static void unqueue_me_pi(struct futex_q *q)
15e408cd 2359 __releases(q->lock_ptr)
c87e2837 2360{
2e12978a 2361 __unqueue_futex(q);
c87e2837
IM
2362
2363 BUG_ON(!q->pi_state);
29e9ee5d 2364 put_pi_state(q->pi_state);
c87e2837
IM
2365 q->pi_state = NULL;
2366
d0aa7a70 2367 spin_unlock(q->lock_ptr);
c87e2837
IM
2368}
2369
778e9a9c 2370static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2371 struct task_struct *argowner)
d0aa7a70 2372{
d0aa7a70 2373 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2374 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2375 struct task_struct *oldowner, *newowner;
2376 u32 newtid;
6b4f4bc9 2377 int ret, err = 0;
d0aa7a70 2378
c1e2f0ea
PZ
2379 lockdep_assert_held(q->lock_ptr);
2380
734009e9
PZ
2381 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2382
2383 oldowner = pi_state->owner;
1b7558e4
TG
2384
2385 /*
c1e2f0ea 2386 * We are here because either:
16ffa12d 2387 *
c1e2f0ea
PZ
2388 * - we stole the lock and pi_state->owner needs updating to reflect
2389 * that (@argowner == current),
2390 *
2391 * or:
2392 *
2393 * - someone stole our lock and we need to fix things to point to the
2394 * new owner (@argowner == NULL).
2395 *
2396 * Either way, we have to replace the TID in the user space variable.
8161239a 2397 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2398 *
b2d0994b
DH
2399 * Note: We write the user space value _before_ changing the pi_state
2400 * because we can fault here. Imagine swapped out pages or a fork
2401 * that marked all the anonymous memory readonly for cow.
1b7558e4 2402 *
734009e9
PZ
2403 * Modifying pi_state _before_ the user space value would leave the
2404 * pi_state in an inconsistent state when we fault here, because we
2405 * need to drop the locks to handle the fault. This might be observed
2406 * in the PID check in lookup_pi_state.
1b7558e4
TG
2407 */
2408retry:
c1e2f0ea
PZ
2409 if (!argowner) {
2410 if (oldowner != current) {
2411 /*
2412 * We raced against a concurrent self; things are
2413 * already fixed up. Nothing to do.
2414 */
2415 ret = 0;
2416 goto out_unlock;
2417 }
2418
2419 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2420 /* We got the lock after all, nothing to fix. */
2421 ret = 0;
2422 goto out_unlock;
2423 }
2424
2425 /*
2426 * Since we just failed the trylock; there must be an owner.
2427 */
2428 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2429 BUG_ON(!newowner);
2430 } else {
2431 WARN_ON_ONCE(argowner != current);
2432 if (oldowner == current) {
2433 /*
2434 * We raced against a concurrent self; things are
2435 * already fixed up. Nothing to do.
2436 */
2437 ret = 0;
2438 goto out_unlock;
2439 }
2440 newowner = argowner;
2441 }
2442
2443 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2444 /* Owner died? */
2445 if (!pi_state->owner)
2446 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2447
6b4f4bc9
WD
2448 err = get_futex_value_locked(&uval, uaddr);
2449 if (err)
2450 goto handle_err;
1b7558e4 2451
16ffa12d 2452 for (;;) {
1b7558e4
TG
2453 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2454
6b4f4bc9
WD
2455 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2456 if (err)
2457 goto handle_err;
2458
1b7558e4
TG
2459 if (curval == uval)
2460 break;
2461 uval = curval;
2462 }
2463
2464 /*
2465 * We fixed up user space. Now we need to fix the pi_state
2466 * itself.
2467 */
d0aa7a70 2468 if (pi_state->owner != NULL) {
734009e9 2469 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2470 WARN_ON(list_empty(&pi_state->list));
2471 list_del_init(&pi_state->list);
734009e9 2472 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2473 }
d0aa7a70 2474
cdf71a10 2475 pi_state->owner = newowner;
d0aa7a70 2476
734009e9 2477 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2478 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2479 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2480 raw_spin_unlock(&newowner->pi_lock);
2481 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2482
1b7558e4 2483 return 0;
d0aa7a70 2484
d0aa7a70 2485 /*
6b4f4bc9
WD
2486 * In order to reschedule or handle a page fault, we need to drop the
2487 * locks here. In the case of a fault, this gives the other task
2488 * (either the highest priority waiter itself or the task which stole
2489 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2490 * are back from handling the fault we need to check the pi_state after
2491 * reacquiring the locks and before trying to do another fixup. When
2492 * the fixup has been done already we simply return.
734009e9
PZ
2493 *
2494 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2495 * drop hb->lock since the caller owns the hb -> futex_q relation.
2496 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2497 */
6b4f4bc9 2498handle_err:
734009e9 2499 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2500 spin_unlock(q->lock_ptr);
778e9a9c 2501
6b4f4bc9
WD
2502 switch (err) {
2503 case -EFAULT:
2504 ret = fault_in_user_writeable(uaddr);
2505 break;
2506
2507 case -EAGAIN:
2508 cond_resched();
2509 ret = 0;
2510 break;
2511
2512 default:
2513 WARN_ON_ONCE(1);
2514 ret = err;
2515 break;
2516 }
778e9a9c 2517
1b7558e4 2518 spin_lock(q->lock_ptr);
734009e9 2519 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2520
1b7558e4
TG
2521 /*
2522 * Check if someone else fixed it for us:
2523 */
734009e9
PZ
2524 if (pi_state->owner != oldowner) {
2525 ret = 0;
2526 goto out_unlock;
2527 }
1b7558e4
TG
2528
2529 if (ret)
734009e9 2530 goto out_unlock;
1b7558e4
TG
2531
2532 goto retry;
734009e9
PZ
2533
2534out_unlock:
2535 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2536 return ret;
d0aa7a70
PP
2537}
2538
72c1bbf3 2539static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2540
dd973998
DH
2541/**
2542 * fixup_owner() - Post lock pi_state and corner case management
2543 * @uaddr: user address of the futex
dd973998
DH
2544 * @q: futex_q (contains pi_state and access to the rt_mutex)
2545 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2546 *
2547 * After attempting to lock an rt_mutex, this function is called to cleanup
2548 * the pi_state owner as well as handle race conditions that may allow us to
2549 * acquire the lock. Must be called with the hb lock held.
2550 *
6c23cbbd 2551 * Return:
7b4ff1ad
MCC
2552 * - 1 - success, lock taken;
2553 * - 0 - success, lock not taken;
2554 * - <0 - on error (-EFAULT)
dd973998 2555 */
ae791a2d 2556static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2557{
dd973998
DH
2558 int ret = 0;
2559
2560 if (locked) {
2561 /*
2562 * Got the lock. We might not be the anticipated owner if we
2563 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2564 *
c1e2f0ea
PZ
2565 * Speculative pi_state->owner read (we don't hold wait_lock);
2566 * since we own the lock pi_state->owner == current is the
2567 * stable state, anything else needs more attention.
dd973998
DH
2568 */
2569 if (q->pi_state->owner != current)
ae791a2d 2570 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2571 goto out;
2572 }
2573
c1e2f0ea
PZ
2574 /*
2575 * If we didn't get the lock; check if anybody stole it from us. In
2576 * that case, we need to fix up the uval to point to them instead of
2577 * us, otherwise bad things happen. [10]
2578 *
2579 * Another speculative read; pi_state->owner == current is unstable
2580 * but needs our attention.
2581 */
2582 if (q->pi_state->owner == current) {
2583 ret = fixup_pi_state_owner(uaddr, q, NULL);
2584 goto out;
2585 }
2586
dd973998
DH
2587 /*
2588 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2589 * the owner of the rt_mutex.
dd973998 2590 */
73d786bd 2591 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2592 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2593 "pi-state %p\n", ret,
2594 q->pi_state->pi_mutex.owner,
2595 q->pi_state->owner);
73d786bd 2596 }
dd973998
DH
2597
2598out:
2599 return ret ? ret : locked;
2600}
2601
ca5f9524
DH
2602/**
2603 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2604 * @hb: the futex hash bucket, must be locked by the caller
2605 * @q: the futex_q to queue up on
2606 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2607 */
2608static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2609 struct hrtimer_sleeper *timeout)
ca5f9524 2610{
9beba3c5
DH
2611 /*
2612 * The task state is guaranteed to be set before another task can
b92b8b35 2613 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2614 * queue_me() calls spin_unlock() upon completion, both serializing
2615 * access to the hash list and forcing another memory barrier.
2616 */
f1a11e05 2617 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2618 queue_me(q, hb);
ca5f9524
DH
2619
2620 /* Arm the timer */
2e4b0d3f 2621 if (timeout)
9dd8813e 2622 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2623
2624 /*
0729e196
DH
2625 * If we have been removed from the hash list, then another task
2626 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2627 */
2628 if (likely(!plist_node_empty(&q->list))) {
2629 /*
2630 * If the timer has already expired, current will already be
2631 * flagged for rescheduling. Only call schedule if there
2632 * is no timeout, or if it has yet to expire.
2633 */
2634 if (!timeout || timeout->task)
88c8004f 2635 freezable_schedule();
ca5f9524
DH
2636 }
2637 __set_current_state(TASK_RUNNING);
2638}
2639
f801073f
DH
2640/**
2641 * futex_wait_setup() - Prepare to wait on a futex
2642 * @uaddr: the futex userspace address
2643 * @val: the expected value
b41277dc 2644 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2645 * @q: the associated futex_q
2646 * @hb: storage for hash_bucket pointer to be returned to caller
2647 *
2648 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2649 * compare it with the expected value. Handle atomic faults internally.
2650 * Return with the hb lock held and a q.key reference on success, and unlocked
2651 * with no q.key reference on failure.
2652 *
6c23cbbd 2653 * Return:
7b4ff1ad
MCC
2654 * - 0 - uaddr contains val and hb has been locked;
2655 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2656 */
b41277dc 2657static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2658 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2659{
e2970f2f
IM
2660 u32 uval;
2661 int ret;
1da177e4 2662
1da177e4 2663 /*
b2d0994b 2664 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2665 * Order is important:
2666 *
2667 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2668 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2669 *
2670 * The basic logical guarantee of a futex is that it blocks ONLY
2671 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2672 * any cond. If we locked the hash-bucket after testing *uaddr, that
2673 * would open a race condition where we could block indefinitely with
1da177e4
LT
2674 * cond(var) false, which would violate the guarantee.
2675 *
8fe8f545
ML
2676 * On the other hand, we insert q and release the hash-bucket only
2677 * after testing *uaddr. This guarantees that futex_wait() will NOT
2678 * absorb a wakeup if *uaddr does not match the desired values
2679 * while the syscall executes.
1da177e4 2680 */
f801073f 2681retry:
96d4f267 2682 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2683 if (unlikely(ret != 0))
a5a2a0c7 2684 return ret;
f801073f
DH
2685
2686retry_private:
2687 *hb = queue_lock(q);
2688
e2970f2f 2689 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2690
f801073f 2691 if (ret) {
0d00c7b2 2692 queue_unlock(*hb);
1da177e4 2693
e2970f2f 2694 ret = get_user(uval, uaddr);
e4dc5b7a 2695 if (ret)
f801073f 2696 goto out;
1da177e4 2697
b41277dc 2698 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2699 goto retry_private;
2700
ae791a2d 2701 put_futex_key(&q->key);
e4dc5b7a 2702 goto retry;
1da177e4 2703 }
ca5f9524 2704
f801073f 2705 if (uval != val) {
0d00c7b2 2706 queue_unlock(*hb);
f801073f 2707 ret = -EWOULDBLOCK;
2fff78c7 2708 }
1da177e4 2709
f801073f
DH
2710out:
2711 if (ret)
ae791a2d 2712 put_futex_key(&q->key);
f801073f
DH
2713 return ret;
2714}
2715
b41277dc
DH
2716static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2717 ktime_t *abs_time, u32 bitset)
f801073f 2718{
5ca584d9 2719 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2720 struct restart_block *restart;
2721 struct futex_hash_bucket *hb;
5bdb05f9 2722 struct futex_q q = futex_q_init;
f801073f
DH
2723 int ret;
2724
2725 if (!bitset)
2726 return -EINVAL;
f801073f
DH
2727 q.bitset = bitset;
2728
5ca584d9
WL
2729 to = futex_setup_timer(abs_time, &timeout, flags,
2730 current->timer_slack_ns);
d58e6576 2731retry:
7ada876a
DH
2732 /*
2733 * Prepare to wait on uaddr. On success, holds hb lock and increments
2734 * q.key refs.
2735 */
b41277dc 2736 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2737 if (ret)
2738 goto out;
2739
ca5f9524 2740 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2741 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2742
2743 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2744 ret = 0;
7ada876a 2745 /* unqueue_me() drops q.key ref */
1da177e4 2746 if (!unqueue_me(&q))
7ada876a 2747 goto out;
2fff78c7 2748 ret = -ETIMEDOUT;
ca5f9524 2749 if (to && !to->task)
7ada876a 2750 goto out;
72c1bbf3 2751
e2970f2f 2752 /*
d58e6576
TG
2753 * We expect signal_pending(current), but we might be the
2754 * victim of a spurious wakeup as well.
e2970f2f 2755 */
7ada876a 2756 if (!signal_pending(current))
d58e6576 2757 goto retry;
d58e6576 2758
2fff78c7 2759 ret = -ERESTARTSYS;
c19384b5 2760 if (!abs_time)
7ada876a 2761 goto out;
1da177e4 2762
f56141e3 2763 restart = &current->restart_block;
2fff78c7 2764 restart->fn = futex_wait_restart;
a3c74c52 2765 restart->futex.uaddr = uaddr;
2fff78c7 2766 restart->futex.val = val;
2456e855 2767 restart->futex.time = *abs_time;
2fff78c7 2768 restart->futex.bitset = bitset;
0cd9c649 2769 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2770
2fff78c7
PZ
2771 ret = -ERESTART_RESTARTBLOCK;
2772
42d35d48 2773out:
ca5f9524
DH
2774 if (to) {
2775 hrtimer_cancel(&to->timer);
2776 destroy_hrtimer_on_stack(&to->timer);
2777 }
c87e2837
IM
2778 return ret;
2779}
2780
72c1bbf3
NP
2781
2782static long futex_wait_restart(struct restart_block *restart)
2783{
a3c74c52 2784 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2785 ktime_t t, *tp = NULL;
72c1bbf3 2786
a72188d8 2787 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2788 t = restart->futex.time;
a72188d8
DH
2789 tp = &t;
2790 }
72c1bbf3 2791 restart->fn = do_no_restart_syscall;
b41277dc
DH
2792
2793 return (long)futex_wait(uaddr, restart->futex.flags,
2794 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2795}
2796
2797
c87e2837
IM
2798/*
2799 * Userspace tried a 0 -> TID atomic transition of the futex value
2800 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2801 * if there are waiters then it will block as a consequence of relying
2802 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2803 * a 0 value of the futex too.).
2804 *
2805 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2806 */
996636dd 2807static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2808 ktime_t *time, int trylock)
c87e2837 2809{
5ca584d9 2810 struct hrtimer_sleeper timeout, *to;
16ffa12d 2811 struct futex_pi_state *pi_state = NULL;
cfafcd11 2812 struct rt_mutex_waiter rt_waiter;
c87e2837 2813 struct futex_hash_bucket *hb;
5bdb05f9 2814 struct futex_q q = futex_q_init;
dd973998 2815 int res, ret;
c87e2837 2816
bc2eecd7
NP
2817 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2818 return -ENOSYS;
2819
c87e2837
IM
2820 if (refill_pi_state_cache())
2821 return -ENOMEM;
2822
5ca584d9 2823 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2824
42d35d48 2825retry:
96d4f267 2826 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2827 if (unlikely(ret != 0))
42d35d48 2828 goto out;
c87e2837 2829
e4dc5b7a 2830retry_private:
82af7aca 2831 hb = queue_lock(&q);
c87e2837 2832
bab5bc9e 2833 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2834 if (unlikely(ret)) {
767f509c
DB
2835 /*
2836 * Atomic work succeeded and we got the lock,
2837 * or failed. Either way, we do _not_ block.
2838 */
778e9a9c 2839 switch (ret) {
1a52084d
DH
2840 case 1:
2841 /* We got the lock. */
2842 ret = 0;
2843 goto out_unlock_put_key;
2844 case -EFAULT:
2845 goto uaddr_faulted;
778e9a9c
AK
2846 case -EAGAIN:
2847 /*
af54d6a1
TG
2848 * Two reasons for this:
2849 * - Task is exiting and we just wait for the
2850 * exit to complete.
2851 * - The user space value changed.
778e9a9c 2852 */
0d00c7b2 2853 queue_unlock(hb);
ae791a2d 2854 put_futex_key(&q.key);
778e9a9c
AK
2855 cond_resched();
2856 goto retry;
778e9a9c 2857 default:
42d35d48 2858 goto out_unlock_put_key;
c87e2837 2859 }
c87e2837
IM
2860 }
2861
cfafcd11
PZ
2862 WARN_ON(!q.pi_state);
2863
c87e2837
IM
2864 /*
2865 * Only actually queue now that the atomic ops are done:
2866 */
cfafcd11 2867 __queue_me(&q, hb);
c87e2837 2868
cfafcd11 2869 if (trylock) {
5293c2ef 2870 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2871 /* Fixup the trylock return value: */
2872 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2873 goto no_block;
c87e2837
IM
2874 }
2875
56222b21
PZ
2876 rt_mutex_init_waiter(&rt_waiter);
2877
cfafcd11 2878 /*
56222b21
PZ
2879 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2880 * hold it while doing rt_mutex_start_proxy(), because then it will
2881 * include hb->lock in the blocking chain, even through we'll not in
2882 * fact hold it while blocking. This will lead it to report -EDEADLK
2883 * and BUG when futex_unlock_pi() interleaves with this.
2884 *
2885 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2886 * latter before calling __rt_mutex_start_proxy_lock(). This
2887 * interleaves with futex_unlock_pi() -- which does a similar lock
2888 * handoff -- such that the latter can observe the futex_q::pi_state
2889 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2890 */
56222b21
PZ
2891 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2892 spin_unlock(q.lock_ptr);
1a1fb985
TG
2893 /*
2894 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2895 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2896 * it sees the futex_q::pi_state.
2897 */
56222b21
PZ
2898 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2899 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2900
cfafcd11
PZ
2901 if (ret) {
2902 if (ret == 1)
2903 ret = 0;
1a1fb985 2904 goto cleanup;
cfafcd11
PZ
2905 }
2906
cfafcd11 2907 if (unlikely(to))
9dd8813e 2908 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2909
2910 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2911
1a1fb985 2912cleanup:
a99e4e41 2913 spin_lock(q.lock_ptr);
cfafcd11 2914 /*
1a1fb985 2915 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2916 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2917 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2918 * lists consistent.
56222b21
PZ
2919 *
2920 * In particular; it is important that futex_unlock_pi() can not
2921 * observe this inconsistency.
cfafcd11
PZ
2922 */
2923 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2924 ret = 0;
2925
2926no_block:
dd973998
DH
2927 /*
2928 * Fixup the pi_state owner and possibly acquire the lock if we
2929 * haven't already.
2930 */
ae791a2d 2931 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2932 /*
2933 * If fixup_owner() returned an error, proprogate that. If it acquired
2934 * the lock, clear our -ETIMEDOUT or -EINTR.
2935 */
2936 if (res)
2937 ret = (res < 0) ? res : 0;
c87e2837 2938
e8f6386c 2939 /*
dd973998
DH
2940 * If fixup_owner() faulted and was unable to handle the fault, unlock
2941 * it and return the fault to userspace.
e8f6386c 2942 */
16ffa12d
PZ
2943 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2944 pi_state = q.pi_state;
2945 get_pi_state(pi_state);
2946 }
e8f6386c 2947
778e9a9c
AK
2948 /* Unqueue and drop the lock */
2949 unqueue_me_pi(&q);
c87e2837 2950
16ffa12d
PZ
2951 if (pi_state) {
2952 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2953 put_pi_state(pi_state);
2954 }
2955
5ecb01cf 2956 goto out_put_key;
c87e2837 2957
42d35d48 2958out_unlock_put_key:
0d00c7b2 2959 queue_unlock(hb);
c87e2837 2960
42d35d48 2961out_put_key:
ae791a2d 2962 put_futex_key(&q.key);
42d35d48 2963out:
97181f9b
TG
2964 if (to) {
2965 hrtimer_cancel(&to->timer);
237fc6e7 2966 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2967 }
dd973998 2968 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2969
42d35d48 2970uaddr_faulted:
0d00c7b2 2971 queue_unlock(hb);
778e9a9c 2972
d0725992 2973 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2974 if (ret)
2975 goto out_put_key;
c87e2837 2976
b41277dc 2977 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2978 goto retry_private;
2979
ae791a2d 2980 put_futex_key(&q.key);
e4dc5b7a 2981 goto retry;
c87e2837
IM
2982}
2983
c87e2837
IM
2984/*
2985 * Userspace attempted a TID -> 0 atomic transition, and failed.
2986 * This is the in-kernel slowpath: we look up the PI state (if any),
2987 * and do the rt-mutex unlock.
2988 */
b41277dc 2989static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2990{
ccf9e6a8 2991 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2992 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2993 struct futex_hash_bucket *hb;
499f5aca 2994 struct futex_q *top_waiter;
e4dc5b7a 2995 int ret;
c87e2837 2996
bc2eecd7
NP
2997 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2998 return -ENOSYS;
2999
c87e2837
IM
3000retry:
3001 if (get_user(uval, uaddr))
3002 return -EFAULT;
3003 /*
3004 * We release only a lock we actually own:
3005 */
c0c9ed15 3006 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 3007 return -EPERM;
c87e2837 3008
96d4f267 3009 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
3010 if (ret)
3011 return ret;
c87e2837
IM
3012
3013 hb = hash_futex(&key);
3014 spin_lock(&hb->lock);
3015
c87e2837 3016 /*
ccf9e6a8
TG
3017 * Check waiters first. We do not trust user space values at
3018 * all and we at least want to know if user space fiddled
3019 * with the futex value instead of blindly unlocking.
c87e2837 3020 */
499f5aca
PZ
3021 top_waiter = futex_top_waiter(hb, &key);
3022 if (top_waiter) {
16ffa12d
PZ
3023 struct futex_pi_state *pi_state = top_waiter->pi_state;
3024
3025 ret = -EINVAL;
3026 if (!pi_state)
3027 goto out_unlock;
3028
3029 /*
3030 * If current does not own the pi_state then the futex is
3031 * inconsistent and user space fiddled with the futex value.
3032 */
3033 if (pi_state->owner != current)
3034 goto out_unlock;
3035
bebe5b51 3036 get_pi_state(pi_state);
802ab58d 3037 /*
bebe5b51
PZ
3038 * By taking wait_lock while still holding hb->lock, we ensure
3039 * there is no point where we hold neither; and therefore
3040 * wake_futex_pi() must observe a state consistent with what we
3041 * observed.
1a1fb985
TG
3042 *
3043 * In particular; this forces __rt_mutex_start_proxy() to
3044 * complete such that we're guaranteed to observe the
3045 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3046 */
bebe5b51 3047 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3048 spin_unlock(&hb->lock);
3049
c74aef2d 3050 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3051 ret = wake_futex_pi(uaddr, uval, pi_state);
3052
3053 put_pi_state(pi_state);
3054
3055 /*
3056 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3057 */
3058 if (!ret)
3059 goto out_putkey;
c87e2837 3060 /*
ccf9e6a8
TG
3061 * The atomic access to the futex value generated a
3062 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3063 */
3064 if (ret == -EFAULT)
3065 goto pi_faulted;
89e9e66b
SAS
3066 /*
3067 * A unconditional UNLOCK_PI op raced against a waiter
3068 * setting the FUTEX_WAITERS bit. Try again.
3069 */
6b4f4bc9
WD
3070 if (ret == -EAGAIN)
3071 goto pi_retry;
802ab58d
SAS
3072 /*
3073 * wake_futex_pi has detected invalid state. Tell user
3074 * space.
3075 */
16ffa12d 3076 goto out_putkey;
c87e2837 3077 }
ccf9e6a8 3078
c87e2837 3079 /*
ccf9e6a8
TG
3080 * We have no kernel internal state, i.e. no waiters in the
3081 * kernel. Waiters which are about to queue themselves are stuck
3082 * on hb->lock. So we can safely ignore them. We do neither
3083 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3084 * owner.
c87e2837 3085 */
6b4f4bc9 3086 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3087 spin_unlock(&hb->lock);
6b4f4bc9
WD
3088 switch (ret) {
3089 case -EFAULT:
3090 goto pi_faulted;
3091
3092 case -EAGAIN:
3093 goto pi_retry;
3094
3095 default:
3096 WARN_ON_ONCE(1);
3097 goto out_putkey;
3098 }
16ffa12d 3099 }
c87e2837 3100
ccf9e6a8
TG
3101 /*
3102 * If uval has changed, let user space handle it.
3103 */
3104 ret = (curval == uval) ? 0 : -EAGAIN;
3105
c87e2837
IM
3106out_unlock:
3107 spin_unlock(&hb->lock);
802ab58d 3108out_putkey:
ae791a2d 3109 put_futex_key(&key);
c87e2837
IM
3110 return ret;
3111
6b4f4bc9
WD
3112pi_retry:
3113 put_futex_key(&key);
3114 cond_resched();
3115 goto retry;
3116
c87e2837 3117pi_faulted:
ae791a2d 3118 put_futex_key(&key);
c87e2837 3119
d0725992 3120 ret = fault_in_user_writeable(uaddr);
b5686363 3121 if (!ret)
c87e2837
IM
3122 goto retry;
3123
1da177e4
LT
3124 return ret;
3125}
3126
52400ba9
DH
3127/**
3128 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3129 * @hb: the hash_bucket futex_q was original enqueued on
3130 * @q: the futex_q woken while waiting to be requeued
3131 * @key2: the futex_key of the requeue target futex
3132 * @timeout: the timeout associated with the wait (NULL if none)
3133 *
3134 * Detect if the task was woken on the initial futex as opposed to the requeue
3135 * target futex. If so, determine if it was a timeout or a signal that caused
3136 * the wakeup and return the appropriate error code to the caller. Must be
3137 * called with the hb lock held.
3138 *
6c23cbbd 3139 * Return:
7b4ff1ad
MCC
3140 * - 0 = no early wakeup detected;
3141 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3142 */
3143static inline
3144int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3145 struct futex_q *q, union futex_key *key2,
3146 struct hrtimer_sleeper *timeout)
3147{
3148 int ret = 0;
3149
3150 /*
3151 * With the hb lock held, we avoid races while we process the wakeup.
3152 * We only need to hold hb (and not hb2) to ensure atomicity as the
3153 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3154 * It can't be requeued from uaddr2 to something else since we don't
3155 * support a PI aware source futex for requeue.
3156 */
3157 if (!match_futex(&q->key, key2)) {
3158 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3159 /*
3160 * We were woken prior to requeue by a timeout or a signal.
3161 * Unqueue the futex_q and determine which it was.
3162 */
2e12978a 3163 plist_del(&q->list, &hb->chain);
11d4616b 3164 hb_waiters_dec(hb);
52400ba9 3165
d58e6576 3166 /* Handle spurious wakeups gracefully */
11df6ddd 3167 ret = -EWOULDBLOCK;
52400ba9
DH
3168 if (timeout && !timeout->task)
3169 ret = -ETIMEDOUT;
d58e6576 3170 else if (signal_pending(current))
1c840c14 3171 ret = -ERESTARTNOINTR;
52400ba9
DH
3172 }
3173 return ret;
3174}
3175
3176/**
3177 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3178 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3179 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3180 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3181 * @val: the expected value of uaddr
3182 * @abs_time: absolute timeout
56ec1607 3183 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3184 * @uaddr2: the pi futex we will take prior to returning to user-space
3185 *
3186 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3187 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3188 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3189 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3190 * without one, the pi logic would not know which task to boost/deboost, if
3191 * there was a need to.
52400ba9
DH
3192 *
3193 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3194 * via the following--
52400ba9 3195 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3196 * 2) wakeup on uaddr2 after a requeue
3197 * 3) signal
3198 * 4) timeout
52400ba9 3199 *
cc6db4e6 3200 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3201 *
3202 * If 2, we may then block on trying to take the rt_mutex and return via:
3203 * 5) successful lock
3204 * 6) signal
3205 * 7) timeout
3206 * 8) other lock acquisition failure
3207 *
cc6db4e6 3208 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3209 *
3210 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3211 *
6c23cbbd 3212 * Return:
7b4ff1ad
MCC
3213 * - 0 - On success;
3214 * - <0 - On error
52400ba9 3215 */
b41277dc 3216static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3217 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3218 u32 __user *uaddr2)
52400ba9 3219{
5ca584d9 3220 struct hrtimer_sleeper timeout, *to;
16ffa12d 3221 struct futex_pi_state *pi_state = NULL;
52400ba9 3222 struct rt_mutex_waiter rt_waiter;
52400ba9 3223 struct futex_hash_bucket *hb;
5bdb05f9
DH
3224 union futex_key key2 = FUTEX_KEY_INIT;
3225 struct futex_q q = futex_q_init;
52400ba9 3226 int res, ret;
52400ba9 3227
bc2eecd7
NP
3228 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3229 return -ENOSYS;
3230
6f7b0a2a
DH
3231 if (uaddr == uaddr2)
3232 return -EINVAL;
3233
52400ba9
DH
3234 if (!bitset)
3235 return -EINVAL;
3236
5ca584d9
WL
3237 to = futex_setup_timer(abs_time, &timeout, flags,
3238 current->timer_slack_ns);
52400ba9
DH
3239
3240 /*
3241 * The waiter is allocated on our stack, manipulated by the requeue
3242 * code while we sleep on uaddr.
3243 */
50809358 3244 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3245
96d4f267 3246 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3247 if (unlikely(ret != 0))
3248 goto out;
3249
84bc4af5
DH
3250 q.bitset = bitset;
3251 q.rt_waiter = &rt_waiter;
3252 q.requeue_pi_key = &key2;
3253
7ada876a
DH
3254 /*
3255 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3256 * count.
3257 */
b41277dc 3258 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3259 if (ret)
3260 goto out_key2;
52400ba9 3261
e9c243a5
TG
3262 /*
3263 * The check above which compares uaddrs is not sufficient for
3264 * shared futexes. We need to compare the keys:
3265 */
3266 if (match_futex(&q.key, &key2)) {
13c42c2f 3267 queue_unlock(hb);
e9c243a5
TG
3268 ret = -EINVAL;
3269 goto out_put_keys;
3270 }
3271
52400ba9 3272 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3273 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3274
3275 spin_lock(&hb->lock);
3276 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3277 spin_unlock(&hb->lock);
3278 if (ret)
3279 goto out_put_keys;
3280
3281 /*
3282 * In order for us to be here, we know our q.key == key2, and since
3283 * we took the hb->lock above, we also know that futex_requeue() has
3284 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3285 * race with the atomic proxy lock acquisition by the requeue code. The
3286 * futex_requeue dropped our key1 reference and incremented our key2
3287 * reference count.
52400ba9
DH
3288 */
3289
3290 /* Check if the requeue code acquired the second futex for us. */
3291 if (!q.rt_waiter) {
3292 /*
3293 * Got the lock. We might not be the anticipated owner if we
3294 * did a lock-steal - fix up the PI-state in that case.
3295 */
3296 if (q.pi_state && (q.pi_state->owner != current)) {
3297 spin_lock(q.lock_ptr);
ae791a2d 3298 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3299 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3300 pi_state = q.pi_state;
3301 get_pi_state(pi_state);
3302 }
fb75a428
TG
3303 /*
3304 * Drop the reference to the pi state which
3305 * the requeue_pi() code acquired for us.
3306 */
29e9ee5d 3307 put_pi_state(q.pi_state);
52400ba9
DH
3308 spin_unlock(q.lock_ptr);
3309 }
3310 } else {
c236c8e9
PZ
3311 struct rt_mutex *pi_mutex;
3312
52400ba9
DH
3313 /*
3314 * We have been woken up by futex_unlock_pi(), a timeout, or a
3315 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3316 * the pi_state.
3317 */
f27071cb 3318 WARN_ON(!q.pi_state);
52400ba9 3319 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3320 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3321
3322 spin_lock(q.lock_ptr);
38d589f2
PZ
3323 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3324 ret = 0;
3325
3326 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3327 /*
3328 * Fixup the pi_state owner and possibly acquire the lock if we
3329 * haven't already.
3330 */
ae791a2d 3331 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3332 /*
3333 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3334 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3335 */
3336 if (res)
3337 ret = (res < 0) ? res : 0;
3338
c236c8e9
PZ
3339 /*
3340 * If fixup_pi_state_owner() faulted and was unable to handle
3341 * the fault, unlock the rt_mutex and return the fault to
3342 * userspace.
3343 */
16ffa12d
PZ
3344 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3345 pi_state = q.pi_state;
3346 get_pi_state(pi_state);
3347 }
c236c8e9 3348
52400ba9
DH
3349 /* Unqueue and drop the lock. */
3350 unqueue_me_pi(&q);
3351 }
3352
16ffa12d
PZ
3353 if (pi_state) {
3354 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3355 put_pi_state(pi_state);
3356 }
3357
c236c8e9 3358 if (ret == -EINTR) {
52400ba9 3359 /*
cc6db4e6
DH
3360 * We've already been requeued, but cannot restart by calling
3361 * futex_lock_pi() directly. We could restart this syscall, but
3362 * it would detect that the user space "val" changed and return
3363 * -EWOULDBLOCK. Save the overhead of the restart and return
3364 * -EWOULDBLOCK directly.
52400ba9 3365 */
2070887f 3366 ret = -EWOULDBLOCK;
52400ba9
DH
3367 }
3368
3369out_put_keys:
ae791a2d 3370 put_futex_key(&q.key);
c8b15a70 3371out_key2:
ae791a2d 3372 put_futex_key(&key2);
52400ba9
DH
3373
3374out:
3375 if (to) {
3376 hrtimer_cancel(&to->timer);
3377 destroy_hrtimer_on_stack(&to->timer);
3378 }
3379 return ret;
3380}
3381
0771dfef
IM
3382/*
3383 * Support for robust futexes: the kernel cleans up held futexes at
3384 * thread exit time.
3385 *
3386 * Implementation: user-space maintains a per-thread list of locks it
3387 * is holding. Upon do_exit(), the kernel carefully walks this list,
3388 * and marks all locks that are owned by this thread with the
c87e2837 3389 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3390 * always manipulated with the lock held, so the list is private and
3391 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3392 * field, to allow the kernel to clean up if the thread dies after
3393 * acquiring the lock, but just before it could have added itself to
3394 * the list. There can only be one such pending lock.
3395 */
3396
3397/**
d96ee56c
DH
3398 * sys_set_robust_list() - Set the robust-futex list head of a task
3399 * @head: pointer to the list-head
3400 * @len: length of the list-head, as userspace expects
0771dfef 3401 */
836f92ad
HC
3402SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3403 size_t, len)
0771dfef 3404{
a0c1e907
TG
3405 if (!futex_cmpxchg_enabled)
3406 return -ENOSYS;
0771dfef
IM
3407 /*
3408 * The kernel knows only one size for now:
3409 */
3410 if (unlikely(len != sizeof(*head)))
3411 return -EINVAL;
3412
3413 current->robust_list = head;
3414
3415 return 0;
3416}
3417
3418/**
d96ee56c
DH
3419 * sys_get_robust_list() - Get the robust-futex list head of a task
3420 * @pid: pid of the process [zero for current task]
3421 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3422 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3423 */
836f92ad
HC
3424SYSCALL_DEFINE3(get_robust_list, int, pid,
3425 struct robust_list_head __user * __user *, head_ptr,
3426 size_t __user *, len_ptr)
0771dfef 3427{
ba46df98 3428 struct robust_list_head __user *head;
0771dfef 3429 unsigned long ret;
bdbb776f 3430 struct task_struct *p;
0771dfef 3431
a0c1e907
TG
3432 if (!futex_cmpxchg_enabled)
3433 return -ENOSYS;
3434
bdbb776f
KC
3435 rcu_read_lock();
3436
3437 ret = -ESRCH;
0771dfef 3438 if (!pid)
bdbb776f 3439 p = current;
0771dfef 3440 else {
228ebcbe 3441 p = find_task_by_vpid(pid);
0771dfef
IM
3442 if (!p)
3443 goto err_unlock;
0771dfef
IM
3444 }
3445
bdbb776f 3446 ret = -EPERM;
caaee623 3447 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3448 goto err_unlock;
3449
3450 head = p->robust_list;
3451 rcu_read_unlock();
3452
0771dfef
IM
3453 if (put_user(sizeof(*head), len_ptr))
3454 return -EFAULT;
3455 return put_user(head, head_ptr);
3456
3457err_unlock:
aaa2a97e 3458 rcu_read_unlock();
0771dfef
IM
3459
3460 return ret;
3461}
3462
ca16d5be
YT
3463/* Constants for the pending_op argument of handle_futex_death */
3464#define HANDLE_DEATH_PENDING true
3465#define HANDLE_DEATH_LIST false
3466
0771dfef
IM
3467/*
3468 * Process a futex-list entry, check whether it's owned by the
3469 * dying task, and do notification if so:
3470 */
ca16d5be
YT
3471static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3472 bool pi, bool pending_op)
0771dfef 3473{
7cfdaf38 3474 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3475 int err;
0771dfef 3476
5a07168d
CJ
3477 /* Futex address must be 32bit aligned */
3478 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3479 return -1;
3480
8f17d3a5
IM
3481retry:
3482 if (get_user(uval, uaddr))
0771dfef
IM
3483 return -1;
3484
ca16d5be
YT
3485 /*
3486 * Special case for regular (non PI) futexes. The unlock path in
3487 * user space has two race scenarios:
3488 *
3489 * 1. The unlock path releases the user space futex value and
3490 * before it can execute the futex() syscall to wake up
3491 * waiters it is killed.
3492 *
3493 * 2. A woken up waiter is killed before it can acquire the
3494 * futex in user space.
3495 *
3496 * In both cases the TID validation below prevents a wakeup of
3497 * potential waiters which can cause these waiters to block
3498 * forever.
3499 *
3500 * In both cases the following conditions are met:
3501 *
3502 * 1) task->robust_list->list_op_pending != NULL
3503 * @pending_op == true
3504 * 2) User space futex value == 0
3505 * 3) Regular futex: @pi == false
3506 *
3507 * If these conditions are met, it is safe to attempt waking up a
3508 * potential waiter without touching the user space futex value and
3509 * trying to set the OWNER_DIED bit. The user space futex value is
3510 * uncontended and the rest of the user space mutex state is
3511 * consistent, so a woken waiter will just take over the
3512 * uncontended futex. Setting the OWNER_DIED bit would create
3513 * inconsistent state and malfunction of the user space owner died
3514 * handling.
3515 */
3516 if (pending_op && !pi && !uval) {
3517 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3518 return 0;
3519 }
3520
6b4f4bc9
WD
3521 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3522 return 0;
3523
3524 /*
3525 * Ok, this dying thread is truly holding a futex
3526 * of interest. Set the OWNER_DIED bit atomically
3527 * via cmpxchg, and if the value had FUTEX_WAITERS
3528 * set, wake up a waiter (if any). (We have to do a
3529 * futex_wake() even if OWNER_DIED is already set -
3530 * to handle the rare but possible case of recursive
3531 * thread-death.) The rest of the cleanup is done in
3532 * userspace.
3533 */
3534 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3535
3536 /*
3537 * We are not holding a lock here, but we want to have
3538 * the pagefault_disable/enable() protection because
3539 * we want to handle the fault gracefully. If the
3540 * access fails we try to fault in the futex with R/W
3541 * verification via get_user_pages. get_user() above
3542 * does not guarantee R/W access. If that fails we
3543 * give up and leave the futex locked.
3544 */
3545 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3546 switch (err) {
3547 case -EFAULT:
6e0aa9f8
TG
3548 if (fault_in_user_writeable(uaddr))
3549 return -1;
3550 goto retry;
6b4f4bc9
WD
3551
3552 case -EAGAIN:
3553 cond_resched();
8f17d3a5 3554 goto retry;
0771dfef 3555
6b4f4bc9
WD
3556 default:
3557 WARN_ON_ONCE(1);
3558 return err;
3559 }
0771dfef 3560 }
6b4f4bc9
WD
3561
3562 if (nval != uval)
3563 goto retry;
3564
3565 /*
3566 * Wake robust non-PI futexes here. The wakeup of
3567 * PI futexes happens in exit_pi_state():
3568 */
3569 if (!pi && (uval & FUTEX_WAITERS))
3570 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3571
0771dfef
IM
3572 return 0;
3573}
3574
e3f2ddea
IM
3575/*
3576 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3577 */
3578static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3579 struct robust_list __user * __user *head,
1dcc41bb 3580 unsigned int *pi)
e3f2ddea
IM
3581{
3582 unsigned long uentry;
3583
ba46df98 3584 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3585 return -EFAULT;
3586
ba46df98 3587 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3588 *pi = uentry & 1;
3589
3590 return 0;
3591}
3592
0771dfef
IM
3593/*
3594 * Walk curr->robust_list (very carefully, it's a userspace list!)
3595 * and mark any locks found there dead, and notify any waiters.
3596 *
3597 * We silently return on any sign of list-walking problem.
3598 */
ba31c1a4 3599static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3600{
3601 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3602 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3603 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3604 unsigned int uninitialized_var(next_pi);
0771dfef 3605 unsigned long futex_offset;
9f96cb1e 3606 int rc;
0771dfef 3607
a0c1e907
TG
3608 if (!futex_cmpxchg_enabled)
3609 return;
3610
0771dfef
IM
3611 /*
3612 * Fetch the list head (which was registered earlier, via
3613 * sys_set_robust_list()):
3614 */
e3f2ddea 3615 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3616 return;
3617 /*
3618 * Fetch the relative futex offset:
3619 */
3620 if (get_user(futex_offset, &head->futex_offset))
3621 return;
3622 /*
3623 * Fetch any possibly pending lock-add first, and handle it
3624 * if it exists:
3625 */
e3f2ddea 3626 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3627 return;
e3f2ddea 3628
9f96cb1e 3629 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3630 while (entry != &head->list) {
9f96cb1e
MS
3631 /*
3632 * Fetch the next entry in the list before calling
3633 * handle_futex_death:
3634 */
3635 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3636 /*
3637 * A pending lock might already be on the list, so
c87e2837 3638 * don't process it twice:
0771dfef 3639 */
ca16d5be 3640 if (entry != pending) {
ba46df98 3641 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3642 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3643 return;
ca16d5be 3644 }
9f96cb1e 3645 if (rc)
0771dfef 3646 return;
9f96cb1e
MS
3647 entry = next_entry;
3648 pi = next_pi;
0771dfef
IM
3649 /*
3650 * Avoid excessively long or circular lists:
3651 */
3652 if (!--limit)
3653 break;
3654
3655 cond_resched();
3656 }
9f96cb1e 3657
ca16d5be 3658 if (pending) {
9f96cb1e 3659 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3660 curr, pip, HANDLE_DEATH_PENDING);
3661 }
0771dfef
IM
3662}
3663
150d7158 3664void futex_exec_release(struct task_struct *tsk)
ba31c1a4
TG
3665{
3666 if (unlikely(tsk->robust_list)) {
3667 exit_robust_list(tsk);
3668 tsk->robust_list = NULL;
3669 }
3670
3671#ifdef CONFIG_COMPAT
3672 if (unlikely(tsk->compat_robust_list)) {
3673 compat_exit_robust_list(tsk);
3674 tsk->compat_robust_list = NULL;
3675 }
3676#endif
3677
3678 if (unlikely(!list_empty(&tsk->pi_state_list)))
3679 exit_pi_state_list(tsk);
3680}
3681
150d7158
TG
3682void futex_exit_release(struct task_struct *tsk)
3683{
3684 futex_exec_release(tsk);
3685}
3686
c19384b5 3687long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3688 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3689{
81b40539 3690 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3691 unsigned int flags = 0;
34f01cc1
ED
3692
3693 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3694 flags |= FLAGS_SHARED;
1da177e4 3695
b41277dc
DH
3696 if (op & FUTEX_CLOCK_REALTIME) {
3697 flags |= FLAGS_CLOCKRT;
337f1304
DH
3698 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3699 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3700 return -ENOSYS;
3701 }
1da177e4 3702
59263b51
TG
3703 switch (cmd) {
3704 case FUTEX_LOCK_PI:
3705 case FUTEX_UNLOCK_PI:
3706 case FUTEX_TRYLOCK_PI:
3707 case FUTEX_WAIT_REQUEUE_PI:
3708 case FUTEX_CMP_REQUEUE_PI:
3709 if (!futex_cmpxchg_enabled)
3710 return -ENOSYS;
3711 }
3712
34f01cc1 3713 switch (cmd) {
1da177e4 3714 case FUTEX_WAIT:
cd689985 3715 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3716 /* fall through */
cd689985 3717 case FUTEX_WAIT_BITSET:
81b40539 3718 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3719 case FUTEX_WAKE:
cd689985 3720 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3721 /* fall through */
cd689985 3722 case FUTEX_WAKE_BITSET:
81b40539 3723 return futex_wake(uaddr, flags, val, val3);
1da177e4 3724 case FUTEX_REQUEUE:
81b40539 3725 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3726 case FUTEX_CMP_REQUEUE:
81b40539 3727 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3728 case FUTEX_WAKE_OP:
81b40539 3729 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3730 case FUTEX_LOCK_PI:
996636dd 3731 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3732 case FUTEX_UNLOCK_PI:
81b40539 3733 return futex_unlock_pi(uaddr, flags);
c87e2837 3734 case FUTEX_TRYLOCK_PI:
996636dd 3735 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3736 case FUTEX_WAIT_REQUEUE_PI:
3737 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3738 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3739 uaddr2);
52400ba9 3740 case FUTEX_CMP_REQUEUE_PI:
81b40539 3741 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3742 }
81b40539 3743 return -ENOSYS;
1da177e4
LT
3744}
3745
3746
17da2bd9 3747SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3748 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3749 u32, val3)
1da177e4 3750{
bec2f7cb 3751 struct timespec64 ts;
c19384b5 3752 ktime_t t, *tp = NULL;
e2970f2f 3753 u32 val2 = 0;
34f01cc1 3754 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3755
cd689985 3756 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3757 cmd == FUTEX_WAIT_BITSET ||
3758 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3759 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3760 return -EFAULT;
bec2f7cb 3761 if (get_timespec64(&ts, utime))
1da177e4 3762 return -EFAULT;
bec2f7cb 3763 if (!timespec64_valid(&ts))
9741ef96 3764 return -EINVAL;
c19384b5 3765
bec2f7cb 3766 t = timespec64_to_ktime(ts);
34f01cc1 3767 if (cmd == FUTEX_WAIT)
5a7780e7 3768 t = ktime_add_safe(ktime_get(), t);
c19384b5 3769 tp = &t;
1da177e4
LT
3770 }
3771 /*
52400ba9 3772 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3773 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3774 */
f54f0986 3775 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3776 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3777 val2 = (u32) (unsigned long) utime;
1da177e4 3778
c19384b5 3779 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3780}
3781
04e7712f
AB
3782#ifdef CONFIG_COMPAT
3783/*
3784 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3785 */
3786static inline int
3787compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3788 compat_uptr_t __user *head, unsigned int *pi)
3789{
3790 if (get_user(*uentry, head))
3791 return -EFAULT;
3792
3793 *entry = compat_ptr((*uentry) & ~1);
3794 *pi = (unsigned int)(*uentry) & 1;
3795
3796 return 0;
3797}
3798
3799static void __user *futex_uaddr(struct robust_list __user *entry,
3800 compat_long_t futex_offset)
3801{
3802 compat_uptr_t base = ptr_to_compat(entry);
3803 void __user *uaddr = compat_ptr(base + futex_offset);
3804
3805 return uaddr;
3806}
3807
3808/*
3809 * Walk curr->robust_list (very carefully, it's a userspace list!)
3810 * and mark any locks found there dead, and notify any waiters.
3811 *
3812 * We silently return on any sign of list-walking problem.
3813 */
ba31c1a4 3814static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3815{
3816 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3817 struct robust_list __user *entry, *next_entry, *pending;
3818 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3819 unsigned int uninitialized_var(next_pi);
3820 compat_uptr_t uentry, next_uentry, upending;
3821 compat_long_t futex_offset;
3822 int rc;
3823
3824 if (!futex_cmpxchg_enabled)
3825 return;
3826
3827 /*
3828 * Fetch the list head (which was registered earlier, via
3829 * sys_set_robust_list()):
3830 */
3831 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3832 return;
3833 /*
3834 * Fetch the relative futex offset:
3835 */
3836 if (get_user(futex_offset, &head->futex_offset))
3837 return;
3838 /*
3839 * Fetch any possibly pending lock-add first, and handle it
3840 * if it exists:
3841 */
3842 if (compat_fetch_robust_entry(&upending, &pending,
3843 &head->list_op_pending, &pip))
3844 return;
3845
3846 next_entry = NULL; /* avoid warning with gcc */
3847 while (entry != (struct robust_list __user *) &head->list) {
3848 /*
3849 * Fetch the next entry in the list before calling
3850 * handle_futex_death:
3851 */
3852 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3853 (compat_uptr_t __user *)&entry->next, &next_pi);
3854 /*
3855 * A pending lock might already be on the list, so
3856 * dont process it twice:
3857 */
3858 if (entry != pending) {
3859 void __user *uaddr = futex_uaddr(entry, futex_offset);
3860
ca16d5be
YT
3861 if (handle_futex_death(uaddr, curr, pi,
3862 HANDLE_DEATH_LIST))
04e7712f
AB
3863 return;
3864 }
3865 if (rc)
3866 return;
3867 uentry = next_uentry;
3868 entry = next_entry;
3869 pi = next_pi;
3870 /*
3871 * Avoid excessively long or circular lists:
3872 */
3873 if (!--limit)
3874 break;
3875
3876 cond_resched();
3877 }
3878 if (pending) {
3879 void __user *uaddr = futex_uaddr(pending, futex_offset);
3880
ca16d5be 3881 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3882 }
3883}
3884
3885COMPAT_SYSCALL_DEFINE2(set_robust_list,
3886 struct compat_robust_list_head __user *, head,
3887 compat_size_t, len)
3888{
3889 if (!futex_cmpxchg_enabled)
3890 return -ENOSYS;
3891
3892 if (unlikely(len != sizeof(*head)))
3893 return -EINVAL;
3894
3895 current->compat_robust_list = head;
3896
3897 return 0;
3898}
3899
3900COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3901 compat_uptr_t __user *, head_ptr,
3902 compat_size_t __user *, len_ptr)
3903{
3904 struct compat_robust_list_head __user *head;
3905 unsigned long ret;
3906 struct task_struct *p;
3907
3908 if (!futex_cmpxchg_enabled)
3909 return -ENOSYS;
3910
3911 rcu_read_lock();
3912
3913 ret = -ESRCH;
3914 if (!pid)
3915 p = current;
3916 else {
3917 p = find_task_by_vpid(pid);
3918 if (!p)
3919 goto err_unlock;
3920 }
3921
3922 ret = -EPERM;
3923 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3924 goto err_unlock;
3925
3926 head = p->compat_robust_list;
3927 rcu_read_unlock();
3928
3929 if (put_user(sizeof(*head), len_ptr))
3930 return -EFAULT;
3931 return put_user(ptr_to_compat(head), head_ptr);
3932
3933err_unlock:
3934 rcu_read_unlock();
3935
3936 return ret;
3937}
bec2f7cb 3938#endif /* CONFIG_COMPAT */
04e7712f 3939
bec2f7cb 3940#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3941SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3942 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3943 u32, val3)
3944{
bec2f7cb 3945 struct timespec64 ts;
04e7712f
AB
3946 ktime_t t, *tp = NULL;
3947 int val2 = 0;
3948 int cmd = op & FUTEX_CMD_MASK;
3949
3950 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3951 cmd == FUTEX_WAIT_BITSET ||
3952 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3953 if (get_old_timespec32(&ts, utime))
04e7712f 3954 return -EFAULT;
bec2f7cb 3955 if (!timespec64_valid(&ts))
04e7712f
AB
3956 return -EINVAL;
3957
bec2f7cb 3958 t = timespec64_to_ktime(ts);
04e7712f
AB
3959 if (cmd == FUTEX_WAIT)
3960 t = ktime_add_safe(ktime_get(), t);
3961 tp = &t;
3962 }
3963 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3964 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3965 val2 = (int) (unsigned long) utime;
3966
3967 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3968}
bec2f7cb 3969#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3970
03b8c7b6 3971static void __init futex_detect_cmpxchg(void)
1da177e4 3972{
03b8c7b6 3973#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3974 u32 curval;
03b8c7b6
HC
3975
3976 /*
3977 * This will fail and we want it. Some arch implementations do
3978 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3979 * functionality. We want to know that before we call in any
3980 * of the complex code paths. Also we want to prevent
3981 * registration of robust lists in that case. NULL is
3982 * guaranteed to fault and we get -EFAULT on functional
3983 * implementation, the non-functional ones will return
3984 * -ENOSYS.
3985 */
3986 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3987 futex_cmpxchg_enabled = 1;
3988#endif
3989}
3990
3991static int __init futex_init(void)
3992{
63b1a816 3993 unsigned int futex_shift;
a52b89eb
DB
3994 unsigned long i;
3995
3996#if CONFIG_BASE_SMALL
3997 futex_hashsize = 16;
3998#else
3999 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4000#endif
4001
4002 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4003 futex_hashsize, 0,
4004 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4005 &futex_shift, NULL,
4006 futex_hashsize, futex_hashsize);
4007 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4008
4009 futex_detect_cmpxchg();
a0c1e907 4010
a52b89eb 4011 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4012 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4013 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4014 spin_lock_init(&futex_queues[i].lock);
4015 }
4016
1da177e4
LT
4017 return 0;
4018}
25f71d1c 4019core_initcall(futex_init);