]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/futex.c
Merge tag 'v3.13-rc8' into core/locking
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
b488893a 66
4732efbe 67#include <asm/futex.h>
1da177e4 68
1696a8be 69#include "locking/rtmutex_common.h"
c87e2837 70
a0c1e907
TG
71int __read_mostly futex_cmpxchg_enabled;
72
1da177e4
LT
73#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
74
b41277dc
DH
75/*
76 * Futex flags used to encode options to functions and preserve them across
77 * restarts.
78 */
79#define FLAGS_SHARED 0x01
80#define FLAGS_CLOCKRT 0x02
81#define FLAGS_HAS_TIMEOUT 0x04
82
c87e2837
IM
83/*
84 * Priority Inheritance state:
85 */
86struct futex_pi_state {
87 /*
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
90 */
91 struct list_head list;
92
93 /*
94 * The PI object:
95 */
96 struct rt_mutex pi_mutex;
97
98 struct task_struct *owner;
99 atomic_t refcount;
100
101 union futex_key key;
102};
103
d8d88fbb
DH
104/**
105 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 106 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
107 * @task: the task waiting on the futex
108 * @lock_ptr: the hash bucket lock
109 * @key: the key the futex is hashed on
110 * @pi_state: optional priority inheritance state
111 * @rt_waiter: rt_waiter storage for use with requeue_pi
112 * @requeue_pi_key: the requeue_pi target futex key
113 * @bitset: bitset for the optional bitmasked wakeup
114 *
115 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
116 * we can wake only the relevant ones (hashed queues may be shared).
117 *
118 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 119 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 120 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
121 * the second.
122 *
123 * PI futexes are typically woken before they are removed from the hash list via
124 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
125 */
126struct futex_q {
ec92d082 127 struct plist_node list;
1da177e4 128
d8d88fbb 129 struct task_struct *task;
1da177e4 130 spinlock_t *lock_ptr;
1da177e4 131 union futex_key key;
c87e2837 132 struct futex_pi_state *pi_state;
52400ba9 133 struct rt_mutex_waiter *rt_waiter;
84bc4af5 134 union futex_key *requeue_pi_key;
cd689985 135 u32 bitset;
1da177e4
LT
136};
137
5bdb05f9
DH
138static const struct futex_q futex_q_init = {
139 /* list gets initialized in queue_me()*/
140 .key = FUTEX_KEY_INIT,
141 .bitset = FUTEX_BITSET_MATCH_ANY
142};
143
1da177e4 144/*
b2d0994b
DH
145 * Hash buckets are shared by all the futex_keys that hash to the same
146 * location. Each key may have multiple futex_q structures, one for each task
147 * waiting on a futex.
1da177e4
LT
148 */
149struct futex_hash_bucket {
ec92d082
PP
150 spinlock_t lock;
151 struct plist_head chain;
1da177e4
LT
152};
153
154static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
155
1da177e4
LT
156/*
157 * We hash on the keys returned from get_futex_key (see below).
158 */
159static struct futex_hash_bucket *hash_futex(union futex_key *key)
160{
161 u32 hash = jhash2((u32*)&key->both.word,
162 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
163 key->both.offset);
164 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
165}
166
167/*
168 * Return 1 if two futex_keys are equal, 0 otherwise.
169 */
170static inline int match_futex(union futex_key *key1, union futex_key *key2)
171{
2bc87203
DH
172 return (key1 && key2
173 && key1->both.word == key2->both.word
1da177e4
LT
174 && key1->both.ptr == key2->both.ptr
175 && key1->both.offset == key2->both.offset);
176}
177
38d47c1b
PZ
178/*
179 * Take a reference to the resource addressed by a key.
180 * Can be called while holding spinlocks.
181 *
182 */
183static void get_futex_key_refs(union futex_key *key)
184{
185 if (!key->both.ptr)
186 return;
187
188 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189 case FUT_OFF_INODE:
7de9c6ee 190 ihold(key->shared.inode);
38d47c1b
PZ
191 break;
192 case FUT_OFF_MMSHARED:
193 atomic_inc(&key->private.mm->mm_count);
194 break;
195 }
196}
197
198/*
199 * Drop a reference to the resource addressed by a key.
200 * The hash bucket spinlock must not be held.
201 */
202static void drop_futex_key_refs(union futex_key *key)
203{
90621c40
DH
204 if (!key->both.ptr) {
205 /* If we're here then we tried to put a key we failed to get */
206 WARN_ON_ONCE(1);
38d47c1b 207 return;
90621c40 208 }
38d47c1b
PZ
209
210 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
211 case FUT_OFF_INODE:
212 iput(key->shared.inode);
213 break;
214 case FUT_OFF_MMSHARED:
215 mmdrop(key->private.mm);
216 break;
217 }
218}
219
34f01cc1 220/**
d96ee56c
DH
221 * get_futex_key() - Get parameters which are the keys for a futex
222 * @uaddr: virtual address of the futex
223 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
224 * @key: address where result is stored.
9ea71503
SB
225 * @rw: mapping needs to be read/write (values: VERIFY_READ,
226 * VERIFY_WRITE)
34f01cc1 227 *
6c23cbbd
RD
228 * Return: a negative error code or 0
229 *
34f01cc1 230 * The key words are stored in *key on success.
1da177e4 231 *
6131ffaa 232 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
233 * offset_within_page). For private mappings, it's (uaddr, current->mm).
234 * We can usually work out the index without swapping in the page.
235 *
b2d0994b 236 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 237 */
64d1304a 238static int
9ea71503 239get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 240{
e2970f2f 241 unsigned long address = (unsigned long)uaddr;
1da177e4 242 struct mm_struct *mm = current->mm;
a5b338f2 243 struct page *page, *page_head;
9ea71503 244 int err, ro = 0;
1da177e4
LT
245
246 /*
247 * The futex address must be "naturally" aligned.
248 */
e2970f2f 249 key->both.offset = address % PAGE_SIZE;
34f01cc1 250 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 251 return -EINVAL;
e2970f2f 252 address -= key->both.offset;
1da177e4 253
5cdec2d8
LT
254 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
255 return -EFAULT;
256
34f01cc1
ED
257 /*
258 * PROCESS_PRIVATE futexes are fast.
259 * As the mm cannot disappear under us and the 'key' only needs
260 * virtual address, we dont even have to find the underlying vma.
261 * Note : We do have to check 'uaddr' is a valid user address,
262 * but access_ok() should be faster than find_vma()
263 */
264 if (!fshared) {
34f01cc1
ED
265 key->private.mm = mm;
266 key->private.address = address;
42569c39 267 get_futex_key_refs(key);
34f01cc1
ED
268 return 0;
269 }
1da177e4 270
38d47c1b 271again:
7485d0d3 272 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
38d47c1b
PZ
281 if (err < 0)
282 return err;
9ea71503
SB
283 else
284 err = 0;
38d47c1b 285
a5b338f2
AA
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
38d47c1b 289 put_page(page);
a5b338f2
AA
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
f12d5bfc 292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314#else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320#endif
321
322 lock_page(page_head);
e6780f72
HD
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
a5b338f2 339 if (!page_head->mapping) {
e6780f72 340 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
341 unlock_page(page_head);
342 put_page(page_head);
e6780f72
HD
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
38d47c1b 346 }
1da177e4
LT
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 353 * the object not the particular process.
1da177e4 354 */
a5b338f2 355 if (PageAnon(page_head)) {
9ea71503
SB
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
38d47c1b 365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 366 key->private.mm = mm;
e2970f2f 367 key->private.address = address;
38d47c1b
PZ
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 370 key->shared.inode = page_head->mapping->host;
13d60f4b 371 key->shared.pgoff = basepage_index(page);
1da177e4
LT
372 }
373
38d47c1b 374 get_futex_key_refs(key);
1da177e4 375
9ea71503 376out:
a5b338f2
AA
377 unlock_page(page_head);
378 put_page(page_head);
9ea71503 379 return err;
1da177e4
LT
380}
381
ae791a2d 382static inline void put_futex_key(union futex_key *key)
1da177e4 383{
38d47c1b 384 drop_futex_key_refs(key);
1da177e4
LT
385}
386
d96ee56c
DH
387/**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
fb62db2b 394 * We have no generic implementation of a non-destructive write to the
d0725992
TG
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399static int fault_in_user_writeable(u32 __user *uaddr)
400{
722d0172
AK
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
2efaca92
BH
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
722d0172
AK
407 up_read(&mm->mmap_sem);
408
d0725992
TG
409 return ret < 0 ? ret : 0;
410}
411
4b1c486b
DH
412/**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
416 *
417 * Must be called with the hb lock held.
418 */
419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421{
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429}
430
37a9d912
ML
431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
36cf3b5c 433{
37a9d912 434 int ret;
36cf3b5c
TG
435
436 pagefault_disable();
37a9d912 437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
438 pagefault_enable();
439
37a9d912 440 return ret;
36cf3b5c
TG
441}
442
443static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
444{
445 int ret;
446
a866374a 447 pagefault_disable();
e2970f2f 448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 449 pagefault_enable();
1da177e4
LT
450
451 return ret ? -EFAULT : 0;
452}
453
c87e2837
IM
454
455/*
456 * PI code:
457 */
458static int refill_pi_state_cache(void)
459{
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
4668edc3 465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
466
467 if (!pi_state)
468 return -ENOMEM;
469
c87e2837
IM
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
38d47c1b 474 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479}
480
481static struct futex_pi_state * alloc_pi_state(void)
482{
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489}
490
491static void free_pi_state(struct futex_pi_state *pi_state)
492{
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
1d615482 501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 502 list_del_init(&pi_state->list);
1d615482 503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520}
521
522/*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526static struct task_struct * futex_find_get_task(pid_t pid)
527{
528 struct task_struct *p;
529
d359b549 530 rcu_read_lock();
228ebcbe 531 p = find_task_by_vpid(pid);
7a0ea09a
MH
532 if (p)
533 get_task_struct(p);
a06381fe 534
d359b549 535 rcu_read_unlock();
c87e2837
IM
536
537 return p;
538}
539
540/*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545void exit_pi_state_list(struct task_struct *curr)
546{
c87e2837
IM
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
627371d7 549 struct futex_hash_bucket *hb;
38d47c1b 550 union futex_key key = FUTEX_KEY_INIT;
c87e2837 551
a0c1e907
TG
552 if (!futex_cmpxchg_enabled)
553 return;
c87e2837
IM
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
627371d7 557 * versus waiters unqueueing themselves:
c87e2837 558 */
1d615482 559 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
627371d7 565 hb = hash_futex(&key);
1d615482 566 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 567
c87e2837
IM
568 spin_lock(&hb->lock);
569
1d615482 570 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
c87e2837
IM
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
c87e2837 580 WARN_ON(pi_state->owner != curr);
627371d7
IM
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
c87e2837 583 pi_state->owner = NULL;
1d615482 584 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
1d615482 590 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 591 }
1d615482 592 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
593}
594
595static int
d0aa7a70
PP
596lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
597 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
598{
599 struct futex_pi_state *pi_state = NULL;
600 struct futex_q *this, *next;
ec92d082 601 struct plist_head *head;
c87e2837 602 struct task_struct *p;
778e9a9c 603 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
604
605 head = &hb->chain;
606
ec92d082 607 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 608 if (match_futex(&this->key, key)) {
c87e2837
IM
609 /*
610 * Another waiter already exists - bump up
611 * the refcount and return its pi_state:
612 */
613 pi_state = this->pi_state;
06a9ec29 614 /*
fb62db2b 615 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
616 */
617 if (unlikely(!pi_state))
618 return -EINVAL;
619
627371d7 620 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
621
622 /*
623 * When pi_state->owner is NULL then the owner died
624 * and another waiter is on the fly. pi_state->owner
625 * is fixed up by the task which acquires
626 * pi_state->rt_mutex.
627 *
628 * We do not check for pid == 0 which can happen when
629 * the owner died and robust_list_exit() cleared the
630 * TID.
631 */
632 if (pid && pi_state->owner) {
633 /*
634 * Bail out if user space manipulated the
635 * futex value.
636 */
637 if (pid != task_pid_vnr(pi_state->owner))
638 return -EINVAL;
639 }
627371d7 640
c87e2837 641 atomic_inc(&pi_state->refcount);
d0aa7a70 642 *ps = pi_state;
c87e2837
IM
643
644 return 0;
645 }
646 }
647
648 /*
e3f2ddea 649 * We are the first waiter - try to look up the real owner and attach
778e9a9c 650 * the new pi_state to it, but bail out when TID = 0
c87e2837 651 */
778e9a9c 652 if (!pid)
e3f2ddea 653 return -ESRCH;
c87e2837 654 p = futex_find_get_task(pid);
7a0ea09a
MH
655 if (!p)
656 return -ESRCH;
778e9a9c
AK
657
658 /*
659 * We need to look at the task state flags to figure out,
660 * whether the task is exiting. To protect against the do_exit
661 * change of the task flags, we do this protected by
662 * p->pi_lock:
663 */
1d615482 664 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
665 if (unlikely(p->flags & PF_EXITING)) {
666 /*
667 * The task is on the way out. When PF_EXITPIDONE is
668 * set, we know that the task has finished the
669 * cleanup:
670 */
671 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
672
1d615482 673 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
674 put_task_struct(p);
675 return ret;
676 }
c87e2837
IM
677
678 pi_state = alloc_pi_state();
679
680 /*
681 * Initialize the pi_mutex in locked state and make 'p'
682 * the owner of it:
683 */
684 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
685
686 /* Store the key for possible exit cleanups: */
d0aa7a70 687 pi_state->key = *key;
c87e2837 688
627371d7 689 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
690 list_add(&pi_state->list, &p->pi_state_list);
691 pi_state->owner = p;
1d615482 692 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
693
694 put_task_struct(p);
695
d0aa7a70 696 *ps = pi_state;
c87e2837
IM
697
698 return 0;
699}
700
1a52084d 701/**
d96ee56c 702 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
703 * @uaddr: the pi futex user address
704 * @hb: the pi futex hash bucket
705 * @key: the futex key associated with uaddr and hb
706 * @ps: the pi_state pointer where we store the result of the
707 * lookup
708 * @task: the task to perform the atomic lock work for. This will
709 * be "current" except in the case of requeue pi.
710 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 711 *
6c23cbbd
RD
712 * Return:
713 * 0 - ready to wait;
714 * 1 - acquired the lock;
1a52084d
DH
715 * <0 - error
716 *
717 * The hb->lock and futex_key refs shall be held by the caller.
718 */
719static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
720 union futex_key *key,
721 struct futex_pi_state **ps,
bab5bc9e 722 struct task_struct *task, int set_waiters)
1a52084d 723{
59fa6245 724 int lock_taken, ret, force_take = 0;
c0c9ed15 725 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
726
727retry:
728 ret = lock_taken = 0;
729
730 /*
731 * To avoid races, we attempt to take the lock here again
732 * (by doing a 0 -> TID atomic cmpxchg), while holding all
733 * the locks. It will most likely not succeed.
734 */
c0c9ed15 735 newval = vpid;
bab5bc9e
DH
736 if (set_waiters)
737 newval |= FUTEX_WAITERS;
1a52084d 738
37a9d912 739 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
740 return -EFAULT;
741
742 /*
743 * Detect deadlocks.
744 */
c0c9ed15 745 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
746 return -EDEADLK;
747
748 /*
749 * Surprise - we got the lock. Just return to userspace:
750 */
751 if (unlikely(!curval))
752 return 1;
753
754 uval = curval;
755
756 /*
757 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
758 * to wake at the next unlock.
759 */
760 newval = curval | FUTEX_WAITERS;
761
762 /*
59fa6245 763 * Should we force take the futex? See below.
1a52084d 764 */
59fa6245
TG
765 if (unlikely(force_take)) {
766 /*
767 * Keep the OWNER_DIED and the WAITERS bit and set the
768 * new TID value.
769 */
c0c9ed15 770 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 771 force_take = 0;
1a52084d
DH
772 lock_taken = 1;
773 }
774
37a9d912 775 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
776 return -EFAULT;
777 if (unlikely(curval != uval))
778 goto retry;
779
780 /*
59fa6245 781 * We took the lock due to forced take over.
1a52084d
DH
782 */
783 if (unlikely(lock_taken))
784 return 1;
785
786 /*
787 * We dont have the lock. Look up the PI state (or create it if
788 * we are the first waiter):
789 */
790 ret = lookup_pi_state(uval, hb, key, ps);
791
792 if (unlikely(ret)) {
793 switch (ret) {
794 case -ESRCH:
795 /*
59fa6245
TG
796 * We failed to find an owner for this
797 * futex. So we have no pi_state to block
798 * on. This can happen in two cases:
799 *
800 * 1) The owner died
801 * 2) A stale FUTEX_WAITERS bit
802 *
803 * Re-read the futex value.
1a52084d
DH
804 */
805 if (get_futex_value_locked(&curval, uaddr))
806 return -EFAULT;
807
808 /*
59fa6245
TG
809 * If the owner died or we have a stale
810 * WAITERS bit the owner TID in the user space
811 * futex is 0.
1a52084d 812 */
59fa6245
TG
813 if (!(curval & FUTEX_TID_MASK)) {
814 force_take = 1;
1a52084d
DH
815 goto retry;
816 }
817 default:
818 break;
819 }
820 }
821
822 return ret;
823}
824
2e12978a
LJ
825/**
826 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
827 * @q: The futex_q to unqueue
828 *
829 * The q->lock_ptr must not be NULL and must be held by the caller.
830 */
831static void __unqueue_futex(struct futex_q *q)
832{
833 struct futex_hash_bucket *hb;
834
29096202
SR
835 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
836 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
837 return;
838
839 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
840 plist_del(&q->list, &hb->chain);
841}
842
1da177e4
LT
843/*
844 * The hash bucket lock must be held when this is called.
845 * Afterwards, the futex_q must not be accessed.
846 */
847static void wake_futex(struct futex_q *q)
848{
f1a11e05
TG
849 struct task_struct *p = q->task;
850
aa10990e
DH
851 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
852 return;
853
1da177e4 854 /*
f1a11e05 855 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
856 * a non-futex wake up happens on another CPU then the task
857 * might exit and p would dereference a non-existing task
f1a11e05
TG
858 * struct. Prevent this by holding a reference on p across the
859 * wake up.
1da177e4 860 */
f1a11e05
TG
861 get_task_struct(p);
862
2e12978a 863 __unqueue_futex(q);
1da177e4 864 /*
f1a11e05
TG
865 * The waiting task can free the futex_q as soon as
866 * q->lock_ptr = NULL is written, without taking any locks. A
867 * memory barrier is required here to prevent the following
868 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 869 */
ccdea2f8 870 smp_wmb();
1da177e4 871 q->lock_ptr = NULL;
f1a11e05
TG
872
873 wake_up_state(p, TASK_NORMAL);
874 put_task_struct(p);
1da177e4
LT
875}
876
c87e2837
IM
877static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
878{
879 struct task_struct *new_owner;
880 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 881 u32 uninitialized_var(curval), newval;
c87e2837
IM
882
883 if (!pi_state)
884 return -EINVAL;
885
51246bfd
TG
886 /*
887 * If current does not own the pi_state then the futex is
888 * inconsistent and user space fiddled with the futex value.
889 */
890 if (pi_state->owner != current)
891 return -EINVAL;
892
d209d74d 893 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
894 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
895
896 /*
f123c98e
SR
897 * It is possible that the next waiter (the one that brought
898 * this owner to the kernel) timed out and is no longer
899 * waiting on the lock.
c87e2837
IM
900 */
901 if (!new_owner)
902 new_owner = this->task;
903
904 /*
905 * We pass it to the next owner. (The WAITERS bit is always
906 * kept enabled while there is PI state around. We must also
907 * preserve the owner died bit.)
908 */
e3f2ddea 909 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
910 int ret = 0;
911
b488893a 912 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 913
37a9d912 914 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 915 ret = -EFAULT;
cde898fa 916 else if (curval != uval)
778e9a9c
AK
917 ret = -EINVAL;
918 if (ret) {
d209d74d 919 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
920 return ret;
921 }
e3f2ddea 922 }
c87e2837 923
1d615482 924 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
925 WARN_ON(list_empty(&pi_state->list));
926 list_del_init(&pi_state->list);
1d615482 927 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 928
1d615482 929 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 930 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
931 list_add(&pi_state->list, &new_owner->pi_state_list);
932 pi_state->owner = new_owner;
1d615482 933 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 934
d209d74d 935 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
936 rt_mutex_unlock(&pi_state->pi_mutex);
937
938 return 0;
939}
940
941static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
942{
7cfdaf38 943 u32 uninitialized_var(oldval);
c87e2837
IM
944
945 /*
946 * There is no waiter, so we unlock the futex. The owner died
947 * bit has not to be preserved here. We are the owner:
948 */
37a9d912
ML
949 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
950 return -EFAULT;
c87e2837
IM
951 if (oldval != uval)
952 return -EAGAIN;
953
954 return 0;
955}
956
8b8f319f
IM
957/*
958 * Express the locking dependencies for lockdep:
959 */
960static inline void
961double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
962{
963 if (hb1 <= hb2) {
964 spin_lock(&hb1->lock);
965 if (hb1 < hb2)
966 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
967 } else { /* hb1 > hb2 */
968 spin_lock(&hb2->lock);
969 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
970 }
971}
972
5eb3dc62
DH
973static inline void
974double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
975{
f061d351 976 spin_unlock(&hb1->lock);
88f502fe
IM
977 if (hb1 != hb2)
978 spin_unlock(&hb2->lock);
5eb3dc62
DH
979}
980
1da177e4 981/*
b2d0994b 982 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 983 */
b41277dc
DH
984static int
985futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 986{
e2970f2f 987 struct futex_hash_bucket *hb;
1da177e4 988 struct futex_q *this, *next;
ec92d082 989 struct plist_head *head;
38d47c1b 990 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
991 int ret;
992
cd689985
TG
993 if (!bitset)
994 return -EINVAL;
995
9ea71503 996 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
997 if (unlikely(ret != 0))
998 goto out;
999
e2970f2f
IM
1000 hb = hash_futex(&key);
1001 spin_lock(&hb->lock);
1002 head = &hb->chain;
1da177e4 1003
ec92d082 1004 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1005 if (match_futex (&this->key, &key)) {
52400ba9 1006 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1007 ret = -EINVAL;
1008 break;
1009 }
cd689985
TG
1010
1011 /* Check if one of the bits is set in both bitsets */
1012 if (!(this->bitset & bitset))
1013 continue;
1014
1da177e4
LT
1015 wake_futex(this);
1016 if (++ret >= nr_wake)
1017 break;
1018 }
1019 }
1020
e2970f2f 1021 spin_unlock(&hb->lock);
ae791a2d 1022 put_futex_key(&key);
42d35d48 1023out:
1da177e4
LT
1024 return ret;
1025}
1026
4732efbe
JJ
1027/*
1028 * Wake up all waiters hashed on the physical page that is mapped
1029 * to this virtual address:
1030 */
e2970f2f 1031static int
b41277dc 1032futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1033 int nr_wake, int nr_wake2, int op)
4732efbe 1034{
38d47c1b 1035 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1036 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1037 struct plist_head *head;
4732efbe 1038 struct futex_q *this, *next;
e4dc5b7a 1039 int ret, op_ret;
4732efbe 1040
e4dc5b7a 1041retry:
9ea71503 1042 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1043 if (unlikely(ret != 0))
1044 goto out;
9ea71503 1045 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1046 if (unlikely(ret != 0))
42d35d48 1047 goto out_put_key1;
4732efbe 1048
e2970f2f
IM
1049 hb1 = hash_futex(&key1);
1050 hb2 = hash_futex(&key2);
4732efbe 1051
e4dc5b7a 1052retry_private:
eaaea803 1053 double_lock_hb(hb1, hb2);
e2970f2f 1054 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1055 if (unlikely(op_ret < 0)) {
4732efbe 1056
5eb3dc62 1057 double_unlock_hb(hb1, hb2);
4732efbe 1058
7ee1dd3f 1059#ifndef CONFIG_MMU
e2970f2f
IM
1060 /*
1061 * we don't get EFAULT from MMU faults if we don't have an MMU,
1062 * but we might get them from range checking
1063 */
7ee1dd3f 1064 ret = op_ret;
42d35d48 1065 goto out_put_keys;
7ee1dd3f
DH
1066#endif
1067
796f8d9b
DG
1068 if (unlikely(op_ret != -EFAULT)) {
1069 ret = op_ret;
42d35d48 1070 goto out_put_keys;
796f8d9b
DG
1071 }
1072
d0725992 1073 ret = fault_in_user_writeable(uaddr2);
4732efbe 1074 if (ret)
de87fcc1 1075 goto out_put_keys;
4732efbe 1076
b41277dc 1077 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1078 goto retry_private;
1079
ae791a2d
TG
1080 put_futex_key(&key2);
1081 put_futex_key(&key1);
e4dc5b7a 1082 goto retry;
4732efbe
JJ
1083 }
1084
e2970f2f 1085 head = &hb1->chain;
4732efbe 1086
ec92d082 1087 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1088 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1089 if (this->pi_state || this->rt_waiter) {
1090 ret = -EINVAL;
1091 goto out_unlock;
1092 }
4732efbe
JJ
1093 wake_futex(this);
1094 if (++ret >= nr_wake)
1095 break;
1096 }
1097 }
1098
1099 if (op_ret > 0) {
e2970f2f 1100 head = &hb2->chain;
4732efbe
JJ
1101
1102 op_ret = 0;
ec92d082 1103 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1104 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1105 if (this->pi_state || this->rt_waiter) {
1106 ret = -EINVAL;
1107 goto out_unlock;
1108 }
4732efbe
JJ
1109 wake_futex(this);
1110 if (++op_ret >= nr_wake2)
1111 break;
1112 }
1113 }
1114 ret += op_ret;
1115 }
1116
aa10990e 1117out_unlock:
5eb3dc62 1118 double_unlock_hb(hb1, hb2);
42d35d48 1119out_put_keys:
ae791a2d 1120 put_futex_key(&key2);
42d35d48 1121out_put_key1:
ae791a2d 1122 put_futex_key(&key1);
42d35d48 1123out:
4732efbe
JJ
1124 return ret;
1125}
1126
9121e478
DH
1127/**
1128 * requeue_futex() - Requeue a futex_q from one hb to another
1129 * @q: the futex_q to requeue
1130 * @hb1: the source hash_bucket
1131 * @hb2: the target hash_bucket
1132 * @key2: the new key for the requeued futex_q
1133 */
1134static inline
1135void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1136 struct futex_hash_bucket *hb2, union futex_key *key2)
1137{
1138
1139 /*
1140 * If key1 and key2 hash to the same bucket, no need to
1141 * requeue.
1142 */
1143 if (likely(&hb1->chain != &hb2->chain)) {
1144 plist_del(&q->list, &hb1->chain);
1145 plist_add(&q->list, &hb2->chain);
1146 q->lock_ptr = &hb2->lock;
9121e478
DH
1147 }
1148 get_futex_key_refs(key2);
1149 q->key = *key2;
1150}
1151
52400ba9
DH
1152/**
1153 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1154 * @q: the futex_q
1155 * @key: the key of the requeue target futex
1156 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1157 *
1158 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1159 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1160 * to the requeue target futex so the waiter can detect the wakeup on the right
1161 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1162 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1163 * to protect access to the pi_state to fixup the owner later. Must be called
1164 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1165 */
1166static inline
beda2c7e
DH
1167void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1168 struct futex_hash_bucket *hb)
52400ba9 1169{
52400ba9
DH
1170 get_futex_key_refs(key);
1171 q->key = *key;
1172
2e12978a 1173 __unqueue_futex(q);
52400ba9
DH
1174
1175 WARN_ON(!q->rt_waiter);
1176 q->rt_waiter = NULL;
1177
beda2c7e 1178 q->lock_ptr = &hb->lock;
beda2c7e 1179
f1a11e05 1180 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1181}
1182
1183/**
1184 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1185 * @pifutex: the user address of the to futex
1186 * @hb1: the from futex hash bucket, must be locked by the caller
1187 * @hb2: the to futex hash bucket, must be locked by the caller
1188 * @key1: the from futex key
1189 * @key2: the to futex key
1190 * @ps: address to store the pi_state pointer
1191 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1192 *
1193 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1194 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1195 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1196 * hb1 and hb2 must be held by the caller.
52400ba9 1197 *
6c23cbbd
RD
1198 * Return:
1199 * 0 - failed to acquire the lock atomically;
1200 * 1 - acquired the lock;
52400ba9
DH
1201 * <0 - error
1202 */
1203static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1204 struct futex_hash_bucket *hb1,
1205 struct futex_hash_bucket *hb2,
1206 union futex_key *key1, union futex_key *key2,
bab5bc9e 1207 struct futex_pi_state **ps, int set_waiters)
52400ba9 1208{
bab5bc9e 1209 struct futex_q *top_waiter = NULL;
52400ba9
DH
1210 u32 curval;
1211 int ret;
1212
1213 if (get_futex_value_locked(&curval, pifutex))
1214 return -EFAULT;
1215
bab5bc9e
DH
1216 /*
1217 * Find the top_waiter and determine if there are additional waiters.
1218 * If the caller intends to requeue more than 1 waiter to pifutex,
1219 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1220 * as we have means to handle the possible fault. If not, don't set
1221 * the bit unecessarily as it will force the subsequent unlock to enter
1222 * the kernel.
1223 */
52400ba9
DH
1224 top_waiter = futex_top_waiter(hb1, key1);
1225
1226 /* There are no waiters, nothing for us to do. */
1227 if (!top_waiter)
1228 return 0;
1229
84bc4af5
DH
1230 /* Ensure we requeue to the expected futex. */
1231 if (!match_futex(top_waiter->requeue_pi_key, key2))
1232 return -EINVAL;
1233
52400ba9 1234 /*
bab5bc9e
DH
1235 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1236 * the contended case or if set_waiters is 1. The pi_state is returned
1237 * in ps in contended cases.
52400ba9 1238 */
bab5bc9e
DH
1239 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1240 set_waiters);
52400ba9 1241 if (ret == 1)
beda2c7e 1242 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1243
1244 return ret;
1245}
1246
1247/**
1248 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1249 * @uaddr1: source futex user address
b41277dc 1250 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1251 * @uaddr2: target futex user address
1252 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1253 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1254 * @cmpval: @uaddr1 expected value (or %NULL)
1255 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1256 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1257 *
1258 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1259 * uaddr2 atomically on behalf of the top waiter.
1260 *
6c23cbbd
RD
1261 * Return:
1262 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1263 * <0 - on error
1da177e4 1264 */
b41277dc
DH
1265static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1266 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1267 u32 *cmpval, int requeue_pi)
1da177e4 1268{
38d47c1b 1269 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1270 int drop_count = 0, task_count = 0, ret;
1271 struct futex_pi_state *pi_state = NULL;
e2970f2f 1272 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1273 struct plist_head *head1;
1da177e4 1274 struct futex_q *this, *next;
52400ba9
DH
1275 u32 curval2;
1276
1277 if (requeue_pi) {
1278 /*
1279 * requeue_pi requires a pi_state, try to allocate it now
1280 * without any locks in case it fails.
1281 */
1282 if (refill_pi_state_cache())
1283 return -ENOMEM;
1284 /*
1285 * requeue_pi must wake as many tasks as it can, up to nr_wake
1286 * + nr_requeue, since it acquires the rt_mutex prior to
1287 * returning to userspace, so as to not leave the rt_mutex with
1288 * waiters and no owner. However, second and third wake-ups
1289 * cannot be predicted as they involve race conditions with the
1290 * first wake and a fault while looking up the pi_state. Both
1291 * pthread_cond_signal() and pthread_cond_broadcast() should
1292 * use nr_wake=1.
1293 */
1294 if (nr_wake != 1)
1295 return -EINVAL;
1296 }
1da177e4 1297
42d35d48 1298retry:
52400ba9
DH
1299 if (pi_state != NULL) {
1300 /*
1301 * We will have to lookup the pi_state again, so free this one
1302 * to keep the accounting correct.
1303 */
1304 free_pi_state(pi_state);
1305 pi_state = NULL;
1306 }
1307
9ea71503 1308 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1309 if (unlikely(ret != 0))
1310 goto out;
9ea71503
SB
1311 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1312 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1313 if (unlikely(ret != 0))
42d35d48 1314 goto out_put_key1;
1da177e4 1315
e2970f2f
IM
1316 hb1 = hash_futex(&key1);
1317 hb2 = hash_futex(&key2);
1da177e4 1318
e4dc5b7a 1319retry_private:
8b8f319f 1320 double_lock_hb(hb1, hb2);
1da177e4 1321
e2970f2f
IM
1322 if (likely(cmpval != NULL)) {
1323 u32 curval;
1da177e4 1324
e2970f2f 1325 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1326
1327 if (unlikely(ret)) {
5eb3dc62 1328 double_unlock_hb(hb1, hb2);
1da177e4 1329
e2970f2f 1330 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1331 if (ret)
1332 goto out_put_keys;
1da177e4 1333
b41277dc 1334 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1335 goto retry_private;
1da177e4 1336
ae791a2d
TG
1337 put_futex_key(&key2);
1338 put_futex_key(&key1);
e4dc5b7a 1339 goto retry;
1da177e4 1340 }
e2970f2f 1341 if (curval != *cmpval) {
1da177e4
LT
1342 ret = -EAGAIN;
1343 goto out_unlock;
1344 }
1345 }
1346
52400ba9 1347 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1348 /*
1349 * Attempt to acquire uaddr2 and wake the top waiter. If we
1350 * intend to requeue waiters, force setting the FUTEX_WAITERS
1351 * bit. We force this here where we are able to easily handle
1352 * faults rather in the requeue loop below.
1353 */
52400ba9 1354 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1355 &key2, &pi_state, nr_requeue);
52400ba9
DH
1356
1357 /*
1358 * At this point the top_waiter has either taken uaddr2 or is
1359 * waiting on it. If the former, then the pi_state will not
1360 * exist yet, look it up one more time to ensure we have a
1361 * reference to it.
1362 */
1363 if (ret == 1) {
1364 WARN_ON(pi_state);
89061d3d 1365 drop_count++;
52400ba9
DH
1366 task_count++;
1367 ret = get_futex_value_locked(&curval2, uaddr2);
1368 if (!ret)
1369 ret = lookup_pi_state(curval2, hb2, &key2,
1370 &pi_state);
1371 }
1372
1373 switch (ret) {
1374 case 0:
1375 break;
1376 case -EFAULT:
1377 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1378 put_futex_key(&key2);
1379 put_futex_key(&key1);
d0725992 1380 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1381 if (!ret)
1382 goto retry;
1383 goto out;
1384 case -EAGAIN:
1385 /* The owner was exiting, try again. */
1386 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1387 put_futex_key(&key2);
1388 put_futex_key(&key1);
52400ba9
DH
1389 cond_resched();
1390 goto retry;
1391 default:
1392 goto out_unlock;
1393 }
1394 }
1395
e2970f2f 1396 head1 = &hb1->chain;
ec92d082 1397 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1398 if (task_count - nr_wake >= nr_requeue)
1399 break;
1400
1401 if (!match_futex(&this->key, &key1))
1da177e4 1402 continue;
52400ba9 1403
392741e0
DH
1404 /*
1405 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1406 * be paired with each other and no other futex ops.
aa10990e
DH
1407 *
1408 * We should never be requeueing a futex_q with a pi_state,
1409 * which is awaiting a futex_unlock_pi().
392741e0
DH
1410 */
1411 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1412 (!requeue_pi && this->rt_waiter) ||
1413 this->pi_state) {
392741e0
DH
1414 ret = -EINVAL;
1415 break;
1416 }
52400ba9
DH
1417
1418 /*
1419 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1420 * lock, we already woke the top_waiter. If not, it will be
1421 * woken by futex_unlock_pi().
1422 */
1423 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1424 wake_futex(this);
52400ba9
DH
1425 continue;
1426 }
1da177e4 1427
84bc4af5
DH
1428 /* Ensure we requeue to the expected futex for requeue_pi. */
1429 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1430 ret = -EINVAL;
1431 break;
1432 }
1433
52400ba9
DH
1434 /*
1435 * Requeue nr_requeue waiters and possibly one more in the case
1436 * of requeue_pi if we couldn't acquire the lock atomically.
1437 */
1438 if (requeue_pi) {
1439 /* Prepare the waiter to take the rt_mutex. */
1440 atomic_inc(&pi_state->refcount);
1441 this->pi_state = pi_state;
1442 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1443 this->rt_waiter,
1444 this->task, 1);
1445 if (ret == 1) {
1446 /* We got the lock. */
beda2c7e 1447 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1448 drop_count++;
52400ba9
DH
1449 continue;
1450 } else if (ret) {
1451 /* -EDEADLK */
1452 this->pi_state = NULL;
1453 free_pi_state(pi_state);
1454 goto out_unlock;
1455 }
1da177e4 1456 }
52400ba9
DH
1457 requeue_futex(this, hb1, hb2, &key2);
1458 drop_count++;
1da177e4
LT
1459 }
1460
1461out_unlock:
5eb3dc62 1462 double_unlock_hb(hb1, hb2);
1da177e4 1463
cd84a42f
DH
1464 /*
1465 * drop_futex_key_refs() must be called outside the spinlocks. During
1466 * the requeue we moved futex_q's from the hash bucket at key1 to the
1467 * one at key2 and updated their key pointer. We no longer need to
1468 * hold the references to key1.
1469 */
1da177e4 1470 while (--drop_count >= 0)
9adef58b 1471 drop_futex_key_refs(&key1);
1da177e4 1472
42d35d48 1473out_put_keys:
ae791a2d 1474 put_futex_key(&key2);
42d35d48 1475out_put_key1:
ae791a2d 1476 put_futex_key(&key1);
42d35d48 1477out:
52400ba9
DH
1478 if (pi_state != NULL)
1479 free_pi_state(pi_state);
1480 return ret ? ret : task_count;
1da177e4
LT
1481}
1482
1483/* The key must be already stored in q->key. */
82af7aca 1484static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1485 __acquires(&hb->lock)
1da177e4 1486{
e2970f2f 1487 struct futex_hash_bucket *hb;
1da177e4 1488
e2970f2f
IM
1489 hb = hash_futex(&q->key);
1490 q->lock_ptr = &hb->lock;
1da177e4 1491
e2970f2f
IM
1492 spin_lock(&hb->lock);
1493 return hb;
1da177e4
LT
1494}
1495
d40d65c8
DH
1496static inline void
1497queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1498 __releases(&hb->lock)
d40d65c8
DH
1499{
1500 spin_unlock(&hb->lock);
d40d65c8
DH
1501}
1502
1503/**
1504 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1505 * @q: The futex_q to enqueue
1506 * @hb: The destination hash bucket
1507 *
1508 * The hb->lock must be held by the caller, and is released here. A call to
1509 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1510 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1511 * or nothing if the unqueue is done as part of the wake process and the unqueue
1512 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1513 * an example).
1514 */
82af7aca 1515static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1516 __releases(&hb->lock)
1da177e4 1517{
ec92d082
PP
1518 int prio;
1519
1520 /*
1521 * The priority used to register this element is
1522 * - either the real thread-priority for the real-time threads
1523 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1524 * - or MAX_RT_PRIO for non-RT threads.
1525 * Thus, all RT-threads are woken first in priority order, and
1526 * the others are woken last, in FIFO order.
1527 */
1528 prio = min(current->normal_prio, MAX_RT_PRIO);
1529
1530 plist_node_init(&q->list, prio);
ec92d082 1531 plist_add(&q->list, &hb->chain);
c87e2837 1532 q->task = current;
e2970f2f 1533 spin_unlock(&hb->lock);
1da177e4
LT
1534}
1535
d40d65c8
DH
1536/**
1537 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1538 * @q: The futex_q to unqueue
1539 *
1540 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1541 * be paired with exactly one earlier call to queue_me().
1542 *
6c23cbbd
RD
1543 * Return:
1544 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1545 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1546 */
1da177e4
LT
1547static int unqueue_me(struct futex_q *q)
1548{
1da177e4 1549 spinlock_t *lock_ptr;
e2970f2f 1550 int ret = 0;
1da177e4
LT
1551
1552 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1553retry:
1da177e4 1554 lock_ptr = q->lock_ptr;
e91467ec 1555 barrier();
c80544dc 1556 if (lock_ptr != NULL) {
1da177e4
LT
1557 spin_lock(lock_ptr);
1558 /*
1559 * q->lock_ptr can change between reading it and
1560 * spin_lock(), causing us to take the wrong lock. This
1561 * corrects the race condition.
1562 *
1563 * Reasoning goes like this: if we have the wrong lock,
1564 * q->lock_ptr must have changed (maybe several times)
1565 * between reading it and the spin_lock(). It can
1566 * change again after the spin_lock() but only if it was
1567 * already changed before the spin_lock(). It cannot,
1568 * however, change back to the original value. Therefore
1569 * we can detect whether we acquired the correct lock.
1570 */
1571 if (unlikely(lock_ptr != q->lock_ptr)) {
1572 spin_unlock(lock_ptr);
1573 goto retry;
1574 }
2e12978a 1575 __unqueue_futex(q);
c87e2837
IM
1576
1577 BUG_ON(q->pi_state);
1578
1da177e4
LT
1579 spin_unlock(lock_ptr);
1580 ret = 1;
1581 }
1582
9adef58b 1583 drop_futex_key_refs(&q->key);
1da177e4
LT
1584 return ret;
1585}
1586
c87e2837
IM
1587/*
1588 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1589 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1590 * and dropped here.
c87e2837 1591 */
d0aa7a70 1592static void unqueue_me_pi(struct futex_q *q)
15e408cd 1593 __releases(q->lock_ptr)
c87e2837 1594{
2e12978a 1595 __unqueue_futex(q);
c87e2837
IM
1596
1597 BUG_ON(!q->pi_state);
1598 free_pi_state(q->pi_state);
1599 q->pi_state = NULL;
1600
d0aa7a70 1601 spin_unlock(q->lock_ptr);
c87e2837
IM
1602}
1603
d0aa7a70 1604/*
cdf71a10 1605 * Fixup the pi_state owner with the new owner.
d0aa7a70 1606 *
778e9a9c
AK
1607 * Must be called with hash bucket lock held and mm->sem held for non
1608 * private futexes.
d0aa7a70 1609 */
778e9a9c 1610static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1611 struct task_struct *newowner)
d0aa7a70 1612{
cdf71a10 1613 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1614 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1615 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1616 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1617 int ret;
d0aa7a70
PP
1618
1619 /* Owner died? */
1b7558e4
TG
1620 if (!pi_state->owner)
1621 newtid |= FUTEX_OWNER_DIED;
1622
1623 /*
1624 * We are here either because we stole the rtmutex from the
8161239a
LJ
1625 * previous highest priority waiter or we are the highest priority
1626 * waiter but failed to get the rtmutex the first time.
1627 * We have to replace the newowner TID in the user space variable.
1628 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1629 *
b2d0994b
DH
1630 * Note: We write the user space value _before_ changing the pi_state
1631 * because we can fault here. Imagine swapped out pages or a fork
1632 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1633 *
1634 * Modifying pi_state _before_ the user space value would
1635 * leave the pi_state in an inconsistent state when we fault
1636 * here, because we need to drop the hash bucket lock to
1637 * handle the fault. This might be observed in the PID check
1638 * in lookup_pi_state.
1639 */
1640retry:
1641 if (get_futex_value_locked(&uval, uaddr))
1642 goto handle_fault;
1643
1644 while (1) {
1645 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1646
37a9d912 1647 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1648 goto handle_fault;
1649 if (curval == uval)
1650 break;
1651 uval = curval;
1652 }
1653
1654 /*
1655 * We fixed up user space. Now we need to fix the pi_state
1656 * itself.
1657 */
d0aa7a70 1658 if (pi_state->owner != NULL) {
1d615482 1659 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1660 WARN_ON(list_empty(&pi_state->list));
1661 list_del_init(&pi_state->list);
1d615482 1662 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1663 }
d0aa7a70 1664
cdf71a10 1665 pi_state->owner = newowner;
d0aa7a70 1666
1d615482 1667 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1668 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1669 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1670 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1671 return 0;
d0aa7a70 1672
d0aa7a70 1673 /*
1b7558e4 1674 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1675 * lock here. That gives the other task (either the highest priority
1676 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1677 * chance to try the fixup of the pi_state. So once we are
1678 * back from handling the fault we need to check the pi_state
1679 * after reacquiring the hash bucket lock and before trying to
1680 * do another fixup. When the fixup has been done already we
1681 * simply return.
d0aa7a70 1682 */
1b7558e4
TG
1683handle_fault:
1684 spin_unlock(q->lock_ptr);
778e9a9c 1685
d0725992 1686 ret = fault_in_user_writeable(uaddr);
778e9a9c 1687
1b7558e4 1688 spin_lock(q->lock_ptr);
778e9a9c 1689
1b7558e4
TG
1690 /*
1691 * Check if someone else fixed it for us:
1692 */
1693 if (pi_state->owner != oldowner)
1694 return 0;
1695
1696 if (ret)
1697 return ret;
1698
1699 goto retry;
d0aa7a70
PP
1700}
1701
72c1bbf3 1702static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1703
dd973998
DH
1704/**
1705 * fixup_owner() - Post lock pi_state and corner case management
1706 * @uaddr: user address of the futex
dd973998
DH
1707 * @q: futex_q (contains pi_state and access to the rt_mutex)
1708 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1709 *
1710 * After attempting to lock an rt_mutex, this function is called to cleanup
1711 * the pi_state owner as well as handle race conditions that may allow us to
1712 * acquire the lock. Must be called with the hb lock held.
1713 *
6c23cbbd
RD
1714 * Return:
1715 * 1 - success, lock taken;
1716 * 0 - success, lock not taken;
dd973998
DH
1717 * <0 - on error (-EFAULT)
1718 */
ae791a2d 1719static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1720{
1721 struct task_struct *owner;
1722 int ret = 0;
1723
1724 if (locked) {
1725 /*
1726 * Got the lock. We might not be the anticipated owner if we
1727 * did a lock-steal - fix up the PI-state in that case:
1728 */
1729 if (q->pi_state->owner != current)
ae791a2d 1730 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1731 goto out;
1732 }
1733
1734 /*
1735 * Catch the rare case, where the lock was released when we were on the
1736 * way back before we locked the hash bucket.
1737 */
1738 if (q->pi_state->owner == current) {
1739 /*
1740 * Try to get the rt_mutex now. This might fail as some other
1741 * task acquired the rt_mutex after we removed ourself from the
1742 * rt_mutex waiters list.
1743 */
1744 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1745 locked = 1;
1746 goto out;
1747 }
1748
1749 /*
1750 * pi_state is incorrect, some other task did a lock steal and
1751 * we returned due to timeout or signal without taking the
8161239a 1752 * rt_mutex. Too late.
dd973998 1753 */
8161239a 1754 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1755 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1756 if (!owner)
1757 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1758 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1759 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1760 goto out;
1761 }
1762
1763 /*
1764 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1765 * the owner of the rt_mutex.
dd973998
DH
1766 */
1767 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1768 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1769 "pi-state %p\n", ret,
1770 q->pi_state->pi_mutex.owner,
1771 q->pi_state->owner);
1772
1773out:
1774 return ret ? ret : locked;
1775}
1776
ca5f9524
DH
1777/**
1778 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1779 * @hb: the futex hash bucket, must be locked by the caller
1780 * @q: the futex_q to queue up on
1781 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1782 */
1783static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1784 struct hrtimer_sleeper *timeout)
ca5f9524 1785{
9beba3c5
DH
1786 /*
1787 * The task state is guaranteed to be set before another task can
1788 * wake it. set_current_state() is implemented using set_mb() and
1789 * queue_me() calls spin_unlock() upon completion, both serializing
1790 * access to the hash list and forcing another memory barrier.
1791 */
f1a11e05 1792 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1793 queue_me(q, hb);
ca5f9524
DH
1794
1795 /* Arm the timer */
1796 if (timeout) {
1797 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1798 if (!hrtimer_active(&timeout->timer))
1799 timeout->task = NULL;
1800 }
1801
1802 /*
0729e196
DH
1803 * If we have been removed from the hash list, then another task
1804 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1805 */
1806 if (likely(!plist_node_empty(&q->list))) {
1807 /*
1808 * If the timer has already expired, current will already be
1809 * flagged for rescheduling. Only call schedule if there
1810 * is no timeout, or if it has yet to expire.
1811 */
1812 if (!timeout || timeout->task)
88c8004f 1813 freezable_schedule();
ca5f9524
DH
1814 }
1815 __set_current_state(TASK_RUNNING);
1816}
1817
f801073f
DH
1818/**
1819 * futex_wait_setup() - Prepare to wait on a futex
1820 * @uaddr: the futex userspace address
1821 * @val: the expected value
b41277dc 1822 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1823 * @q: the associated futex_q
1824 * @hb: storage for hash_bucket pointer to be returned to caller
1825 *
1826 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1827 * compare it with the expected value. Handle atomic faults internally.
1828 * Return with the hb lock held and a q.key reference on success, and unlocked
1829 * with no q.key reference on failure.
1830 *
6c23cbbd
RD
1831 * Return:
1832 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1833 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1834 */
b41277dc 1835static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1836 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1837{
e2970f2f
IM
1838 u32 uval;
1839 int ret;
1da177e4 1840
1da177e4 1841 /*
b2d0994b 1842 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1843 * Order is important:
1844 *
1845 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1846 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1847 *
1848 * The basic logical guarantee of a futex is that it blocks ONLY
1849 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1850 * any cond. If we locked the hash-bucket after testing *uaddr, that
1851 * would open a race condition where we could block indefinitely with
1da177e4
LT
1852 * cond(var) false, which would violate the guarantee.
1853 *
8fe8f545
ML
1854 * On the other hand, we insert q and release the hash-bucket only
1855 * after testing *uaddr. This guarantees that futex_wait() will NOT
1856 * absorb a wakeup if *uaddr does not match the desired values
1857 * while the syscall executes.
1da177e4 1858 */
f801073f 1859retry:
9ea71503 1860 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1861 if (unlikely(ret != 0))
a5a2a0c7 1862 return ret;
f801073f
DH
1863
1864retry_private:
1865 *hb = queue_lock(q);
1866
e2970f2f 1867 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1868
f801073f
DH
1869 if (ret) {
1870 queue_unlock(q, *hb);
1da177e4 1871
e2970f2f 1872 ret = get_user(uval, uaddr);
e4dc5b7a 1873 if (ret)
f801073f 1874 goto out;
1da177e4 1875
b41277dc 1876 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1877 goto retry_private;
1878
ae791a2d 1879 put_futex_key(&q->key);
e4dc5b7a 1880 goto retry;
1da177e4 1881 }
ca5f9524 1882
f801073f
DH
1883 if (uval != val) {
1884 queue_unlock(q, *hb);
1885 ret = -EWOULDBLOCK;
2fff78c7 1886 }
1da177e4 1887
f801073f
DH
1888out:
1889 if (ret)
ae791a2d 1890 put_futex_key(&q->key);
f801073f
DH
1891 return ret;
1892}
1893
b41277dc
DH
1894static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1895 ktime_t *abs_time, u32 bitset)
f801073f
DH
1896{
1897 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1898 struct restart_block *restart;
1899 struct futex_hash_bucket *hb;
5bdb05f9 1900 struct futex_q q = futex_q_init;
f801073f
DH
1901 int ret;
1902
1903 if (!bitset)
1904 return -EINVAL;
f801073f
DH
1905 q.bitset = bitset;
1906
1907 if (abs_time) {
1908 to = &timeout;
1909
b41277dc
DH
1910 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1911 CLOCK_REALTIME : CLOCK_MONOTONIC,
1912 HRTIMER_MODE_ABS);
f801073f
DH
1913 hrtimer_init_sleeper(to, current);
1914 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1915 current->timer_slack_ns);
1916 }
1917
d58e6576 1918retry:
7ada876a
DH
1919 /*
1920 * Prepare to wait on uaddr. On success, holds hb lock and increments
1921 * q.key refs.
1922 */
b41277dc 1923 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1924 if (ret)
1925 goto out;
1926
ca5f9524 1927 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1928 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1929
1930 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1931 ret = 0;
7ada876a 1932 /* unqueue_me() drops q.key ref */
1da177e4 1933 if (!unqueue_me(&q))
7ada876a 1934 goto out;
2fff78c7 1935 ret = -ETIMEDOUT;
ca5f9524 1936 if (to && !to->task)
7ada876a 1937 goto out;
72c1bbf3 1938
e2970f2f 1939 /*
d58e6576
TG
1940 * We expect signal_pending(current), but we might be the
1941 * victim of a spurious wakeup as well.
e2970f2f 1942 */
7ada876a 1943 if (!signal_pending(current))
d58e6576 1944 goto retry;
d58e6576 1945
2fff78c7 1946 ret = -ERESTARTSYS;
c19384b5 1947 if (!abs_time)
7ada876a 1948 goto out;
1da177e4 1949
2fff78c7
PZ
1950 restart = &current_thread_info()->restart_block;
1951 restart->fn = futex_wait_restart;
a3c74c52 1952 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1953 restart->futex.val = val;
1954 restart->futex.time = abs_time->tv64;
1955 restart->futex.bitset = bitset;
0cd9c649 1956 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1957
2fff78c7
PZ
1958 ret = -ERESTART_RESTARTBLOCK;
1959
42d35d48 1960out:
ca5f9524
DH
1961 if (to) {
1962 hrtimer_cancel(&to->timer);
1963 destroy_hrtimer_on_stack(&to->timer);
1964 }
c87e2837
IM
1965 return ret;
1966}
1967
72c1bbf3
NP
1968
1969static long futex_wait_restart(struct restart_block *restart)
1970{
a3c74c52 1971 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1972 ktime_t t, *tp = NULL;
72c1bbf3 1973
a72188d8
DH
1974 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1975 t.tv64 = restart->futex.time;
1976 tp = &t;
1977 }
72c1bbf3 1978 restart->fn = do_no_restart_syscall;
b41277dc
DH
1979
1980 return (long)futex_wait(uaddr, restart->futex.flags,
1981 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1982}
1983
1984
c87e2837
IM
1985/*
1986 * Userspace tried a 0 -> TID atomic transition of the futex value
1987 * and failed. The kernel side here does the whole locking operation:
1988 * if there are waiters then it will block, it does PI, etc. (Due to
1989 * races the kernel might see a 0 value of the futex too.)
1990 */
b41277dc
DH
1991static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1992 ktime_t *time, int trylock)
c87e2837 1993{
c5780e97 1994 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1995 struct futex_hash_bucket *hb;
5bdb05f9 1996 struct futex_q q = futex_q_init;
dd973998 1997 int res, ret;
c87e2837
IM
1998
1999 if (refill_pi_state_cache())
2000 return -ENOMEM;
2001
c19384b5 2002 if (time) {
c5780e97 2003 to = &timeout;
237fc6e7
TG
2004 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2005 HRTIMER_MODE_ABS);
c5780e97 2006 hrtimer_init_sleeper(to, current);
cc584b21 2007 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2008 }
2009
42d35d48 2010retry:
9ea71503 2011 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2012 if (unlikely(ret != 0))
42d35d48 2013 goto out;
c87e2837 2014
e4dc5b7a 2015retry_private:
82af7aca 2016 hb = queue_lock(&q);
c87e2837 2017
bab5bc9e 2018 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2019 if (unlikely(ret)) {
778e9a9c 2020 switch (ret) {
1a52084d
DH
2021 case 1:
2022 /* We got the lock. */
2023 ret = 0;
2024 goto out_unlock_put_key;
2025 case -EFAULT:
2026 goto uaddr_faulted;
778e9a9c
AK
2027 case -EAGAIN:
2028 /*
2029 * Task is exiting and we just wait for the
2030 * exit to complete.
2031 */
2032 queue_unlock(&q, hb);
ae791a2d 2033 put_futex_key(&q.key);
778e9a9c
AK
2034 cond_resched();
2035 goto retry;
778e9a9c 2036 default:
42d35d48 2037 goto out_unlock_put_key;
c87e2837 2038 }
c87e2837
IM
2039 }
2040
2041 /*
2042 * Only actually queue now that the atomic ops are done:
2043 */
82af7aca 2044 queue_me(&q, hb);
c87e2837 2045
c87e2837
IM
2046 WARN_ON(!q.pi_state);
2047 /*
2048 * Block on the PI mutex:
2049 */
2050 if (!trylock)
2051 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2052 else {
2053 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2054 /* Fixup the trylock return value: */
2055 ret = ret ? 0 : -EWOULDBLOCK;
2056 }
2057
a99e4e41 2058 spin_lock(q.lock_ptr);
dd973998
DH
2059 /*
2060 * Fixup the pi_state owner and possibly acquire the lock if we
2061 * haven't already.
2062 */
ae791a2d 2063 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2064 /*
2065 * If fixup_owner() returned an error, proprogate that. If it acquired
2066 * the lock, clear our -ETIMEDOUT or -EINTR.
2067 */
2068 if (res)
2069 ret = (res < 0) ? res : 0;
c87e2837 2070
e8f6386c 2071 /*
dd973998
DH
2072 * If fixup_owner() faulted and was unable to handle the fault, unlock
2073 * it and return the fault to userspace.
e8f6386c
DH
2074 */
2075 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2076 rt_mutex_unlock(&q.pi_state->pi_mutex);
2077
778e9a9c
AK
2078 /* Unqueue and drop the lock */
2079 unqueue_me_pi(&q);
c87e2837 2080
5ecb01cf 2081 goto out_put_key;
c87e2837 2082
42d35d48 2083out_unlock_put_key:
c87e2837
IM
2084 queue_unlock(&q, hb);
2085
42d35d48 2086out_put_key:
ae791a2d 2087 put_futex_key(&q.key);
42d35d48 2088out:
237fc6e7
TG
2089 if (to)
2090 destroy_hrtimer_on_stack(&to->timer);
dd973998 2091 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2092
42d35d48 2093uaddr_faulted:
778e9a9c
AK
2094 queue_unlock(&q, hb);
2095
d0725992 2096 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2097 if (ret)
2098 goto out_put_key;
c87e2837 2099
b41277dc 2100 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2101 goto retry_private;
2102
ae791a2d 2103 put_futex_key(&q.key);
e4dc5b7a 2104 goto retry;
c87e2837
IM
2105}
2106
c87e2837
IM
2107/*
2108 * Userspace attempted a TID -> 0 atomic transition, and failed.
2109 * This is the in-kernel slowpath: we look up the PI state (if any),
2110 * and do the rt-mutex unlock.
2111 */
b41277dc 2112static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2113{
2114 struct futex_hash_bucket *hb;
2115 struct futex_q *this, *next;
ec92d082 2116 struct plist_head *head;
38d47c1b 2117 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2118 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2119 int ret;
c87e2837
IM
2120
2121retry:
2122 if (get_user(uval, uaddr))
2123 return -EFAULT;
2124 /*
2125 * We release only a lock we actually own:
2126 */
c0c9ed15 2127 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2128 return -EPERM;
c87e2837 2129
9ea71503 2130 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2131 if (unlikely(ret != 0))
2132 goto out;
2133
2134 hb = hash_futex(&key);
2135 spin_lock(&hb->lock);
2136
c87e2837
IM
2137 /*
2138 * To avoid races, try to do the TID -> 0 atomic transition
2139 * again. If it succeeds then we can return without waking
2140 * anyone else up:
2141 */
37a9d912
ML
2142 if (!(uval & FUTEX_OWNER_DIED) &&
2143 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2144 goto pi_faulted;
2145 /*
2146 * Rare case: we managed to release the lock atomically,
2147 * no need to wake anyone else up:
2148 */
c0c9ed15 2149 if (unlikely(uval == vpid))
c87e2837
IM
2150 goto out_unlock;
2151
2152 /*
2153 * Ok, other tasks may need to be woken up - check waiters
2154 * and do the wakeup if necessary:
2155 */
2156 head = &hb->chain;
2157
ec92d082 2158 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2159 if (!match_futex (&this->key, &key))
2160 continue;
2161 ret = wake_futex_pi(uaddr, uval, this);
2162 /*
2163 * The atomic access to the futex value
2164 * generated a pagefault, so retry the
2165 * user-access and the wakeup:
2166 */
2167 if (ret == -EFAULT)
2168 goto pi_faulted;
2169 goto out_unlock;
2170 }
2171 /*
2172 * No waiters - kernel unlocks the futex:
2173 */
e3f2ddea
IM
2174 if (!(uval & FUTEX_OWNER_DIED)) {
2175 ret = unlock_futex_pi(uaddr, uval);
2176 if (ret == -EFAULT)
2177 goto pi_faulted;
2178 }
c87e2837
IM
2179
2180out_unlock:
2181 spin_unlock(&hb->lock);
ae791a2d 2182 put_futex_key(&key);
c87e2837 2183
42d35d48 2184out:
c87e2837
IM
2185 return ret;
2186
2187pi_faulted:
778e9a9c 2188 spin_unlock(&hb->lock);
ae791a2d 2189 put_futex_key(&key);
c87e2837 2190
d0725992 2191 ret = fault_in_user_writeable(uaddr);
b5686363 2192 if (!ret)
c87e2837
IM
2193 goto retry;
2194
1da177e4
LT
2195 return ret;
2196}
2197
52400ba9
DH
2198/**
2199 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2200 * @hb: the hash_bucket futex_q was original enqueued on
2201 * @q: the futex_q woken while waiting to be requeued
2202 * @key2: the futex_key of the requeue target futex
2203 * @timeout: the timeout associated with the wait (NULL if none)
2204 *
2205 * Detect if the task was woken on the initial futex as opposed to the requeue
2206 * target futex. If so, determine if it was a timeout or a signal that caused
2207 * the wakeup and return the appropriate error code to the caller. Must be
2208 * called with the hb lock held.
2209 *
6c23cbbd
RD
2210 * Return:
2211 * 0 = no early wakeup detected;
2212 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2213 */
2214static inline
2215int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2216 struct futex_q *q, union futex_key *key2,
2217 struct hrtimer_sleeper *timeout)
2218{
2219 int ret = 0;
2220
2221 /*
2222 * With the hb lock held, we avoid races while we process the wakeup.
2223 * We only need to hold hb (and not hb2) to ensure atomicity as the
2224 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2225 * It can't be requeued from uaddr2 to something else since we don't
2226 * support a PI aware source futex for requeue.
2227 */
2228 if (!match_futex(&q->key, key2)) {
2229 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2230 /*
2231 * We were woken prior to requeue by a timeout or a signal.
2232 * Unqueue the futex_q and determine which it was.
2233 */
2e12978a 2234 plist_del(&q->list, &hb->chain);
52400ba9 2235
d58e6576 2236 /* Handle spurious wakeups gracefully */
11df6ddd 2237 ret = -EWOULDBLOCK;
52400ba9
DH
2238 if (timeout && !timeout->task)
2239 ret = -ETIMEDOUT;
d58e6576 2240 else if (signal_pending(current))
1c840c14 2241 ret = -ERESTARTNOINTR;
52400ba9
DH
2242 }
2243 return ret;
2244}
2245
2246/**
2247 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2248 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2249 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2250 * the same type, no requeueing from private to shared, etc.
2251 * @val: the expected value of uaddr
2252 * @abs_time: absolute timeout
56ec1607 2253 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2254 * @uaddr2: the pi futex we will take prior to returning to user-space
2255 *
2256 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2257 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2258 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2259 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2260 * without one, the pi logic would not know which task to boost/deboost, if
2261 * there was a need to.
52400ba9
DH
2262 *
2263 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2264 * via the following--
52400ba9 2265 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2266 * 2) wakeup on uaddr2 after a requeue
2267 * 3) signal
2268 * 4) timeout
52400ba9 2269 *
cc6db4e6 2270 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2271 *
2272 * If 2, we may then block on trying to take the rt_mutex and return via:
2273 * 5) successful lock
2274 * 6) signal
2275 * 7) timeout
2276 * 8) other lock acquisition failure
2277 *
cc6db4e6 2278 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2279 *
2280 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2281 *
6c23cbbd
RD
2282 * Return:
2283 * 0 - On success;
52400ba9
DH
2284 * <0 - On error
2285 */
b41277dc 2286static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2287 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2288 u32 __user *uaddr2)
52400ba9
DH
2289{
2290 struct hrtimer_sleeper timeout, *to = NULL;
2291 struct rt_mutex_waiter rt_waiter;
2292 struct rt_mutex *pi_mutex = NULL;
52400ba9 2293 struct futex_hash_bucket *hb;
5bdb05f9
DH
2294 union futex_key key2 = FUTEX_KEY_INIT;
2295 struct futex_q q = futex_q_init;
52400ba9 2296 int res, ret;
52400ba9 2297
6f7b0a2a
DH
2298 if (uaddr == uaddr2)
2299 return -EINVAL;
2300
52400ba9
DH
2301 if (!bitset)
2302 return -EINVAL;
2303
2304 if (abs_time) {
2305 to = &timeout;
b41277dc
DH
2306 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2307 CLOCK_REALTIME : CLOCK_MONOTONIC,
2308 HRTIMER_MODE_ABS);
52400ba9
DH
2309 hrtimer_init_sleeper(to, current);
2310 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2311 current->timer_slack_ns);
2312 }
2313
2314 /*
2315 * The waiter is allocated on our stack, manipulated by the requeue
2316 * code while we sleep on uaddr.
2317 */
2318 debug_rt_mutex_init_waiter(&rt_waiter);
2319 rt_waiter.task = NULL;
2320
9ea71503 2321 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2322 if (unlikely(ret != 0))
2323 goto out;
2324
84bc4af5
DH
2325 q.bitset = bitset;
2326 q.rt_waiter = &rt_waiter;
2327 q.requeue_pi_key = &key2;
2328
7ada876a
DH
2329 /*
2330 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2331 * count.
2332 */
b41277dc 2333 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2334 if (ret)
2335 goto out_key2;
52400ba9
DH
2336
2337 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2338 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2339
2340 spin_lock(&hb->lock);
2341 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2342 spin_unlock(&hb->lock);
2343 if (ret)
2344 goto out_put_keys;
2345
2346 /*
2347 * In order for us to be here, we know our q.key == key2, and since
2348 * we took the hb->lock above, we also know that futex_requeue() has
2349 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2350 * race with the atomic proxy lock acquisition by the requeue code. The
2351 * futex_requeue dropped our key1 reference and incremented our key2
2352 * reference count.
52400ba9
DH
2353 */
2354
2355 /* Check if the requeue code acquired the second futex for us. */
2356 if (!q.rt_waiter) {
2357 /*
2358 * Got the lock. We might not be the anticipated owner if we
2359 * did a lock-steal - fix up the PI-state in that case.
2360 */
2361 if (q.pi_state && (q.pi_state->owner != current)) {
2362 spin_lock(q.lock_ptr);
ae791a2d 2363 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2364 spin_unlock(q.lock_ptr);
2365 }
2366 } else {
2367 /*
2368 * We have been woken up by futex_unlock_pi(), a timeout, or a
2369 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2370 * the pi_state.
2371 */
f27071cb 2372 WARN_ON(!q.pi_state);
52400ba9
DH
2373 pi_mutex = &q.pi_state->pi_mutex;
2374 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2375 debug_rt_mutex_free_waiter(&rt_waiter);
2376
2377 spin_lock(q.lock_ptr);
2378 /*
2379 * Fixup the pi_state owner and possibly acquire the lock if we
2380 * haven't already.
2381 */
ae791a2d 2382 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2383 /*
2384 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2385 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2386 */
2387 if (res)
2388 ret = (res < 0) ? res : 0;
2389
2390 /* Unqueue and drop the lock. */
2391 unqueue_me_pi(&q);
2392 }
2393
2394 /*
2395 * If fixup_pi_state_owner() faulted and was unable to handle the
2396 * fault, unlock the rt_mutex and return the fault to userspace.
2397 */
2398 if (ret == -EFAULT) {
b6070a8d 2399 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2400 rt_mutex_unlock(pi_mutex);
2401 } else if (ret == -EINTR) {
52400ba9 2402 /*
cc6db4e6
DH
2403 * We've already been requeued, but cannot restart by calling
2404 * futex_lock_pi() directly. We could restart this syscall, but
2405 * it would detect that the user space "val" changed and return
2406 * -EWOULDBLOCK. Save the overhead of the restart and return
2407 * -EWOULDBLOCK directly.
52400ba9 2408 */
2070887f 2409 ret = -EWOULDBLOCK;
52400ba9
DH
2410 }
2411
2412out_put_keys:
ae791a2d 2413 put_futex_key(&q.key);
c8b15a70 2414out_key2:
ae791a2d 2415 put_futex_key(&key2);
52400ba9
DH
2416
2417out:
2418 if (to) {
2419 hrtimer_cancel(&to->timer);
2420 destroy_hrtimer_on_stack(&to->timer);
2421 }
2422 return ret;
2423}
2424
0771dfef
IM
2425/*
2426 * Support for robust futexes: the kernel cleans up held futexes at
2427 * thread exit time.
2428 *
2429 * Implementation: user-space maintains a per-thread list of locks it
2430 * is holding. Upon do_exit(), the kernel carefully walks this list,
2431 * and marks all locks that are owned by this thread with the
c87e2837 2432 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2433 * always manipulated with the lock held, so the list is private and
2434 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2435 * field, to allow the kernel to clean up if the thread dies after
2436 * acquiring the lock, but just before it could have added itself to
2437 * the list. There can only be one such pending lock.
2438 */
2439
2440/**
d96ee56c
DH
2441 * sys_set_robust_list() - Set the robust-futex list head of a task
2442 * @head: pointer to the list-head
2443 * @len: length of the list-head, as userspace expects
0771dfef 2444 */
836f92ad
HC
2445SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2446 size_t, len)
0771dfef 2447{
a0c1e907
TG
2448 if (!futex_cmpxchg_enabled)
2449 return -ENOSYS;
0771dfef
IM
2450 /*
2451 * The kernel knows only one size for now:
2452 */
2453 if (unlikely(len != sizeof(*head)))
2454 return -EINVAL;
2455
2456 current->robust_list = head;
2457
2458 return 0;
2459}
2460
2461/**
d96ee56c
DH
2462 * sys_get_robust_list() - Get the robust-futex list head of a task
2463 * @pid: pid of the process [zero for current task]
2464 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2465 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2466 */
836f92ad
HC
2467SYSCALL_DEFINE3(get_robust_list, int, pid,
2468 struct robust_list_head __user * __user *, head_ptr,
2469 size_t __user *, len_ptr)
0771dfef 2470{
ba46df98 2471 struct robust_list_head __user *head;
0771dfef 2472 unsigned long ret;
bdbb776f 2473 struct task_struct *p;
0771dfef 2474
a0c1e907
TG
2475 if (!futex_cmpxchg_enabled)
2476 return -ENOSYS;
2477
bdbb776f
KC
2478 rcu_read_lock();
2479
2480 ret = -ESRCH;
0771dfef 2481 if (!pid)
bdbb776f 2482 p = current;
0771dfef 2483 else {
228ebcbe 2484 p = find_task_by_vpid(pid);
0771dfef
IM
2485 if (!p)
2486 goto err_unlock;
0771dfef
IM
2487 }
2488
bdbb776f
KC
2489 ret = -EPERM;
2490 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2491 goto err_unlock;
2492
2493 head = p->robust_list;
2494 rcu_read_unlock();
2495
0771dfef
IM
2496 if (put_user(sizeof(*head), len_ptr))
2497 return -EFAULT;
2498 return put_user(head, head_ptr);
2499
2500err_unlock:
aaa2a97e 2501 rcu_read_unlock();
0771dfef
IM
2502
2503 return ret;
2504}
2505
2506/*
2507 * Process a futex-list entry, check whether it's owned by the
2508 * dying task, and do notification if so:
2509 */
e3f2ddea 2510int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2511{
7cfdaf38 2512 u32 uval, uninitialized_var(nval), mval;
0771dfef 2513
8f17d3a5
IM
2514retry:
2515 if (get_user(uval, uaddr))
0771dfef
IM
2516 return -1;
2517
b488893a 2518 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2519 /*
2520 * Ok, this dying thread is truly holding a futex
2521 * of interest. Set the OWNER_DIED bit atomically
2522 * via cmpxchg, and if the value had FUTEX_WAITERS
2523 * set, wake up a waiter (if any). (We have to do a
2524 * futex_wake() even if OWNER_DIED is already set -
2525 * to handle the rare but possible case of recursive
2526 * thread-death.) The rest of the cleanup is done in
2527 * userspace.
2528 */
e3f2ddea 2529 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2530 /*
2531 * We are not holding a lock here, but we want to have
2532 * the pagefault_disable/enable() protection because
2533 * we want to handle the fault gracefully. If the
2534 * access fails we try to fault in the futex with R/W
2535 * verification via get_user_pages. get_user() above
2536 * does not guarantee R/W access. If that fails we
2537 * give up and leave the futex locked.
2538 */
2539 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2540 if (fault_in_user_writeable(uaddr))
2541 return -1;
2542 goto retry;
2543 }
c87e2837 2544 if (nval != uval)
8f17d3a5 2545 goto retry;
0771dfef 2546
e3f2ddea
IM
2547 /*
2548 * Wake robust non-PI futexes here. The wakeup of
2549 * PI futexes happens in exit_pi_state():
2550 */
36cf3b5c 2551 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2552 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2553 }
2554 return 0;
2555}
2556
e3f2ddea
IM
2557/*
2558 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2559 */
2560static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2561 struct robust_list __user * __user *head,
1dcc41bb 2562 unsigned int *pi)
e3f2ddea
IM
2563{
2564 unsigned long uentry;
2565
ba46df98 2566 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2567 return -EFAULT;
2568
ba46df98 2569 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2570 *pi = uentry & 1;
2571
2572 return 0;
2573}
2574
0771dfef
IM
2575/*
2576 * Walk curr->robust_list (very carefully, it's a userspace list!)
2577 * and mark any locks found there dead, and notify any waiters.
2578 *
2579 * We silently return on any sign of list-walking problem.
2580 */
2581void exit_robust_list(struct task_struct *curr)
2582{
2583 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2584 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2585 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2586 unsigned int uninitialized_var(next_pi);
0771dfef 2587 unsigned long futex_offset;
9f96cb1e 2588 int rc;
0771dfef 2589
a0c1e907
TG
2590 if (!futex_cmpxchg_enabled)
2591 return;
2592
0771dfef
IM
2593 /*
2594 * Fetch the list head (which was registered earlier, via
2595 * sys_set_robust_list()):
2596 */
e3f2ddea 2597 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2598 return;
2599 /*
2600 * Fetch the relative futex offset:
2601 */
2602 if (get_user(futex_offset, &head->futex_offset))
2603 return;
2604 /*
2605 * Fetch any possibly pending lock-add first, and handle it
2606 * if it exists:
2607 */
e3f2ddea 2608 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2609 return;
e3f2ddea 2610
9f96cb1e 2611 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2612 while (entry != &head->list) {
9f96cb1e
MS
2613 /*
2614 * Fetch the next entry in the list before calling
2615 * handle_futex_death:
2616 */
2617 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2618 /*
2619 * A pending lock might already be on the list, so
c87e2837 2620 * don't process it twice:
0771dfef
IM
2621 */
2622 if (entry != pending)
ba46df98 2623 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2624 curr, pi))
0771dfef 2625 return;
9f96cb1e 2626 if (rc)
0771dfef 2627 return;
9f96cb1e
MS
2628 entry = next_entry;
2629 pi = next_pi;
0771dfef
IM
2630 /*
2631 * Avoid excessively long or circular lists:
2632 */
2633 if (!--limit)
2634 break;
2635
2636 cond_resched();
2637 }
9f96cb1e
MS
2638
2639 if (pending)
2640 handle_futex_death((void __user *)pending + futex_offset,
2641 curr, pip);
0771dfef
IM
2642}
2643
c19384b5 2644long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2645 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2646{
81b40539 2647 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2648 unsigned int flags = 0;
34f01cc1
ED
2649
2650 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2651 flags |= FLAGS_SHARED;
1da177e4 2652
b41277dc
DH
2653 if (op & FUTEX_CLOCK_REALTIME) {
2654 flags |= FLAGS_CLOCKRT;
2655 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2656 return -ENOSYS;
2657 }
1da177e4 2658
59263b51
TG
2659 switch (cmd) {
2660 case FUTEX_LOCK_PI:
2661 case FUTEX_UNLOCK_PI:
2662 case FUTEX_TRYLOCK_PI:
2663 case FUTEX_WAIT_REQUEUE_PI:
2664 case FUTEX_CMP_REQUEUE_PI:
2665 if (!futex_cmpxchg_enabled)
2666 return -ENOSYS;
2667 }
2668
34f01cc1 2669 switch (cmd) {
1da177e4 2670 case FUTEX_WAIT:
cd689985
TG
2671 val3 = FUTEX_BITSET_MATCH_ANY;
2672 case FUTEX_WAIT_BITSET:
81b40539 2673 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2674 case FUTEX_WAKE:
cd689985
TG
2675 val3 = FUTEX_BITSET_MATCH_ANY;
2676 case FUTEX_WAKE_BITSET:
81b40539 2677 return futex_wake(uaddr, flags, val, val3);
1da177e4 2678 case FUTEX_REQUEUE:
81b40539 2679 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2680 case FUTEX_CMP_REQUEUE:
81b40539 2681 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2682 case FUTEX_WAKE_OP:
81b40539 2683 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2684 case FUTEX_LOCK_PI:
81b40539 2685 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2686 case FUTEX_UNLOCK_PI:
81b40539 2687 return futex_unlock_pi(uaddr, flags);
c87e2837 2688 case FUTEX_TRYLOCK_PI:
81b40539 2689 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2690 case FUTEX_WAIT_REQUEUE_PI:
2691 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2692 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2693 uaddr2);
52400ba9 2694 case FUTEX_CMP_REQUEUE_PI:
81b40539 2695 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2696 }
81b40539 2697 return -ENOSYS;
1da177e4
LT
2698}
2699
2700
17da2bd9
HC
2701SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2702 struct timespec __user *, utime, u32 __user *, uaddr2,
2703 u32, val3)
1da177e4 2704{
c19384b5
PP
2705 struct timespec ts;
2706 ktime_t t, *tp = NULL;
e2970f2f 2707 u32 val2 = 0;
34f01cc1 2708 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2709
cd689985 2710 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2711 cmd == FUTEX_WAIT_BITSET ||
2712 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2713 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2714 return -EFAULT;
c19384b5 2715 if (!timespec_valid(&ts))
9741ef96 2716 return -EINVAL;
c19384b5
PP
2717
2718 t = timespec_to_ktime(ts);
34f01cc1 2719 if (cmd == FUTEX_WAIT)
5a7780e7 2720 t = ktime_add_safe(ktime_get(), t);
c19384b5 2721 tp = &t;
1da177e4
LT
2722 }
2723 /*
52400ba9 2724 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2725 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2726 */
f54f0986 2727 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2728 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2729 val2 = (u32) (unsigned long) utime;
1da177e4 2730
c19384b5 2731 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2732}
2733
f6d107fb 2734static int __init futex_init(void)
1da177e4 2735{
a0c1e907 2736 u32 curval;
3e4ab747 2737 int i;
95362fa9 2738
a0c1e907
TG
2739 /*
2740 * This will fail and we want it. Some arch implementations do
2741 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2742 * functionality. We want to know that before we call in any
2743 * of the complex code paths. Also we want to prevent
2744 * registration of robust lists in that case. NULL is
2745 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2746 * implementation, the non-functional ones will return
a0c1e907
TG
2747 * -ENOSYS.
2748 */
37a9d912 2749 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2750 futex_cmpxchg_enabled = 1;
2751
3e4ab747 2752 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2753 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2754 spin_lock_init(&futex_queues[i].lock);
2755 }
2756
1da177e4
LT
2757 return 0;
2758}
f6d107fb 2759__initcall(futex_init);