]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
rtmutex: Remove unused argument from rt_mutex_proxy_unlock()
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
13d60f4b 38#include <linux/hugetlb.h>
88c8004f 39#include <linux/freezer.h>
57c8a661 40#include <linux/memblock.h>
ab51fbab 41#include <linux/fault-inject.h>
c2f7d08c 42#include <linux/time_namespace.h>
b488893a 43
4732efbe 44#include <asm/futex.h>
1da177e4 45
1696a8be 46#include "locking/rtmutex_common.h"
c87e2837 47
99b60ce6 48/*
d7e8af1a
DB
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
99b60ce6
TG
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
99b60ce6
TG
60 *
61 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
99b60ce6 65 *
b0c29f79
DB
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 91 *
b0c29f79
DB
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
99b60ce6
TG
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
b0c29f79 100 *
d7e8af1a 101 * waiters++; (a)
8ad7b378
DB
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
99b60ce6 112 * if (uval == val)
b0c29f79 113 * queue();
99b60ce6 114 * unlock(hash_bucket(futex));
b0c29f79
DB
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
d7e8af1a
DB
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 119 *
d7e8af1a
DB
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 122 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
d7e8af1a
DB
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
146 */
147
04e7712f
AB
148#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149#define futex_cmpxchg_enabled 1
150#else
151static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 152#endif
a0c1e907 153
b41277dc
DH
154/*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
784bdf3b
TG
158#ifdef CONFIG_MMU
159# define FLAGS_SHARED 0x01
160#else
161/*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165# define FLAGS_SHARED 0x00
166#endif
b41277dc
DH
167#define FLAGS_CLOCKRT 0x02
168#define FLAGS_HAS_TIMEOUT 0x04
169
c87e2837
IM
170/*
171 * Priority Inheritance state:
172 */
173struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
49262de2 186 refcount_t refcount;
c87e2837
IM
187
188 union futex_key key;
3859a271 189} __randomize_layout;
c87e2837 190
d8d88fbb
DH
191/**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 193 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
ac6424b9 202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 207 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
212 */
213struct futex_q {
ec92d082 214 struct plist_node list;
1da177e4 215
d8d88fbb 216 struct task_struct *task;
1da177e4 217 spinlock_t *lock_ptr;
1da177e4 218 union futex_key key;
c87e2837 219 struct futex_pi_state *pi_state;
52400ba9 220 struct rt_mutex_waiter *rt_waiter;
84bc4af5 221 union futex_key *requeue_pi_key;
cd689985 222 u32 bitset;
3859a271 223} __randomize_layout;
1da177e4 224
5bdb05f9
DH
225static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229};
230
1da177e4 231/*
b2d0994b
DH
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
1da177e4
LT
235 */
236struct futex_hash_bucket {
11d4616b 237 atomic_t waiters;
ec92d082
PP
238 spinlock_t lock;
239 struct plist_head chain;
a52b89eb 240} ____cacheline_aligned_in_smp;
1da177e4 241
ac742d37
RV
242/*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250} __futex_data __read_mostly __aligned(2*sizeof(long));
251#define futex_queues (__futex_data.queues)
252#define futex_hashsize (__futex_data.hashsize)
a52b89eb 253
1da177e4 254
ab51fbab
DB
255/*
256 * Fault injections for futexes.
257 */
258#ifdef CONFIG_FAIL_FUTEX
259
260static struct {
261 struct fault_attr attr;
262
621a5f7a 263 bool ignore_private;
ab51fbab
DB
264} fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 266 .ignore_private = false,
ab51fbab
DB
267};
268
269static int __init setup_fail_futex(char *str)
270{
271 return setup_fault_attr(&fail_futex.attr, str);
272}
273__setup("fail_futex=", setup_fail_futex);
274
5d285a7f 275static bool should_fail_futex(bool fshared)
ab51fbab
DB
276{
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281}
282
283#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285static int __init fail_futex_debugfs(void)
286{
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
0365aeba
GKH
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
ab51fbab
DB
297 return 0;
298}
299
300late_initcall(fail_futex_debugfs);
301
302#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304#else
305static inline bool should_fail_futex(bool fshared)
306{
307 return false;
308}
309#endif /* CONFIG_FAIL_FUTEX */
310
ba31c1a4
TG
311#ifdef CONFIG_COMPAT
312static void compat_exit_robust_list(struct task_struct *curr);
ba31c1a4
TG
313#endif
314
11d4616b
LT
315/*
316 * Reflects a new waiter being added to the waitqueue.
317 */
318static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
319{
320#ifdef CONFIG_SMP
11d4616b 321 atomic_inc(&hb->waiters);
b0c29f79 322 /*
11d4616b 323 * Full barrier (A), see the ordering comment above.
b0c29f79 324 */
4e857c58 325 smp_mb__after_atomic();
11d4616b
LT
326#endif
327}
328
329/*
330 * Reflects a waiter being removed from the waitqueue by wakeup
331 * paths.
332 */
333static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
334{
335#ifdef CONFIG_SMP
336 atomic_dec(&hb->waiters);
337#endif
338}
b0c29f79 339
11d4616b
LT
340static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
341{
342#ifdef CONFIG_SMP
4b39f99c
PZ
343 /*
344 * Full barrier (B), see the ordering comment above.
345 */
346 smp_mb();
11d4616b 347 return atomic_read(&hb->waiters);
b0c29f79 348#else
11d4616b 349 return 1;
b0c29f79
DB
350#endif
351}
352
e8b61b3f
TG
353/**
354 * hash_futex - Return the hash bucket in the global hash
355 * @key: Pointer to the futex key for which the hash is calculated
356 *
357 * We hash on the keys returned from get_futex_key (see below) and return the
358 * corresponding hash bucket in the global hash.
1da177e4
LT
359 */
360static struct futex_hash_bucket *hash_futex(union futex_key *key)
361{
8d677436 362 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 363 key->both.offset);
8d677436 364
a52b89eb 365 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
366}
367
e8b61b3f
TG
368
369/**
370 * match_futex - Check whether two futex keys are equal
371 * @key1: Pointer to key1
372 * @key2: Pointer to key2
373 *
1da177e4
LT
374 * Return 1 if two futex_keys are equal, 0 otherwise.
375 */
376static inline int match_futex(union futex_key *key1, union futex_key *key2)
377{
2bc87203
DH
378 return (key1 && key2
379 && key1->both.word == key2->both.word
1da177e4
LT
380 && key1->both.ptr == key2->both.ptr
381 && key1->both.offset == key2->both.offset);
382}
383
96d4f267
LT
384enum futex_access {
385 FUTEX_READ,
386 FUTEX_WRITE
387};
388
5ca584d9
WL
389/**
390 * futex_setup_timer - set up the sleeping hrtimer.
391 * @time: ptr to the given timeout value
392 * @timeout: the hrtimer_sleeper structure to be set up
393 * @flags: futex flags
394 * @range_ns: optional range in ns
395 *
396 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
397 * value given
398 */
399static inline struct hrtimer_sleeper *
400futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
401 int flags, u64 range_ns)
402{
403 if (!time)
404 return NULL;
405
dbc1625f
SAS
406 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
407 CLOCK_REALTIME : CLOCK_MONOTONIC,
408 HRTIMER_MODE_ABS);
5ca584d9
WL
409 /*
410 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
411 * effectively the same as calling hrtimer_set_expires().
412 */
413 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
414
415 return timeout;
416}
417
8019ad13
PZ
418/*
419 * Generate a machine wide unique identifier for this inode.
420 *
421 * This relies on u64 not wrapping in the life-time of the machine; which with
422 * 1ns resolution means almost 585 years.
423 *
424 * This further relies on the fact that a well formed program will not unmap
425 * the file while it has a (shared) futex waiting on it. This mapping will have
426 * a file reference which pins the mount and inode.
427 *
428 * If for some reason an inode gets evicted and read back in again, it will get
429 * a new sequence number and will _NOT_ match, even though it is the exact same
430 * file.
431 *
432 * It is important that match_futex() will never have a false-positive, esp.
433 * for PI futexes that can mess up the state. The above argues that false-negatives
434 * are only possible for malformed programs.
435 */
436static u64 get_inode_sequence_number(struct inode *inode)
437{
438 static atomic64_t i_seq;
439 u64 old;
440
441 /* Does the inode already have a sequence number? */
442 old = atomic64_read(&inode->i_sequence);
443 if (likely(old))
444 return old;
445
446 for (;;) {
447 u64 new = atomic64_add_return(1, &i_seq);
448 if (WARN_ON_ONCE(!new))
449 continue;
450
451 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
452 if (old)
453 return old;
454 return new;
455 }
456}
457
34f01cc1 458/**
d96ee56c
DH
459 * get_futex_key() - Get parameters which are the keys for a futex
460 * @uaddr: virtual address of the futex
92613085 461 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 462 * @key: address where result is stored.
96d4f267
LT
463 * @rw: mapping needs to be read/write (values: FUTEX_READ,
464 * FUTEX_WRITE)
34f01cc1 465 *
6c23cbbd
RD
466 * Return: a negative error code or 0
467 *
7b4ff1ad 468 * The key words are stored in @key on success.
1da177e4 469 *
8019ad13 470 * For shared mappings (when @fshared), the key is:
03c109d6 471 *
8019ad13 472 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 473 *
8019ad13
PZ
474 * [ also see get_inode_sequence_number() ]
475 *
476 * For private mappings (or when !@fshared), the key is:
03c109d6 477 *
8019ad13
PZ
478 * ( current->mm, address, 0 )
479 *
480 * This allows (cross process, where applicable) identification of the futex
481 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 482 *
b2d0994b 483 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 484 */
92613085
AA
485static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
486 enum futex_access rw)
1da177e4 487{
e2970f2f 488 unsigned long address = (unsigned long)uaddr;
1da177e4 489 struct mm_struct *mm = current->mm;
077fa7ae 490 struct page *page, *tail;
14d27abd 491 struct address_space *mapping;
9ea71503 492 int err, ro = 0;
1da177e4
LT
493
494 /*
495 * The futex address must be "naturally" aligned.
496 */
e2970f2f 497 key->both.offset = address % PAGE_SIZE;
34f01cc1 498 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 499 return -EINVAL;
e2970f2f 500 address -= key->both.offset;
1da177e4 501
96d4f267 502 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
503 return -EFAULT;
504
ab51fbab
DB
505 if (unlikely(should_fail_futex(fshared)))
506 return -EFAULT;
507
34f01cc1
ED
508 /*
509 * PROCESS_PRIVATE futexes are fast.
510 * As the mm cannot disappear under us and the 'key' only needs
511 * virtual address, we dont even have to find the underlying vma.
512 * Note : We do have to check 'uaddr' is a valid user address,
513 * but access_ok() should be faster than find_vma()
514 */
515 if (!fshared) {
34f01cc1
ED
516 key->private.mm = mm;
517 key->private.address = address;
518 return 0;
519 }
1da177e4 520
38d47c1b 521again:
ab51fbab 522 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 523 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
524 return -EFAULT;
525
73b0140b 526 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
527 /*
528 * If write access is not required (eg. FUTEX_WAIT), try
529 * and get read-only access.
530 */
96d4f267 531 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
532 err = get_user_pages_fast(address, 1, 0, &page);
533 ro = 1;
534 }
38d47c1b
PZ
535 if (err < 0)
536 return err;
9ea71503
SB
537 else
538 err = 0;
38d47c1b 539
65d8fc77
MG
540 /*
541 * The treatment of mapping from this point on is critical. The page
542 * lock protects many things but in this context the page lock
543 * stabilizes mapping, prevents inode freeing in the shared
544 * file-backed region case and guards against movement to swap cache.
545 *
546 * Strictly speaking the page lock is not needed in all cases being
547 * considered here and page lock forces unnecessarily serialization
548 * From this point on, mapping will be re-verified if necessary and
549 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
550 *
551 * Mapping checks require the head page for any compound page so the
552 * head page and mapping is looked up now. For anonymous pages, it
553 * does not matter if the page splits in the future as the key is
554 * based on the address. For filesystem-backed pages, the tail is
555 * required as the index of the page determines the key. For
556 * base pages, there is no tail page and tail == page.
65d8fc77 557 */
077fa7ae 558 tail = page;
65d8fc77
MG
559 page = compound_head(page);
560 mapping = READ_ONCE(page->mapping);
561
e6780f72 562 /*
14d27abd 563 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
564 * page; but it might be the ZERO_PAGE or in the gate area or
565 * in a special mapping (all cases which we are happy to fail);
566 * or it may have been a good file page when get_user_pages_fast
567 * found it, but truncated or holepunched or subjected to
568 * invalidate_complete_page2 before we got the page lock (also
569 * cases which we are happy to fail). And we hold a reference,
570 * so refcount care in invalidate_complete_page's remove_mapping
571 * prevents drop_caches from setting mapping to NULL beneath us.
572 *
573 * The case we do have to guard against is when memory pressure made
574 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 575 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 576 */
65d8fc77
MG
577 if (unlikely(!mapping)) {
578 int shmem_swizzled;
579
580 /*
581 * Page lock is required to identify which special case above
582 * applies. If this is really a shmem page then the page lock
583 * will prevent unexpected transitions.
584 */
585 lock_page(page);
586 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
587 unlock_page(page);
588 put_page(page);
65d8fc77 589
e6780f72
HD
590 if (shmem_swizzled)
591 goto again;
65d8fc77 592
e6780f72 593 return -EFAULT;
38d47c1b 594 }
1da177e4
LT
595
596 /*
597 * Private mappings are handled in a simple way.
598 *
65d8fc77
MG
599 * If the futex key is stored on an anonymous page, then the associated
600 * object is the mm which is implicitly pinned by the calling process.
601 *
1da177e4
LT
602 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
603 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 604 * the object not the particular process.
1da177e4 605 */
14d27abd 606 if (PageAnon(page)) {
9ea71503
SB
607 /*
608 * A RO anonymous page will never change and thus doesn't make
609 * sense for futex operations.
610 */
92613085 611 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
612 err = -EFAULT;
613 goto out;
614 }
615
38d47c1b 616 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 617 key->private.mm = mm;
e2970f2f 618 key->private.address = address;
65d8fc77 619
38d47c1b 620 } else {
65d8fc77
MG
621 struct inode *inode;
622
623 /*
624 * The associated futex object in this case is the inode and
625 * the page->mapping must be traversed. Ordinarily this should
626 * be stabilised under page lock but it's not strictly
627 * necessary in this case as we just want to pin the inode, not
628 * update the radix tree or anything like that.
629 *
630 * The RCU read lock is taken as the inode is finally freed
631 * under RCU. If the mapping still matches expectations then the
632 * mapping->host can be safely accessed as being a valid inode.
633 */
634 rcu_read_lock();
635
636 if (READ_ONCE(page->mapping) != mapping) {
637 rcu_read_unlock();
638 put_page(page);
639
640 goto again;
641 }
642
643 inode = READ_ONCE(mapping->host);
644 if (!inode) {
645 rcu_read_unlock();
646 put_page(page);
647
648 goto again;
649 }
650
38d47c1b 651 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 652 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 653 key->shared.pgoff = basepage_index(tail);
65d8fc77 654 rcu_read_unlock();
1da177e4
LT
655 }
656
9ea71503 657out:
14d27abd 658 put_page(page);
9ea71503 659 return err;
1da177e4
LT
660}
661
d96ee56c
DH
662/**
663 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
664 * @uaddr: pointer to faulting user space address
665 *
666 * Slow path to fixup the fault we just took in the atomic write
667 * access to @uaddr.
668 *
fb62db2b 669 * We have no generic implementation of a non-destructive write to the
d0725992
TG
670 * user address. We know that we faulted in the atomic pagefault
671 * disabled section so we can as well avoid the #PF overhead by
672 * calling get_user_pages() right away.
673 */
674static int fault_in_user_writeable(u32 __user *uaddr)
675{
722d0172
AK
676 struct mm_struct *mm = current->mm;
677 int ret;
678
d8ed45c5 679 mmap_read_lock(mm);
64019a2e 680 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 681 FAULT_FLAG_WRITE, NULL);
d8ed45c5 682 mmap_read_unlock(mm);
722d0172 683
d0725992
TG
684 return ret < 0 ? ret : 0;
685}
686
4b1c486b
DH
687/**
688 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
689 * @hb: the hash bucket the futex_q's reside in
690 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
691 *
692 * Must be called with the hb lock held.
693 */
694static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
695 union futex_key *key)
696{
697 struct futex_q *this;
698
699 plist_for_each_entry(this, &hb->chain, list) {
700 if (match_futex(&this->key, key))
701 return this;
702 }
703 return NULL;
704}
705
37a9d912
ML
706static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
707 u32 uval, u32 newval)
36cf3b5c 708{
37a9d912 709 int ret;
36cf3b5c
TG
710
711 pagefault_disable();
37a9d912 712 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
713 pagefault_enable();
714
37a9d912 715 return ret;
36cf3b5c
TG
716}
717
718static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
719{
720 int ret;
721
a866374a 722 pagefault_disable();
bd28b145 723 ret = __get_user(*dest, from);
a866374a 724 pagefault_enable();
1da177e4
LT
725
726 return ret ? -EFAULT : 0;
727}
728
c87e2837
IM
729
730/*
731 * PI code:
732 */
733static int refill_pi_state_cache(void)
734{
735 struct futex_pi_state *pi_state;
736
737 if (likely(current->pi_state_cache))
738 return 0;
739
4668edc3 740 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
741
742 if (!pi_state)
743 return -ENOMEM;
744
c87e2837
IM
745 INIT_LIST_HEAD(&pi_state->list);
746 /* pi_mutex gets initialized later */
747 pi_state->owner = NULL;
49262de2 748 refcount_set(&pi_state->refcount, 1);
38d47c1b 749 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
750
751 current->pi_state_cache = pi_state;
752
753 return 0;
754}
755
bf92cf3a 756static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
757{
758 struct futex_pi_state *pi_state = current->pi_state_cache;
759
760 WARN_ON(!pi_state);
761 current->pi_state_cache = NULL;
762
763 return pi_state;
764}
765
c5cade20
TG
766static void pi_state_update_owner(struct futex_pi_state *pi_state,
767 struct task_struct *new_owner)
768{
769 struct task_struct *old_owner = pi_state->owner;
770
771 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
772
773 if (old_owner) {
774 raw_spin_lock(&old_owner->pi_lock);
775 WARN_ON(list_empty(&pi_state->list));
776 list_del_init(&pi_state->list);
777 raw_spin_unlock(&old_owner->pi_lock);
778 }
779
780 if (new_owner) {
781 raw_spin_lock(&new_owner->pi_lock);
782 WARN_ON(!list_empty(&pi_state->list));
783 list_add(&pi_state->list, &new_owner->pi_state_list);
784 pi_state->owner = new_owner;
785 raw_spin_unlock(&new_owner->pi_lock);
786 }
787}
788
bf92cf3a
PZ
789static void get_pi_state(struct futex_pi_state *pi_state)
790{
49262de2 791 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
792}
793
30a6b803 794/*
29e9ee5d
TG
795 * Drops a reference to the pi_state object and frees or caches it
796 * when the last reference is gone.
30a6b803 797 */
29e9ee5d 798static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 799{
30a6b803
BS
800 if (!pi_state)
801 return;
802
49262de2 803 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
804 return;
805
806 /*
807 * If pi_state->owner is NULL, the owner is most probably dying
808 * and has cleaned up the pi_state already
809 */
810 if (pi_state->owner) {
c74aef2d 811 struct task_struct *owner;
1e106aa3 812 unsigned long flags;
c87e2837 813
1e106aa3 814 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
c74aef2d
PZ
815 owner = pi_state->owner;
816 if (owner) {
817 raw_spin_lock(&owner->pi_lock);
818 list_del_init(&pi_state->list);
819 raw_spin_unlock(&owner->pi_lock);
820 }
2156ac19 821 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
1e106aa3 822 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
c87e2837
IM
823 }
824
c74aef2d 825 if (current->pi_state_cache) {
c87e2837 826 kfree(pi_state);
c74aef2d 827 } else {
c87e2837
IM
828 /*
829 * pi_state->list is already empty.
830 * clear pi_state->owner.
831 * refcount is at 0 - put it back to 1.
832 */
833 pi_state->owner = NULL;
49262de2 834 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
835 current->pi_state_cache = pi_state;
836 }
837}
838
bc2eecd7
NP
839#ifdef CONFIG_FUTEX_PI
840
c87e2837
IM
841/*
842 * This task is holding PI mutexes at exit time => bad.
843 * Kernel cleans up PI-state, but userspace is likely hosed.
844 * (Robust-futex cleanup is separate and might save the day for userspace.)
845 */
ba31c1a4 846static void exit_pi_state_list(struct task_struct *curr)
c87e2837 847{
c87e2837
IM
848 struct list_head *next, *head = &curr->pi_state_list;
849 struct futex_pi_state *pi_state;
627371d7 850 struct futex_hash_bucket *hb;
38d47c1b 851 union futex_key key = FUTEX_KEY_INIT;
c87e2837 852
a0c1e907
TG
853 if (!futex_cmpxchg_enabled)
854 return;
c87e2837
IM
855 /*
856 * We are a ZOMBIE and nobody can enqueue itself on
857 * pi_state_list anymore, but we have to be careful
627371d7 858 * versus waiters unqueueing themselves:
c87e2837 859 */
1d615482 860 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 861 while (!list_empty(head)) {
c87e2837
IM
862 next = head->next;
863 pi_state = list_entry(next, struct futex_pi_state, list);
864 key = pi_state->key;
627371d7 865 hb = hash_futex(&key);
153fbd12
PZ
866
867 /*
868 * We can race against put_pi_state() removing itself from the
869 * list (a waiter going away). put_pi_state() will first
870 * decrement the reference count and then modify the list, so
871 * its possible to see the list entry but fail this reference
872 * acquire.
873 *
874 * In that case; drop the locks to let put_pi_state() make
875 * progress and retry the loop.
876 */
49262de2 877 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
878 raw_spin_unlock_irq(&curr->pi_lock);
879 cpu_relax();
880 raw_spin_lock_irq(&curr->pi_lock);
881 continue;
882 }
1d615482 883 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 884
c87e2837 885 spin_lock(&hb->lock);
c74aef2d
PZ
886 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
887 raw_spin_lock(&curr->pi_lock);
627371d7
IM
888 /*
889 * We dropped the pi-lock, so re-check whether this
890 * task still owns the PI-state:
891 */
c87e2837 892 if (head->next != next) {
153fbd12 893 /* retain curr->pi_lock for the loop invariant */
c74aef2d 894 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 895 spin_unlock(&hb->lock);
153fbd12 896 put_pi_state(pi_state);
c87e2837
IM
897 continue;
898 }
899
c87e2837 900 WARN_ON(pi_state->owner != curr);
627371d7
IM
901 WARN_ON(list_empty(&pi_state->list));
902 list_del_init(&pi_state->list);
c87e2837 903 pi_state->owner = NULL;
c87e2837 904
153fbd12 905 raw_spin_unlock(&curr->pi_lock);
c74aef2d 906 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
907 spin_unlock(&hb->lock);
908
16ffa12d
PZ
909 rt_mutex_futex_unlock(&pi_state->pi_mutex);
910 put_pi_state(pi_state);
911
1d615482 912 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 913 }
1d615482 914 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 915}
ba31c1a4
TG
916#else
917static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
918#endif
919
54a21788
TG
920/*
921 * We need to check the following states:
922 *
923 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
924 *
925 * [1] NULL | --- | --- | 0 | 0/1 | Valid
926 * [2] NULL | --- | --- | >0 | 0/1 | Valid
927 *
928 * [3] Found | NULL | -- | Any | 0/1 | Invalid
929 *
930 * [4] Found | Found | NULL | 0 | 1 | Valid
931 * [5] Found | Found | NULL | >0 | 1 | Invalid
932 *
933 * [6] Found | Found | task | 0 | 1 | Valid
934 *
935 * [7] Found | Found | NULL | Any | 0 | Invalid
936 *
937 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
938 * [9] Found | Found | task | 0 | 0 | Invalid
939 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
940 *
941 * [1] Indicates that the kernel can acquire the futex atomically. We
7b7b8a2c 942 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
54a21788
TG
943 *
944 * [2] Valid, if TID does not belong to a kernel thread. If no matching
945 * thread is found then it indicates that the owner TID has died.
946 *
947 * [3] Invalid. The waiter is queued on a non PI futex
948 *
949 * [4] Valid state after exit_robust_list(), which sets the user space
950 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
951 *
952 * [5] The user space value got manipulated between exit_robust_list()
953 * and exit_pi_state_list()
954 *
955 * [6] Valid state after exit_pi_state_list() which sets the new owner in
956 * the pi_state but cannot access the user space value.
957 *
958 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
959 *
960 * [8] Owner and user space value match
961 *
962 * [9] There is no transient state which sets the user space TID to 0
963 * except exit_robust_list(), but this is indicated by the
964 * FUTEX_OWNER_DIED bit. See [4]
965 *
966 * [10] There is no transient state which leaves owner and user space
967 * TID out of sync.
734009e9
PZ
968 *
969 *
970 * Serialization and lifetime rules:
971 *
972 * hb->lock:
973 *
974 * hb -> futex_q, relation
975 * futex_q -> pi_state, relation
976 *
977 * (cannot be raw because hb can contain arbitrary amount
978 * of futex_q's)
979 *
980 * pi_mutex->wait_lock:
981 *
982 * {uval, pi_state}
983 *
984 * (and pi_mutex 'obviously')
985 *
986 * p->pi_lock:
987 *
988 * p->pi_state_list -> pi_state->list, relation
989 *
990 * pi_state->refcount:
991 *
992 * pi_state lifetime
993 *
994 *
995 * Lock order:
996 *
997 * hb->lock
998 * pi_mutex->wait_lock
999 * p->pi_lock
1000 *
54a21788 1001 */
e60cbc5c
TG
1002
1003/*
1004 * Validate that the existing waiter has a pi_state and sanity check
1005 * the pi_state against the user space value. If correct, attach to
1006 * it.
1007 */
734009e9
PZ
1008static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1009 struct futex_pi_state *pi_state,
e60cbc5c 1010 struct futex_pi_state **ps)
c87e2837 1011{
778e9a9c 1012 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1013 u32 uval2;
1014 int ret;
c87e2837 1015
e60cbc5c
TG
1016 /*
1017 * Userspace might have messed up non-PI and PI futexes [3]
1018 */
1019 if (unlikely(!pi_state))
1020 return -EINVAL;
06a9ec29 1021
734009e9
PZ
1022 /*
1023 * We get here with hb->lock held, and having found a
1024 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1025 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1026 * which in turn means that futex_lock_pi() still has a reference on
1027 * our pi_state.
16ffa12d
PZ
1028 *
1029 * The waiter holding a reference on @pi_state also protects against
1030 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1031 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1032 * free pi_state before we can take a reference ourselves.
734009e9 1033 */
49262de2 1034 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1035
734009e9
PZ
1036 /*
1037 * Now that we have a pi_state, we can acquire wait_lock
1038 * and do the state validation.
1039 */
1040 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1041
1042 /*
1043 * Since {uval, pi_state} is serialized by wait_lock, and our current
1044 * uval was read without holding it, it can have changed. Verify it
1045 * still is what we expect it to be, otherwise retry the entire
1046 * operation.
1047 */
1048 if (get_futex_value_locked(&uval2, uaddr))
1049 goto out_efault;
1050
1051 if (uval != uval2)
1052 goto out_eagain;
1053
e60cbc5c
TG
1054 /*
1055 * Handle the owner died case:
1056 */
1057 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1058 /*
e60cbc5c
TG
1059 * exit_pi_state_list sets owner to NULL and wakes the
1060 * topmost waiter. The task which acquires the
1061 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1062 */
e60cbc5c 1063 if (!pi_state->owner) {
59647b6a 1064 /*
e60cbc5c
TG
1065 * No pi state owner, but the user space TID
1066 * is not 0. Inconsistent state. [5]
59647b6a 1067 */
e60cbc5c 1068 if (pid)
734009e9 1069 goto out_einval;
bd1dbcc6 1070 /*
e60cbc5c 1071 * Take a ref on the state and return success. [4]
866293ee 1072 */
734009e9 1073 goto out_attach;
c87e2837 1074 }
bd1dbcc6
TG
1075
1076 /*
e60cbc5c
TG
1077 * If TID is 0, then either the dying owner has not
1078 * yet executed exit_pi_state_list() or some waiter
1079 * acquired the rtmutex in the pi state, but did not
1080 * yet fixup the TID in user space.
1081 *
1082 * Take a ref on the state and return success. [6]
1083 */
1084 if (!pid)
734009e9 1085 goto out_attach;
e60cbc5c
TG
1086 } else {
1087 /*
1088 * If the owner died bit is not set, then the pi_state
1089 * must have an owner. [7]
bd1dbcc6 1090 */
e60cbc5c 1091 if (!pi_state->owner)
734009e9 1092 goto out_einval;
c87e2837
IM
1093 }
1094
e60cbc5c
TG
1095 /*
1096 * Bail out if user space manipulated the futex value. If pi
1097 * state exists then the owner TID must be the same as the
1098 * user space TID. [9/10]
1099 */
1100 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1101 goto out_einval;
1102
1103out_attach:
bf92cf3a 1104 get_pi_state(pi_state);
734009e9 1105 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1106 *ps = pi_state;
1107 return 0;
734009e9
PZ
1108
1109out_einval:
1110 ret = -EINVAL;
1111 goto out_error;
1112
1113out_eagain:
1114 ret = -EAGAIN;
1115 goto out_error;
1116
1117out_efault:
1118 ret = -EFAULT;
1119 goto out_error;
1120
1121out_error:
1122 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1123 return ret;
e60cbc5c
TG
1124}
1125
3ef240ea
TG
1126/**
1127 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1128 * @ret: owner's current futex lock status
3ef240ea
TG
1129 * @exiting: Pointer to the exiting task
1130 *
1131 * Caller must hold a refcount on @exiting.
1132 */
1133static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1134{
1135 if (ret != -EBUSY) {
1136 WARN_ON_ONCE(exiting);
1137 return;
1138 }
1139
1140 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1141 return;
1142
1143 mutex_lock(&exiting->futex_exit_mutex);
1144 /*
1145 * No point in doing state checking here. If the waiter got here
1146 * while the task was in exec()->exec_futex_release() then it can
1147 * have any FUTEX_STATE_* value when the waiter has acquired the
1148 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1149 * already. Highly unlikely and not a problem. Just one more round
1150 * through the futex maze.
1151 */
1152 mutex_unlock(&exiting->futex_exit_mutex);
1153
1154 put_task_struct(exiting);
1155}
1156
da791a66
TG
1157static int handle_exit_race(u32 __user *uaddr, u32 uval,
1158 struct task_struct *tsk)
1159{
1160 u32 uval2;
1161
1162 /*
ac31c7ff
TG
1163 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1164 * caller that the alleged owner is busy.
da791a66 1165 */
3d4775df 1166 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1167 return -EBUSY;
da791a66
TG
1168
1169 /*
1170 * Reread the user space value to handle the following situation:
1171 *
1172 * CPU0 CPU1
1173 *
1174 * sys_exit() sys_futex()
1175 * do_exit() futex_lock_pi()
1176 * futex_lock_pi_atomic()
1177 * exit_signals(tsk) No waiters:
1178 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1179 * mm_release(tsk) Set waiter bit
1180 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1181 * Set owner died attach_to_pi_owner() {
1182 * *uaddr = 0xC0000000; tsk = get_task(PID);
1183 * } if (!tsk->flags & PF_EXITING) {
1184 * ... attach();
3d4775df
TG
1185 * tsk->futex_state = } else {
1186 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1187 * FUTEX_STATE_DEAD)
da791a66
TG
1188 * return -EAGAIN;
1189 * return -ESRCH; <--- FAIL
1190 * }
1191 *
1192 * Returning ESRCH unconditionally is wrong here because the
1193 * user space value has been changed by the exiting task.
1194 *
1195 * The same logic applies to the case where the exiting task is
1196 * already gone.
1197 */
1198 if (get_futex_value_locked(&uval2, uaddr))
1199 return -EFAULT;
1200
1201 /* If the user space value has changed, try again. */
1202 if (uval2 != uval)
1203 return -EAGAIN;
1204
1205 /*
1206 * The exiting task did not have a robust list, the robust list was
1207 * corrupted or the user space value in *uaddr is simply bogus.
1208 * Give up and tell user space.
1209 */
1210 return -ESRCH;
1211}
1212
04e1b2e5
TG
1213/*
1214 * Lookup the task for the TID provided from user space and attach to
1215 * it after doing proper sanity checks.
1216 */
da791a66 1217static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1218 struct futex_pi_state **ps,
1219 struct task_struct **exiting)
e60cbc5c 1220{
e60cbc5c 1221 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1222 struct futex_pi_state *pi_state;
1223 struct task_struct *p;
e60cbc5c 1224
c87e2837 1225 /*
e3f2ddea 1226 * We are the first waiter - try to look up the real owner and attach
54a21788 1227 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1228 *
1229 * The !pid check is paranoid. None of the call sites should end up
1230 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1231 */
778e9a9c 1232 if (!pid)
da791a66 1233 return -EAGAIN;
2ee08260 1234 p = find_get_task_by_vpid(pid);
7a0ea09a 1235 if (!p)
da791a66 1236 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1237
a2129464 1238 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1239 put_task_struct(p);
1240 return -EPERM;
1241 }
1242
778e9a9c 1243 /*
3d4775df
TG
1244 * We need to look at the task state to figure out, whether the
1245 * task is exiting. To protect against the change of the task state
1246 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1247 */
1d615482 1248 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1249 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1250 /*
3d4775df
TG
1251 * The task is on the way out. When the futex state is
1252 * FUTEX_STATE_DEAD, we know that the task has finished
1253 * the cleanup:
778e9a9c 1254 */
da791a66 1255 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1256
1d615482 1257 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1258 /*
1259 * If the owner task is between FUTEX_STATE_EXITING and
1260 * FUTEX_STATE_DEAD then store the task pointer and keep
1261 * the reference on the task struct. The calling code will
1262 * drop all locks, wait for the task to reach
1263 * FUTEX_STATE_DEAD and then drop the refcount. This is
1264 * required to prevent a live lock when the current task
1265 * preempted the exiting task between the two states.
1266 */
1267 if (ret == -EBUSY)
1268 *exiting = p;
1269 else
1270 put_task_struct(p);
778e9a9c
AK
1271 return ret;
1272 }
c87e2837 1273
54a21788
TG
1274 /*
1275 * No existing pi state. First waiter. [2]
734009e9
PZ
1276 *
1277 * This creates pi_state, we have hb->lock held, this means nothing can
1278 * observe this state, wait_lock is irrelevant.
54a21788 1279 */
c87e2837
IM
1280 pi_state = alloc_pi_state();
1281
1282 /*
04e1b2e5 1283 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1284 * the owner of it:
1285 */
1286 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1287
1288 /* Store the key for possible exit cleanups: */
d0aa7a70 1289 pi_state->key = *key;
c87e2837 1290
627371d7 1291 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1292 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1293 /*
1294 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1295 * because there is no concurrency as the object is not published yet.
1296 */
c87e2837 1297 pi_state->owner = p;
1d615482 1298 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1299
1300 put_task_struct(p);
1301
d0aa7a70 1302 *ps = pi_state;
c87e2837
IM
1303
1304 return 0;
1305}
1306
734009e9
PZ
1307static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1308 struct futex_hash_bucket *hb,
3ef240ea
TG
1309 union futex_key *key, struct futex_pi_state **ps,
1310 struct task_struct **exiting)
04e1b2e5 1311{
499f5aca 1312 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1313
1314 /*
1315 * If there is a waiter on that futex, validate it and
1316 * attach to the pi_state when the validation succeeds.
1317 */
499f5aca 1318 if (top_waiter)
734009e9 1319 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1320
1321 /*
1322 * We are the first waiter - try to look up the owner based on
1323 * @uval and attach to it.
1324 */
3ef240ea 1325 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1326}
1327
af54d6a1
TG
1328static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1329{
6b4f4bc9 1330 int err;
3f649ab7 1331 u32 curval;
af54d6a1 1332
ab51fbab
DB
1333 if (unlikely(should_fail_futex(true)))
1334 return -EFAULT;
1335
6b4f4bc9
WD
1336 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1337 if (unlikely(err))
1338 return err;
af54d6a1 1339
734009e9 1340 /* If user space value changed, let the caller retry */
af54d6a1
TG
1341 return curval != uval ? -EAGAIN : 0;
1342}
1343
1a52084d 1344/**
d96ee56c 1345 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1346 * @uaddr: the pi futex user address
1347 * @hb: the pi futex hash bucket
1348 * @key: the futex key associated with uaddr and hb
1349 * @ps: the pi_state pointer where we store the result of the
1350 * lookup
1351 * @task: the task to perform the atomic lock work for. This will
1352 * be "current" except in the case of requeue pi.
3ef240ea
TG
1353 * @exiting: Pointer to store the task pointer of the owner task
1354 * which is in the middle of exiting
bab5bc9e 1355 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1356 *
6c23cbbd 1357 * Return:
7b4ff1ad
MCC
1358 * - 0 - ready to wait;
1359 * - 1 - acquired the lock;
1360 * - <0 - error
1a52084d
DH
1361 *
1362 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1363 *
1364 * @exiting is only set when the return value is -EBUSY. If so, this holds
1365 * a refcount on the exiting task on return and the caller needs to drop it
1366 * after waiting for the exit to complete.
1a52084d
DH
1367 */
1368static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1369 union futex_key *key,
1370 struct futex_pi_state **ps,
3ef240ea
TG
1371 struct task_struct *task,
1372 struct task_struct **exiting,
1373 int set_waiters)
1a52084d 1374{
af54d6a1 1375 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1376 struct futex_q *top_waiter;
af54d6a1 1377 int ret;
1a52084d
DH
1378
1379 /*
af54d6a1
TG
1380 * Read the user space value first so we can validate a few
1381 * things before proceeding further.
1a52084d 1382 */
af54d6a1 1383 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1384 return -EFAULT;
1385
ab51fbab
DB
1386 if (unlikely(should_fail_futex(true)))
1387 return -EFAULT;
1388
1a52084d
DH
1389 /*
1390 * Detect deadlocks.
1391 */
af54d6a1 1392 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1393 return -EDEADLK;
1394
ab51fbab
DB
1395 if ((unlikely(should_fail_futex(true))))
1396 return -EDEADLK;
1397
1a52084d 1398 /*
af54d6a1
TG
1399 * Lookup existing state first. If it exists, try to attach to
1400 * its pi_state.
1a52084d 1401 */
499f5aca
PZ
1402 top_waiter = futex_top_waiter(hb, key);
1403 if (top_waiter)
734009e9 1404 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1405
1406 /*
af54d6a1
TG
1407 * No waiter and user TID is 0. We are here because the
1408 * waiters or the owner died bit is set or called from
1409 * requeue_cmp_pi or for whatever reason something took the
1410 * syscall.
1a52084d 1411 */
af54d6a1 1412 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1413 /*
af54d6a1
TG
1414 * We take over the futex. No other waiters and the user space
1415 * TID is 0. We preserve the owner died bit.
59fa6245 1416 */
af54d6a1
TG
1417 newval = uval & FUTEX_OWNER_DIED;
1418 newval |= vpid;
1a52084d 1419
af54d6a1
TG
1420 /* The futex requeue_pi code can enforce the waiters bit */
1421 if (set_waiters)
1422 newval |= FUTEX_WAITERS;
1423
1424 ret = lock_pi_update_atomic(uaddr, uval, newval);
1425 /* If the take over worked, return 1 */
1426 return ret < 0 ? ret : 1;
1427 }
1a52084d
DH
1428
1429 /*
af54d6a1
TG
1430 * First waiter. Set the waiters bit before attaching ourself to
1431 * the owner. If owner tries to unlock, it will be forced into
1432 * the kernel and blocked on hb->lock.
1a52084d 1433 */
af54d6a1
TG
1434 newval = uval | FUTEX_WAITERS;
1435 ret = lock_pi_update_atomic(uaddr, uval, newval);
1436 if (ret)
1437 return ret;
1a52084d 1438 /*
af54d6a1
TG
1439 * If the update of the user space value succeeded, we try to
1440 * attach to the owner. If that fails, no harm done, we only
1441 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1442 */
3ef240ea 1443 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1444}
1445
2e12978a
LJ
1446/**
1447 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1448 * @q: The futex_q to unqueue
1449 *
1450 * The q->lock_ptr must not be NULL and must be held by the caller.
1451 */
1452static void __unqueue_futex(struct futex_q *q)
1453{
1454 struct futex_hash_bucket *hb;
1455
4de1a293 1456 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1457 return;
4de1a293 1458 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1459
1460 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1461 plist_del(&q->list, &hb->chain);
11d4616b 1462 hb_waiters_dec(hb);
2e12978a
LJ
1463}
1464
1da177e4
LT
1465/*
1466 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1467 * Afterwards, the futex_q must not be accessed. Callers
1468 * must ensure to later call wake_up_q() for the actual
1469 * wakeups to occur.
1da177e4 1470 */
1d0dcb3a 1471static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1472{
f1a11e05
TG
1473 struct task_struct *p = q->task;
1474
aa10990e
DH
1475 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1476 return;
1477
b061c38b 1478 get_task_struct(p);
2e12978a 1479 __unqueue_futex(q);
1da177e4 1480 /*
38fcd06e
DHV
1481 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1482 * is written, without taking any locks. This is possible in the event
1483 * of a spurious wakeup, for example. A memory barrier is required here
1484 * to prevent the following store to lock_ptr from getting ahead of the
1485 * plist_del in __unqueue_futex().
1da177e4 1486 */
1b367ece 1487 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1488
1489 /*
1490 * Queue the task for later wakeup for after we've released
75145904 1491 * the hb->lock.
b061c38b 1492 */
07879c6a 1493 wake_q_add_safe(wake_q, p);
1da177e4
LT
1494}
1495
16ffa12d
PZ
1496/*
1497 * Caller must hold a reference on @pi_state.
1498 */
1499static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1500{
3f649ab7 1501 u32 curval, newval;
16ffa12d 1502 struct task_struct *new_owner;
aa2bfe55 1503 bool postunlock = false;
194a6b5b 1504 DEFINE_WAKE_Q(wake_q);
13fbca4c 1505 int ret = 0;
c87e2837 1506
c87e2837 1507 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1508 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1509 /*
bebe5b51 1510 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1511 *
1512 * When this happens, give up our locks and try again, giving
1513 * the futex_lock_pi() instance time to complete, either by
1514 * waiting on the rtmutex or removing itself from the futex
1515 * queue.
1516 */
1517 ret = -EAGAIN;
1518 goto out_unlock;
73d786bd 1519 }
c87e2837
IM
1520
1521 /*
16ffa12d
PZ
1522 * We pass it to the next owner. The WAITERS bit is always kept
1523 * enabled while there is PI state around. We cleanup the owner
1524 * died bit, because we are the owner.
c87e2837 1525 */
13fbca4c 1526 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1527
921c7ebd 1528 if (unlikely(should_fail_futex(true))) {
ab51fbab 1529 ret = -EFAULT;
921c7ebd
MN
1530 goto out_unlock;
1531 }
ab51fbab 1532
6b4f4bc9
WD
1533 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1534 if (!ret && (curval != uval)) {
89e9e66b
SAS
1535 /*
1536 * If a unconditional UNLOCK_PI operation (user space did not
1537 * try the TID->0 transition) raced with a waiter setting the
1538 * FUTEX_WAITERS flag between get_user() and locking the hash
1539 * bucket lock, retry the operation.
1540 */
1541 if ((FUTEX_TID_MASK & curval) == uval)
1542 ret = -EAGAIN;
1543 else
1544 ret = -EINVAL;
1545 }
734009e9 1546
c5cade20
TG
1547 if (!ret) {
1548 /*
1549 * This is a point of no return; once we modified the uval
1550 * there is no going back and subsequent operations must
1551 * not fail.
1552 */
1553 pi_state_update_owner(pi_state, new_owner);
1554 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1555 }
5293c2ef 1556
16ffa12d 1557out_unlock:
5293c2ef 1558 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1559
aa2bfe55
PZ
1560 if (postunlock)
1561 rt_mutex_postunlock(&wake_q);
c87e2837 1562
16ffa12d 1563 return ret;
c87e2837
IM
1564}
1565
8b8f319f
IM
1566/*
1567 * Express the locking dependencies for lockdep:
1568 */
1569static inline void
1570double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1571{
1572 if (hb1 <= hb2) {
1573 spin_lock(&hb1->lock);
1574 if (hb1 < hb2)
1575 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1576 } else { /* hb1 > hb2 */
1577 spin_lock(&hb2->lock);
1578 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1579 }
1580}
1581
5eb3dc62
DH
1582static inline void
1583double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1584{
f061d351 1585 spin_unlock(&hb1->lock);
88f502fe
IM
1586 if (hb1 != hb2)
1587 spin_unlock(&hb2->lock);
5eb3dc62
DH
1588}
1589
1da177e4 1590/*
b2d0994b 1591 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1592 */
b41277dc
DH
1593static int
1594futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1595{
e2970f2f 1596 struct futex_hash_bucket *hb;
1da177e4 1597 struct futex_q *this, *next;
38d47c1b 1598 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1599 int ret;
194a6b5b 1600 DEFINE_WAKE_Q(wake_q);
1da177e4 1601
cd689985
TG
1602 if (!bitset)
1603 return -EINVAL;
1604
96d4f267 1605 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1606 if (unlikely(ret != 0))
d7c5ed73 1607 return ret;
1da177e4 1608
e2970f2f 1609 hb = hash_futex(&key);
b0c29f79
DB
1610
1611 /* Make sure we really have tasks to wakeup */
1612 if (!hb_waiters_pending(hb))
d7c5ed73 1613 return ret;
b0c29f79 1614
e2970f2f 1615 spin_lock(&hb->lock);
1da177e4 1616
0d00c7b2 1617 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1618 if (match_futex (&this->key, &key)) {
52400ba9 1619 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1620 ret = -EINVAL;
1621 break;
1622 }
cd689985
TG
1623
1624 /* Check if one of the bits is set in both bitsets */
1625 if (!(this->bitset & bitset))
1626 continue;
1627
1d0dcb3a 1628 mark_wake_futex(&wake_q, this);
1da177e4
LT
1629 if (++ret >= nr_wake)
1630 break;
1631 }
1632 }
1633
e2970f2f 1634 spin_unlock(&hb->lock);
1d0dcb3a 1635 wake_up_q(&wake_q);
1da177e4
LT
1636 return ret;
1637}
1638
30d6e0a4
JS
1639static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1640{
1641 unsigned int op = (encoded_op & 0x70000000) >> 28;
1642 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1643 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1644 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1645 int oldval, ret;
1646
1647 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1648 if (oparg < 0 || oparg > 31) {
1649 char comm[sizeof(current->comm)];
1650 /*
1651 * kill this print and return -EINVAL when userspace
1652 * is sane again
1653 */
1654 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1655 get_task_comm(comm, current), oparg);
1656 oparg &= 31;
1657 }
30d6e0a4
JS
1658 oparg = 1 << oparg;
1659 }
1660
a08971e9 1661 pagefault_disable();
30d6e0a4 1662 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1663 pagefault_enable();
30d6e0a4
JS
1664 if (ret)
1665 return ret;
1666
1667 switch (cmp) {
1668 case FUTEX_OP_CMP_EQ:
1669 return oldval == cmparg;
1670 case FUTEX_OP_CMP_NE:
1671 return oldval != cmparg;
1672 case FUTEX_OP_CMP_LT:
1673 return oldval < cmparg;
1674 case FUTEX_OP_CMP_GE:
1675 return oldval >= cmparg;
1676 case FUTEX_OP_CMP_LE:
1677 return oldval <= cmparg;
1678 case FUTEX_OP_CMP_GT:
1679 return oldval > cmparg;
1680 default:
1681 return -ENOSYS;
1682 }
1683}
1684
4732efbe
JJ
1685/*
1686 * Wake up all waiters hashed on the physical page that is mapped
1687 * to this virtual address:
1688 */
e2970f2f 1689static int
b41277dc 1690futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1691 int nr_wake, int nr_wake2, int op)
4732efbe 1692{
38d47c1b 1693 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1694 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1695 struct futex_q *this, *next;
e4dc5b7a 1696 int ret, op_ret;
194a6b5b 1697 DEFINE_WAKE_Q(wake_q);
4732efbe 1698
e4dc5b7a 1699retry:
96d4f267 1700 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1701 if (unlikely(ret != 0))
d7c5ed73 1702 return ret;
96d4f267 1703 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1704 if (unlikely(ret != 0))
d7c5ed73 1705 return ret;
4732efbe 1706
e2970f2f
IM
1707 hb1 = hash_futex(&key1);
1708 hb2 = hash_futex(&key2);
4732efbe 1709
e4dc5b7a 1710retry_private:
eaaea803 1711 double_lock_hb(hb1, hb2);
e2970f2f 1712 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1713 if (unlikely(op_ret < 0)) {
5eb3dc62 1714 double_unlock_hb(hb1, hb2);
4732efbe 1715
6b4f4bc9
WD
1716 if (!IS_ENABLED(CONFIG_MMU) ||
1717 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1718 /*
1719 * we don't get EFAULT from MMU faults if we don't have
1720 * an MMU, but we might get them from range checking
1721 */
796f8d9b 1722 ret = op_ret;
d7c5ed73 1723 return ret;
796f8d9b
DG
1724 }
1725
6b4f4bc9
WD
1726 if (op_ret == -EFAULT) {
1727 ret = fault_in_user_writeable(uaddr2);
1728 if (ret)
d7c5ed73 1729 return ret;
6b4f4bc9 1730 }
4732efbe 1731
6b4f4bc9
WD
1732 if (!(flags & FLAGS_SHARED)) {
1733 cond_resched();
e4dc5b7a 1734 goto retry_private;
6b4f4bc9 1735 }
e4dc5b7a 1736
6b4f4bc9 1737 cond_resched();
e4dc5b7a 1738 goto retry;
4732efbe
JJ
1739 }
1740
0d00c7b2 1741 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1742 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1743 if (this->pi_state || this->rt_waiter) {
1744 ret = -EINVAL;
1745 goto out_unlock;
1746 }
1d0dcb3a 1747 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1748 if (++ret >= nr_wake)
1749 break;
1750 }
1751 }
1752
1753 if (op_ret > 0) {
4732efbe 1754 op_ret = 0;
0d00c7b2 1755 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1756 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1757 if (this->pi_state || this->rt_waiter) {
1758 ret = -EINVAL;
1759 goto out_unlock;
1760 }
1d0dcb3a 1761 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1762 if (++op_ret >= nr_wake2)
1763 break;
1764 }
1765 }
1766 ret += op_ret;
1767 }
1768
aa10990e 1769out_unlock:
5eb3dc62 1770 double_unlock_hb(hb1, hb2);
1d0dcb3a 1771 wake_up_q(&wake_q);
4732efbe
JJ
1772 return ret;
1773}
1774
9121e478
DH
1775/**
1776 * requeue_futex() - Requeue a futex_q from one hb to another
1777 * @q: the futex_q to requeue
1778 * @hb1: the source hash_bucket
1779 * @hb2: the target hash_bucket
1780 * @key2: the new key for the requeued futex_q
1781 */
1782static inline
1783void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1784 struct futex_hash_bucket *hb2, union futex_key *key2)
1785{
1786
1787 /*
1788 * If key1 and key2 hash to the same bucket, no need to
1789 * requeue.
1790 */
1791 if (likely(&hb1->chain != &hb2->chain)) {
1792 plist_del(&q->list, &hb1->chain);
11d4616b 1793 hb_waiters_dec(hb1);
11d4616b 1794 hb_waiters_inc(hb2);
fe1bce9e 1795 plist_add(&q->list, &hb2->chain);
9121e478 1796 q->lock_ptr = &hb2->lock;
9121e478 1797 }
9121e478
DH
1798 q->key = *key2;
1799}
1800
52400ba9
DH
1801/**
1802 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1803 * @q: the futex_q
1804 * @key: the key of the requeue target futex
1805 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1806 *
1807 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1808 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1809 * to the requeue target futex so the waiter can detect the wakeup on the right
1810 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1811 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1812 * to protect access to the pi_state to fixup the owner later. Must be called
1813 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1814 */
1815static inline
beda2c7e
DH
1816void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1817 struct futex_hash_bucket *hb)
52400ba9 1818{
52400ba9
DH
1819 q->key = *key;
1820
2e12978a 1821 __unqueue_futex(q);
52400ba9
DH
1822
1823 WARN_ON(!q->rt_waiter);
1824 q->rt_waiter = NULL;
1825
beda2c7e 1826 q->lock_ptr = &hb->lock;
beda2c7e 1827
f1a11e05 1828 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1829}
1830
1831/**
1832 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1833 * @pifutex: the user address of the to futex
1834 * @hb1: the from futex hash bucket, must be locked by the caller
1835 * @hb2: the to futex hash bucket, must be locked by the caller
1836 * @key1: the from futex key
1837 * @key2: the to futex key
1838 * @ps: address to store the pi_state pointer
3ef240ea
TG
1839 * @exiting: Pointer to store the task pointer of the owner task
1840 * which is in the middle of exiting
bab5bc9e 1841 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1842 *
1843 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1844 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1845 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1846 * hb1 and hb2 must be held by the caller.
52400ba9 1847 *
3ef240ea
TG
1848 * @exiting is only set when the return value is -EBUSY. If so, this holds
1849 * a refcount on the exiting task on return and the caller needs to drop it
1850 * after waiting for the exit to complete.
1851 *
6c23cbbd 1852 * Return:
7b4ff1ad
MCC
1853 * - 0 - failed to acquire the lock atomically;
1854 * - >0 - acquired the lock, return value is vpid of the top_waiter
1855 * - <0 - error
52400ba9 1856 */
3ef240ea
TG
1857static int
1858futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1859 struct futex_hash_bucket *hb2, union futex_key *key1,
1860 union futex_key *key2, struct futex_pi_state **ps,
1861 struct task_struct **exiting, int set_waiters)
52400ba9 1862{
bab5bc9e 1863 struct futex_q *top_waiter = NULL;
52400ba9 1864 u32 curval;
866293ee 1865 int ret, vpid;
52400ba9
DH
1866
1867 if (get_futex_value_locked(&curval, pifutex))
1868 return -EFAULT;
1869
ab51fbab
DB
1870 if (unlikely(should_fail_futex(true)))
1871 return -EFAULT;
1872
bab5bc9e
DH
1873 /*
1874 * Find the top_waiter and determine if there are additional waiters.
1875 * If the caller intends to requeue more than 1 waiter to pifutex,
1876 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1877 * as we have means to handle the possible fault. If not, don't set
1878 * the bit unecessarily as it will force the subsequent unlock to enter
1879 * the kernel.
1880 */
52400ba9
DH
1881 top_waiter = futex_top_waiter(hb1, key1);
1882
1883 /* There are no waiters, nothing for us to do. */
1884 if (!top_waiter)
1885 return 0;
1886
84bc4af5
DH
1887 /* Ensure we requeue to the expected futex. */
1888 if (!match_futex(top_waiter->requeue_pi_key, key2))
1889 return -EINVAL;
1890
52400ba9 1891 /*
bab5bc9e
DH
1892 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1893 * the contended case or if set_waiters is 1. The pi_state is returned
1894 * in ps in contended cases.
52400ba9 1895 */
866293ee 1896 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1897 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1898 exiting, set_waiters);
866293ee 1899 if (ret == 1) {
beda2c7e 1900 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1901 return vpid;
1902 }
52400ba9
DH
1903 return ret;
1904}
1905
1906/**
1907 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1908 * @uaddr1: source futex user address
b41277dc 1909 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1910 * @uaddr2: target futex user address
1911 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1912 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1913 * @cmpval: @uaddr1 expected value (or %NULL)
1914 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1915 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1916 *
1917 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1918 * uaddr2 atomically on behalf of the top waiter.
1919 *
6c23cbbd 1920 * Return:
7b4ff1ad
MCC
1921 * - >=0 - on success, the number of tasks requeued or woken;
1922 * - <0 - on error
1da177e4 1923 */
b41277dc
DH
1924static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1925 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1926 u32 *cmpval, int requeue_pi)
1da177e4 1927{
38d47c1b 1928 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1929 int task_count = 0, ret;
52400ba9 1930 struct futex_pi_state *pi_state = NULL;
e2970f2f 1931 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1932 struct futex_q *this, *next;
194a6b5b 1933 DEFINE_WAKE_Q(wake_q);
52400ba9 1934
fbe0e839
LJ
1935 if (nr_wake < 0 || nr_requeue < 0)
1936 return -EINVAL;
1937
bc2eecd7
NP
1938 /*
1939 * When PI not supported: return -ENOSYS if requeue_pi is true,
1940 * consequently the compiler knows requeue_pi is always false past
1941 * this point which will optimize away all the conditional code
1942 * further down.
1943 */
1944 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1945 return -ENOSYS;
1946
52400ba9 1947 if (requeue_pi) {
e9c243a5
TG
1948 /*
1949 * Requeue PI only works on two distinct uaddrs. This
1950 * check is only valid for private futexes. See below.
1951 */
1952 if (uaddr1 == uaddr2)
1953 return -EINVAL;
1954
52400ba9
DH
1955 /*
1956 * requeue_pi requires a pi_state, try to allocate it now
1957 * without any locks in case it fails.
1958 */
1959 if (refill_pi_state_cache())
1960 return -ENOMEM;
1961 /*
1962 * requeue_pi must wake as many tasks as it can, up to nr_wake
1963 * + nr_requeue, since it acquires the rt_mutex prior to
1964 * returning to userspace, so as to not leave the rt_mutex with
1965 * waiters and no owner. However, second and third wake-ups
1966 * cannot be predicted as they involve race conditions with the
1967 * first wake and a fault while looking up the pi_state. Both
1968 * pthread_cond_signal() and pthread_cond_broadcast() should
1969 * use nr_wake=1.
1970 */
1971 if (nr_wake != 1)
1972 return -EINVAL;
1973 }
1da177e4 1974
42d35d48 1975retry:
96d4f267 1976 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1977 if (unlikely(ret != 0))
d7c5ed73 1978 return ret;
9ea71503 1979 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1980 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1981 if (unlikely(ret != 0))
d7c5ed73 1982 return ret;
1da177e4 1983
e9c243a5
TG
1984 /*
1985 * The check above which compares uaddrs is not sufficient for
1986 * shared futexes. We need to compare the keys:
1987 */
d7c5ed73
AA
1988 if (requeue_pi && match_futex(&key1, &key2))
1989 return -EINVAL;
e9c243a5 1990
e2970f2f
IM
1991 hb1 = hash_futex(&key1);
1992 hb2 = hash_futex(&key2);
1da177e4 1993
e4dc5b7a 1994retry_private:
69cd9eba 1995 hb_waiters_inc(hb2);
8b8f319f 1996 double_lock_hb(hb1, hb2);
1da177e4 1997
e2970f2f
IM
1998 if (likely(cmpval != NULL)) {
1999 u32 curval;
1da177e4 2000
e2970f2f 2001 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2002
2003 if (unlikely(ret)) {
5eb3dc62 2004 double_unlock_hb(hb1, hb2);
69cd9eba 2005 hb_waiters_dec(hb2);
1da177e4 2006
e2970f2f 2007 ret = get_user(curval, uaddr1);
e4dc5b7a 2008 if (ret)
d7c5ed73 2009 return ret;
1da177e4 2010
b41277dc 2011 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2012 goto retry_private;
1da177e4 2013
e4dc5b7a 2014 goto retry;
1da177e4 2015 }
e2970f2f 2016 if (curval != *cmpval) {
1da177e4
LT
2017 ret = -EAGAIN;
2018 goto out_unlock;
2019 }
2020 }
2021
52400ba9 2022 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2023 struct task_struct *exiting = NULL;
2024
bab5bc9e
DH
2025 /*
2026 * Attempt to acquire uaddr2 and wake the top waiter. If we
2027 * intend to requeue waiters, force setting the FUTEX_WAITERS
2028 * bit. We force this here where we are able to easily handle
2029 * faults rather in the requeue loop below.
2030 */
52400ba9 2031 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2032 &key2, &pi_state,
2033 &exiting, nr_requeue);
52400ba9
DH
2034
2035 /*
2036 * At this point the top_waiter has either taken uaddr2 or is
2037 * waiting on it. If the former, then the pi_state will not
2038 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2039 * reference to it. If the lock was taken, ret contains the
2040 * vpid of the top waiter task.
ecb38b78
TG
2041 * If the lock was not taken, we have pi_state and an initial
2042 * refcount on it. In case of an error we have nothing.
52400ba9 2043 */
866293ee 2044 if (ret > 0) {
52400ba9
DH
2045 WARN_ON(pi_state);
2046 task_count++;
866293ee 2047 /*
ecb38b78
TG
2048 * If we acquired the lock, then the user space value
2049 * of uaddr2 should be vpid. It cannot be changed by
2050 * the top waiter as it is blocked on hb2 lock if it
2051 * tries to do so. If something fiddled with it behind
2052 * our back the pi state lookup might unearth it. So
2053 * we rather use the known value than rereading and
2054 * handing potential crap to lookup_pi_state.
2055 *
2056 * If that call succeeds then we have pi_state and an
2057 * initial refcount on it.
866293ee 2058 */
3ef240ea
TG
2059 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2060 &pi_state, &exiting);
52400ba9
DH
2061 }
2062
2063 switch (ret) {
2064 case 0:
ecb38b78 2065 /* We hold a reference on the pi state. */
52400ba9 2066 break;
4959f2de
TG
2067
2068 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2069 case -EFAULT:
2070 double_unlock_hb(hb1, hb2);
69cd9eba 2071 hb_waiters_dec(hb2);
d0725992 2072 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2073 if (!ret)
2074 goto retry;
d7c5ed73 2075 return ret;
ac31c7ff 2076 case -EBUSY:
52400ba9 2077 case -EAGAIN:
af54d6a1
TG
2078 /*
2079 * Two reasons for this:
ac31c7ff 2080 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2081 * exit to complete.
ac31c7ff 2082 * - EAGAIN: The user space value changed.
af54d6a1 2083 */
52400ba9 2084 double_unlock_hb(hb1, hb2);
69cd9eba 2085 hb_waiters_dec(hb2);
3ef240ea
TG
2086 /*
2087 * Handle the case where the owner is in the middle of
2088 * exiting. Wait for the exit to complete otherwise
2089 * this task might loop forever, aka. live lock.
2090 */
2091 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2092 cond_resched();
2093 goto retry;
2094 default:
2095 goto out_unlock;
2096 }
2097 }
2098
0d00c7b2 2099 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2100 if (task_count - nr_wake >= nr_requeue)
2101 break;
2102
2103 if (!match_futex(&this->key, &key1))
1da177e4 2104 continue;
52400ba9 2105
392741e0
DH
2106 /*
2107 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2108 * be paired with each other and no other futex ops.
aa10990e
DH
2109 *
2110 * We should never be requeueing a futex_q with a pi_state,
2111 * which is awaiting a futex_unlock_pi().
392741e0
DH
2112 */
2113 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2114 (!requeue_pi && this->rt_waiter) ||
2115 this->pi_state) {
392741e0
DH
2116 ret = -EINVAL;
2117 break;
2118 }
52400ba9
DH
2119
2120 /*
2121 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2122 * lock, we already woke the top_waiter. If not, it will be
2123 * woken by futex_unlock_pi().
2124 */
2125 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2126 mark_wake_futex(&wake_q, this);
52400ba9
DH
2127 continue;
2128 }
1da177e4 2129
84bc4af5
DH
2130 /* Ensure we requeue to the expected futex for requeue_pi. */
2131 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2132 ret = -EINVAL;
2133 break;
2134 }
2135
52400ba9
DH
2136 /*
2137 * Requeue nr_requeue waiters and possibly one more in the case
2138 * of requeue_pi if we couldn't acquire the lock atomically.
2139 */
2140 if (requeue_pi) {
ecb38b78
TG
2141 /*
2142 * Prepare the waiter to take the rt_mutex. Take a
2143 * refcount on the pi_state and store the pointer in
2144 * the futex_q object of the waiter.
2145 */
bf92cf3a 2146 get_pi_state(pi_state);
52400ba9
DH
2147 this->pi_state = pi_state;
2148 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2149 this->rt_waiter,
c051b21f 2150 this->task);
52400ba9 2151 if (ret == 1) {
ecb38b78
TG
2152 /*
2153 * We got the lock. We do neither drop the
2154 * refcount on pi_state nor clear
2155 * this->pi_state because the waiter needs the
2156 * pi_state for cleaning up the user space
2157 * value. It will drop the refcount after
2158 * doing so.
2159 */
beda2c7e 2160 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2161 continue;
2162 } else if (ret) {
ecb38b78
TG
2163 /*
2164 * rt_mutex_start_proxy_lock() detected a
2165 * potential deadlock when we tried to queue
2166 * that waiter. Drop the pi_state reference
2167 * which we took above and remove the pointer
2168 * to the state from the waiters futex_q
2169 * object.
2170 */
52400ba9 2171 this->pi_state = NULL;
29e9ee5d 2172 put_pi_state(pi_state);
885c2cb7
TG
2173 /*
2174 * We stop queueing more waiters and let user
2175 * space deal with the mess.
2176 */
2177 break;
52400ba9 2178 }
1da177e4 2179 }
52400ba9 2180 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2181 }
2182
ecb38b78
TG
2183 /*
2184 * We took an extra initial reference to the pi_state either
2185 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2186 * need to drop it here again.
2187 */
29e9ee5d 2188 put_pi_state(pi_state);
885c2cb7
TG
2189
2190out_unlock:
5eb3dc62 2191 double_unlock_hb(hb1, hb2);
1d0dcb3a 2192 wake_up_q(&wake_q);
69cd9eba 2193 hb_waiters_dec(hb2);
52400ba9 2194 return ret ? ret : task_count;
1da177e4
LT
2195}
2196
2197/* The key must be already stored in q->key. */
82af7aca 2198static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2199 __acquires(&hb->lock)
1da177e4 2200{
e2970f2f 2201 struct futex_hash_bucket *hb;
1da177e4 2202
e2970f2f 2203 hb = hash_futex(&q->key);
11d4616b
LT
2204
2205 /*
2206 * Increment the counter before taking the lock so that
2207 * a potential waker won't miss a to-be-slept task that is
2208 * waiting for the spinlock. This is safe as all queue_lock()
2209 * users end up calling queue_me(). Similarly, for housekeeping,
2210 * decrement the counter at queue_unlock() when some error has
2211 * occurred and we don't end up adding the task to the list.
2212 */
6f568ebe 2213 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2214
e2970f2f 2215 q->lock_ptr = &hb->lock;
1da177e4 2216
6f568ebe 2217 spin_lock(&hb->lock);
e2970f2f 2218 return hb;
1da177e4
LT
2219}
2220
d40d65c8 2221static inline void
0d00c7b2 2222queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2223 __releases(&hb->lock)
d40d65c8
DH
2224{
2225 spin_unlock(&hb->lock);
11d4616b 2226 hb_waiters_dec(hb);
d40d65c8
DH
2227}
2228
cfafcd11 2229static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2230{
ec92d082
PP
2231 int prio;
2232
2233 /*
2234 * The priority used to register this element is
2235 * - either the real thread-priority for the real-time threads
2236 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2237 * - or MAX_RT_PRIO for non-RT threads.
2238 * Thus, all RT-threads are woken first in priority order, and
2239 * the others are woken last, in FIFO order.
2240 */
2241 prio = min(current->normal_prio, MAX_RT_PRIO);
2242
2243 plist_node_init(&q->list, prio);
ec92d082 2244 plist_add(&q->list, &hb->chain);
c87e2837 2245 q->task = current;
cfafcd11
PZ
2246}
2247
2248/**
2249 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2250 * @q: The futex_q to enqueue
2251 * @hb: The destination hash bucket
2252 *
2253 * The hb->lock must be held by the caller, and is released here. A call to
2254 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2255 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2256 * or nothing if the unqueue is done as part of the wake process and the unqueue
2257 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2258 * an example).
2259 */
2260static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261 __releases(&hb->lock)
2262{
2263 __queue_me(q, hb);
e2970f2f 2264 spin_unlock(&hb->lock);
1da177e4
LT
2265}
2266
d40d65c8
DH
2267/**
2268 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2269 * @q: The futex_q to unqueue
2270 *
2271 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2272 * be paired with exactly one earlier call to queue_me().
2273 *
6c23cbbd 2274 * Return:
7b4ff1ad
MCC
2275 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2276 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2277 */
1da177e4
LT
2278static int unqueue_me(struct futex_q *q)
2279{
1da177e4 2280 spinlock_t *lock_ptr;
e2970f2f 2281 int ret = 0;
1da177e4
LT
2282
2283 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2284retry:
29b75eb2
JZ
2285 /*
2286 * q->lock_ptr can change between this read and the following spin_lock.
2287 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2288 * optimizing lock_ptr out of the logic below.
2289 */
2290 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2291 if (lock_ptr != NULL) {
1da177e4
LT
2292 spin_lock(lock_ptr);
2293 /*
2294 * q->lock_ptr can change between reading it and
2295 * spin_lock(), causing us to take the wrong lock. This
2296 * corrects the race condition.
2297 *
2298 * Reasoning goes like this: if we have the wrong lock,
2299 * q->lock_ptr must have changed (maybe several times)
2300 * between reading it and the spin_lock(). It can
2301 * change again after the spin_lock() but only if it was
2302 * already changed before the spin_lock(). It cannot,
2303 * however, change back to the original value. Therefore
2304 * we can detect whether we acquired the correct lock.
2305 */
2306 if (unlikely(lock_ptr != q->lock_ptr)) {
2307 spin_unlock(lock_ptr);
2308 goto retry;
2309 }
2e12978a 2310 __unqueue_futex(q);
c87e2837
IM
2311
2312 BUG_ON(q->pi_state);
2313
1da177e4
LT
2314 spin_unlock(lock_ptr);
2315 ret = 1;
2316 }
2317
1da177e4
LT
2318 return ret;
2319}
2320
c87e2837
IM
2321/*
2322 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2323 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2324 * and dropped here.
c87e2837 2325 */
d0aa7a70 2326static void unqueue_me_pi(struct futex_q *q)
15e408cd 2327 __releases(q->lock_ptr)
c87e2837 2328{
2e12978a 2329 __unqueue_futex(q);
c87e2837
IM
2330
2331 BUG_ON(!q->pi_state);
29e9ee5d 2332 put_pi_state(q->pi_state);
c87e2837
IM
2333 q->pi_state = NULL;
2334
d0aa7a70 2335 spin_unlock(q->lock_ptr);
c87e2837
IM
2336}
2337
778e9a9c 2338static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2339 struct task_struct *argowner)
d0aa7a70 2340{
d0aa7a70 2341 struct futex_pi_state *pi_state = q->pi_state;
3f649ab7 2342 u32 uval, curval, newval;
c1e2f0ea
PZ
2343 struct task_struct *oldowner, *newowner;
2344 u32 newtid;
6b4f4bc9 2345 int ret, err = 0;
d0aa7a70 2346
c1e2f0ea
PZ
2347 lockdep_assert_held(q->lock_ptr);
2348
734009e9
PZ
2349 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2350
2351 oldowner = pi_state->owner;
1b7558e4
TG
2352
2353 /*
c1e2f0ea 2354 * We are here because either:
16ffa12d 2355 *
c1e2f0ea
PZ
2356 * - we stole the lock and pi_state->owner needs updating to reflect
2357 * that (@argowner == current),
2358 *
2359 * or:
2360 *
2361 * - someone stole our lock and we need to fix things to point to the
2362 * new owner (@argowner == NULL).
2363 *
2364 * Either way, we have to replace the TID in the user space variable.
8161239a 2365 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2366 *
b2d0994b
DH
2367 * Note: We write the user space value _before_ changing the pi_state
2368 * because we can fault here. Imagine swapped out pages or a fork
2369 * that marked all the anonymous memory readonly for cow.
1b7558e4 2370 *
734009e9
PZ
2371 * Modifying pi_state _before_ the user space value would leave the
2372 * pi_state in an inconsistent state when we fault here, because we
2373 * need to drop the locks to handle the fault. This might be observed
2374 * in the PID check in lookup_pi_state.
1b7558e4
TG
2375 */
2376retry:
c1e2f0ea
PZ
2377 if (!argowner) {
2378 if (oldowner != current) {
2379 /*
2380 * We raced against a concurrent self; things are
2381 * already fixed up. Nothing to do.
2382 */
2383 ret = 0;
2384 goto out_unlock;
2385 }
2386
2387 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
12bb3f7f
TG
2388 /* We got the lock. pi_state is correct. Tell caller. */
2389 ret = 1;
c1e2f0ea
PZ
2390 goto out_unlock;
2391 }
2392
2393 /*
9f5d1c33
MG
2394 * The trylock just failed, so either there is an owner or
2395 * there is a higher priority waiter than this one.
c1e2f0ea
PZ
2396 */
2397 newowner = rt_mutex_owner(&pi_state->pi_mutex);
9f5d1c33
MG
2398 /*
2399 * If the higher priority waiter has not yet taken over the
2400 * rtmutex then newowner is NULL. We can't return here with
2401 * that state because it's inconsistent vs. the user space
2402 * state. So drop the locks and try again. It's a valid
2403 * situation and not any different from the other retry
2404 * conditions.
2405 */
2406 if (unlikely(!newowner)) {
2407 err = -EAGAIN;
2408 goto handle_err;
2409 }
c1e2f0ea
PZ
2410 } else {
2411 WARN_ON_ONCE(argowner != current);
2412 if (oldowner == current) {
2413 /*
2414 * We raced against a concurrent self; things are
2415 * already fixed up. Nothing to do.
2416 */
12bb3f7f 2417 ret = 1;
c1e2f0ea
PZ
2418 goto out_unlock;
2419 }
2420 newowner = argowner;
2421 }
2422
2423 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2424 /* Owner died? */
2425 if (!pi_state->owner)
2426 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2427
6b4f4bc9
WD
2428 err = get_futex_value_locked(&uval, uaddr);
2429 if (err)
2430 goto handle_err;
1b7558e4 2431
16ffa12d 2432 for (;;) {
1b7558e4
TG
2433 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2434
6b4f4bc9
WD
2435 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2436 if (err)
2437 goto handle_err;
2438
1b7558e4
TG
2439 if (curval == uval)
2440 break;
2441 uval = curval;
2442 }
2443
2444 /*
2445 * We fixed up user space. Now we need to fix the pi_state
2446 * itself.
2447 */
c5cade20 2448 pi_state_update_owner(pi_state, newowner);
734009e9
PZ
2449 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2450
12bb3f7f 2451 return argowner == current;
d0aa7a70 2452
d0aa7a70 2453 /*
6b4f4bc9
WD
2454 * In order to reschedule or handle a page fault, we need to drop the
2455 * locks here. In the case of a fault, this gives the other task
2456 * (either the highest priority waiter itself or the task which stole
2457 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2458 * are back from handling the fault we need to check the pi_state after
2459 * reacquiring the locks and before trying to do another fixup. When
2460 * the fixup has been done already we simply return.
734009e9
PZ
2461 *
2462 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2463 * drop hb->lock since the caller owns the hb -> futex_q relation.
2464 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2465 */
6b4f4bc9 2466handle_err:
734009e9 2467 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2468 spin_unlock(q->lock_ptr);
778e9a9c 2469
6b4f4bc9
WD
2470 switch (err) {
2471 case -EFAULT:
2472 ret = fault_in_user_writeable(uaddr);
2473 break;
2474
2475 case -EAGAIN:
2476 cond_resched();
2477 ret = 0;
2478 break;
2479
2480 default:
2481 WARN_ON_ONCE(1);
2482 ret = err;
2483 break;
2484 }
778e9a9c 2485
1b7558e4 2486 spin_lock(q->lock_ptr);
734009e9 2487 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2488
1b7558e4
TG
2489 /*
2490 * Check if someone else fixed it for us:
2491 */
734009e9 2492 if (pi_state->owner != oldowner) {
12bb3f7f 2493 ret = argowner == current;
734009e9
PZ
2494 goto out_unlock;
2495 }
1b7558e4
TG
2496
2497 if (ret)
734009e9 2498 goto out_unlock;
1b7558e4
TG
2499
2500 goto retry;
734009e9
PZ
2501
2502out_unlock:
2503 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2504 return ret;
d0aa7a70
PP
2505}
2506
72c1bbf3 2507static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2508
dd973998
DH
2509/**
2510 * fixup_owner() - Post lock pi_state and corner case management
2511 * @uaddr: user address of the futex
dd973998
DH
2512 * @q: futex_q (contains pi_state and access to the rt_mutex)
2513 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2514 *
2515 * After attempting to lock an rt_mutex, this function is called to cleanup
2516 * the pi_state owner as well as handle race conditions that may allow us to
2517 * acquire the lock. Must be called with the hb lock held.
2518 *
6c23cbbd 2519 * Return:
7b4ff1ad
MCC
2520 * - 1 - success, lock taken;
2521 * - 0 - success, lock not taken;
2522 * - <0 - on error (-EFAULT)
dd973998 2523 */
ae791a2d 2524static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2525{
dd973998
DH
2526 if (locked) {
2527 /*
2528 * Got the lock. We might not be the anticipated owner if we
2529 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2530 *
c1e2f0ea
PZ
2531 * Speculative pi_state->owner read (we don't hold wait_lock);
2532 * since we own the lock pi_state->owner == current is the
2533 * stable state, anything else needs more attention.
dd973998
DH
2534 */
2535 if (q->pi_state->owner != current)
12bb3f7f
TG
2536 return fixup_pi_state_owner(uaddr, q, current);
2537 return 1;
dd973998
DH
2538 }
2539
c1e2f0ea
PZ
2540 /*
2541 * If we didn't get the lock; check if anybody stole it from us. In
2542 * that case, we need to fix up the uval to point to them instead of
2543 * us, otherwise bad things happen. [10]
2544 *
2545 * Another speculative read; pi_state->owner == current is unstable
2546 * but needs our attention.
2547 */
12bb3f7f
TG
2548 if (q->pi_state->owner == current)
2549 return fixup_pi_state_owner(uaddr, q, NULL);
c1e2f0ea 2550
dd973998
DH
2551 /*
2552 * Paranoia check. If we did not take the lock, then we should not be
04b79c55 2553 * the owner of the rt_mutex. Warn and establish consistent state.
dd973998 2554 */
04b79c55
TG
2555 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2556 return fixup_pi_state_owner(uaddr, q, current);
dd973998 2557
12bb3f7f 2558 return 0;
dd973998
DH
2559}
2560
ca5f9524
DH
2561/**
2562 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2563 * @hb: the futex hash bucket, must be locked by the caller
2564 * @q: the futex_q to queue up on
2565 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2566 */
2567static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2568 struct hrtimer_sleeper *timeout)
ca5f9524 2569{
9beba3c5
DH
2570 /*
2571 * The task state is guaranteed to be set before another task can
b92b8b35 2572 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2573 * queue_me() calls spin_unlock() upon completion, both serializing
2574 * access to the hash list and forcing another memory barrier.
2575 */
f1a11e05 2576 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2577 queue_me(q, hb);
ca5f9524
DH
2578
2579 /* Arm the timer */
2e4b0d3f 2580 if (timeout)
9dd8813e 2581 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2582
2583 /*
0729e196
DH
2584 * If we have been removed from the hash list, then another task
2585 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2586 */
2587 if (likely(!plist_node_empty(&q->list))) {
2588 /*
2589 * If the timer has already expired, current will already be
2590 * flagged for rescheduling. Only call schedule if there
2591 * is no timeout, or if it has yet to expire.
2592 */
2593 if (!timeout || timeout->task)
88c8004f 2594 freezable_schedule();
ca5f9524
DH
2595 }
2596 __set_current_state(TASK_RUNNING);
2597}
2598
f801073f
DH
2599/**
2600 * futex_wait_setup() - Prepare to wait on a futex
2601 * @uaddr: the futex userspace address
2602 * @val: the expected value
b41277dc 2603 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2604 * @q: the associated futex_q
2605 * @hb: storage for hash_bucket pointer to be returned to caller
2606 *
2607 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2608 * compare it with the expected value. Handle atomic faults internally.
2609 * Return with the hb lock held and a q.key reference on success, and unlocked
2610 * with no q.key reference on failure.
2611 *
6c23cbbd 2612 * Return:
7b4ff1ad
MCC
2613 * - 0 - uaddr contains val and hb has been locked;
2614 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2615 */
b41277dc 2616static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2617 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2618{
e2970f2f
IM
2619 u32 uval;
2620 int ret;
1da177e4 2621
1da177e4 2622 /*
b2d0994b 2623 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2624 * Order is important:
2625 *
2626 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2627 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2628 *
2629 * The basic logical guarantee of a futex is that it blocks ONLY
2630 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2631 * any cond. If we locked the hash-bucket after testing *uaddr, that
2632 * would open a race condition where we could block indefinitely with
1da177e4
LT
2633 * cond(var) false, which would violate the guarantee.
2634 *
8fe8f545
ML
2635 * On the other hand, we insert q and release the hash-bucket only
2636 * after testing *uaddr. This guarantees that futex_wait() will NOT
2637 * absorb a wakeup if *uaddr does not match the desired values
2638 * while the syscall executes.
1da177e4 2639 */
f801073f 2640retry:
96d4f267 2641 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2642 if (unlikely(ret != 0))
a5a2a0c7 2643 return ret;
f801073f
DH
2644
2645retry_private:
2646 *hb = queue_lock(q);
2647
e2970f2f 2648 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2649
f801073f 2650 if (ret) {
0d00c7b2 2651 queue_unlock(*hb);
1da177e4 2652
e2970f2f 2653 ret = get_user(uval, uaddr);
e4dc5b7a 2654 if (ret)
d7c5ed73 2655 return ret;
1da177e4 2656
b41277dc 2657 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2658 goto retry_private;
2659
e4dc5b7a 2660 goto retry;
1da177e4 2661 }
ca5f9524 2662
f801073f 2663 if (uval != val) {
0d00c7b2 2664 queue_unlock(*hb);
f801073f 2665 ret = -EWOULDBLOCK;
2fff78c7 2666 }
1da177e4 2667
f801073f
DH
2668 return ret;
2669}
2670
b41277dc
DH
2671static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2672 ktime_t *abs_time, u32 bitset)
f801073f 2673{
5ca584d9 2674 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2675 struct restart_block *restart;
2676 struct futex_hash_bucket *hb;
5bdb05f9 2677 struct futex_q q = futex_q_init;
f801073f
DH
2678 int ret;
2679
2680 if (!bitset)
2681 return -EINVAL;
f801073f
DH
2682 q.bitset = bitset;
2683
5ca584d9
WL
2684 to = futex_setup_timer(abs_time, &timeout, flags,
2685 current->timer_slack_ns);
d58e6576 2686retry:
7ada876a
DH
2687 /*
2688 * Prepare to wait on uaddr. On success, holds hb lock and increments
2689 * q.key refs.
2690 */
b41277dc 2691 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2692 if (ret)
2693 goto out;
2694
ca5f9524 2695 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2696 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2697
2698 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2699 ret = 0;
7ada876a 2700 /* unqueue_me() drops q.key ref */
1da177e4 2701 if (!unqueue_me(&q))
7ada876a 2702 goto out;
2fff78c7 2703 ret = -ETIMEDOUT;
ca5f9524 2704 if (to && !to->task)
7ada876a 2705 goto out;
72c1bbf3 2706
e2970f2f 2707 /*
d58e6576
TG
2708 * We expect signal_pending(current), but we might be the
2709 * victim of a spurious wakeup as well.
e2970f2f 2710 */
7ada876a 2711 if (!signal_pending(current))
d58e6576 2712 goto retry;
d58e6576 2713
2fff78c7 2714 ret = -ERESTARTSYS;
c19384b5 2715 if (!abs_time)
7ada876a 2716 goto out;
1da177e4 2717
f56141e3 2718 restart = &current->restart_block;
2fff78c7 2719 restart->fn = futex_wait_restart;
a3c74c52 2720 restart->futex.uaddr = uaddr;
2fff78c7 2721 restart->futex.val = val;
2456e855 2722 restart->futex.time = *abs_time;
2fff78c7 2723 restart->futex.bitset = bitset;
0cd9c649 2724 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2725
2fff78c7
PZ
2726 ret = -ERESTART_RESTARTBLOCK;
2727
42d35d48 2728out:
ca5f9524
DH
2729 if (to) {
2730 hrtimer_cancel(&to->timer);
2731 destroy_hrtimer_on_stack(&to->timer);
2732 }
c87e2837
IM
2733 return ret;
2734}
2735
72c1bbf3
NP
2736
2737static long futex_wait_restart(struct restart_block *restart)
2738{
a3c74c52 2739 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2740 ktime_t t, *tp = NULL;
72c1bbf3 2741
a72188d8 2742 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2743 t = restart->futex.time;
a72188d8
DH
2744 tp = &t;
2745 }
72c1bbf3 2746 restart->fn = do_no_restart_syscall;
b41277dc
DH
2747
2748 return (long)futex_wait(uaddr, restart->futex.flags,
2749 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2750}
2751
2752
c87e2837
IM
2753/*
2754 * Userspace tried a 0 -> TID atomic transition of the futex value
2755 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2756 * if there are waiters then it will block as a consequence of relying
2757 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2758 * a 0 value of the futex too.).
2759 *
2760 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2761 */
996636dd 2762static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2763 ktime_t *time, int trylock)
c87e2837 2764{
5ca584d9 2765 struct hrtimer_sleeper timeout, *to;
16ffa12d 2766 struct futex_pi_state *pi_state = NULL;
3ef240ea 2767 struct task_struct *exiting = NULL;
cfafcd11 2768 struct rt_mutex_waiter rt_waiter;
c87e2837 2769 struct futex_hash_bucket *hb;
5bdb05f9 2770 struct futex_q q = futex_q_init;
dd973998 2771 int res, ret;
c87e2837 2772
bc2eecd7
NP
2773 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2774 return -ENOSYS;
2775
c87e2837
IM
2776 if (refill_pi_state_cache())
2777 return -ENOMEM;
2778
5ca584d9 2779 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2780
42d35d48 2781retry:
96d4f267 2782 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2783 if (unlikely(ret != 0))
42d35d48 2784 goto out;
c87e2837 2785
e4dc5b7a 2786retry_private:
82af7aca 2787 hb = queue_lock(&q);
c87e2837 2788
3ef240ea
TG
2789 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2790 &exiting, 0);
c87e2837 2791 if (unlikely(ret)) {
767f509c
DB
2792 /*
2793 * Atomic work succeeded and we got the lock,
2794 * or failed. Either way, we do _not_ block.
2795 */
778e9a9c 2796 switch (ret) {
1a52084d
DH
2797 case 1:
2798 /* We got the lock. */
2799 ret = 0;
2800 goto out_unlock_put_key;
2801 case -EFAULT:
2802 goto uaddr_faulted;
ac31c7ff 2803 case -EBUSY:
778e9a9c
AK
2804 case -EAGAIN:
2805 /*
af54d6a1 2806 * Two reasons for this:
ac31c7ff 2807 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2808 * exit to complete.
ac31c7ff 2809 * - EAGAIN: The user space value changed.
778e9a9c 2810 */
0d00c7b2 2811 queue_unlock(hb);
3ef240ea
TG
2812 /*
2813 * Handle the case where the owner is in the middle of
2814 * exiting. Wait for the exit to complete otherwise
2815 * this task might loop forever, aka. live lock.
2816 */
2817 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2818 cond_resched();
2819 goto retry;
778e9a9c 2820 default:
42d35d48 2821 goto out_unlock_put_key;
c87e2837 2822 }
c87e2837
IM
2823 }
2824
cfafcd11
PZ
2825 WARN_ON(!q.pi_state);
2826
c87e2837
IM
2827 /*
2828 * Only actually queue now that the atomic ops are done:
2829 */
cfafcd11 2830 __queue_me(&q, hb);
c87e2837 2831
cfafcd11 2832 if (trylock) {
5293c2ef 2833 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2834 /* Fixup the trylock return value: */
2835 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2836 goto no_block;
c87e2837
IM
2837 }
2838
56222b21
PZ
2839 rt_mutex_init_waiter(&rt_waiter);
2840
cfafcd11 2841 /*
56222b21
PZ
2842 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2843 * hold it while doing rt_mutex_start_proxy(), because then it will
2844 * include hb->lock in the blocking chain, even through we'll not in
2845 * fact hold it while blocking. This will lead it to report -EDEADLK
2846 * and BUG when futex_unlock_pi() interleaves with this.
2847 *
2848 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2849 * latter before calling __rt_mutex_start_proxy_lock(). This
2850 * interleaves with futex_unlock_pi() -- which does a similar lock
2851 * handoff -- such that the latter can observe the futex_q::pi_state
2852 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2853 */
56222b21
PZ
2854 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2855 spin_unlock(q.lock_ptr);
1a1fb985
TG
2856 /*
2857 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2858 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2859 * it sees the futex_q::pi_state.
2860 */
56222b21
PZ
2861 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2862 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2863
cfafcd11
PZ
2864 if (ret) {
2865 if (ret == 1)
2866 ret = 0;
1a1fb985 2867 goto cleanup;
cfafcd11
PZ
2868 }
2869
cfafcd11 2870 if (unlikely(to))
9dd8813e 2871 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2872
2873 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2874
1a1fb985 2875cleanup:
a99e4e41 2876 spin_lock(q.lock_ptr);
cfafcd11 2877 /*
1a1fb985 2878 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2879 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2880 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2881 * lists consistent.
56222b21
PZ
2882 *
2883 * In particular; it is important that futex_unlock_pi() can not
2884 * observe this inconsistency.
cfafcd11
PZ
2885 */
2886 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2887 ret = 0;
2888
2889no_block:
dd973998
DH
2890 /*
2891 * Fixup the pi_state owner and possibly acquire the lock if we
2892 * haven't already.
2893 */
ae791a2d 2894 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2895 /*
2896 * If fixup_owner() returned an error, proprogate that. If it acquired
2897 * the lock, clear our -ETIMEDOUT or -EINTR.
2898 */
2899 if (res)
2900 ret = (res < 0) ? res : 0;
c87e2837 2901
e8f6386c 2902 /*
dd973998
DH
2903 * If fixup_owner() faulted and was unable to handle the fault, unlock
2904 * it and return the fault to userspace.
e8f6386c 2905 */
16ffa12d
PZ
2906 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2907 pi_state = q.pi_state;
2908 get_pi_state(pi_state);
2909 }
e8f6386c 2910
778e9a9c
AK
2911 /* Unqueue and drop the lock */
2912 unqueue_me_pi(&q);
c87e2837 2913
16ffa12d
PZ
2914 if (pi_state) {
2915 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2916 put_pi_state(pi_state);
2917 }
2918
9180bd46 2919 goto out;
c87e2837 2920
42d35d48 2921out_unlock_put_key:
0d00c7b2 2922 queue_unlock(hb);
c87e2837 2923
42d35d48 2924out:
97181f9b
TG
2925 if (to) {
2926 hrtimer_cancel(&to->timer);
237fc6e7 2927 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2928 }
dd973998 2929 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2930
42d35d48 2931uaddr_faulted:
0d00c7b2 2932 queue_unlock(hb);
778e9a9c 2933
d0725992 2934 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2935 if (ret)
9180bd46 2936 goto out;
c87e2837 2937
b41277dc 2938 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2939 goto retry_private;
2940
e4dc5b7a 2941 goto retry;
c87e2837
IM
2942}
2943
c87e2837
IM
2944/*
2945 * Userspace attempted a TID -> 0 atomic transition, and failed.
2946 * This is the in-kernel slowpath: we look up the PI state (if any),
2947 * and do the rt-mutex unlock.
2948 */
b41277dc 2949static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2950{
3f649ab7 2951 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2952 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2953 struct futex_hash_bucket *hb;
499f5aca 2954 struct futex_q *top_waiter;
e4dc5b7a 2955 int ret;
c87e2837 2956
bc2eecd7
NP
2957 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2958 return -ENOSYS;
2959
c87e2837
IM
2960retry:
2961 if (get_user(uval, uaddr))
2962 return -EFAULT;
2963 /*
2964 * We release only a lock we actually own:
2965 */
c0c9ed15 2966 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2967 return -EPERM;
c87e2837 2968
96d4f267 2969 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2970 if (ret)
2971 return ret;
c87e2837
IM
2972
2973 hb = hash_futex(&key);
2974 spin_lock(&hb->lock);
2975
c87e2837 2976 /*
ccf9e6a8
TG
2977 * Check waiters first. We do not trust user space values at
2978 * all and we at least want to know if user space fiddled
2979 * with the futex value instead of blindly unlocking.
c87e2837 2980 */
499f5aca
PZ
2981 top_waiter = futex_top_waiter(hb, &key);
2982 if (top_waiter) {
16ffa12d
PZ
2983 struct futex_pi_state *pi_state = top_waiter->pi_state;
2984
2985 ret = -EINVAL;
2986 if (!pi_state)
2987 goto out_unlock;
2988
2989 /*
2990 * If current does not own the pi_state then the futex is
2991 * inconsistent and user space fiddled with the futex value.
2992 */
2993 if (pi_state->owner != current)
2994 goto out_unlock;
2995
bebe5b51 2996 get_pi_state(pi_state);
802ab58d 2997 /*
bebe5b51
PZ
2998 * By taking wait_lock while still holding hb->lock, we ensure
2999 * there is no point where we hold neither; and therefore
3000 * wake_futex_pi() must observe a state consistent with what we
3001 * observed.
1a1fb985
TG
3002 *
3003 * In particular; this forces __rt_mutex_start_proxy() to
3004 * complete such that we're guaranteed to observe the
3005 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3006 */
bebe5b51 3007 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3008 spin_unlock(&hb->lock);
3009
c74aef2d 3010 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3011 ret = wake_futex_pi(uaddr, uval, pi_state);
3012
3013 put_pi_state(pi_state);
3014
3015 /*
3016 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3017 */
3018 if (!ret)
3019 goto out_putkey;
c87e2837 3020 /*
ccf9e6a8
TG
3021 * The atomic access to the futex value generated a
3022 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3023 */
3024 if (ret == -EFAULT)
3025 goto pi_faulted;
89e9e66b
SAS
3026 /*
3027 * A unconditional UNLOCK_PI op raced against a waiter
3028 * setting the FUTEX_WAITERS bit. Try again.
3029 */
6b4f4bc9
WD
3030 if (ret == -EAGAIN)
3031 goto pi_retry;
802ab58d
SAS
3032 /*
3033 * wake_futex_pi has detected invalid state. Tell user
3034 * space.
3035 */
16ffa12d 3036 goto out_putkey;
c87e2837 3037 }
ccf9e6a8 3038
c87e2837 3039 /*
ccf9e6a8
TG
3040 * We have no kernel internal state, i.e. no waiters in the
3041 * kernel. Waiters which are about to queue themselves are stuck
3042 * on hb->lock. So we can safely ignore them. We do neither
3043 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3044 * owner.
c87e2837 3045 */
6b4f4bc9 3046 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3047 spin_unlock(&hb->lock);
6b4f4bc9
WD
3048 switch (ret) {
3049 case -EFAULT:
3050 goto pi_faulted;
3051
3052 case -EAGAIN:
3053 goto pi_retry;
3054
3055 default:
3056 WARN_ON_ONCE(1);
3057 goto out_putkey;
3058 }
16ffa12d 3059 }
c87e2837 3060
ccf9e6a8
TG
3061 /*
3062 * If uval has changed, let user space handle it.
3063 */
3064 ret = (curval == uval) ? 0 : -EAGAIN;
3065
c87e2837
IM
3066out_unlock:
3067 spin_unlock(&hb->lock);
802ab58d 3068out_putkey:
c87e2837
IM
3069 return ret;
3070
6b4f4bc9 3071pi_retry:
6b4f4bc9
WD
3072 cond_resched();
3073 goto retry;
3074
c87e2837 3075pi_faulted:
c87e2837 3076
d0725992 3077 ret = fault_in_user_writeable(uaddr);
b5686363 3078 if (!ret)
c87e2837
IM
3079 goto retry;
3080
1da177e4
LT
3081 return ret;
3082}
3083
52400ba9
DH
3084/**
3085 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3086 * @hb: the hash_bucket futex_q was original enqueued on
3087 * @q: the futex_q woken while waiting to be requeued
3088 * @key2: the futex_key of the requeue target futex
3089 * @timeout: the timeout associated with the wait (NULL if none)
3090 *
3091 * Detect if the task was woken on the initial futex as opposed to the requeue
3092 * target futex. If so, determine if it was a timeout or a signal that caused
3093 * the wakeup and return the appropriate error code to the caller. Must be
3094 * called with the hb lock held.
3095 *
6c23cbbd 3096 * Return:
7b4ff1ad
MCC
3097 * - 0 = no early wakeup detected;
3098 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3099 */
3100static inline
3101int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3102 struct futex_q *q, union futex_key *key2,
3103 struct hrtimer_sleeper *timeout)
3104{
3105 int ret = 0;
3106
3107 /*
3108 * With the hb lock held, we avoid races while we process the wakeup.
3109 * We only need to hold hb (and not hb2) to ensure atomicity as the
3110 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3111 * It can't be requeued from uaddr2 to something else since we don't
3112 * support a PI aware source futex for requeue.
3113 */
3114 if (!match_futex(&q->key, key2)) {
3115 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3116 /*
3117 * We were woken prior to requeue by a timeout or a signal.
3118 * Unqueue the futex_q and determine which it was.
3119 */
2e12978a 3120 plist_del(&q->list, &hb->chain);
11d4616b 3121 hb_waiters_dec(hb);
52400ba9 3122
d58e6576 3123 /* Handle spurious wakeups gracefully */
11df6ddd 3124 ret = -EWOULDBLOCK;
52400ba9
DH
3125 if (timeout && !timeout->task)
3126 ret = -ETIMEDOUT;
d58e6576 3127 else if (signal_pending(current))
1c840c14 3128 ret = -ERESTARTNOINTR;
52400ba9
DH
3129 }
3130 return ret;
3131}
3132
3133/**
3134 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3135 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3136 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3137 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3138 * @val: the expected value of uaddr
3139 * @abs_time: absolute timeout
56ec1607 3140 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3141 * @uaddr2: the pi futex we will take prior to returning to user-space
3142 *
3143 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3144 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3145 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3146 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3147 * without one, the pi logic would not know which task to boost/deboost, if
3148 * there was a need to.
52400ba9
DH
3149 *
3150 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3151 * via the following--
52400ba9 3152 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3153 * 2) wakeup on uaddr2 after a requeue
3154 * 3) signal
3155 * 4) timeout
52400ba9 3156 *
cc6db4e6 3157 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3158 *
3159 * If 2, we may then block on trying to take the rt_mutex and return via:
3160 * 5) successful lock
3161 * 6) signal
3162 * 7) timeout
3163 * 8) other lock acquisition failure
3164 *
cc6db4e6 3165 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3166 *
3167 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3168 *
6c23cbbd 3169 * Return:
7b4ff1ad
MCC
3170 * - 0 - On success;
3171 * - <0 - On error
52400ba9 3172 */
b41277dc 3173static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3174 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3175 u32 __user *uaddr2)
52400ba9 3176{
5ca584d9 3177 struct hrtimer_sleeper timeout, *to;
16ffa12d 3178 struct futex_pi_state *pi_state = NULL;
52400ba9 3179 struct rt_mutex_waiter rt_waiter;
52400ba9 3180 struct futex_hash_bucket *hb;
5bdb05f9
DH
3181 union futex_key key2 = FUTEX_KEY_INIT;
3182 struct futex_q q = futex_q_init;
52400ba9 3183 int res, ret;
52400ba9 3184
bc2eecd7
NP
3185 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3186 return -ENOSYS;
3187
6f7b0a2a
DH
3188 if (uaddr == uaddr2)
3189 return -EINVAL;
3190
52400ba9
DH
3191 if (!bitset)
3192 return -EINVAL;
3193
5ca584d9
WL
3194 to = futex_setup_timer(abs_time, &timeout, flags,
3195 current->timer_slack_ns);
52400ba9
DH
3196
3197 /*
3198 * The waiter is allocated on our stack, manipulated by the requeue
3199 * code while we sleep on uaddr.
3200 */
50809358 3201 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3202
96d4f267 3203 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3204 if (unlikely(ret != 0))
3205 goto out;
3206
84bc4af5
DH
3207 q.bitset = bitset;
3208 q.rt_waiter = &rt_waiter;
3209 q.requeue_pi_key = &key2;
3210
7ada876a
DH
3211 /*
3212 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3213 * count.
3214 */
b41277dc 3215 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3216 if (ret)
9180bd46 3217 goto out;
52400ba9 3218
e9c243a5
TG
3219 /*
3220 * The check above which compares uaddrs is not sufficient for
3221 * shared futexes. We need to compare the keys:
3222 */
3223 if (match_futex(&q.key, &key2)) {
13c42c2f 3224 queue_unlock(hb);
e9c243a5 3225 ret = -EINVAL;
9180bd46 3226 goto out;
e9c243a5
TG
3227 }
3228
52400ba9 3229 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3230 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3231
3232 spin_lock(&hb->lock);
3233 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3234 spin_unlock(&hb->lock);
3235 if (ret)
9180bd46 3236 goto out;
52400ba9
DH
3237
3238 /*
3239 * In order for us to be here, we know our q.key == key2, and since
3240 * we took the hb->lock above, we also know that futex_requeue() has
3241 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3242 * race with the atomic proxy lock acquisition by the requeue code. The
3243 * futex_requeue dropped our key1 reference and incremented our key2
3244 * reference count.
52400ba9
DH
3245 */
3246
3247 /* Check if the requeue code acquired the second futex for us. */
3248 if (!q.rt_waiter) {
3249 /*
3250 * Got the lock. We might not be the anticipated owner if we
3251 * did a lock-steal - fix up the PI-state in that case.
3252 */
3253 if (q.pi_state && (q.pi_state->owner != current)) {
3254 spin_lock(q.lock_ptr);
ae791a2d 3255 ret = fixup_pi_state_owner(uaddr2, &q, current);
12bb3f7f 3256 if (ret < 0 && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
16ffa12d
PZ
3257 pi_state = q.pi_state;
3258 get_pi_state(pi_state);
3259 }
fb75a428
TG
3260 /*
3261 * Drop the reference to the pi state which
3262 * the requeue_pi() code acquired for us.
3263 */
29e9ee5d 3264 put_pi_state(q.pi_state);
52400ba9 3265 spin_unlock(q.lock_ptr);
12bb3f7f
TG
3266 /*
3267 * Adjust the return value. It's either -EFAULT or
3268 * success (1) but the caller expects 0 for success.
3269 */
3270 ret = ret < 0 ? ret : 0;
52400ba9
DH
3271 }
3272 } else {
c236c8e9
PZ
3273 struct rt_mutex *pi_mutex;
3274
52400ba9
DH
3275 /*
3276 * We have been woken up by futex_unlock_pi(), a timeout, or a
3277 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3278 * the pi_state.
3279 */
f27071cb 3280 WARN_ON(!q.pi_state);
52400ba9 3281 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3282 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3283
3284 spin_lock(q.lock_ptr);
38d589f2
PZ
3285 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3286 ret = 0;
3287
3288 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3289 /*
3290 * Fixup the pi_state owner and possibly acquire the lock if we
3291 * haven't already.
3292 */
ae791a2d 3293 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3294 /*
3295 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3296 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3297 */
3298 if (res)
3299 ret = (res < 0) ? res : 0;
3300
c236c8e9
PZ
3301 /*
3302 * If fixup_pi_state_owner() faulted and was unable to handle
3303 * the fault, unlock the rt_mutex and return the fault to
3304 * userspace.
3305 */
16ffa12d
PZ
3306 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3307 pi_state = q.pi_state;
3308 get_pi_state(pi_state);
3309 }
c236c8e9 3310
52400ba9
DH
3311 /* Unqueue and drop the lock. */
3312 unqueue_me_pi(&q);
3313 }
3314
16ffa12d
PZ
3315 if (pi_state) {
3316 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3317 put_pi_state(pi_state);
3318 }
3319
c236c8e9 3320 if (ret == -EINTR) {
52400ba9 3321 /*
cc6db4e6
DH
3322 * We've already been requeued, but cannot restart by calling
3323 * futex_lock_pi() directly. We could restart this syscall, but
3324 * it would detect that the user space "val" changed and return
3325 * -EWOULDBLOCK. Save the overhead of the restart and return
3326 * -EWOULDBLOCK directly.
52400ba9 3327 */
2070887f 3328 ret = -EWOULDBLOCK;
52400ba9
DH
3329 }
3330
52400ba9
DH
3331out:
3332 if (to) {
3333 hrtimer_cancel(&to->timer);
3334 destroy_hrtimer_on_stack(&to->timer);
3335 }
3336 return ret;
3337}
3338
0771dfef
IM
3339/*
3340 * Support for robust futexes: the kernel cleans up held futexes at
3341 * thread exit time.
3342 *
3343 * Implementation: user-space maintains a per-thread list of locks it
3344 * is holding. Upon do_exit(), the kernel carefully walks this list,
3345 * and marks all locks that are owned by this thread with the
c87e2837 3346 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3347 * always manipulated with the lock held, so the list is private and
3348 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3349 * field, to allow the kernel to clean up if the thread dies after
3350 * acquiring the lock, but just before it could have added itself to
3351 * the list. There can only be one such pending lock.
3352 */
3353
3354/**
d96ee56c
DH
3355 * sys_set_robust_list() - Set the robust-futex list head of a task
3356 * @head: pointer to the list-head
3357 * @len: length of the list-head, as userspace expects
0771dfef 3358 */
836f92ad
HC
3359SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3360 size_t, len)
0771dfef 3361{
a0c1e907
TG
3362 if (!futex_cmpxchg_enabled)
3363 return -ENOSYS;
0771dfef
IM
3364 /*
3365 * The kernel knows only one size for now:
3366 */
3367 if (unlikely(len != sizeof(*head)))
3368 return -EINVAL;
3369
3370 current->robust_list = head;
3371
3372 return 0;
3373}
3374
3375/**
d96ee56c
DH
3376 * sys_get_robust_list() - Get the robust-futex list head of a task
3377 * @pid: pid of the process [zero for current task]
3378 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3379 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3380 */
836f92ad
HC
3381SYSCALL_DEFINE3(get_robust_list, int, pid,
3382 struct robust_list_head __user * __user *, head_ptr,
3383 size_t __user *, len_ptr)
0771dfef 3384{
ba46df98 3385 struct robust_list_head __user *head;
0771dfef 3386 unsigned long ret;
bdbb776f 3387 struct task_struct *p;
0771dfef 3388
a0c1e907
TG
3389 if (!futex_cmpxchg_enabled)
3390 return -ENOSYS;
3391
bdbb776f
KC
3392 rcu_read_lock();
3393
3394 ret = -ESRCH;
0771dfef 3395 if (!pid)
bdbb776f 3396 p = current;
0771dfef 3397 else {
228ebcbe 3398 p = find_task_by_vpid(pid);
0771dfef
IM
3399 if (!p)
3400 goto err_unlock;
0771dfef
IM
3401 }
3402
bdbb776f 3403 ret = -EPERM;
caaee623 3404 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3405 goto err_unlock;
3406
3407 head = p->robust_list;
3408 rcu_read_unlock();
3409
0771dfef
IM
3410 if (put_user(sizeof(*head), len_ptr))
3411 return -EFAULT;
3412 return put_user(head, head_ptr);
3413
3414err_unlock:
aaa2a97e 3415 rcu_read_unlock();
0771dfef
IM
3416
3417 return ret;
3418}
3419
ca16d5be
YT
3420/* Constants for the pending_op argument of handle_futex_death */
3421#define HANDLE_DEATH_PENDING true
3422#define HANDLE_DEATH_LIST false
3423
0771dfef
IM
3424/*
3425 * Process a futex-list entry, check whether it's owned by the
3426 * dying task, and do notification if so:
3427 */
ca16d5be
YT
3428static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3429 bool pi, bool pending_op)
0771dfef 3430{
3f649ab7 3431 u32 uval, nval, mval;
6b4f4bc9 3432 int err;
0771dfef 3433
5a07168d
CJ
3434 /* Futex address must be 32bit aligned */
3435 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3436 return -1;
3437
8f17d3a5
IM
3438retry:
3439 if (get_user(uval, uaddr))
0771dfef
IM
3440 return -1;
3441
ca16d5be
YT
3442 /*
3443 * Special case for regular (non PI) futexes. The unlock path in
3444 * user space has two race scenarios:
3445 *
3446 * 1. The unlock path releases the user space futex value and
3447 * before it can execute the futex() syscall to wake up
3448 * waiters it is killed.
3449 *
3450 * 2. A woken up waiter is killed before it can acquire the
3451 * futex in user space.
3452 *
3453 * In both cases the TID validation below prevents a wakeup of
3454 * potential waiters which can cause these waiters to block
3455 * forever.
3456 *
3457 * In both cases the following conditions are met:
3458 *
3459 * 1) task->robust_list->list_op_pending != NULL
3460 * @pending_op == true
3461 * 2) User space futex value == 0
3462 * 3) Regular futex: @pi == false
3463 *
3464 * If these conditions are met, it is safe to attempt waking up a
3465 * potential waiter without touching the user space futex value and
3466 * trying to set the OWNER_DIED bit. The user space futex value is
3467 * uncontended and the rest of the user space mutex state is
3468 * consistent, so a woken waiter will just take over the
3469 * uncontended futex. Setting the OWNER_DIED bit would create
3470 * inconsistent state and malfunction of the user space owner died
3471 * handling.
3472 */
3473 if (pending_op && !pi && !uval) {
3474 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3475 return 0;
3476 }
3477
6b4f4bc9
WD
3478 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3479 return 0;
3480
3481 /*
3482 * Ok, this dying thread is truly holding a futex
3483 * of interest. Set the OWNER_DIED bit atomically
3484 * via cmpxchg, and if the value had FUTEX_WAITERS
3485 * set, wake up a waiter (if any). (We have to do a
3486 * futex_wake() even if OWNER_DIED is already set -
3487 * to handle the rare but possible case of recursive
3488 * thread-death.) The rest of the cleanup is done in
3489 * userspace.
3490 */
3491 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3492
3493 /*
3494 * We are not holding a lock here, but we want to have
3495 * the pagefault_disable/enable() protection because
3496 * we want to handle the fault gracefully. If the
3497 * access fails we try to fault in the futex with R/W
3498 * verification via get_user_pages. get_user() above
3499 * does not guarantee R/W access. If that fails we
3500 * give up and leave the futex locked.
3501 */
3502 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3503 switch (err) {
3504 case -EFAULT:
6e0aa9f8
TG
3505 if (fault_in_user_writeable(uaddr))
3506 return -1;
3507 goto retry;
6b4f4bc9
WD
3508
3509 case -EAGAIN:
3510 cond_resched();
8f17d3a5 3511 goto retry;
0771dfef 3512
6b4f4bc9
WD
3513 default:
3514 WARN_ON_ONCE(1);
3515 return err;
3516 }
0771dfef 3517 }
6b4f4bc9
WD
3518
3519 if (nval != uval)
3520 goto retry;
3521
3522 /*
3523 * Wake robust non-PI futexes here. The wakeup of
3524 * PI futexes happens in exit_pi_state():
3525 */
3526 if (!pi && (uval & FUTEX_WAITERS))
3527 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3528
0771dfef
IM
3529 return 0;
3530}
3531
e3f2ddea
IM
3532/*
3533 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3534 */
3535static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3536 struct robust_list __user * __user *head,
1dcc41bb 3537 unsigned int *pi)
e3f2ddea
IM
3538{
3539 unsigned long uentry;
3540
ba46df98 3541 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3542 return -EFAULT;
3543
ba46df98 3544 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3545 *pi = uentry & 1;
3546
3547 return 0;
3548}
3549
0771dfef
IM
3550/*
3551 * Walk curr->robust_list (very carefully, it's a userspace list!)
3552 * and mark any locks found there dead, and notify any waiters.
3553 *
3554 * We silently return on any sign of list-walking problem.
3555 */
ba31c1a4 3556static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3557{
3558 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3559 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3560 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3561 unsigned int next_pi;
0771dfef 3562 unsigned long futex_offset;
9f96cb1e 3563 int rc;
0771dfef 3564
a0c1e907
TG
3565 if (!futex_cmpxchg_enabled)
3566 return;
3567
0771dfef
IM
3568 /*
3569 * Fetch the list head (which was registered earlier, via
3570 * sys_set_robust_list()):
3571 */
e3f2ddea 3572 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3573 return;
3574 /*
3575 * Fetch the relative futex offset:
3576 */
3577 if (get_user(futex_offset, &head->futex_offset))
3578 return;
3579 /*
3580 * Fetch any possibly pending lock-add first, and handle it
3581 * if it exists:
3582 */
e3f2ddea 3583 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3584 return;
e3f2ddea 3585
9f96cb1e 3586 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3587 while (entry != &head->list) {
9f96cb1e
MS
3588 /*
3589 * Fetch the next entry in the list before calling
3590 * handle_futex_death:
3591 */
3592 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3593 /*
3594 * A pending lock might already be on the list, so
c87e2837 3595 * don't process it twice:
0771dfef 3596 */
ca16d5be 3597 if (entry != pending) {
ba46df98 3598 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3599 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3600 return;
ca16d5be 3601 }
9f96cb1e 3602 if (rc)
0771dfef 3603 return;
9f96cb1e
MS
3604 entry = next_entry;
3605 pi = next_pi;
0771dfef
IM
3606 /*
3607 * Avoid excessively long or circular lists:
3608 */
3609 if (!--limit)
3610 break;
3611
3612 cond_resched();
3613 }
9f96cb1e 3614
ca16d5be 3615 if (pending) {
9f96cb1e 3616 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3617 curr, pip, HANDLE_DEATH_PENDING);
3618 }
0771dfef
IM
3619}
3620
af8cbda2 3621static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3622{
3623 if (unlikely(tsk->robust_list)) {
3624 exit_robust_list(tsk);
3625 tsk->robust_list = NULL;
3626 }
3627
3628#ifdef CONFIG_COMPAT
3629 if (unlikely(tsk->compat_robust_list)) {
3630 compat_exit_robust_list(tsk);
3631 tsk->compat_robust_list = NULL;
3632 }
3633#endif
3634
3635 if (unlikely(!list_empty(&tsk->pi_state_list)))
3636 exit_pi_state_list(tsk);
3637}
3638
18f69438
TG
3639/**
3640 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3641 * @tsk: task to set the state on
3642 *
3643 * Set the futex exit state of the task lockless. The futex waiter code
3644 * observes that state when a task is exiting and loops until the task has
3645 * actually finished the futex cleanup. The worst case for this is that the
3646 * waiter runs through the wait loop until the state becomes visible.
3647 *
3648 * This is called from the recursive fault handling path in do_exit().
3649 *
3650 * This is best effort. Either the futex exit code has run already or
3651 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3652 * take it over. If not, the problem is pushed back to user space. If the
3653 * futex exit code did not run yet, then an already queued waiter might
3654 * block forever, but there is nothing which can be done about that.
3655 */
3656void futex_exit_recursive(struct task_struct *tsk)
3657{
3f186d97
TG
3658 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3659 if (tsk->futex_state == FUTEX_STATE_EXITING)
3660 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3661 tsk->futex_state = FUTEX_STATE_DEAD;
3662}
3663
af8cbda2 3664static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3665{
3f186d97
TG
3666 /*
3667 * Prevent various race issues against a concurrent incoming waiter
3668 * including live locks by forcing the waiter to block on
3669 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3670 * attach_to_pi_owner().
3671 */
3672 mutex_lock(&tsk->futex_exit_mutex);
3673
18f69438 3674 /*
4a8e991b
TG
3675 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3676 *
3677 * This ensures that all subsequent checks of tsk->futex_state in
3678 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3679 * tsk->pi_lock held.
3680 *
3681 * It guarantees also that a pi_state which was queued right before
3682 * the state change under tsk->pi_lock by a concurrent waiter must
3683 * be observed in exit_pi_state_list().
18f69438
TG
3684 */
3685 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3686 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3687 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3688}
18f69438 3689
af8cbda2
TG
3690static void futex_cleanup_end(struct task_struct *tsk, int state)
3691{
3692 /*
3693 * Lockless store. The only side effect is that an observer might
3694 * take another loop until it becomes visible.
3695 */
3696 tsk->futex_state = state;
3f186d97
TG
3697 /*
3698 * Drop the exit protection. This unblocks waiters which observed
3699 * FUTEX_STATE_EXITING to reevaluate the state.
3700 */
3701 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3702}
18f69438 3703
af8cbda2
TG
3704void futex_exec_release(struct task_struct *tsk)
3705{
3706 /*
3707 * The state handling is done for consistency, but in the case of
3708 * exec() there is no way to prevent futher damage as the PID stays
3709 * the same. But for the unlikely and arguably buggy case that a
3710 * futex is held on exec(), this provides at least as much state
3711 * consistency protection which is possible.
3712 */
3713 futex_cleanup_begin(tsk);
3714 futex_cleanup(tsk);
3715 /*
3716 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3717 * exec a new binary.
3718 */
3719 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3720}
3721
3722void futex_exit_release(struct task_struct *tsk)
3723{
3724 futex_cleanup_begin(tsk);
3725 futex_cleanup(tsk);
3726 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3727}
3728
c19384b5 3729long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3730 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3731{
81b40539 3732 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3733 unsigned int flags = 0;
34f01cc1
ED
3734
3735 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3736 flags |= FLAGS_SHARED;
1da177e4 3737
b41277dc
DH
3738 if (op & FUTEX_CLOCK_REALTIME) {
3739 flags |= FLAGS_CLOCKRT;
337f1304
DH
3740 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3741 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3742 return -ENOSYS;
3743 }
1da177e4 3744
59263b51
TG
3745 switch (cmd) {
3746 case FUTEX_LOCK_PI:
3747 case FUTEX_UNLOCK_PI:
3748 case FUTEX_TRYLOCK_PI:
3749 case FUTEX_WAIT_REQUEUE_PI:
3750 case FUTEX_CMP_REQUEUE_PI:
3751 if (!futex_cmpxchg_enabled)
3752 return -ENOSYS;
3753 }
3754
34f01cc1 3755 switch (cmd) {
1da177e4 3756 case FUTEX_WAIT:
cd689985 3757 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3758 fallthrough;
cd689985 3759 case FUTEX_WAIT_BITSET:
81b40539 3760 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3761 case FUTEX_WAKE:
cd689985 3762 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3763 fallthrough;
cd689985 3764 case FUTEX_WAKE_BITSET:
81b40539 3765 return futex_wake(uaddr, flags, val, val3);
1da177e4 3766 case FUTEX_REQUEUE:
81b40539 3767 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3768 case FUTEX_CMP_REQUEUE:
81b40539 3769 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3770 case FUTEX_WAKE_OP:
81b40539 3771 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3772 case FUTEX_LOCK_PI:
996636dd 3773 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3774 case FUTEX_UNLOCK_PI:
81b40539 3775 return futex_unlock_pi(uaddr, flags);
c87e2837 3776 case FUTEX_TRYLOCK_PI:
996636dd 3777 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3778 case FUTEX_WAIT_REQUEUE_PI:
3779 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3780 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3781 uaddr2);
52400ba9 3782 case FUTEX_CMP_REQUEUE_PI:
81b40539 3783 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3784 }
81b40539 3785 return -ENOSYS;
1da177e4
LT
3786}
3787
3788
17da2bd9 3789SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3790 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3791 u32, val3)
1da177e4 3792{
bec2f7cb 3793 struct timespec64 ts;
c19384b5 3794 ktime_t t, *tp = NULL;
e2970f2f 3795 u32 val2 = 0;
34f01cc1 3796 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3797
cd689985 3798 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3799 cmd == FUTEX_WAIT_BITSET ||
3800 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3801 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3802 return -EFAULT;
bec2f7cb 3803 if (get_timespec64(&ts, utime))
1da177e4 3804 return -EFAULT;
bec2f7cb 3805 if (!timespec64_valid(&ts))
9741ef96 3806 return -EINVAL;
c19384b5 3807
bec2f7cb 3808 t = timespec64_to_ktime(ts);
34f01cc1 3809 if (cmd == FUTEX_WAIT)
5a7780e7 3810 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
3811 else if (!(op & FUTEX_CLOCK_REALTIME))
3812 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
c19384b5 3813 tp = &t;
1da177e4
LT
3814 }
3815 /*
52400ba9 3816 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3817 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3818 */
f54f0986 3819 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3820 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3821 val2 = (u32) (unsigned long) utime;
1da177e4 3822
c19384b5 3823 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3824}
3825
04e7712f
AB
3826#ifdef CONFIG_COMPAT
3827/*
3828 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3829 */
3830static inline int
3831compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3832 compat_uptr_t __user *head, unsigned int *pi)
3833{
3834 if (get_user(*uentry, head))
3835 return -EFAULT;
3836
3837 *entry = compat_ptr((*uentry) & ~1);
3838 *pi = (unsigned int)(*uentry) & 1;
3839
3840 return 0;
3841}
3842
3843static void __user *futex_uaddr(struct robust_list __user *entry,
3844 compat_long_t futex_offset)
3845{
3846 compat_uptr_t base = ptr_to_compat(entry);
3847 void __user *uaddr = compat_ptr(base + futex_offset);
3848
3849 return uaddr;
3850}
3851
3852/*
3853 * Walk curr->robust_list (very carefully, it's a userspace list!)
3854 * and mark any locks found there dead, and notify any waiters.
3855 *
3856 * We silently return on any sign of list-walking problem.
3857 */
ba31c1a4 3858static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3859{
3860 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3861 struct robust_list __user *entry, *next_entry, *pending;
3862 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3863 unsigned int next_pi;
04e7712f
AB
3864 compat_uptr_t uentry, next_uentry, upending;
3865 compat_long_t futex_offset;
3866 int rc;
3867
3868 if (!futex_cmpxchg_enabled)
3869 return;
3870
3871 /*
3872 * Fetch the list head (which was registered earlier, via
3873 * sys_set_robust_list()):
3874 */
3875 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3876 return;
3877 /*
3878 * Fetch the relative futex offset:
3879 */
3880 if (get_user(futex_offset, &head->futex_offset))
3881 return;
3882 /*
3883 * Fetch any possibly pending lock-add first, and handle it
3884 * if it exists:
3885 */
3886 if (compat_fetch_robust_entry(&upending, &pending,
3887 &head->list_op_pending, &pip))
3888 return;
3889
3890 next_entry = NULL; /* avoid warning with gcc */
3891 while (entry != (struct robust_list __user *) &head->list) {
3892 /*
3893 * Fetch the next entry in the list before calling
3894 * handle_futex_death:
3895 */
3896 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3897 (compat_uptr_t __user *)&entry->next, &next_pi);
3898 /*
3899 * A pending lock might already be on the list, so
3900 * dont process it twice:
3901 */
3902 if (entry != pending) {
3903 void __user *uaddr = futex_uaddr(entry, futex_offset);
3904
ca16d5be
YT
3905 if (handle_futex_death(uaddr, curr, pi,
3906 HANDLE_DEATH_LIST))
04e7712f
AB
3907 return;
3908 }
3909 if (rc)
3910 return;
3911 uentry = next_uentry;
3912 entry = next_entry;
3913 pi = next_pi;
3914 /*
3915 * Avoid excessively long or circular lists:
3916 */
3917 if (!--limit)
3918 break;
3919
3920 cond_resched();
3921 }
3922 if (pending) {
3923 void __user *uaddr = futex_uaddr(pending, futex_offset);
3924
ca16d5be 3925 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3926 }
3927}
3928
3929COMPAT_SYSCALL_DEFINE2(set_robust_list,
3930 struct compat_robust_list_head __user *, head,
3931 compat_size_t, len)
3932{
3933 if (!futex_cmpxchg_enabled)
3934 return -ENOSYS;
3935
3936 if (unlikely(len != sizeof(*head)))
3937 return -EINVAL;
3938
3939 current->compat_robust_list = head;
3940
3941 return 0;
3942}
3943
3944COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3945 compat_uptr_t __user *, head_ptr,
3946 compat_size_t __user *, len_ptr)
3947{
3948 struct compat_robust_list_head __user *head;
3949 unsigned long ret;
3950 struct task_struct *p;
3951
3952 if (!futex_cmpxchg_enabled)
3953 return -ENOSYS;
3954
3955 rcu_read_lock();
3956
3957 ret = -ESRCH;
3958 if (!pid)
3959 p = current;
3960 else {
3961 p = find_task_by_vpid(pid);
3962 if (!p)
3963 goto err_unlock;
3964 }
3965
3966 ret = -EPERM;
3967 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3968 goto err_unlock;
3969
3970 head = p->compat_robust_list;
3971 rcu_read_unlock();
3972
3973 if (put_user(sizeof(*head), len_ptr))
3974 return -EFAULT;
3975 return put_user(ptr_to_compat(head), head_ptr);
3976
3977err_unlock:
3978 rcu_read_unlock();
3979
3980 return ret;
3981}
bec2f7cb 3982#endif /* CONFIG_COMPAT */
04e7712f 3983
bec2f7cb 3984#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3985SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3986 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3987 u32, val3)
3988{
bec2f7cb 3989 struct timespec64 ts;
04e7712f
AB
3990 ktime_t t, *tp = NULL;
3991 int val2 = 0;
3992 int cmd = op & FUTEX_CMD_MASK;
3993
3994 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3995 cmd == FUTEX_WAIT_BITSET ||
3996 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3997 if (get_old_timespec32(&ts, utime))
04e7712f 3998 return -EFAULT;
bec2f7cb 3999 if (!timespec64_valid(&ts))
04e7712f
AB
4000 return -EINVAL;
4001
bec2f7cb 4002 t = timespec64_to_ktime(ts);
04e7712f
AB
4003 if (cmd == FUTEX_WAIT)
4004 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
4005 else if (!(op & FUTEX_CLOCK_REALTIME))
4006 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
04e7712f
AB
4007 tp = &t;
4008 }
4009 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4010 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4011 val2 = (int) (unsigned long) utime;
4012
4013 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4014}
bec2f7cb 4015#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 4016
03b8c7b6 4017static void __init futex_detect_cmpxchg(void)
1da177e4 4018{
03b8c7b6 4019#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 4020 u32 curval;
03b8c7b6
HC
4021
4022 /*
4023 * This will fail and we want it. Some arch implementations do
4024 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4025 * functionality. We want to know that before we call in any
4026 * of the complex code paths. Also we want to prevent
4027 * registration of robust lists in that case. NULL is
4028 * guaranteed to fault and we get -EFAULT on functional
4029 * implementation, the non-functional ones will return
4030 * -ENOSYS.
4031 */
4032 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4033 futex_cmpxchg_enabled = 1;
4034#endif
4035}
4036
4037static int __init futex_init(void)
4038{
63b1a816 4039 unsigned int futex_shift;
a52b89eb
DB
4040 unsigned long i;
4041
4042#if CONFIG_BASE_SMALL
4043 futex_hashsize = 16;
4044#else
4045 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4046#endif
4047
4048 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4049 futex_hashsize, 0,
4050 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4051 &futex_shift, NULL,
4052 futex_hashsize, futex_hashsize);
4053 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4054
4055 futex_detect_cmpxchg();
a0c1e907 4056
a52b89eb 4057 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4058 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4059 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4060 spin_lock_init(&futex_queues[i].lock);
4061 }
4062
1da177e4
LT
4063 return 0;
4064}
25f71d1c 4065core_initcall(futex_init);