]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6
TG
72/*
73 * Basic futex operation and ordering guarantees:
74 *
75 * The waiter reads the futex value in user space and calls
76 * futex_wait(). This function computes the hash bucket and acquires
77 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
78 * again and verifies that the data has not changed. If it has not changed
79 * it enqueues itself into the hash bucket, releases the hash bucket lock
80 * and schedules.
99b60ce6
TG
81 *
82 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
83 * futex_wake(). This function computes the hash bucket and acquires the
84 * hash bucket lock. Then it looks for waiters on that futex in the hash
85 * bucket and wakes them.
99b60ce6 86 *
b0c29f79
DB
87 * In futex wake up scenarios where no tasks are blocked on a futex, taking
88 * the hb spinlock can be avoided and simply return. In order for this
89 * optimization to work, ordering guarantees must exist so that the waiter
90 * being added to the list is acknowledged when the list is concurrently being
91 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
92 *
93 * CPU 0 CPU 1
94 * val = *futex;
95 * sys_futex(WAIT, futex, val);
96 * futex_wait(futex, val);
97 * uval = *futex;
98 * *futex = newval;
99 * sys_futex(WAKE, futex);
100 * futex_wake(futex);
101 * if (queue_empty())
102 * return;
103 * if (uval == val)
104 * lock(hash_bucket(futex));
105 * queue();
106 * unlock(hash_bucket(futex));
107 * schedule();
108 *
109 * This would cause the waiter on CPU 0 to wait forever because it
110 * missed the transition of the user space value from val to newval
111 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 112 *
b0c29f79
DB
113 * The correct serialization ensures that a waiter either observes
114 * the changed user space value before blocking or is woken by a
115 * concurrent waker:
116 *
117 * CPU 0 CPU 1
99b60ce6
TG
118 * val = *futex;
119 * sys_futex(WAIT, futex, val);
120 * futex_wait(futex, val);
b0c29f79
DB
121 *
122 * waiters++;
123 * mb(); (A) <-- paired with -.
124 * |
125 * lock(hash_bucket(futex)); |
126 * |
127 * uval = *futex; |
128 * | *futex = newval;
129 * | sys_futex(WAKE, futex);
130 * | futex_wake(futex);
131 * |
132 * `-------> mb(); (B)
99b60ce6 133 * if (uval == val)
b0c29f79 134 * queue();
99b60ce6 135 * unlock(hash_bucket(futex));
b0c29f79
DB
136 * schedule(); if (waiters)
137 * lock(hash_bucket(futex));
138 * wake_waiters(futex);
139 * unlock(hash_bucket(futex));
140 *
141 * Where (A) orders the waiters increment and the futex value read -- this
142 * is guaranteed by the head counter in the hb spinlock; and where (B)
143 * orders the write to futex and the waiters read -- this is done by the
144 * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145 * depending on the futex type.
146 *
147 * This yields the following case (where X:=waiters, Y:=futex):
148 *
149 * X = Y = 0
150 *
151 * w[X]=1 w[Y]=1
152 * MB MB
153 * r[Y]=y r[X]=x
154 *
155 * Which guarantees that x==0 && y==0 is impossible; which translates back into
156 * the guarantee that we cannot both miss the futex variable change and the
157 * enqueue.
99b60ce6
TG
158 */
159
03b8c7b6 160#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 161int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 162#endif
a0c1e907 163
b41277dc
DH
164/*
165 * Futex flags used to encode options to functions and preserve them across
166 * restarts.
167 */
168#define FLAGS_SHARED 0x01
169#define FLAGS_CLOCKRT 0x02
170#define FLAGS_HAS_TIMEOUT 0x04
171
c87e2837
IM
172/*
173 * Priority Inheritance state:
174 */
175struct futex_pi_state {
176 /*
177 * list of 'owned' pi_state instances - these have to be
178 * cleaned up in do_exit() if the task exits prematurely:
179 */
180 struct list_head list;
181
182 /*
183 * The PI object:
184 */
185 struct rt_mutex pi_mutex;
186
187 struct task_struct *owner;
188 atomic_t refcount;
189
190 union futex_key key;
191};
192
d8d88fbb
DH
193/**
194 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 195 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
196 * @task: the task waiting on the futex
197 * @lock_ptr: the hash bucket lock
198 * @key: the key the futex is hashed on
199 * @pi_state: optional priority inheritance state
200 * @rt_waiter: rt_waiter storage for use with requeue_pi
201 * @requeue_pi_key: the requeue_pi target futex key
202 * @bitset: bitset for the optional bitmasked wakeup
203 *
204 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
205 * we can wake only the relevant ones (hashed queues may be shared).
206 *
207 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 208 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 209 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
210 * the second.
211 *
212 * PI futexes are typically woken before they are removed from the hash list via
213 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
214 */
215struct futex_q {
ec92d082 216 struct plist_node list;
1da177e4 217
d8d88fbb 218 struct task_struct *task;
1da177e4 219 spinlock_t *lock_ptr;
1da177e4 220 union futex_key key;
c87e2837 221 struct futex_pi_state *pi_state;
52400ba9 222 struct rt_mutex_waiter *rt_waiter;
84bc4af5 223 union futex_key *requeue_pi_key;
cd689985 224 u32 bitset;
1da177e4
LT
225};
226
5bdb05f9
DH
227static const struct futex_q futex_q_init = {
228 /* list gets initialized in queue_me()*/
229 .key = FUTEX_KEY_INIT,
230 .bitset = FUTEX_BITSET_MATCH_ANY
231};
232
1da177e4 233/*
b2d0994b
DH
234 * Hash buckets are shared by all the futex_keys that hash to the same
235 * location. Each key may have multiple futex_q structures, one for each task
236 * waiting on a futex.
1da177e4
LT
237 */
238struct futex_hash_bucket {
11d4616b 239 atomic_t waiters;
ec92d082
PP
240 spinlock_t lock;
241 struct plist_head chain;
a52b89eb 242} ____cacheline_aligned_in_smp;
1da177e4 243
a52b89eb
DB
244static unsigned long __read_mostly futex_hashsize;
245
246static struct futex_hash_bucket *futex_queues;
1da177e4 247
b0c29f79
DB
248static inline void futex_get_mm(union futex_key *key)
249{
250 atomic_inc(&key->private.mm->mm_count);
251 /*
252 * Ensure futex_get_mm() implies a full barrier such that
253 * get_futex_key() implies a full barrier. This is relied upon
254 * as full barrier (B), see the ordering comment above.
255 */
256 smp_mb__after_atomic_inc();
257}
258
11d4616b
LT
259/*
260 * Reflects a new waiter being added to the waitqueue.
261 */
262static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
263{
264#ifdef CONFIG_SMP
11d4616b 265 atomic_inc(&hb->waiters);
b0c29f79 266 /*
11d4616b 267 * Full barrier (A), see the ordering comment above.
b0c29f79 268 */
11d4616b
LT
269 smp_mb__after_atomic_inc();
270#endif
271}
272
273/*
274 * Reflects a waiter being removed from the waitqueue by wakeup
275 * paths.
276 */
277static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278{
279#ifdef CONFIG_SMP
280 atomic_dec(&hb->waiters);
281#endif
282}
b0c29f79 283
11d4616b
LT
284static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285{
286#ifdef CONFIG_SMP
287 return atomic_read(&hb->waiters);
b0c29f79 288#else
11d4616b 289 return 1;
b0c29f79
DB
290#endif
291}
292
1da177e4
LT
293/*
294 * We hash on the keys returned from get_futex_key (see below).
295 */
296static struct futex_hash_bucket *hash_futex(union futex_key *key)
297{
298 u32 hash = jhash2((u32*)&key->both.word,
299 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300 key->both.offset);
a52b89eb 301 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
302}
303
304/*
305 * Return 1 if two futex_keys are equal, 0 otherwise.
306 */
307static inline int match_futex(union futex_key *key1, union futex_key *key2)
308{
2bc87203
DH
309 return (key1 && key2
310 && key1->both.word == key2->both.word
1da177e4
LT
311 && key1->both.ptr == key2->both.ptr
312 && key1->both.offset == key2->both.offset);
313}
314
38d47c1b
PZ
315/*
316 * Take a reference to the resource addressed by a key.
317 * Can be called while holding spinlocks.
318 *
319 */
320static void get_futex_key_refs(union futex_key *key)
321{
322 if (!key->both.ptr)
323 return;
324
325 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326 case FUT_OFF_INODE:
b0c29f79 327 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
328 break;
329 case FUT_OFF_MMSHARED:
b0c29f79 330 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
331 break;
332 }
333}
334
335/*
336 * Drop a reference to the resource addressed by a key.
337 * The hash bucket spinlock must not be held.
338 */
339static void drop_futex_key_refs(union futex_key *key)
340{
90621c40
DH
341 if (!key->both.ptr) {
342 /* If we're here then we tried to put a key we failed to get */
343 WARN_ON_ONCE(1);
38d47c1b 344 return;
90621c40 345 }
38d47c1b
PZ
346
347 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348 case FUT_OFF_INODE:
349 iput(key->shared.inode);
350 break;
351 case FUT_OFF_MMSHARED:
352 mmdrop(key->private.mm);
353 break;
354 }
355}
356
34f01cc1 357/**
d96ee56c
DH
358 * get_futex_key() - Get parameters which are the keys for a futex
359 * @uaddr: virtual address of the futex
360 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361 * @key: address where result is stored.
9ea71503
SB
362 * @rw: mapping needs to be read/write (values: VERIFY_READ,
363 * VERIFY_WRITE)
34f01cc1 364 *
6c23cbbd
RD
365 * Return: a negative error code or 0
366 *
34f01cc1 367 * The key words are stored in *key on success.
1da177e4 368 *
6131ffaa 369 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
370 * offset_within_page). For private mappings, it's (uaddr, current->mm).
371 * We can usually work out the index without swapping in the page.
372 *
b2d0994b 373 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 374 */
64d1304a 375static int
9ea71503 376get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 377{
e2970f2f 378 unsigned long address = (unsigned long)uaddr;
1da177e4 379 struct mm_struct *mm = current->mm;
a5b338f2 380 struct page *page, *page_head;
9ea71503 381 int err, ro = 0;
1da177e4
LT
382
383 /*
384 * The futex address must be "naturally" aligned.
385 */
e2970f2f 386 key->both.offset = address % PAGE_SIZE;
34f01cc1 387 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 388 return -EINVAL;
e2970f2f 389 address -= key->both.offset;
1da177e4 390
5cdec2d8
LT
391 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392 return -EFAULT;
393
34f01cc1
ED
394 /*
395 * PROCESS_PRIVATE futexes are fast.
396 * As the mm cannot disappear under us and the 'key' only needs
397 * virtual address, we dont even have to find the underlying vma.
398 * Note : We do have to check 'uaddr' is a valid user address,
399 * but access_ok() should be faster than find_vma()
400 */
401 if (!fshared) {
34f01cc1
ED
402 key->private.mm = mm;
403 key->private.address = address;
b0c29f79 404 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
405 return 0;
406 }
1da177e4 407
38d47c1b 408again:
7485d0d3 409 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
410 /*
411 * If write access is not required (eg. FUTEX_WAIT), try
412 * and get read-only access.
413 */
414 if (err == -EFAULT && rw == VERIFY_READ) {
415 err = get_user_pages_fast(address, 1, 0, &page);
416 ro = 1;
417 }
38d47c1b
PZ
418 if (err < 0)
419 return err;
9ea71503
SB
420 else
421 err = 0;
38d47c1b 422
a5b338f2
AA
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 page_head = page;
425 if (unlikely(PageTail(page))) {
38d47c1b 426 put_page(page);
a5b338f2
AA
427 /* serialize against __split_huge_page_splitting() */
428 local_irq_disable();
f12d5bfc 429 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
430 page_head = compound_head(page);
431 /*
432 * page_head is valid pointer but we must pin
433 * it before taking the PG_lock and/or
434 * PG_compound_lock. The moment we re-enable
435 * irqs __split_huge_page_splitting() can
436 * return and the head page can be freed from
437 * under us. We can't take the PG_lock and/or
438 * PG_compound_lock on a page that could be
439 * freed from under us.
440 */
441 if (page != page_head) {
442 get_page(page_head);
443 put_page(page);
444 }
445 local_irq_enable();
446 } else {
447 local_irq_enable();
448 goto again;
449 }
450 }
451#else
452 page_head = compound_head(page);
453 if (page != page_head) {
454 get_page(page_head);
455 put_page(page);
456 }
457#endif
458
459 lock_page(page_head);
e6780f72
HD
460
461 /*
462 * If page_head->mapping is NULL, then it cannot be a PageAnon
463 * page; but it might be the ZERO_PAGE or in the gate area or
464 * in a special mapping (all cases which we are happy to fail);
465 * or it may have been a good file page when get_user_pages_fast
466 * found it, but truncated or holepunched or subjected to
467 * invalidate_complete_page2 before we got the page lock (also
468 * cases which we are happy to fail). And we hold a reference,
469 * so refcount care in invalidate_complete_page's remove_mapping
470 * prevents drop_caches from setting mapping to NULL beneath us.
471 *
472 * The case we do have to guard against is when memory pressure made
473 * shmem_writepage move it from filecache to swapcache beneath us:
474 * an unlikely race, but we do need to retry for page_head->mapping.
475 */
a5b338f2 476 if (!page_head->mapping) {
e6780f72 477 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
478 unlock_page(page_head);
479 put_page(page_head);
e6780f72
HD
480 if (shmem_swizzled)
481 goto again;
482 return -EFAULT;
38d47c1b 483 }
1da177e4
LT
484
485 /*
486 * Private mappings are handled in a simple way.
487 *
488 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 490 * the object not the particular process.
1da177e4 491 */
a5b338f2 492 if (PageAnon(page_head)) {
9ea71503
SB
493 /*
494 * A RO anonymous page will never change and thus doesn't make
495 * sense for futex operations.
496 */
497 if (ro) {
498 err = -EFAULT;
499 goto out;
500 }
501
38d47c1b 502 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 503 key->private.mm = mm;
e2970f2f 504 key->private.address = address;
38d47c1b
PZ
505 } else {
506 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 507 key->shared.inode = page_head->mapping->host;
13d60f4b 508 key->shared.pgoff = basepage_index(page);
1da177e4
LT
509 }
510
b0c29f79 511 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 512
9ea71503 513out:
a5b338f2
AA
514 unlock_page(page_head);
515 put_page(page_head);
9ea71503 516 return err;
1da177e4
LT
517}
518
ae791a2d 519static inline void put_futex_key(union futex_key *key)
1da177e4 520{
38d47c1b 521 drop_futex_key_refs(key);
1da177e4
LT
522}
523
d96ee56c
DH
524/**
525 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
526 * @uaddr: pointer to faulting user space address
527 *
528 * Slow path to fixup the fault we just took in the atomic write
529 * access to @uaddr.
530 *
fb62db2b 531 * We have no generic implementation of a non-destructive write to the
d0725992
TG
532 * user address. We know that we faulted in the atomic pagefault
533 * disabled section so we can as well avoid the #PF overhead by
534 * calling get_user_pages() right away.
535 */
536static int fault_in_user_writeable(u32 __user *uaddr)
537{
722d0172
AK
538 struct mm_struct *mm = current->mm;
539 int ret;
540
541 down_read(&mm->mmap_sem);
2efaca92
BH
542 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543 FAULT_FLAG_WRITE);
722d0172
AK
544 up_read(&mm->mmap_sem);
545
d0725992
TG
546 return ret < 0 ? ret : 0;
547}
548
4b1c486b
DH
549/**
550 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
551 * @hb: the hash bucket the futex_q's reside in
552 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
553 *
554 * Must be called with the hb lock held.
555 */
556static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557 union futex_key *key)
558{
559 struct futex_q *this;
560
561 plist_for_each_entry(this, &hb->chain, list) {
562 if (match_futex(&this->key, key))
563 return this;
564 }
565 return NULL;
566}
567
37a9d912
ML
568static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569 u32 uval, u32 newval)
36cf3b5c 570{
37a9d912 571 int ret;
36cf3b5c
TG
572
573 pagefault_disable();
37a9d912 574 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
575 pagefault_enable();
576
37a9d912 577 return ret;
36cf3b5c
TG
578}
579
580static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
581{
582 int ret;
583
a866374a 584 pagefault_disable();
e2970f2f 585 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 586 pagefault_enable();
1da177e4
LT
587
588 return ret ? -EFAULT : 0;
589}
590
c87e2837
IM
591
592/*
593 * PI code:
594 */
595static int refill_pi_state_cache(void)
596{
597 struct futex_pi_state *pi_state;
598
599 if (likely(current->pi_state_cache))
600 return 0;
601
4668edc3 602 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
603
604 if (!pi_state)
605 return -ENOMEM;
606
c87e2837
IM
607 INIT_LIST_HEAD(&pi_state->list);
608 /* pi_mutex gets initialized later */
609 pi_state->owner = NULL;
610 atomic_set(&pi_state->refcount, 1);
38d47c1b 611 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
612
613 current->pi_state_cache = pi_state;
614
615 return 0;
616}
617
618static struct futex_pi_state * alloc_pi_state(void)
619{
620 struct futex_pi_state *pi_state = current->pi_state_cache;
621
622 WARN_ON(!pi_state);
623 current->pi_state_cache = NULL;
624
625 return pi_state;
626}
627
628static void free_pi_state(struct futex_pi_state *pi_state)
629{
630 if (!atomic_dec_and_test(&pi_state->refcount))
631 return;
632
633 /*
634 * If pi_state->owner is NULL, the owner is most probably dying
635 * and has cleaned up the pi_state already
636 */
637 if (pi_state->owner) {
1d615482 638 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 639 list_del_init(&pi_state->list);
1d615482 640 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
641
642 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643 }
644
645 if (current->pi_state_cache)
646 kfree(pi_state);
647 else {
648 /*
649 * pi_state->list is already empty.
650 * clear pi_state->owner.
651 * refcount is at 0 - put it back to 1.
652 */
653 pi_state->owner = NULL;
654 atomic_set(&pi_state->refcount, 1);
655 current->pi_state_cache = pi_state;
656 }
657}
658
659/*
660 * Look up the task based on what TID userspace gave us.
661 * We dont trust it.
662 */
663static struct task_struct * futex_find_get_task(pid_t pid)
664{
665 struct task_struct *p;
666
d359b549 667 rcu_read_lock();
228ebcbe 668 p = find_task_by_vpid(pid);
7a0ea09a
MH
669 if (p)
670 get_task_struct(p);
a06381fe 671
d359b549 672 rcu_read_unlock();
c87e2837
IM
673
674 return p;
675}
676
677/*
678 * This task is holding PI mutexes at exit time => bad.
679 * Kernel cleans up PI-state, but userspace is likely hosed.
680 * (Robust-futex cleanup is separate and might save the day for userspace.)
681 */
682void exit_pi_state_list(struct task_struct *curr)
683{
c87e2837
IM
684 struct list_head *next, *head = &curr->pi_state_list;
685 struct futex_pi_state *pi_state;
627371d7 686 struct futex_hash_bucket *hb;
38d47c1b 687 union futex_key key = FUTEX_KEY_INIT;
c87e2837 688
a0c1e907
TG
689 if (!futex_cmpxchg_enabled)
690 return;
c87e2837
IM
691 /*
692 * We are a ZOMBIE and nobody can enqueue itself on
693 * pi_state_list anymore, but we have to be careful
627371d7 694 * versus waiters unqueueing themselves:
c87e2837 695 */
1d615482 696 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
697 while (!list_empty(head)) {
698
699 next = head->next;
700 pi_state = list_entry(next, struct futex_pi_state, list);
701 key = pi_state->key;
627371d7 702 hb = hash_futex(&key);
1d615482 703 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 704
c87e2837
IM
705 spin_lock(&hb->lock);
706
1d615482 707 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
708 /*
709 * We dropped the pi-lock, so re-check whether this
710 * task still owns the PI-state:
711 */
c87e2837
IM
712 if (head->next != next) {
713 spin_unlock(&hb->lock);
714 continue;
715 }
716
c87e2837 717 WARN_ON(pi_state->owner != curr);
627371d7
IM
718 WARN_ON(list_empty(&pi_state->list));
719 list_del_init(&pi_state->list);
c87e2837 720 pi_state->owner = NULL;
1d615482 721 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
722
723 rt_mutex_unlock(&pi_state->pi_mutex);
724
725 spin_unlock(&hb->lock);
726
1d615482 727 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 728 }
1d615482 729 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
730}
731
732static int
d0aa7a70
PP
733lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
735{
736 struct futex_pi_state *pi_state = NULL;
737 struct futex_q *this, *next;
c87e2837 738 struct task_struct *p;
778e9a9c 739 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 740
0d00c7b2 741 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 742 if (match_futex(&this->key, key)) {
c87e2837
IM
743 /*
744 * Another waiter already exists - bump up
745 * the refcount and return its pi_state:
746 */
747 pi_state = this->pi_state;
06a9ec29 748 /*
fb62db2b 749 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
750 */
751 if (unlikely(!pi_state))
752 return -EINVAL;
753
627371d7 754 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
755
756 /*
757 * When pi_state->owner is NULL then the owner died
758 * and another waiter is on the fly. pi_state->owner
759 * is fixed up by the task which acquires
760 * pi_state->rt_mutex.
761 *
762 * We do not check for pid == 0 which can happen when
763 * the owner died and robust_list_exit() cleared the
764 * TID.
765 */
766 if (pid && pi_state->owner) {
767 /*
768 * Bail out if user space manipulated the
769 * futex value.
770 */
771 if (pid != task_pid_vnr(pi_state->owner))
772 return -EINVAL;
773 }
627371d7 774
c87e2837 775 atomic_inc(&pi_state->refcount);
d0aa7a70 776 *ps = pi_state;
c87e2837
IM
777
778 return 0;
779 }
780 }
781
782 /*
e3f2ddea 783 * We are the first waiter - try to look up the real owner and attach
778e9a9c 784 * the new pi_state to it, but bail out when TID = 0
c87e2837 785 */
778e9a9c 786 if (!pid)
e3f2ddea 787 return -ESRCH;
c87e2837 788 p = futex_find_get_task(pid);
7a0ea09a
MH
789 if (!p)
790 return -ESRCH;
778e9a9c
AK
791
792 /*
793 * We need to look at the task state flags to figure out,
794 * whether the task is exiting. To protect against the do_exit
795 * change of the task flags, we do this protected by
796 * p->pi_lock:
797 */
1d615482 798 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
799 if (unlikely(p->flags & PF_EXITING)) {
800 /*
801 * The task is on the way out. When PF_EXITPIDONE is
802 * set, we know that the task has finished the
803 * cleanup:
804 */
805 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
806
1d615482 807 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
808 put_task_struct(p);
809 return ret;
810 }
c87e2837
IM
811
812 pi_state = alloc_pi_state();
813
814 /*
815 * Initialize the pi_mutex in locked state and make 'p'
816 * the owner of it:
817 */
818 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
819
820 /* Store the key for possible exit cleanups: */
d0aa7a70 821 pi_state->key = *key;
c87e2837 822
627371d7 823 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
824 list_add(&pi_state->list, &p->pi_state_list);
825 pi_state->owner = p;
1d615482 826 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
827
828 put_task_struct(p);
829
d0aa7a70 830 *ps = pi_state;
c87e2837
IM
831
832 return 0;
833}
834
1a52084d 835/**
d96ee56c 836 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
837 * @uaddr: the pi futex user address
838 * @hb: the pi futex hash bucket
839 * @key: the futex key associated with uaddr and hb
840 * @ps: the pi_state pointer where we store the result of the
841 * lookup
842 * @task: the task to perform the atomic lock work for. This will
843 * be "current" except in the case of requeue pi.
844 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 845 *
6c23cbbd
RD
846 * Return:
847 * 0 - ready to wait;
848 * 1 - acquired the lock;
1a52084d
DH
849 * <0 - error
850 *
851 * The hb->lock and futex_key refs shall be held by the caller.
852 */
853static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
854 union futex_key *key,
855 struct futex_pi_state **ps,
bab5bc9e 856 struct task_struct *task, int set_waiters)
1a52084d 857{
59fa6245 858 int lock_taken, ret, force_take = 0;
c0c9ed15 859 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
860
861retry:
862 ret = lock_taken = 0;
863
864 /*
865 * To avoid races, we attempt to take the lock here again
866 * (by doing a 0 -> TID atomic cmpxchg), while holding all
867 * the locks. It will most likely not succeed.
868 */
c0c9ed15 869 newval = vpid;
bab5bc9e
DH
870 if (set_waiters)
871 newval |= FUTEX_WAITERS;
1a52084d 872
37a9d912 873 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
874 return -EFAULT;
875
876 /*
877 * Detect deadlocks.
878 */
c0c9ed15 879 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
880 return -EDEADLK;
881
882 /*
883 * Surprise - we got the lock. Just return to userspace:
884 */
885 if (unlikely(!curval))
886 return 1;
887
888 uval = curval;
889
890 /*
891 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
892 * to wake at the next unlock.
893 */
894 newval = curval | FUTEX_WAITERS;
895
896 /*
59fa6245 897 * Should we force take the futex? See below.
1a52084d 898 */
59fa6245
TG
899 if (unlikely(force_take)) {
900 /*
901 * Keep the OWNER_DIED and the WAITERS bit and set the
902 * new TID value.
903 */
c0c9ed15 904 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 905 force_take = 0;
1a52084d
DH
906 lock_taken = 1;
907 }
908
37a9d912 909 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
910 return -EFAULT;
911 if (unlikely(curval != uval))
912 goto retry;
913
914 /*
59fa6245 915 * We took the lock due to forced take over.
1a52084d
DH
916 */
917 if (unlikely(lock_taken))
918 return 1;
919
920 /*
921 * We dont have the lock. Look up the PI state (or create it if
922 * we are the first waiter):
923 */
924 ret = lookup_pi_state(uval, hb, key, ps);
925
926 if (unlikely(ret)) {
927 switch (ret) {
928 case -ESRCH:
929 /*
59fa6245
TG
930 * We failed to find an owner for this
931 * futex. So we have no pi_state to block
932 * on. This can happen in two cases:
933 *
934 * 1) The owner died
935 * 2) A stale FUTEX_WAITERS bit
936 *
937 * Re-read the futex value.
1a52084d
DH
938 */
939 if (get_futex_value_locked(&curval, uaddr))
940 return -EFAULT;
941
942 /*
59fa6245
TG
943 * If the owner died or we have a stale
944 * WAITERS bit the owner TID in the user space
945 * futex is 0.
1a52084d 946 */
59fa6245
TG
947 if (!(curval & FUTEX_TID_MASK)) {
948 force_take = 1;
1a52084d
DH
949 goto retry;
950 }
951 default:
952 break;
953 }
954 }
955
956 return ret;
957}
958
2e12978a
LJ
959/**
960 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
961 * @q: The futex_q to unqueue
962 *
963 * The q->lock_ptr must not be NULL and must be held by the caller.
964 */
965static void __unqueue_futex(struct futex_q *q)
966{
967 struct futex_hash_bucket *hb;
968
29096202
SR
969 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
970 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
971 return;
972
973 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
974 plist_del(&q->list, &hb->chain);
11d4616b 975 hb_waiters_dec(hb);
2e12978a
LJ
976}
977
1da177e4
LT
978/*
979 * The hash bucket lock must be held when this is called.
980 * Afterwards, the futex_q must not be accessed.
981 */
982static void wake_futex(struct futex_q *q)
983{
f1a11e05
TG
984 struct task_struct *p = q->task;
985
aa10990e
DH
986 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
987 return;
988
1da177e4 989 /*
f1a11e05 990 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
991 * a non-futex wake up happens on another CPU then the task
992 * might exit and p would dereference a non-existing task
f1a11e05
TG
993 * struct. Prevent this by holding a reference on p across the
994 * wake up.
1da177e4 995 */
f1a11e05
TG
996 get_task_struct(p);
997
2e12978a 998 __unqueue_futex(q);
1da177e4 999 /*
f1a11e05
TG
1000 * The waiting task can free the futex_q as soon as
1001 * q->lock_ptr = NULL is written, without taking any locks. A
1002 * memory barrier is required here to prevent the following
1003 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1004 */
ccdea2f8 1005 smp_wmb();
1da177e4 1006 q->lock_ptr = NULL;
f1a11e05
TG
1007
1008 wake_up_state(p, TASK_NORMAL);
1009 put_task_struct(p);
1da177e4
LT
1010}
1011
c87e2837
IM
1012static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1013{
1014 struct task_struct *new_owner;
1015 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1016 u32 uninitialized_var(curval), newval;
c87e2837
IM
1017
1018 if (!pi_state)
1019 return -EINVAL;
1020
51246bfd
TG
1021 /*
1022 * If current does not own the pi_state then the futex is
1023 * inconsistent and user space fiddled with the futex value.
1024 */
1025 if (pi_state->owner != current)
1026 return -EINVAL;
1027
d209d74d 1028 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1029 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1030
1031 /*
f123c98e
SR
1032 * It is possible that the next waiter (the one that brought
1033 * this owner to the kernel) timed out and is no longer
1034 * waiting on the lock.
c87e2837
IM
1035 */
1036 if (!new_owner)
1037 new_owner = this->task;
1038
1039 /*
1040 * We pass it to the next owner. (The WAITERS bit is always
1041 * kept enabled while there is PI state around. We must also
1042 * preserve the owner died bit.)
1043 */
e3f2ddea 1044 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
1045 int ret = 0;
1046
b488893a 1047 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1048
37a9d912 1049 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 1050 ret = -EFAULT;
cde898fa 1051 else if (curval != uval)
778e9a9c
AK
1052 ret = -EINVAL;
1053 if (ret) {
d209d74d 1054 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
1055 return ret;
1056 }
e3f2ddea 1057 }
c87e2837 1058
1d615482 1059 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1060 WARN_ON(list_empty(&pi_state->list));
1061 list_del_init(&pi_state->list);
1d615482 1062 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1063
1d615482 1064 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1065 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1066 list_add(&pi_state->list, &new_owner->pi_state_list);
1067 pi_state->owner = new_owner;
1d615482 1068 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1069
d209d74d 1070 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1071 rt_mutex_unlock(&pi_state->pi_mutex);
1072
1073 return 0;
1074}
1075
1076static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1077{
7cfdaf38 1078 u32 uninitialized_var(oldval);
c87e2837
IM
1079
1080 /*
1081 * There is no waiter, so we unlock the futex. The owner died
1082 * bit has not to be preserved here. We are the owner:
1083 */
37a9d912
ML
1084 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1085 return -EFAULT;
c87e2837
IM
1086 if (oldval != uval)
1087 return -EAGAIN;
1088
1089 return 0;
1090}
1091
8b8f319f
IM
1092/*
1093 * Express the locking dependencies for lockdep:
1094 */
1095static inline void
1096double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1097{
1098 if (hb1 <= hb2) {
1099 spin_lock(&hb1->lock);
1100 if (hb1 < hb2)
1101 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1102 } else { /* hb1 > hb2 */
1103 spin_lock(&hb2->lock);
1104 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1105 }
1106}
1107
5eb3dc62
DH
1108static inline void
1109double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1110{
f061d351 1111 spin_unlock(&hb1->lock);
88f502fe
IM
1112 if (hb1 != hb2)
1113 spin_unlock(&hb2->lock);
5eb3dc62
DH
1114}
1115
1da177e4 1116/*
b2d0994b 1117 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1118 */
b41277dc
DH
1119static int
1120futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1121{
e2970f2f 1122 struct futex_hash_bucket *hb;
1da177e4 1123 struct futex_q *this, *next;
38d47c1b 1124 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1125 int ret;
1126
cd689985
TG
1127 if (!bitset)
1128 return -EINVAL;
1129
9ea71503 1130 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1131 if (unlikely(ret != 0))
1132 goto out;
1133
e2970f2f 1134 hb = hash_futex(&key);
b0c29f79
DB
1135
1136 /* Make sure we really have tasks to wakeup */
1137 if (!hb_waiters_pending(hb))
1138 goto out_put_key;
1139
e2970f2f 1140 spin_lock(&hb->lock);
1da177e4 1141
0d00c7b2 1142 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1143 if (match_futex (&this->key, &key)) {
52400ba9 1144 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1145 ret = -EINVAL;
1146 break;
1147 }
cd689985
TG
1148
1149 /* Check if one of the bits is set in both bitsets */
1150 if (!(this->bitset & bitset))
1151 continue;
1152
1da177e4
LT
1153 wake_futex(this);
1154 if (++ret >= nr_wake)
1155 break;
1156 }
1157 }
1158
e2970f2f 1159 spin_unlock(&hb->lock);
b0c29f79 1160out_put_key:
ae791a2d 1161 put_futex_key(&key);
42d35d48 1162out:
1da177e4
LT
1163 return ret;
1164}
1165
4732efbe
JJ
1166/*
1167 * Wake up all waiters hashed on the physical page that is mapped
1168 * to this virtual address:
1169 */
e2970f2f 1170static int
b41277dc 1171futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1172 int nr_wake, int nr_wake2, int op)
4732efbe 1173{
38d47c1b 1174 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1175 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1176 struct futex_q *this, *next;
e4dc5b7a 1177 int ret, op_ret;
4732efbe 1178
e4dc5b7a 1179retry:
9ea71503 1180 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1181 if (unlikely(ret != 0))
1182 goto out;
9ea71503 1183 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1184 if (unlikely(ret != 0))
42d35d48 1185 goto out_put_key1;
4732efbe 1186
e2970f2f
IM
1187 hb1 = hash_futex(&key1);
1188 hb2 = hash_futex(&key2);
4732efbe 1189
e4dc5b7a 1190retry_private:
eaaea803 1191 double_lock_hb(hb1, hb2);
e2970f2f 1192 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1193 if (unlikely(op_ret < 0)) {
4732efbe 1194
5eb3dc62 1195 double_unlock_hb(hb1, hb2);
4732efbe 1196
7ee1dd3f 1197#ifndef CONFIG_MMU
e2970f2f
IM
1198 /*
1199 * we don't get EFAULT from MMU faults if we don't have an MMU,
1200 * but we might get them from range checking
1201 */
7ee1dd3f 1202 ret = op_ret;
42d35d48 1203 goto out_put_keys;
7ee1dd3f
DH
1204#endif
1205
796f8d9b
DG
1206 if (unlikely(op_ret != -EFAULT)) {
1207 ret = op_ret;
42d35d48 1208 goto out_put_keys;
796f8d9b
DG
1209 }
1210
d0725992 1211 ret = fault_in_user_writeable(uaddr2);
4732efbe 1212 if (ret)
de87fcc1 1213 goto out_put_keys;
4732efbe 1214
b41277dc 1215 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1216 goto retry_private;
1217
ae791a2d
TG
1218 put_futex_key(&key2);
1219 put_futex_key(&key1);
e4dc5b7a 1220 goto retry;
4732efbe
JJ
1221 }
1222
0d00c7b2 1223 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1224 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1225 if (this->pi_state || this->rt_waiter) {
1226 ret = -EINVAL;
1227 goto out_unlock;
1228 }
4732efbe
JJ
1229 wake_futex(this);
1230 if (++ret >= nr_wake)
1231 break;
1232 }
1233 }
1234
1235 if (op_ret > 0) {
4732efbe 1236 op_ret = 0;
0d00c7b2 1237 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1238 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1239 if (this->pi_state || this->rt_waiter) {
1240 ret = -EINVAL;
1241 goto out_unlock;
1242 }
4732efbe
JJ
1243 wake_futex(this);
1244 if (++op_ret >= nr_wake2)
1245 break;
1246 }
1247 }
1248 ret += op_ret;
1249 }
1250
aa10990e 1251out_unlock:
5eb3dc62 1252 double_unlock_hb(hb1, hb2);
42d35d48 1253out_put_keys:
ae791a2d 1254 put_futex_key(&key2);
42d35d48 1255out_put_key1:
ae791a2d 1256 put_futex_key(&key1);
42d35d48 1257out:
4732efbe
JJ
1258 return ret;
1259}
1260
9121e478
DH
1261/**
1262 * requeue_futex() - Requeue a futex_q from one hb to another
1263 * @q: the futex_q to requeue
1264 * @hb1: the source hash_bucket
1265 * @hb2: the target hash_bucket
1266 * @key2: the new key for the requeued futex_q
1267 */
1268static inline
1269void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1270 struct futex_hash_bucket *hb2, union futex_key *key2)
1271{
1272
1273 /*
1274 * If key1 and key2 hash to the same bucket, no need to
1275 * requeue.
1276 */
1277 if (likely(&hb1->chain != &hb2->chain)) {
1278 plist_del(&q->list, &hb1->chain);
11d4616b 1279 hb_waiters_dec(hb1);
9121e478 1280 plist_add(&q->list, &hb2->chain);
11d4616b 1281 hb_waiters_inc(hb2);
9121e478 1282 q->lock_ptr = &hb2->lock;
9121e478
DH
1283 }
1284 get_futex_key_refs(key2);
1285 q->key = *key2;
1286}
1287
52400ba9
DH
1288/**
1289 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1290 * @q: the futex_q
1291 * @key: the key of the requeue target futex
1292 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1293 *
1294 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1295 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1296 * to the requeue target futex so the waiter can detect the wakeup on the right
1297 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1298 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1299 * to protect access to the pi_state to fixup the owner later. Must be called
1300 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1301 */
1302static inline
beda2c7e
DH
1303void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1304 struct futex_hash_bucket *hb)
52400ba9 1305{
52400ba9
DH
1306 get_futex_key_refs(key);
1307 q->key = *key;
1308
2e12978a 1309 __unqueue_futex(q);
52400ba9
DH
1310
1311 WARN_ON(!q->rt_waiter);
1312 q->rt_waiter = NULL;
1313
beda2c7e 1314 q->lock_ptr = &hb->lock;
beda2c7e 1315
f1a11e05 1316 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1317}
1318
1319/**
1320 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1321 * @pifutex: the user address of the to futex
1322 * @hb1: the from futex hash bucket, must be locked by the caller
1323 * @hb2: the to futex hash bucket, must be locked by the caller
1324 * @key1: the from futex key
1325 * @key2: the to futex key
1326 * @ps: address to store the pi_state pointer
1327 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1328 *
1329 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1330 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1331 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1332 * hb1 and hb2 must be held by the caller.
52400ba9 1333 *
6c23cbbd
RD
1334 * Return:
1335 * 0 - failed to acquire the lock atomically;
1336 * 1 - acquired the lock;
52400ba9
DH
1337 * <0 - error
1338 */
1339static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1340 struct futex_hash_bucket *hb1,
1341 struct futex_hash_bucket *hb2,
1342 union futex_key *key1, union futex_key *key2,
bab5bc9e 1343 struct futex_pi_state **ps, int set_waiters)
52400ba9 1344{
bab5bc9e 1345 struct futex_q *top_waiter = NULL;
52400ba9
DH
1346 u32 curval;
1347 int ret;
1348
1349 if (get_futex_value_locked(&curval, pifutex))
1350 return -EFAULT;
1351
bab5bc9e
DH
1352 /*
1353 * Find the top_waiter and determine if there are additional waiters.
1354 * If the caller intends to requeue more than 1 waiter to pifutex,
1355 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1356 * as we have means to handle the possible fault. If not, don't set
1357 * the bit unecessarily as it will force the subsequent unlock to enter
1358 * the kernel.
1359 */
52400ba9
DH
1360 top_waiter = futex_top_waiter(hb1, key1);
1361
1362 /* There are no waiters, nothing for us to do. */
1363 if (!top_waiter)
1364 return 0;
1365
84bc4af5
DH
1366 /* Ensure we requeue to the expected futex. */
1367 if (!match_futex(top_waiter->requeue_pi_key, key2))
1368 return -EINVAL;
1369
52400ba9 1370 /*
bab5bc9e
DH
1371 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1372 * the contended case or if set_waiters is 1. The pi_state is returned
1373 * in ps in contended cases.
52400ba9 1374 */
bab5bc9e
DH
1375 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1376 set_waiters);
52400ba9 1377 if (ret == 1)
beda2c7e 1378 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1379
1380 return ret;
1381}
1382
1383/**
1384 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1385 * @uaddr1: source futex user address
b41277dc 1386 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1387 * @uaddr2: target futex user address
1388 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1389 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1390 * @cmpval: @uaddr1 expected value (or %NULL)
1391 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1392 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1393 *
1394 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1395 * uaddr2 atomically on behalf of the top waiter.
1396 *
6c23cbbd
RD
1397 * Return:
1398 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1399 * <0 - on error
1da177e4 1400 */
b41277dc
DH
1401static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1402 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1403 u32 *cmpval, int requeue_pi)
1da177e4 1404{
38d47c1b 1405 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1406 int drop_count = 0, task_count = 0, ret;
1407 struct futex_pi_state *pi_state = NULL;
e2970f2f 1408 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1409 struct futex_q *this, *next;
52400ba9
DH
1410 u32 curval2;
1411
1412 if (requeue_pi) {
1413 /*
1414 * requeue_pi requires a pi_state, try to allocate it now
1415 * without any locks in case it fails.
1416 */
1417 if (refill_pi_state_cache())
1418 return -ENOMEM;
1419 /*
1420 * requeue_pi must wake as many tasks as it can, up to nr_wake
1421 * + nr_requeue, since it acquires the rt_mutex prior to
1422 * returning to userspace, so as to not leave the rt_mutex with
1423 * waiters and no owner. However, second and third wake-ups
1424 * cannot be predicted as they involve race conditions with the
1425 * first wake and a fault while looking up the pi_state. Both
1426 * pthread_cond_signal() and pthread_cond_broadcast() should
1427 * use nr_wake=1.
1428 */
1429 if (nr_wake != 1)
1430 return -EINVAL;
1431 }
1da177e4 1432
42d35d48 1433retry:
52400ba9
DH
1434 if (pi_state != NULL) {
1435 /*
1436 * We will have to lookup the pi_state again, so free this one
1437 * to keep the accounting correct.
1438 */
1439 free_pi_state(pi_state);
1440 pi_state = NULL;
1441 }
1442
9ea71503 1443 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1444 if (unlikely(ret != 0))
1445 goto out;
9ea71503
SB
1446 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1447 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1448 if (unlikely(ret != 0))
42d35d48 1449 goto out_put_key1;
1da177e4 1450
e2970f2f
IM
1451 hb1 = hash_futex(&key1);
1452 hb2 = hash_futex(&key2);
1da177e4 1453
e4dc5b7a 1454retry_private:
69cd9eba 1455 hb_waiters_inc(hb2);
8b8f319f 1456 double_lock_hb(hb1, hb2);
1da177e4 1457
e2970f2f
IM
1458 if (likely(cmpval != NULL)) {
1459 u32 curval;
1da177e4 1460
e2970f2f 1461 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1462
1463 if (unlikely(ret)) {
5eb3dc62 1464 double_unlock_hb(hb1, hb2);
69cd9eba 1465 hb_waiters_dec(hb2);
1da177e4 1466
e2970f2f 1467 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1468 if (ret)
1469 goto out_put_keys;
1da177e4 1470
b41277dc 1471 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1472 goto retry_private;
1da177e4 1473
ae791a2d
TG
1474 put_futex_key(&key2);
1475 put_futex_key(&key1);
e4dc5b7a 1476 goto retry;
1da177e4 1477 }
e2970f2f 1478 if (curval != *cmpval) {
1da177e4
LT
1479 ret = -EAGAIN;
1480 goto out_unlock;
1481 }
1482 }
1483
52400ba9 1484 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1485 /*
1486 * Attempt to acquire uaddr2 and wake the top waiter. If we
1487 * intend to requeue waiters, force setting the FUTEX_WAITERS
1488 * bit. We force this here where we are able to easily handle
1489 * faults rather in the requeue loop below.
1490 */
52400ba9 1491 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1492 &key2, &pi_state, nr_requeue);
52400ba9
DH
1493
1494 /*
1495 * At this point the top_waiter has either taken uaddr2 or is
1496 * waiting on it. If the former, then the pi_state will not
1497 * exist yet, look it up one more time to ensure we have a
1498 * reference to it.
1499 */
1500 if (ret == 1) {
1501 WARN_ON(pi_state);
89061d3d 1502 drop_count++;
52400ba9
DH
1503 task_count++;
1504 ret = get_futex_value_locked(&curval2, uaddr2);
1505 if (!ret)
1506 ret = lookup_pi_state(curval2, hb2, &key2,
1507 &pi_state);
1508 }
1509
1510 switch (ret) {
1511 case 0:
1512 break;
1513 case -EFAULT:
1514 double_unlock_hb(hb1, hb2);
69cd9eba 1515 hb_waiters_dec(hb2);
ae791a2d
TG
1516 put_futex_key(&key2);
1517 put_futex_key(&key1);
d0725992 1518 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1519 if (!ret)
1520 goto retry;
1521 goto out;
1522 case -EAGAIN:
1523 /* The owner was exiting, try again. */
1524 double_unlock_hb(hb1, hb2);
69cd9eba 1525 hb_waiters_dec(hb2);
ae791a2d
TG
1526 put_futex_key(&key2);
1527 put_futex_key(&key1);
52400ba9
DH
1528 cond_resched();
1529 goto retry;
1530 default:
1531 goto out_unlock;
1532 }
1533 }
1534
0d00c7b2 1535 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1536 if (task_count - nr_wake >= nr_requeue)
1537 break;
1538
1539 if (!match_futex(&this->key, &key1))
1da177e4 1540 continue;
52400ba9 1541
392741e0
DH
1542 /*
1543 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1544 * be paired with each other and no other futex ops.
aa10990e
DH
1545 *
1546 * We should never be requeueing a futex_q with a pi_state,
1547 * which is awaiting a futex_unlock_pi().
392741e0
DH
1548 */
1549 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1550 (!requeue_pi && this->rt_waiter) ||
1551 this->pi_state) {
392741e0
DH
1552 ret = -EINVAL;
1553 break;
1554 }
52400ba9
DH
1555
1556 /*
1557 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1558 * lock, we already woke the top_waiter. If not, it will be
1559 * woken by futex_unlock_pi().
1560 */
1561 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1562 wake_futex(this);
52400ba9
DH
1563 continue;
1564 }
1da177e4 1565
84bc4af5
DH
1566 /* Ensure we requeue to the expected futex for requeue_pi. */
1567 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1568 ret = -EINVAL;
1569 break;
1570 }
1571
52400ba9
DH
1572 /*
1573 * Requeue nr_requeue waiters and possibly one more in the case
1574 * of requeue_pi if we couldn't acquire the lock atomically.
1575 */
1576 if (requeue_pi) {
1577 /* Prepare the waiter to take the rt_mutex. */
1578 atomic_inc(&pi_state->refcount);
1579 this->pi_state = pi_state;
1580 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1581 this->rt_waiter,
1582 this->task, 1);
1583 if (ret == 1) {
1584 /* We got the lock. */
beda2c7e 1585 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1586 drop_count++;
52400ba9
DH
1587 continue;
1588 } else if (ret) {
1589 /* -EDEADLK */
1590 this->pi_state = NULL;
1591 free_pi_state(pi_state);
1592 goto out_unlock;
1593 }
1da177e4 1594 }
52400ba9
DH
1595 requeue_futex(this, hb1, hb2, &key2);
1596 drop_count++;
1da177e4
LT
1597 }
1598
1599out_unlock:
5eb3dc62 1600 double_unlock_hb(hb1, hb2);
69cd9eba 1601 hb_waiters_dec(hb2);
1da177e4 1602
cd84a42f
DH
1603 /*
1604 * drop_futex_key_refs() must be called outside the spinlocks. During
1605 * the requeue we moved futex_q's from the hash bucket at key1 to the
1606 * one at key2 and updated their key pointer. We no longer need to
1607 * hold the references to key1.
1608 */
1da177e4 1609 while (--drop_count >= 0)
9adef58b 1610 drop_futex_key_refs(&key1);
1da177e4 1611
42d35d48 1612out_put_keys:
ae791a2d 1613 put_futex_key(&key2);
42d35d48 1614out_put_key1:
ae791a2d 1615 put_futex_key(&key1);
42d35d48 1616out:
52400ba9
DH
1617 if (pi_state != NULL)
1618 free_pi_state(pi_state);
1619 return ret ? ret : task_count;
1da177e4
LT
1620}
1621
1622/* The key must be already stored in q->key. */
82af7aca 1623static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1624 __acquires(&hb->lock)
1da177e4 1625{
e2970f2f 1626 struct futex_hash_bucket *hb;
1da177e4 1627
e2970f2f 1628 hb = hash_futex(&q->key);
11d4616b
LT
1629
1630 /*
1631 * Increment the counter before taking the lock so that
1632 * a potential waker won't miss a to-be-slept task that is
1633 * waiting for the spinlock. This is safe as all queue_lock()
1634 * users end up calling queue_me(). Similarly, for housekeeping,
1635 * decrement the counter at queue_unlock() when some error has
1636 * occurred and we don't end up adding the task to the list.
1637 */
1638 hb_waiters_inc(hb);
1639
e2970f2f 1640 q->lock_ptr = &hb->lock;
1da177e4 1641
b0c29f79 1642 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1643 return hb;
1da177e4
LT
1644}
1645
d40d65c8 1646static inline void
0d00c7b2 1647queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1648 __releases(&hb->lock)
d40d65c8
DH
1649{
1650 spin_unlock(&hb->lock);
11d4616b 1651 hb_waiters_dec(hb);
d40d65c8
DH
1652}
1653
1654/**
1655 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1656 * @q: The futex_q to enqueue
1657 * @hb: The destination hash bucket
1658 *
1659 * The hb->lock must be held by the caller, and is released here. A call to
1660 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1661 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1662 * or nothing if the unqueue is done as part of the wake process and the unqueue
1663 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1664 * an example).
1665 */
82af7aca 1666static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1667 __releases(&hb->lock)
1da177e4 1668{
ec92d082
PP
1669 int prio;
1670
1671 /*
1672 * The priority used to register this element is
1673 * - either the real thread-priority for the real-time threads
1674 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1675 * - or MAX_RT_PRIO for non-RT threads.
1676 * Thus, all RT-threads are woken first in priority order, and
1677 * the others are woken last, in FIFO order.
1678 */
1679 prio = min(current->normal_prio, MAX_RT_PRIO);
1680
1681 plist_node_init(&q->list, prio);
ec92d082 1682 plist_add(&q->list, &hb->chain);
c87e2837 1683 q->task = current;
e2970f2f 1684 spin_unlock(&hb->lock);
1da177e4
LT
1685}
1686
d40d65c8
DH
1687/**
1688 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1689 * @q: The futex_q to unqueue
1690 *
1691 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1692 * be paired with exactly one earlier call to queue_me().
1693 *
6c23cbbd
RD
1694 * Return:
1695 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1696 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1697 */
1da177e4
LT
1698static int unqueue_me(struct futex_q *q)
1699{
1da177e4 1700 spinlock_t *lock_ptr;
e2970f2f 1701 int ret = 0;
1da177e4
LT
1702
1703 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1704retry:
1da177e4 1705 lock_ptr = q->lock_ptr;
e91467ec 1706 barrier();
c80544dc 1707 if (lock_ptr != NULL) {
1da177e4
LT
1708 spin_lock(lock_ptr);
1709 /*
1710 * q->lock_ptr can change between reading it and
1711 * spin_lock(), causing us to take the wrong lock. This
1712 * corrects the race condition.
1713 *
1714 * Reasoning goes like this: if we have the wrong lock,
1715 * q->lock_ptr must have changed (maybe several times)
1716 * between reading it and the spin_lock(). It can
1717 * change again after the spin_lock() but only if it was
1718 * already changed before the spin_lock(). It cannot,
1719 * however, change back to the original value. Therefore
1720 * we can detect whether we acquired the correct lock.
1721 */
1722 if (unlikely(lock_ptr != q->lock_ptr)) {
1723 spin_unlock(lock_ptr);
1724 goto retry;
1725 }
2e12978a 1726 __unqueue_futex(q);
c87e2837
IM
1727
1728 BUG_ON(q->pi_state);
1729
1da177e4
LT
1730 spin_unlock(lock_ptr);
1731 ret = 1;
1732 }
1733
9adef58b 1734 drop_futex_key_refs(&q->key);
1da177e4
LT
1735 return ret;
1736}
1737
c87e2837
IM
1738/*
1739 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1740 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1741 * and dropped here.
c87e2837 1742 */
d0aa7a70 1743static void unqueue_me_pi(struct futex_q *q)
15e408cd 1744 __releases(q->lock_ptr)
c87e2837 1745{
2e12978a 1746 __unqueue_futex(q);
c87e2837
IM
1747
1748 BUG_ON(!q->pi_state);
1749 free_pi_state(q->pi_state);
1750 q->pi_state = NULL;
1751
d0aa7a70 1752 spin_unlock(q->lock_ptr);
c87e2837
IM
1753}
1754
d0aa7a70 1755/*
cdf71a10 1756 * Fixup the pi_state owner with the new owner.
d0aa7a70 1757 *
778e9a9c
AK
1758 * Must be called with hash bucket lock held and mm->sem held for non
1759 * private futexes.
d0aa7a70 1760 */
778e9a9c 1761static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1762 struct task_struct *newowner)
d0aa7a70 1763{
cdf71a10 1764 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1765 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1766 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1767 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1768 int ret;
d0aa7a70
PP
1769
1770 /* Owner died? */
1b7558e4
TG
1771 if (!pi_state->owner)
1772 newtid |= FUTEX_OWNER_DIED;
1773
1774 /*
1775 * We are here either because we stole the rtmutex from the
8161239a
LJ
1776 * previous highest priority waiter or we are the highest priority
1777 * waiter but failed to get the rtmutex the first time.
1778 * We have to replace the newowner TID in the user space variable.
1779 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1780 *
b2d0994b
DH
1781 * Note: We write the user space value _before_ changing the pi_state
1782 * because we can fault here. Imagine swapped out pages or a fork
1783 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1784 *
1785 * Modifying pi_state _before_ the user space value would
1786 * leave the pi_state in an inconsistent state when we fault
1787 * here, because we need to drop the hash bucket lock to
1788 * handle the fault. This might be observed in the PID check
1789 * in lookup_pi_state.
1790 */
1791retry:
1792 if (get_futex_value_locked(&uval, uaddr))
1793 goto handle_fault;
1794
1795 while (1) {
1796 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1797
37a9d912 1798 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1799 goto handle_fault;
1800 if (curval == uval)
1801 break;
1802 uval = curval;
1803 }
1804
1805 /*
1806 * We fixed up user space. Now we need to fix the pi_state
1807 * itself.
1808 */
d0aa7a70 1809 if (pi_state->owner != NULL) {
1d615482 1810 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1811 WARN_ON(list_empty(&pi_state->list));
1812 list_del_init(&pi_state->list);
1d615482 1813 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1814 }
d0aa7a70 1815
cdf71a10 1816 pi_state->owner = newowner;
d0aa7a70 1817
1d615482 1818 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1819 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1820 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1821 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1822 return 0;
d0aa7a70 1823
d0aa7a70 1824 /*
1b7558e4 1825 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1826 * lock here. That gives the other task (either the highest priority
1827 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1828 * chance to try the fixup of the pi_state. So once we are
1829 * back from handling the fault we need to check the pi_state
1830 * after reacquiring the hash bucket lock and before trying to
1831 * do another fixup. When the fixup has been done already we
1832 * simply return.
d0aa7a70 1833 */
1b7558e4
TG
1834handle_fault:
1835 spin_unlock(q->lock_ptr);
778e9a9c 1836
d0725992 1837 ret = fault_in_user_writeable(uaddr);
778e9a9c 1838
1b7558e4 1839 spin_lock(q->lock_ptr);
778e9a9c 1840
1b7558e4
TG
1841 /*
1842 * Check if someone else fixed it for us:
1843 */
1844 if (pi_state->owner != oldowner)
1845 return 0;
1846
1847 if (ret)
1848 return ret;
1849
1850 goto retry;
d0aa7a70
PP
1851}
1852
72c1bbf3 1853static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1854
dd973998
DH
1855/**
1856 * fixup_owner() - Post lock pi_state and corner case management
1857 * @uaddr: user address of the futex
dd973998
DH
1858 * @q: futex_q (contains pi_state and access to the rt_mutex)
1859 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1860 *
1861 * After attempting to lock an rt_mutex, this function is called to cleanup
1862 * the pi_state owner as well as handle race conditions that may allow us to
1863 * acquire the lock. Must be called with the hb lock held.
1864 *
6c23cbbd
RD
1865 * Return:
1866 * 1 - success, lock taken;
1867 * 0 - success, lock not taken;
dd973998
DH
1868 * <0 - on error (-EFAULT)
1869 */
ae791a2d 1870static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1871{
1872 struct task_struct *owner;
1873 int ret = 0;
1874
1875 if (locked) {
1876 /*
1877 * Got the lock. We might not be the anticipated owner if we
1878 * did a lock-steal - fix up the PI-state in that case:
1879 */
1880 if (q->pi_state->owner != current)
ae791a2d 1881 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1882 goto out;
1883 }
1884
1885 /*
1886 * Catch the rare case, where the lock was released when we were on the
1887 * way back before we locked the hash bucket.
1888 */
1889 if (q->pi_state->owner == current) {
1890 /*
1891 * Try to get the rt_mutex now. This might fail as some other
1892 * task acquired the rt_mutex after we removed ourself from the
1893 * rt_mutex waiters list.
1894 */
1895 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1896 locked = 1;
1897 goto out;
1898 }
1899
1900 /*
1901 * pi_state is incorrect, some other task did a lock steal and
1902 * we returned due to timeout or signal without taking the
8161239a 1903 * rt_mutex. Too late.
dd973998 1904 */
8161239a 1905 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1906 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1907 if (!owner)
1908 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1909 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1910 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1911 goto out;
1912 }
1913
1914 /*
1915 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1916 * the owner of the rt_mutex.
dd973998
DH
1917 */
1918 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1919 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1920 "pi-state %p\n", ret,
1921 q->pi_state->pi_mutex.owner,
1922 q->pi_state->owner);
1923
1924out:
1925 return ret ? ret : locked;
1926}
1927
ca5f9524
DH
1928/**
1929 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1930 * @hb: the futex hash bucket, must be locked by the caller
1931 * @q: the futex_q to queue up on
1932 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1933 */
1934static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1935 struct hrtimer_sleeper *timeout)
ca5f9524 1936{
9beba3c5
DH
1937 /*
1938 * The task state is guaranteed to be set before another task can
1939 * wake it. set_current_state() is implemented using set_mb() and
1940 * queue_me() calls spin_unlock() upon completion, both serializing
1941 * access to the hash list and forcing another memory barrier.
1942 */
f1a11e05 1943 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1944 queue_me(q, hb);
ca5f9524
DH
1945
1946 /* Arm the timer */
1947 if (timeout) {
1948 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1949 if (!hrtimer_active(&timeout->timer))
1950 timeout->task = NULL;
1951 }
1952
1953 /*
0729e196
DH
1954 * If we have been removed from the hash list, then another task
1955 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1956 */
1957 if (likely(!plist_node_empty(&q->list))) {
1958 /*
1959 * If the timer has already expired, current will already be
1960 * flagged for rescheduling. Only call schedule if there
1961 * is no timeout, or if it has yet to expire.
1962 */
1963 if (!timeout || timeout->task)
88c8004f 1964 freezable_schedule();
ca5f9524
DH
1965 }
1966 __set_current_state(TASK_RUNNING);
1967}
1968
f801073f
DH
1969/**
1970 * futex_wait_setup() - Prepare to wait on a futex
1971 * @uaddr: the futex userspace address
1972 * @val: the expected value
b41277dc 1973 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1974 * @q: the associated futex_q
1975 * @hb: storage for hash_bucket pointer to be returned to caller
1976 *
1977 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1978 * compare it with the expected value. Handle atomic faults internally.
1979 * Return with the hb lock held and a q.key reference on success, and unlocked
1980 * with no q.key reference on failure.
1981 *
6c23cbbd
RD
1982 * Return:
1983 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1984 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1985 */
b41277dc 1986static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1987 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1988{
e2970f2f
IM
1989 u32 uval;
1990 int ret;
1da177e4 1991
1da177e4 1992 /*
b2d0994b 1993 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1994 * Order is important:
1995 *
1996 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1997 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1998 *
1999 * The basic logical guarantee of a futex is that it blocks ONLY
2000 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2001 * any cond. If we locked the hash-bucket after testing *uaddr, that
2002 * would open a race condition where we could block indefinitely with
1da177e4
LT
2003 * cond(var) false, which would violate the guarantee.
2004 *
8fe8f545
ML
2005 * On the other hand, we insert q and release the hash-bucket only
2006 * after testing *uaddr. This guarantees that futex_wait() will NOT
2007 * absorb a wakeup if *uaddr does not match the desired values
2008 * while the syscall executes.
1da177e4 2009 */
f801073f 2010retry:
9ea71503 2011 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2012 if (unlikely(ret != 0))
a5a2a0c7 2013 return ret;
f801073f
DH
2014
2015retry_private:
2016 *hb = queue_lock(q);
2017
e2970f2f 2018 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2019
f801073f 2020 if (ret) {
0d00c7b2 2021 queue_unlock(*hb);
1da177e4 2022
e2970f2f 2023 ret = get_user(uval, uaddr);
e4dc5b7a 2024 if (ret)
f801073f 2025 goto out;
1da177e4 2026
b41277dc 2027 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2028 goto retry_private;
2029
ae791a2d 2030 put_futex_key(&q->key);
e4dc5b7a 2031 goto retry;
1da177e4 2032 }
ca5f9524 2033
f801073f 2034 if (uval != val) {
0d00c7b2 2035 queue_unlock(*hb);
f801073f 2036 ret = -EWOULDBLOCK;
2fff78c7 2037 }
1da177e4 2038
f801073f
DH
2039out:
2040 if (ret)
ae791a2d 2041 put_futex_key(&q->key);
f801073f
DH
2042 return ret;
2043}
2044
b41277dc
DH
2045static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2046 ktime_t *abs_time, u32 bitset)
f801073f
DH
2047{
2048 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2049 struct restart_block *restart;
2050 struct futex_hash_bucket *hb;
5bdb05f9 2051 struct futex_q q = futex_q_init;
f801073f
DH
2052 int ret;
2053
2054 if (!bitset)
2055 return -EINVAL;
f801073f
DH
2056 q.bitset = bitset;
2057
2058 if (abs_time) {
2059 to = &timeout;
2060
b41277dc
DH
2061 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2062 CLOCK_REALTIME : CLOCK_MONOTONIC,
2063 HRTIMER_MODE_ABS);
f801073f
DH
2064 hrtimer_init_sleeper(to, current);
2065 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2066 current->timer_slack_ns);
2067 }
2068
d58e6576 2069retry:
7ada876a
DH
2070 /*
2071 * Prepare to wait on uaddr. On success, holds hb lock and increments
2072 * q.key refs.
2073 */
b41277dc 2074 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2075 if (ret)
2076 goto out;
2077
ca5f9524 2078 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2079 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2080
2081 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2082 ret = 0;
7ada876a 2083 /* unqueue_me() drops q.key ref */
1da177e4 2084 if (!unqueue_me(&q))
7ada876a 2085 goto out;
2fff78c7 2086 ret = -ETIMEDOUT;
ca5f9524 2087 if (to && !to->task)
7ada876a 2088 goto out;
72c1bbf3 2089
e2970f2f 2090 /*
d58e6576
TG
2091 * We expect signal_pending(current), but we might be the
2092 * victim of a spurious wakeup as well.
e2970f2f 2093 */
7ada876a 2094 if (!signal_pending(current))
d58e6576 2095 goto retry;
d58e6576 2096
2fff78c7 2097 ret = -ERESTARTSYS;
c19384b5 2098 if (!abs_time)
7ada876a 2099 goto out;
1da177e4 2100
2fff78c7
PZ
2101 restart = &current_thread_info()->restart_block;
2102 restart->fn = futex_wait_restart;
a3c74c52 2103 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2104 restart->futex.val = val;
2105 restart->futex.time = abs_time->tv64;
2106 restart->futex.bitset = bitset;
0cd9c649 2107 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2108
2fff78c7
PZ
2109 ret = -ERESTART_RESTARTBLOCK;
2110
42d35d48 2111out:
ca5f9524
DH
2112 if (to) {
2113 hrtimer_cancel(&to->timer);
2114 destroy_hrtimer_on_stack(&to->timer);
2115 }
c87e2837
IM
2116 return ret;
2117}
2118
72c1bbf3
NP
2119
2120static long futex_wait_restart(struct restart_block *restart)
2121{
a3c74c52 2122 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2123 ktime_t t, *tp = NULL;
72c1bbf3 2124
a72188d8
DH
2125 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2126 t.tv64 = restart->futex.time;
2127 tp = &t;
2128 }
72c1bbf3 2129 restart->fn = do_no_restart_syscall;
b41277dc
DH
2130
2131 return (long)futex_wait(uaddr, restart->futex.flags,
2132 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2133}
2134
2135
c87e2837
IM
2136/*
2137 * Userspace tried a 0 -> TID atomic transition of the futex value
2138 * and failed. The kernel side here does the whole locking operation:
2139 * if there are waiters then it will block, it does PI, etc. (Due to
2140 * races the kernel might see a 0 value of the futex too.)
2141 */
b41277dc
DH
2142static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2143 ktime_t *time, int trylock)
c87e2837 2144{
c5780e97 2145 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2146 struct futex_hash_bucket *hb;
5bdb05f9 2147 struct futex_q q = futex_q_init;
dd973998 2148 int res, ret;
c87e2837
IM
2149
2150 if (refill_pi_state_cache())
2151 return -ENOMEM;
2152
c19384b5 2153 if (time) {
c5780e97 2154 to = &timeout;
237fc6e7
TG
2155 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2156 HRTIMER_MODE_ABS);
c5780e97 2157 hrtimer_init_sleeper(to, current);
cc584b21 2158 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2159 }
2160
42d35d48 2161retry:
9ea71503 2162 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2163 if (unlikely(ret != 0))
42d35d48 2164 goto out;
c87e2837 2165
e4dc5b7a 2166retry_private:
82af7aca 2167 hb = queue_lock(&q);
c87e2837 2168
bab5bc9e 2169 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2170 if (unlikely(ret)) {
778e9a9c 2171 switch (ret) {
1a52084d
DH
2172 case 1:
2173 /* We got the lock. */
2174 ret = 0;
2175 goto out_unlock_put_key;
2176 case -EFAULT:
2177 goto uaddr_faulted;
778e9a9c
AK
2178 case -EAGAIN:
2179 /*
2180 * Task is exiting and we just wait for the
2181 * exit to complete.
2182 */
0d00c7b2 2183 queue_unlock(hb);
ae791a2d 2184 put_futex_key(&q.key);
778e9a9c
AK
2185 cond_resched();
2186 goto retry;
778e9a9c 2187 default:
42d35d48 2188 goto out_unlock_put_key;
c87e2837 2189 }
c87e2837
IM
2190 }
2191
2192 /*
2193 * Only actually queue now that the atomic ops are done:
2194 */
82af7aca 2195 queue_me(&q, hb);
c87e2837 2196
c87e2837
IM
2197 WARN_ON(!q.pi_state);
2198 /*
2199 * Block on the PI mutex:
2200 */
2201 if (!trylock)
2202 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2203 else {
2204 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2205 /* Fixup the trylock return value: */
2206 ret = ret ? 0 : -EWOULDBLOCK;
2207 }
2208
a99e4e41 2209 spin_lock(q.lock_ptr);
dd973998
DH
2210 /*
2211 * Fixup the pi_state owner and possibly acquire the lock if we
2212 * haven't already.
2213 */
ae791a2d 2214 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2215 /*
2216 * If fixup_owner() returned an error, proprogate that. If it acquired
2217 * the lock, clear our -ETIMEDOUT or -EINTR.
2218 */
2219 if (res)
2220 ret = (res < 0) ? res : 0;
c87e2837 2221
e8f6386c 2222 /*
dd973998
DH
2223 * If fixup_owner() faulted and was unable to handle the fault, unlock
2224 * it and return the fault to userspace.
e8f6386c
DH
2225 */
2226 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2227 rt_mutex_unlock(&q.pi_state->pi_mutex);
2228
778e9a9c
AK
2229 /* Unqueue and drop the lock */
2230 unqueue_me_pi(&q);
c87e2837 2231
5ecb01cf 2232 goto out_put_key;
c87e2837 2233
42d35d48 2234out_unlock_put_key:
0d00c7b2 2235 queue_unlock(hb);
c87e2837 2236
42d35d48 2237out_put_key:
ae791a2d 2238 put_futex_key(&q.key);
42d35d48 2239out:
237fc6e7
TG
2240 if (to)
2241 destroy_hrtimer_on_stack(&to->timer);
dd973998 2242 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2243
42d35d48 2244uaddr_faulted:
0d00c7b2 2245 queue_unlock(hb);
778e9a9c 2246
d0725992 2247 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2248 if (ret)
2249 goto out_put_key;
c87e2837 2250
b41277dc 2251 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2252 goto retry_private;
2253
ae791a2d 2254 put_futex_key(&q.key);
e4dc5b7a 2255 goto retry;
c87e2837
IM
2256}
2257
c87e2837
IM
2258/*
2259 * Userspace attempted a TID -> 0 atomic transition, and failed.
2260 * This is the in-kernel slowpath: we look up the PI state (if any),
2261 * and do the rt-mutex unlock.
2262 */
b41277dc 2263static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2264{
2265 struct futex_hash_bucket *hb;
2266 struct futex_q *this, *next;
38d47c1b 2267 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2268 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2269 int ret;
c87e2837
IM
2270
2271retry:
2272 if (get_user(uval, uaddr))
2273 return -EFAULT;
2274 /*
2275 * We release only a lock we actually own:
2276 */
c0c9ed15 2277 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2278 return -EPERM;
c87e2837 2279
9ea71503 2280 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2281 if (unlikely(ret != 0))
2282 goto out;
2283
2284 hb = hash_futex(&key);
2285 spin_lock(&hb->lock);
2286
c87e2837
IM
2287 /*
2288 * To avoid races, try to do the TID -> 0 atomic transition
2289 * again. If it succeeds then we can return without waking
2290 * anyone else up:
2291 */
37a9d912
ML
2292 if (!(uval & FUTEX_OWNER_DIED) &&
2293 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2294 goto pi_faulted;
2295 /*
2296 * Rare case: we managed to release the lock atomically,
2297 * no need to wake anyone else up:
2298 */
c0c9ed15 2299 if (unlikely(uval == vpid))
c87e2837
IM
2300 goto out_unlock;
2301
2302 /*
2303 * Ok, other tasks may need to be woken up - check waiters
2304 * and do the wakeup if necessary:
2305 */
0d00c7b2 2306 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2307 if (!match_futex (&this->key, &key))
2308 continue;
2309 ret = wake_futex_pi(uaddr, uval, this);
2310 /*
2311 * The atomic access to the futex value
2312 * generated a pagefault, so retry the
2313 * user-access and the wakeup:
2314 */
2315 if (ret == -EFAULT)
2316 goto pi_faulted;
2317 goto out_unlock;
2318 }
2319 /*
2320 * No waiters - kernel unlocks the futex:
2321 */
e3f2ddea
IM
2322 if (!(uval & FUTEX_OWNER_DIED)) {
2323 ret = unlock_futex_pi(uaddr, uval);
2324 if (ret == -EFAULT)
2325 goto pi_faulted;
2326 }
c87e2837
IM
2327
2328out_unlock:
2329 spin_unlock(&hb->lock);
ae791a2d 2330 put_futex_key(&key);
c87e2837 2331
42d35d48 2332out:
c87e2837
IM
2333 return ret;
2334
2335pi_faulted:
778e9a9c 2336 spin_unlock(&hb->lock);
ae791a2d 2337 put_futex_key(&key);
c87e2837 2338
d0725992 2339 ret = fault_in_user_writeable(uaddr);
b5686363 2340 if (!ret)
c87e2837
IM
2341 goto retry;
2342
1da177e4
LT
2343 return ret;
2344}
2345
52400ba9
DH
2346/**
2347 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2348 * @hb: the hash_bucket futex_q was original enqueued on
2349 * @q: the futex_q woken while waiting to be requeued
2350 * @key2: the futex_key of the requeue target futex
2351 * @timeout: the timeout associated with the wait (NULL if none)
2352 *
2353 * Detect if the task was woken on the initial futex as opposed to the requeue
2354 * target futex. If so, determine if it was a timeout or a signal that caused
2355 * the wakeup and return the appropriate error code to the caller. Must be
2356 * called with the hb lock held.
2357 *
6c23cbbd
RD
2358 * Return:
2359 * 0 = no early wakeup detected;
2360 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2361 */
2362static inline
2363int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2364 struct futex_q *q, union futex_key *key2,
2365 struct hrtimer_sleeper *timeout)
2366{
2367 int ret = 0;
2368
2369 /*
2370 * With the hb lock held, we avoid races while we process the wakeup.
2371 * We only need to hold hb (and not hb2) to ensure atomicity as the
2372 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2373 * It can't be requeued from uaddr2 to something else since we don't
2374 * support a PI aware source futex for requeue.
2375 */
2376 if (!match_futex(&q->key, key2)) {
2377 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2378 /*
2379 * We were woken prior to requeue by a timeout or a signal.
2380 * Unqueue the futex_q and determine which it was.
2381 */
2e12978a 2382 plist_del(&q->list, &hb->chain);
11d4616b 2383 hb_waiters_dec(hb);
52400ba9 2384
d58e6576 2385 /* Handle spurious wakeups gracefully */
11df6ddd 2386 ret = -EWOULDBLOCK;
52400ba9
DH
2387 if (timeout && !timeout->task)
2388 ret = -ETIMEDOUT;
d58e6576 2389 else if (signal_pending(current))
1c840c14 2390 ret = -ERESTARTNOINTR;
52400ba9
DH
2391 }
2392 return ret;
2393}
2394
2395/**
2396 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2397 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2398 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2399 * the same type, no requeueing from private to shared, etc.
2400 * @val: the expected value of uaddr
2401 * @abs_time: absolute timeout
56ec1607 2402 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2403 * @uaddr2: the pi futex we will take prior to returning to user-space
2404 *
2405 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2406 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2407 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2408 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2409 * without one, the pi logic would not know which task to boost/deboost, if
2410 * there was a need to.
52400ba9
DH
2411 *
2412 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2413 * via the following--
52400ba9 2414 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2415 * 2) wakeup on uaddr2 after a requeue
2416 * 3) signal
2417 * 4) timeout
52400ba9 2418 *
cc6db4e6 2419 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2420 *
2421 * If 2, we may then block on trying to take the rt_mutex and return via:
2422 * 5) successful lock
2423 * 6) signal
2424 * 7) timeout
2425 * 8) other lock acquisition failure
2426 *
cc6db4e6 2427 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2428 *
2429 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2430 *
6c23cbbd
RD
2431 * Return:
2432 * 0 - On success;
52400ba9
DH
2433 * <0 - On error
2434 */
b41277dc 2435static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2436 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2437 u32 __user *uaddr2)
52400ba9
DH
2438{
2439 struct hrtimer_sleeper timeout, *to = NULL;
2440 struct rt_mutex_waiter rt_waiter;
2441 struct rt_mutex *pi_mutex = NULL;
52400ba9 2442 struct futex_hash_bucket *hb;
5bdb05f9
DH
2443 union futex_key key2 = FUTEX_KEY_INIT;
2444 struct futex_q q = futex_q_init;
52400ba9 2445 int res, ret;
52400ba9 2446
6f7b0a2a
DH
2447 if (uaddr == uaddr2)
2448 return -EINVAL;
2449
52400ba9
DH
2450 if (!bitset)
2451 return -EINVAL;
2452
2453 if (abs_time) {
2454 to = &timeout;
b41277dc
DH
2455 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2456 CLOCK_REALTIME : CLOCK_MONOTONIC,
2457 HRTIMER_MODE_ABS);
52400ba9
DH
2458 hrtimer_init_sleeper(to, current);
2459 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2460 current->timer_slack_ns);
2461 }
2462
2463 /*
2464 * The waiter is allocated on our stack, manipulated by the requeue
2465 * code while we sleep on uaddr.
2466 */
2467 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2468 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2469 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2470 rt_waiter.task = NULL;
2471
9ea71503 2472 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2473 if (unlikely(ret != 0))
2474 goto out;
2475
84bc4af5
DH
2476 q.bitset = bitset;
2477 q.rt_waiter = &rt_waiter;
2478 q.requeue_pi_key = &key2;
2479
7ada876a
DH
2480 /*
2481 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2482 * count.
2483 */
b41277dc 2484 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2485 if (ret)
2486 goto out_key2;
52400ba9
DH
2487
2488 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2489 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2490
2491 spin_lock(&hb->lock);
2492 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2493 spin_unlock(&hb->lock);
2494 if (ret)
2495 goto out_put_keys;
2496
2497 /*
2498 * In order for us to be here, we know our q.key == key2, and since
2499 * we took the hb->lock above, we also know that futex_requeue() has
2500 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2501 * race with the atomic proxy lock acquisition by the requeue code. The
2502 * futex_requeue dropped our key1 reference and incremented our key2
2503 * reference count.
52400ba9
DH
2504 */
2505
2506 /* Check if the requeue code acquired the second futex for us. */
2507 if (!q.rt_waiter) {
2508 /*
2509 * Got the lock. We might not be the anticipated owner if we
2510 * did a lock-steal - fix up the PI-state in that case.
2511 */
2512 if (q.pi_state && (q.pi_state->owner != current)) {
2513 spin_lock(q.lock_ptr);
ae791a2d 2514 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2515 spin_unlock(q.lock_ptr);
2516 }
2517 } else {
2518 /*
2519 * We have been woken up by futex_unlock_pi(), a timeout, or a
2520 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2521 * the pi_state.
2522 */
f27071cb 2523 WARN_ON(!q.pi_state);
52400ba9
DH
2524 pi_mutex = &q.pi_state->pi_mutex;
2525 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2526 debug_rt_mutex_free_waiter(&rt_waiter);
2527
2528 spin_lock(q.lock_ptr);
2529 /*
2530 * Fixup the pi_state owner and possibly acquire the lock if we
2531 * haven't already.
2532 */
ae791a2d 2533 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2534 /*
2535 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2536 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2537 */
2538 if (res)
2539 ret = (res < 0) ? res : 0;
2540
2541 /* Unqueue and drop the lock. */
2542 unqueue_me_pi(&q);
2543 }
2544
2545 /*
2546 * If fixup_pi_state_owner() faulted and was unable to handle the
2547 * fault, unlock the rt_mutex and return the fault to userspace.
2548 */
2549 if (ret == -EFAULT) {
b6070a8d 2550 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2551 rt_mutex_unlock(pi_mutex);
2552 } else if (ret == -EINTR) {
52400ba9 2553 /*
cc6db4e6
DH
2554 * We've already been requeued, but cannot restart by calling
2555 * futex_lock_pi() directly. We could restart this syscall, but
2556 * it would detect that the user space "val" changed and return
2557 * -EWOULDBLOCK. Save the overhead of the restart and return
2558 * -EWOULDBLOCK directly.
52400ba9 2559 */
2070887f 2560 ret = -EWOULDBLOCK;
52400ba9
DH
2561 }
2562
2563out_put_keys:
ae791a2d 2564 put_futex_key(&q.key);
c8b15a70 2565out_key2:
ae791a2d 2566 put_futex_key(&key2);
52400ba9
DH
2567
2568out:
2569 if (to) {
2570 hrtimer_cancel(&to->timer);
2571 destroy_hrtimer_on_stack(&to->timer);
2572 }
2573 return ret;
2574}
2575
0771dfef
IM
2576/*
2577 * Support for robust futexes: the kernel cleans up held futexes at
2578 * thread exit time.
2579 *
2580 * Implementation: user-space maintains a per-thread list of locks it
2581 * is holding. Upon do_exit(), the kernel carefully walks this list,
2582 * and marks all locks that are owned by this thread with the
c87e2837 2583 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2584 * always manipulated with the lock held, so the list is private and
2585 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2586 * field, to allow the kernel to clean up if the thread dies after
2587 * acquiring the lock, but just before it could have added itself to
2588 * the list. There can only be one such pending lock.
2589 */
2590
2591/**
d96ee56c
DH
2592 * sys_set_robust_list() - Set the robust-futex list head of a task
2593 * @head: pointer to the list-head
2594 * @len: length of the list-head, as userspace expects
0771dfef 2595 */
836f92ad
HC
2596SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2597 size_t, len)
0771dfef 2598{
a0c1e907
TG
2599 if (!futex_cmpxchg_enabled)
2600 return -ENOSYS;
0771dfef
IM
2601 /*
2602 * The kernel knows only one size for now:
2603 */
2604 if (unlikely(len != sizeof(*head)))
2605 return -EINVAL;
2606
2607 current->robust_list = head;
2608
2609 return 0;
2610}
2611
2612/**
d96ee56c
DH
2613 * sys_get_robust_list() - Get the robust-futex list head of a task
2614 * @pid: pid of the process [zero for current task]
2615 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2616 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2617 */
836f92ad
HC
2618SYSCALL_DEFINE3(get_robust_list, int, pid,
2619 struct robust_list_head __user * __user *, head_ptr,
2620 size_t __user *, len_ptr)
0771dfef 2621{
ba46df98 2622 struct robust_list_head __user *head;
0771dfef 2623 unsigned long ret;
bdbb776f 2624 struct task_struct *p;
0771dfef 2625
a0c1e907
TG
2626 if (!futex_cmpxchg_enabled)
2627 return -ENOSYS;
2628
bdbb776f
KC
2629 rcu_read_lock();
2630
2631 ret = -ESRCH;
0771dfef 2632 if (!pid)
bdbb776f 2633 p = current;
0771dfef 2634 else {
228ebcbe 2635 p = find_task_by_vpid(pid);
0771dfef
IM
2636 if (!p)
2637 goto err_unlock;
0771dfef
IM
2638 }
2639
bdbb776f
KC
2640 ret = -EPERM;
2641 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2642 goto err_unlock;
2643
2644 head = p->robust_list;
2645 rcu_read_unlock();
2646
0771dfef
IM
2647 if (put_user(sizeof(*head), len_ptr))
2648 return -EFAULT;
2649 return put_user(head, head_ptr);
2650
2651err_unlock:
aaa2a97e 2652 rcu_read_unlock();
0771dfef
IM
2653
2654 return ret;
2655}
2656
2657/*
2658 * Process a futex-list entry, check whether it's owned by the
2659 * dying task, and do notification if so:
2660 */
e3f2ddea 2661int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2662{
7cfdaf38 2663 u32 uval, uninitialized_var(nval), mval;
0771dfef 2664
8f17d3a5
IM
2665retry:
2666 if (get_user(uval, uaddr))
0771dfef
IM
2667 return -1;
2668
b488893a 2669 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2670 /*
2671 * Ok, this dying thread is truly holding a futex
2672 * of interest. Set the OWNER_DIED bit atomically
2673 * via cmpxchg, and if the value had FUTEX_WAITERS
2674 * set, wake up a waiter (if any). (We have to do a
2675 * futex_wake() even if OWNER_DIED is already set -
2676 * to handle the rare but possible case of recursive
2677 * thread-death.) The rest of the cleanup is done in
2678 * userspace.
2679 */
e3f2ddea 2680 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2681 /*
2682 * We are not holding a lock here, but we want to have
2683 * the pagefault_disable/enable() protection because
2684 * we want to handle the fault gracefully. If the
2685 * access fails we try to fault in the futex with R/W
2686 * verification via get_user_pages. get_user() above
2687 * does not guarantee R/W access. If that fails we
2688 * give up and leave the futex locked.
2689 */
2690 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2691 if (fault_in_user_writeable(uaddr))
2692 return -1;
2693 goto retry;
2694 }
c87e2837 2695 if (nval != uval)
8f17d3a5 2696 goto retry;
0771dfef 2697
e3f2ddea
IM
2698 /*
2699 * Wake robust non-PI futexes here. The wakeup of
2700 * PI futexes happens in exit_pi_state():
2701 */
36cf3b5c 2702 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2703 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2704 }
2705 return 0;
2706}
2707
e3f2ddea
IM
2708/*
2709 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2710 */
2711static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2712 struct robust_list __user * __user *head,
1dcc41bb 2713 unsigned int *pi)
e3f2ddea
IM
2714{
2715 unsigned long uentry;
2716
ba46df98 2717 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2718 return -EFAULT;
2719
ba46df98 2720 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2721 *pi = uentry & 1;
2722
2723 return 0;
2724}
2725
0771dfef
IM
2726/*
2727 * Walk curr->robust_list (very carefully, it's a userspace list!)
2728 * and mark any locks found there dead, and notify any waiters.
2729 *
2730 * We silently return on any sign of list-walking problem.
2731 */
2732void exit_robust_list(struct task_struct *curr)
2733{
2734 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2735 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2736 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2737 unsigned int uninitialized_var(next_pi);
0771dfef 2738 unsigned long futex_offset;
9f96cb1e 2739 int rc;
0771dfef 2740
a0c1e907
TG
2741 if (!futex_cmpxchg_enabled)
2742 return;
2743
0771dfef
IM
2744 /*
2745 * Fetch the list head (which was registered earlier, via
2746 * sys_set_robust_list()):
2747 */
e3f2ddea 2748 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2749 return;
2750 /*
2751 * Fetch the relative futex offset:
2752 */
2753 if (get_user(futex_offset, &head->futex_offset))
2754 return;
2755 /*
2756 * Fetch any possibly pending lock-add first, and handle it
2757 * if it exists:
2758 */
e3f2ddea 2759 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2760 return;
e3f2ddea 2761
9f96cb1e 2762 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2763 while (entry != &head->list) {
9f96cb1e
MS
2764 /*
2765 * Fetch the next entry in the list before calling
2766 * handle_futex_death:
2767 */
2768 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2769 /*
2770 * A pending lock might already be on the list, so
c87e2837 2771 * don't process it twice:
0771dfef
IM
2772 */
2773 if (entry != pending)
ba46df98 2774 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2775 curr, pi))
0771dfef 2776 return;
9f96cb1e 2777 if (rc)
0771dfef 2778 return;
9f96cb1e
MS
2779 entry = next_entry;
2780 pi = next_pi;
0771dfef
IM
2781 /*
2782 * Avoid excessively long or circular lists:
2783 */
2784 if (!--limit)
2785 break;
2786
2787 cond_resched();
2788 }
9f96cb1e
MS
2789
2790 if (pending)
2791 handle_futex_death((void __user *)pending + futex_offset,
2792 curr, pip);
0771dfef
IM
2793}
2794
c19384b5 2795long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2796 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2797{
81b40539 2798 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2799 unsigned int flags = 0;
34f01cc1
ED
2800
2801 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2802 flags |= FLAGS_SHARED;
1da177e4 2803
b41277dc
DH
2804 if (op & FUTEX_CLOCK_REALTIME) {
2805 flags |= FLAGS_CLOCKRT;
2806 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2807 return -ENOSYS;
2808 }
1da177e4 2809
59263b51
TG
2810 switch (cmd) {
2811 case FUTEX_LOCK_PI:
2812 case FUTEX_UNLOCK_PI:
2813 case FUTEX_TRYLOCK_PI:
2814 case FUTEX_WAIT_REQUEUE_PI:
2815 case FUTEX_CMP_REQUEUE_PI:
2816 if (!futex_cmpxchg_enabled)
2817 return -ENOSYS;
2818 }
2819
34f01cc1 2820 switch (cmd) {
1da177e4 2821 case FUTEX_WAIT:
cd689985
TG
2822 val3 = FUTEX_BITSET_MATCH_ANY;
2823 case FUTEX_WAIT_BITSET:
81b40539 2824 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2825 case FUTEX_WAKE:
cd689985
TG
2826 val3 = FUTEX_BITSET_MATCH_ANY;
2827 case FUTEX_WAKE_BITSET:
81b40539 2828 return futex_wake(uaddr, flags, val, val3);
1da177e4 2829 case FUTEX_REQUEUE:
81b40539 2830 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2831 case FUTEX_CMP_REQUEUE:
81b40539 2832 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2833 case FUTEX_WAKE_OP:
81b40539 2834 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2835 case FUTEX_LOCK_PI:
81b40539 2836 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2837 case FUTEX_UNLOCK_PI:
81b40539 2838 return futex_unlock_pi(uaddr, flags);
c87e2837 2839 case FUTEX_TRYLOCK_PI:
81b40539 2840 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2841 case FUTEX_WAIT_REQUEUE_PI:
2842 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2843 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2844 uaddr2);
52400ba9 2845 case FUTEX_CMP_REQUEUE_PI:
81b40539 2846 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2847 }
81b40539 2848 return -ENOSYS;
1da177e4
LT
2849}
2850
2851
17da2bd9
HC
2852SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2853 struct timespec __user *, utime, u32 __user *, uaddr2,
2854 u32, val3)
1da177e4 2855{
c19384b5
PP
2856 struct timespec ts;
2857 ktime_t t, *tp = NULL;
e2970f2f 2858 u32 val2 = 0;
34f01cc1 2859 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2860
cd689985 2861 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2862 cmd == FUTEX_WAIT_BITSET ||
2863 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2864 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2865 return -EFAULT;
c19384b5 2866 if (!timespec_valid(&ts))
9741ef96 2867 return -EINVAL;
c19384b5
PP
2868
2869 t = timespec_to_ktime(ts);
34f01cc1 2870 if (cmd == FUTEX_WAIT)
5a7780e7 2871 t = ktime_add_safe(ktime_get(), t);
c19384b5 2872 tp = &t;
1da177e4
LT
2873 }
2874 /*
52400ba9 2875 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2876 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2877 */
f54f0986 2878 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2879 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2880 val2 = (u32) (unsigned long) utime;
1da177e4 2881
c19384b5 2882 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2883}
2884
03b8c7b6 2885static void __init futex_detect_cmpxchg(void)
1da177e4 2886{
03b8c7b6 2887#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2888 u32 curval;
03b8c7b6
HC
2889
2890 /*
2891 * This will fail and we want it. Some arch implementations do
2892 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2893 * functionality. We want to know that before we call in any
2894 * of the complex code paths. Also we want to prevent
2895 * registration of robust lists in that case. NULL is
2896 * guaranteed to fault and we get -EFAULT on functional
2897 * implementation, the non-functional ones will return
2898 * -ENOSYS.
2899 */
2900 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2901 futex_cmpxchg_enabled = 1;
2902#endif
2903}
2904
2905static int __init futex_init(void)
2906{
63b1a816 2907 unsigned int futex_shift;
a52b89eb
DB
2908 unsigned long i;
2909
2910#if CONFIG_BASE_SMALL
2911 futex_hashsize = 16;
2912#else
2913 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2914#endif
2915
2916 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2917 futex_hashsize, 0,
2918 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2919 &futex_shift, NULL,
2920 futex_hashsize, futex_hashsize);
2921 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
2922
2923 futex_detect_cmpxchg();
a0c1e907 2924
a52b89eb 2925 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2926 atomic_set(&futex_queues[i].waiters, 0);
732375c6 2927 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2928 spin_lock_init(&futex_queues[i].lock);
2929 }
2930
1da177e4
LT
2931 return 0;
2932}
f6d107fb 2933__initcall(futex_init);