]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Remove pointless put_pi_state calls in requeue()
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
ab51fbab 67#include <linux/fault-inject.h>
b488893a 68
4732efbe 69#include <asm/futex.h>
1da177e4 70
1696a8be 71#include "locking/rtmutex_common.h"
c87e2837 72
99b60ce6 73/*
d7e8af1a
DB
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
99b60ce6
TG
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
99b60ce6
TG
85 *
86 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
99b60ce6 90 *
b0c29f79
DB
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 116 *
b0c29f79
DB
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
99b60ce6
TG
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
b0c29f79 125 *
d7e8af1a 126 * waiters++; (a)
b0c29f79
DB
127 * mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `-------> mb(); (B)
99b60ce6 137 * if (uval == val)
b0c29f79 138 * queue();
99b60ce6 139 * unlock(hash_bucket(futex));
b0c29f79
DB
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
d7e8af1a
DB
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 144 *
d7e8af1a
DB
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
ac742d37
RV
258/*
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
262 */
263static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266} __futex_data __read_mostly __aligned(2*sizeof(long));
267#define futex_queues (__futex_data.queues)
268#define futex_hashsize (__futex_data.hashsize)
a52b89eb 269
1da177e4 270
ab51fbab
DB
271/*
272 * Fault injections for futexes.
273 */
274#ifdef CONFIG_FAIL_FUTEX
275
276static struct {
277 struct fault_attr attr;
278
621a5f7a 279 bool ignore_private;
ab51fbab
DB
280} fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 282 .ignore_private = false,
ab51fbab
DB
283};
284
285static int __init setup_fail_futex(char *str)
286{
287 return setup_fault_attr(&fail_futex.attr, str);
288}
289__setup("fail_futex=", setup_fail_futex);
290
5d285a7f 291static bool should_fail_futex(bool fshared)
ab51fbab
DB
292{
293 if (fail_futex.ignore_private && !fshared)
294 return false;
295
296 return should_fail(&fail_futex.attr, 1);
297}
298
299#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301static int __init fail_futex_debugfs(void)
302{
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
305
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
310
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
315 }
316
317 return 0;
318}
319
320late_initcall(fail_futex_debugfs);
321
322#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324#else
325static inline bool should_fail_futex(bool fshared)
326{
327 return false;
328}
329#endif /* CONFIG_FAIL_FUTEX */
330
b0c29f79
DB
331static inline void futex_get_mm(union futex_key *key)
332{
333 atomic_inc(&key->private.mm->mm_count);
334 /*
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as full barrier (B), see the ordering comment above.
338 */
4e857c58 339 smp_mb__after_atomic();
b0c29f79
DB
340}
341
11d4616b
LT
342/*
343 * Reflects a new waiter being added to the waitqueue.
344 */
345static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
346{
347#ifdef CONFIG_SMP
11d4616b 348 atomic_inc(&hb->waiters);
b0c29f79 349 /*
11d4616b 350 * Full barrier (A), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
11d4616b
LT
353#endif
354}
355
356/*
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
359 */
360static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361{
362#ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364#endif
365}
b0c29f79 366
11d4616b
LT
367static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368{
369#ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
b0c29f79 371#else
11d4616b 372 return 1;
b0c29f79
DB
373#endif
374}
375
1da177e4
LT
376/*
377 * We hash on the keys returned from get_futex_key (see below).
378 */
379static struct futex_hash_bucket *hash_futex(union futex_key *key)
380{
381 u32 hash = jhash2((u32*)&key->both.word,
382 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 key->both.offset);
a52b89eb 384 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
385}
386
387/*
388 * Return 1 if two futex_keys are equal, 0 otherwise.
389 */
390static inline int match_futex(union futex_key *key1, union futex_key *key2)
391{
2bc87203
DH
392 return (key1 && key2
393 && key1->both.word == key2->both.word
1da177e4
LT
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
396}
397
38d47c1b
PZ
398/*
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
401 *
402 */
403static void get_futex_key_refs(union futex_key *key)
404{
405 if (!key->both.ptr)
406 return;
407
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
b0c29f79 410 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
411 break;
412 case FUT_OFF_MMSHARED:
b0c29f79 413 futex_get_mm(key); /* implies MB (B) */
38d47c1b 414 break;
76835b0e 415 default:
993b2ff2
DB
416 /*
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
420 */
76835b0e 421 smp_mb(); /* explicit MB (B) */
38d47c1b
PZ
422 }
423}
424
425/*
426 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
38d47c1b
PZ
430 */
431static void drop_futex_key_refs(union futex_key *key)
432{
90621c40
DH
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
38d47c1b 436 return;
90621c40 437 }
38d47c1b
PZ
438
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 iput(key->shared.inode);
442 break;
443 case FUT_OFF_MMSHARED:
444 mmdrop(key->private.mm);
445 break;
446 }
447}
448
34f01cc1 449/**
d96ee56c
DH
450 * get_futex_key() - Get parameters which are the keys for a futex
451 * @uaddr: virtual address of the futex
452 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453 * @key: address where result is stored.
9ea71503
SB
454 * @rw: mapping needs to be read/write (values: VERIFY_READ,
455 * VERIFY_WRITE)
34f01cc1 456 *
6c23cbbd
RD
457 * Return: a negative error code or 0
458 *
34f01cc1 459 * The key words are stored in *key on success.
1da177e4 460 *
6131ffaa 461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
462 * offset_within_page). For private mappings, it's (uaddr, current->mm).
463 * We can usually work out the index without swapping in the page.
464 *
b2d0994b 465 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 466 */
64d1304a 467static int
9ea71503 468get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 469{
e2970f2f 470 unsigned long address = (unsigned long)uaddr;
1da177e4 471 struct mm_struct *mm = current->mm;
a5b338f2 472 struct page *page, *page_head;
9ea71503 473 int err, ro = 0;
1da177e4
LT
474
475 /*
476 * The futex address must be "naturally" aligned.
477 */
e2970f2f 478 key->both.offset = address % PAGE_SIZE;
34f01cc1 479 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 480 return -EINVAL;
e2970f2f 481 address -= key->both.offset;
1da177e4 482
5cdec2d8
LT
483 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484 return -EFAULT;
485
ab51fbab
DB
486 if (unlikely(should_fail_futex(fshared)))
487 return -EFAULT;
488
34f01cc1
ED
489 /*
490 * PROCESS_PRIVATE futexes are fast.
491 * As the mm cannot disappear under us and the 'key' only needs
492 * virtual address, we dont even have to find the underlying vma.
493 * Note : We do have to check 'uaddr' is a valid user address,
494 * but access_ok() should be faster than find_vma()
495 */
496 if (!fshared) {
34f01cc1
ED
497 key->private.mm = mm;
498 key->private.address = address;
b0c29f79 499 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
500 return 0;
501 }
1da177e4 502
38d47c1b 503again:
ab51fbab
DB
504 /* Ignore any VERIFY_READ mapping (futex common case) */
505 if (unlikely(should_fail_futex(fshared)))
506 return -EFAULT;
507
7485d0d3 508 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
509 /*
510 * If write access is not required (eg. FUTEX_WAIT), try
511 * and get read-only access.
512 */
513 if (err == -EFAULT && rw == VERIFY_READ) {
514 err = get_user_pages_fast(address, 1, 0, &page);
515 ro = 1;
516 }
38d47c1b
PZ
517 if (err < 0)
518 return err;
9ea71503
SB
519 else
520 err = 0;
38d47c1b 521
a5b338f2
AA
522#ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 page_head = page;
524 if (unlikely(PageTail(page))) {
38d47c1b 525 put_page(page);
a5b338f2
AA
526 /* serialize against __split_huge_page_splitting() */
527 local_irq_disable();
f12d5bfc 528 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
529 page_head = compound_head(page);
530 /*
531 * page_head is valid pointer but we must pin
532 * it before taking the PG_lock and/or
533 * PG_compound_lock. The moment we re-enable
534 * irqs __split_huge_page_splitting() can
535 * return and the head page can be freed from
536 * under us. We can't take the PG_lock and/or
537 * PG_compound_lock on a page that could be
538 * freed from under us.
539 */
540 if (page != page_head) {
541 get_page(page_head);
542 put_page(page);
543 }
544 local_irq_enable();
545 } else {
546 local_irq_enable();
547 goto again;
548 }
549 }
550#else
551 page_head = compound_head(page);
552 if (page != page_head) {
553 get_page(page_head);
554 put_page(page);
555 }
556#endif
557
558 lock_page(page_head);
e6780f72
HD
559
560 /*
561 * If page_head->mapping is NULL, then it cannot be a PageAnon
562 * page; but it might be the ZERO_PAGE or in the gate area or
563 * in a special mapping (all cases which we are happy to fail);
564 * or it may have been a good file page when get_user_pages_fast
565 * found it, but truncated or holepunched or subjected to
566 * invalidate_complete_page2 before we got the page lock (also
567 * cases which we are happy to fail). And we hold a reference,
568 * so refcount care in invalidate_complete_page's remove_mapping
569 * prevents drop_caches from setting mapping to NULL beneath us.
570 *
571 * The case we do have to guard against is when memory pressure made
572 * shmem_writepage move it from filecache to swapcache beneath us:
573 * an unlikely race, but we do need to retry for page_head->mapping.
574 */
a5b338f2 575 if (!page_head->mapping) {
e6780f72 576 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
577 unlock_page(page_head);
578 put_page(page_head);
e6780f72
HD
579 if (shmem_swizzled)
580 goto again;
581 return -EFAULT;
38d47c1b 582 }
1da177e4
LT
583
584 /*
585 * Private mappings are handled in a simple way.
586 *
587 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 589 * the object not the particular process.
1da177e4 590 */
a5b338f2 591 if (PageAnon(page_head)) {
9ea71503
SB
592 /*
593 * A RO anonymous page will never change and thus doesn't make
594 * sense for futex operations.
595 */
ab51fbab 596 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
597 err = -EFAULT;
598 goto out;
599 }
600
38d47c1b 601 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 602 key->private.mm = mm;
e2970f2f 603 key->private.address = address;
38d47c1b
PZ
604 } else {
605 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 606 key->shared.inode = page_head->mapping->host;
13d60f4b 607 key->shared.pgoff = basepage_index(page);
1da177e4
LT
608 }
609
b0c29f79 610 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 611
9ea71503 612out:
a5b338f2
AA
613 unlock_page(page_head);
614 put_page(page_head);
9ea71503 615 return err;
1da177e4
LT
616}
617
ae791a2d 618static inline void put_futex_key(union futex_key *key)
1da177e4 619{
38d47c1b 620 drop_futex_key_refs(key);
1da177e4
LT
621}
622
d96ee56c
DH
623/**
624 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
625 * @uaddr: pointer to faulting user space address
626 *
627 * Slow path to fixup the fault we just took in the atomic write
628 * access to @uaddr.
629 *
fb62db2b 630 * We have no generic implementation of a non-destructive write to the
d0725992
TG
631 * user address. We know that we faulted in the atomic pagefault
632 * disabled section so we can as well avoid the #PF overhead by
633 * calling get_user_pages() right away.
634 */
635static int fault_in_user_writeable(u32 __user *uaddr)
636{
722d0172
AK
637 struct mm_struct *mm = current->mm;
638 int ret;
639
640 down_read(&mm->mmap_sem);
2efaca92
BH
641 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642 FAULT_FLAG_WRITE);
722d0172
AK
643 up_read(&mm->mmap_sem);
644
d0725992
TG
645 return ret < 0 ? ret : 0;
646}
647
4b1c486b
DH
648/**
649 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
650 * @hb: the hash bucket the futex_q's reside in
651 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
652 *
653 * Must be called with the hb lock held.
654 */
655static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656 union futex_key *key)
657{
658 struct futex_q *this;
659
660 plist_for_each_entry(this, &hb->chain, list) {
661 if (match_futex(&this->key, key))
662 return this;
663 }
664 return NULL;
665}
666
37a9d912
ML
667static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668 u32 uval, u32 newval)
36cf3b5c 669{
37a9d912 670 int ret;
36cf3b5c
TG
671
672 pagefault_disable();
37a9d912 673 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
674 pagefault_enable();
675
37a9d912 676 return ret;
36cf3b5c
TG
677}
678
679static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
680{
681 int ret;
682
a866374a 683 pagefault_disable();
e2970f2f 684 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 685 pagefault_enable();
1da177e4
LT
686
687 return ret ? -EFAULT : 0;
688}
689
c87e2837
IM
690
691/*
692 * PI code:
693 */
694static int refill_pi_state_cache(void)
695{
696 struct futex_pi_state *pi_state;
697
698 if (likely(current->pi_state_cache))
699 return 0;
700
4668edc3 701 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
702
703 if (!pi_state)
704 return -ENOMEM;
705
c87e2837
IM
706 INIT_LIST_HEAD(&pi_state->list);
707 /* pi_mutex gets initialized later */
708 pi_state->owner = NULL;
709 atomic_set(&pi_state->refcount, 1);
38d47c1b 710 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
711
712 current->pi_state_cache = pi_state;
713
714 return 0;
715}
716
717static struct futex_pi_state * alloc_pi_state(void)
718{
719 struct futex_pi_state *pi_state = current->pi_state_cache;
720
721 WARN_ON(!pi_state);
722 current->pi_state_cache = NULL;
723
724 return pi_state;
725}
726
30a6b803 727/*
29e9ee5d
TG
728 * Drops a reference to the pi_state object and frees or caches it
729 * when the last reference is gone.
730 *
30a6b803
BS
731 * Must be called with the hb lock held.
732 */
29e9ee5d 733static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 734{
30a6b803
BS
735 if (!pi_state)
736 return;
737
c87e2837
IM
738 if (!atomic_dec_and_test(&pi_state->refcount))
739 return;
740
741 /*
742 * If pi_state->owner is NULL, the owner is most probably dying
743 * and has cleaned up the pi_state already
744 */
745 if (pi_state->owner) {
1d615482 746 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 747 list_del_init(&pi_state->list);
1d615482 748 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
749
750 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
751 }
752
753 if (current->pi_state_cache)
754 kfree(pi_state);
755 else {
756 /*
757 * pi_state->list is already empty.
758 * clear pi_state->owner.
759 * refcount is at 0 - put it back to 1.
760 */
761 pi_state->owner = NULL;
762 atomic_set(&pi_state->refcount, 1);
763 current->pi_state_cache = pi_state;
764 }
765}
766
767/*
768 * Look up the task based on what TID userspace gave us.
769 * We dont trust it.
770 */
771static struct task_struct * futex_find_get_task(pid_t pid)
772{
773 struct task_struct *p;
774
d359b549 775 rcu_read_lock();
228ebcbe 776 p = find_task_by_vpid(pid);
7a0ea09a
MH
777 if (p)
778 get_task_struct(p);
a06381fe 779
d359b549 780 rcu_read_unlock();
c87e2837
IM
781
782 return p;
783}
784
785/*
786 * This task is holding PI mutexes at exit time => bad.
787 * Kernel cleans up PI-state, but userspace is likely hosed.
788 * (Robust-futex cleanup is separate and might save the day for userspace.)
789 */
790void exit_pi_state_list(struct task_struct *curr)
791{
c87e2837
IM
792 struct list_head *next, *head = &curr->pi_state_list;
793 struct futex_pi_state *pi_state;
627371d7 794 struct futex_hash_bucket *hb;
38d47c1b 795 union futex_key key = FUTEX_KEY_INIT;
c87e2837 796
a0c1e907
TG
797 if (!futex_cmpxchg_enabled)
798 return;
c87e2837
IM
799 /*
800 * We are a ZOMBIE and nobody can enqueue itself on
801 * pi_state_list anymore, but we have to be careful
627371d7 802 * versus waiters unqueueing themselves:
c87e2837 803 */
1d615482 804 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
805 while (!list_empty(head)) {
806
807 next = head->next;
808 pi_state = list_entry(next, struct futex_pi_state, list);
809 key = pi_state->key;
627371d7 810 hb = hash_futex(&key);
1d615482 811 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 812
c87e2837
IM
813 spin_lock(&hb->lock);
814
1d615482 815 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
816 /*
817 * We dropped the pi-lock, so re-check whether this
818 * task still owns the PI-state:
819 */
c87e2837
IM
820 if (head->next != next) {
821 spin_unlock(&hb->lock);
822 continue;
823 }
824
c87e2837 825 WARN_ON(pi_state->owner != curr);
627371d7
IM
826 WARN_ON(list_empty(&pi_state->list));
827 list_del_init(&pi_state->list);
c87e2837 828 pi_state->owner = NULL;
1d615482 829 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
830
831 rt_mutex_unlock(&pi_state->pi_mutex);
832
833 spin_unlock(&hb->lock);
834
1d615482 835 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 836 }
1d615482 837 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
838}
839
54a21788
TG
840/*
841 * We need to check the following states:
842 *
843 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
844 *
845 * [1] NULL | --- | --- | 0 | 0/1 | Valid
846 * [2] NULL | --- | --- | >0 | 0/1 | Valid
847 *
848 * [3] Found | NULL | -- | Any | 0/1 | Invalid
849 *
850 * [4] Found | Found | NULL | 0 | 1 | Valid
851 * [5] Found | Found | NULL | >0 | 1 | Invalid
852 *
853 * [6] Found | Found | task | 0 | 1 | Valid
854 *
855 * [7] Found | Found | NULL | Any | 0 | Invalid
856 *
857 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
858 * [9] Found | Found | task | 0 | 0 | Invalid
859 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
860 *
861 * [1] Indicates that the kernel can acquire the futex atomically. We
862 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
863 *
864 * [2] Valid, if TID does not belong to a kernel thread. If no matching
865 * thread is found then it indicates that the owner TID has died.
866 *
867 * [3] Invalid. The waiter is queued on a non PI futex
868 *
869 * [4] Valid state after exit_robust_list(), which sets the user space
870 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
871 *
872 * [5] The user space value got manipulated between exit_robust_list()
873 * and exit_pi_state_list()
874 *
875 * [6] Valid state after exit_pi_state_list() which sets the new owner in
876 * the pi_state but cannot access the user space value.
877 *
878 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
879 *
880 * [8] Owner and user space value match
881 *
882 * [9] There is no transient state which sets the user space TID to 0
883 * except exit_robust_list(), but this is indicated by the
884 * FUTEX_OWNER_DIED bit. See [4]
885 *
886 * [10] There is no transient state which leaves owner and user space
887 * TID out of sync.
888 */
e60cbc5c
TG
889
890/*
891 * Validate that the existing waiter has a pi_state and sanity check
892 * the pi_state against the user space value. If correct, attach to
893 * it.
894 */
895static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
896 struct futex_pi_state **ps)
c87e2837 897{
778e9a9c 898 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 899
e60cbc5c
TG
900 /*
901 * Userspace might have messed up non-PI and PI futexes [3]
902 */
903 if (unlikely(!pi_state))
904 return -EINVAL;
06a9ec29 905
e60cbc5c 906 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 907
e60cbc5c
TG
908 /*
909 * Handle the owner died case:
910 */
911 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 912 /*
e60cbc5c
TG
913 * exit_pi_state_list sets owner to NULL and wakes the
914 * topmost waiter. The task which acquires the
915 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 916 */
e60cbc5c 917 if (!pi_state->owner) {
59647b6a 918 /*
e60cbc5c
TG
919 * No pi state owner, but the user space TID
920 * is not 0. Inconsistent state. [5]
59647b6a 921 */
e60cbc5c
TG
922 if (pid)
923 return -EINVAL;
bd1dbcc6 924 /*
e60cbc5c 925 * Take a ref on the state and return success. [4]
866293ee 926 */
e60cbc5c 927 goto out_state;
c87e2837 928 }
bd1dbcc6
TG
929
930 /*
e60cbc5c
TG
931 * If TID is 0, then either the dying owner has not
932 * yet executed exit_pi_state_list() or some waiter
933 * acquired the rtmutex in the pi state, but did not
934 * yet fixup the TID in user space.
935 *
936 * Take a ref on the state and return success. [6]
937 */
938 if (!pid)
939 goto out_state;
940 } else {
941 /*
942 * If the owner died bit is not set, then the pi_state
943 * must have an owner. [7]
bd1dbcc6 944 */
e60cbc5c 945 if (!pi_state->owner)
bd1dbcc6 946 return -EINVAL;
c87e2837
IM
947 }
948
e60cbc5c
TG
949 /*
950 * Bail out if user space manipulated the futex value. If pi
951 * state exists then the owner TID must be the same as the
952 * user space TID. [9/10]
953 */
954 if (pid != task_pid_vnr(pi_state->owner))
955 return -EINVAL;
956out_state:
957 atomic_inc(&pi_state->refcount);
958 *ps = pi_state;
959 return 0;
960}
961
04e1b2e5
TG
962/*
963 * Lookup the task for the TID provided from user space and attach to
964 * it after doing proper sanity checks.
965 */
966static int attach_to_pi_owner(u32 uval, union futex_key *key,
967 struct futex_pi_state **ps)
e60cbc5c 968{
e60cbc5c 969 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
970 struct futex_pi_state *pi_state;
971 struct task_struct *p;
e60cbc5c 972
c87e2837 973 /*
e3f2ddea 974 * We are the first waiter - try to look up the real owner and attach
54a21788 975 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 976 */
778e9a9c 977 if (!pid)
e3f2ddea 978 return -ESRCH;
c87e2837 979 p = futex_find_get_task(pid);
7a0ea09a
MH
980 if (!p)
981 return -ESRCH;
778e9a9c 982
a2129464 983 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
984 put_task_struct(p);
985 return -EPERM;
986 }
987
778e9a9c
AK
988 /*
989 * We need to look at the task state flags to figure out,
990 * whether the task is exiting. To protect against the do_exit
991 * change of the task flags, we do this protected by
992 * p->pi_lock:
993 */
1d615482 994 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
995 if (unlikely(p->flags & PF_EXITING)) {
996 /*
997 * The task is on the way out. When PF_EXITPIDONE is
998 * set, we know that the task has finished the
999 * cleanup:
1000 */
1001 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1002
1d615482 1003 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1004 put_task_struct(p);
1005 return ret;
1006 }
c87e2837 1007
54a21788
TG
1008 /*
1009 * No existing pi state. First waiter. [2]
1010 */
c87e2837
IM
1011 pi_state = alloc_pi_state();
1012
1013 /*
04e1b2e5 1014 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1015 * the owner of it:
1016 */
1017 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1018
1019 /* Store the key for possible exit cleanups: */
d0aa7a70 1020 pi_state->key = *key;
c87e2837 1021
627371d7 1022 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1023 list_add(&pi_state->list, &p->pi_state_list);
1024 pi_state->owner = p;
1d615482 1025 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1026
1027 put_task_struct(p);
1028
d0aa7a70 1029 *ps = pi_state;
c87e2837
IM
1030
1031 return 0;
1032}
1033
04e1b2e5
TG
1034static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1035 union futex_key *key, struct futex_pi_state **ps)
1036{
1037 struct futex_q *match = futex_top_waiter(hb, key);
1038
1039 /*
1040 * If there is a waiter on that futex, validate it and
1041 * attach to the pi_state when the validation succeeds.
1042 */
1043 if (match)
1044 return attach_to_pi_state(uval, match->pi_state, ps);
1045
1046 /*
1047 * We are the first waiter - try to look up the owner based on
1048 * @uval and attach to it.
1049 */
1050 return attach_to_pi_owner(uval, key, ps);
1051}
1052
af54d6a1
TG
1053static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1054{
1055 u32 uninitialized_var(curval);
1056
ab51fbab
DB
1057 if (unlikely(should_fail_futex(true)))
1058 return -EFAULT;
1059
af54d6a1
TG
1060 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1061 return -EFAULT;
1062
1063 /*If user space value changed, let the caller retry */
1064 return curval != uval ? -EAGAIN : 0;
1065}
1066
1a52084d 1067/**
d96ee56c 1068 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1069 * @uaddr: the pi futex user address
1070 * @hb: the pi futex hash bucket
1071 * @key: the futex key associated with uaddr and hb
1072 * @ps: the pi_state pointer where we store the result of the
1073 * lookup
1074 * @task: the task to perform the atomic lock work for. This will
1075 * be "current" except in the case of requeue pi.
1076 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1077 *
6c23cbbd
RD
1078 * Return:
1079 * 0 - ready to wait;
1080 * 1 - acquired the lock;
1a52084d
DH
1081 * <0 - error
1082 *
1083 * The hb->lock and futex_key refs shall be held by the caller.
1084 */
1085static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1086 union futex_key *key,
1087 struct futex_pi_state **ps,
bab5bc9e 1088 struct task_struct *task, int set_waiters)
1a52084d 1089{
af54d6a1
TG
1090 u32 uval, newval, vpid = task_pid_vnr(task);
1091 struct futex_q *match;
1092 int ret;
1a52084d
DH
1093
1094 /*
af54d6a1
TG
1095 * Read the user space value first so we can validate a few
1096 * things before proceeding further.
1a52084d 1097 */
af54d6a1 1098 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1099 return -EFAULT;
1100
ab51fbab
DB
1101 if (unlikely(should_fail_futex(true)))
1102 return -EFAULT;
1103
1a52084d
DH
1104 /*
1105 * Detect deadlocks.
1106 */
af54d6a1 1107 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1108 return -EDEADLK;
1109
ab51fbab
DB
1110 if ((unlikely(should_fail_futex(true))))
1111 return -EDEADLK;
1112
1a52084d 1113 /*
af54d6a1
TG
1114 * Lookup existing state first. If it exists, try to attach to
1115 * its pi_state.
1a52084d 1116 */
af54d6a1
TG
1117 match = futex_top_waiter(hb, key);
1118 if (match)
1119 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1120
1121 /*
af54d6a1
TG
1122 * No waiter and user TID is 0. We are here because the
1123 * waiters or the owner died bit is set or called from
1124 * requeue_cmp_pi or for whatever reason something took the
1125 * syscall.
1a52084d 1126 */
af54d6a1 1127 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1128 /*
af54d6a1
TG
1129 * We take over the futex. No other waiters and the user space
1130 * TID is 0. We preserve the owner died bit.
59fa6245 1131 */
af54d6a1
TG
1132 newval = uval & FUTEX_OWNER_DIED;
1133 newval |= vpid;
1a52084d 1134
af54d6a1
TG
1135 /* The futex requeue_pi code can enforce the waiters bit */
1136 if (set_waiters)
1137 newval |= FUTEX_WAITERS;
1138
1139 ret = lock_pi_update_atomic(uaddr, uval, newval);
1140 /* If the take over worked, return 1 */
1141 return ret < 0 ? ret : 1;
1142 }
1a52084d
DH
1143
1144 /*
af54d6a1
TG
1145 * First waiter. Set the waiters bit before attaching ourself to
1146 * the owner. If owner tries to unlock, it will be forced into
1147 * the kernel and blocked on hb->lock.
1a52084d 1148 */
af54d6a1
TG
1149 newval = uval | FUTEX_WAITERS;
1150 ret = lock_pi_update_atomic(uaddr, uval, newval);
1151 if (ret)
1152 return ret;
1a52084d 1153 /*
af54d6a1
TG
1154 * If the update of the user space value succeeded, we try to
1155 * attach to the owner. If that fails, no harm done, we only
1156 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1157 */
af54d6a1 1158 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1159}
1160
2e12978a
LJ
1161/**
1162 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1163 * @q: The futex_q to unqueue
1164 *
1165 * The q->lock_ptr must not be NULL and must be held by the caller.
1166 */
1167static void __unqueue_futex(struct futex_q *q)
1168{
1169 struct futex_hash_bucket *hb;
1170
29096202
SR
1171 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1172 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1173 return;
1174
1175 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1176 plist_del(&q->list, &hb->chain);
11d4616b 1177 hb_waiters_dec(hb);
2e12978a
LJ
1178}
1179
1da177e4
LT
1180/*
1181 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1182 * Afterwards, the futex_q must not be accessed. Callers
1183 * must ensure to later call wake_up_q() for the actual
1184 * wakeups to occur.
1da177e4 1185 */
1d0dcb3a 1186static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1187{
f1a11e05
TG
1188 struct task_struct *p = q->task;
1189
aa10990e
DH
1190 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1191 return;
1192
1da177e4 1193 /*
1d0dcb3a
DB
1194 * Queue the task for later wakeup for after we've released
1195 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1196 */
1d0dcb3a 1197 wake_q_add(wake_q, p);
2e12978a 1198 __unqueue_futex(q);
1da177e4 1199 /*
f1a11e05
TG
1200 * The waiting task can free the futex_q as soon as
1201 * q->lock_ptr = NULL is written, without taking any locks. A
1202 * memory barrier is required here to prevent the following
1203 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1204 */
ccdea2f8 1205 smp_wmb();
1da177e4
LT
1206 q->lock_ptr = NULL;
1207}
1208
802ab58d
SAS
1209static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1210 struct futex_hash_bucket *hb)
c87e2837
IM
1211{
1212 struct task_struct *new_owner;
1213 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1214 u32 uninitialized_var(curval), newval;
802ab58d
SAS
1215 WAKE_Q(wake_q);
1216 bool deboost;
13fbca4c 1217 int ret = 0;
c87e2837
IM
1218
1219 if (!pi_state)
1220 return -EINVAL;
1221
51246bfd
TG
1222 /*
1223 * If current does not own the pi_state then the futex is
1224 * inconsistent and user space fiddled with the futex value.
1225 */
1226 if (pi_state->owner != current)
1227 return -EINVAL;
1228
d209d74d 1229 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1230 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1231
1232 /*
f123c98e
SR
1233 * It is possible that the next waiter (the one that brought
1234 * this owner to the kernel) timed out and is no longer
1235 * waiting on the lock.
c87e2837
IM
1236 */
1237 if (!new_owner)
1238 new_owner = this->task;
1239
1240 /*
13fbca4c
TG
1241 * We pass it to the next owner. The WAITERS bit is always
1242 * kept enabled while there is PI state around. We cleanup the
1243 * owner died bit, because we are the owner.
c87e2837 1244 */
13fbca4c 1245 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1246
ab51fbab
DB
1247 if (unlikely(should_fail_futex(true)))
1248 ret = -EFAULT;
1249
13fbca4c
TG
1250 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1251 ret = -EFAULT;
1252 else if (curval != uval)
1253 ret = -EINVAL;
1254 if (ret) {
1255 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1256 return ret;
e3f2ddea 1257 }
c87e2837 1258
1d615482 1259 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1260 WARN_ON(list_empty(&pi_state->list));
1261 list_del_init(&pi_state->list);
1d615482 1262 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1263
1d615482 1264 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1265 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1266 list_add(&pi_state->list, &new_owner->pi_state_list);
1267 pi_state->owner = new_owner;
1d615482 1268 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1269
d209d74d 1270 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1271
1272 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1273
1274 /*
1275 * First unlock HB so the waiter does not spin on it once he got woken
1276 * up. Second wake up the waiter before the priority is adjusted. If we
1277 * deboost first (and lose our higher priority), then the task might get
1278 * scheduled away before the wake up can take place.
1279 */
1280 spin_unlock(&hb->lock);
1281 wake_up_q(&wake_q);
1282 if (deboost)
1283 rt_mutex_adjust_prio(current);
c87e2837
IM
1284
1285 return 0;
1286}
1287
8b8f319f
IM
1288/*
1289 * Express the locking dependencies for lockdep:
1290 */
1291static inline void
1292double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1293{
1294 if (hb1 <= hb2) {
1295 spin_lock(&hb1->lock);
1296 if (hb1 < hb2)
1297 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1298 } else { /* hb1 > hb2 */
1299 spin_lock(&hb2->lock);
1300 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1301 }
1302}
1303
5eb3dc62
DH
1304static inline void
1305double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1306{
f061d351 1307 spin_unlock(&hb1->lock);
88f502fe
IM
1308 if (hb1 != hb2)
1309 spin_unlock(&hb2->lock);
5eb3dc62
DH
1310}
1311
1da177e4 1312/*
b2d0994b 1313 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1314 */
b41277dc
DH
1315static int
1316futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1317{
e2970f2f 1318 struct futex_hash_bucket *hb;
1da177e4 1319 struct futex_q *this, *next;
38d47c1b 1320 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1321 int ret;
1d0dcb3a 1322 WAKE_Q(wake_q);
1da177e4 1323
cd689985
TG
1324 if (!bitset)
1325 return -EINVAL;
1326
9ea71503 1327 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1328 if (unlikely(ret != 0))
1329 goto out;
1330
e2970f2f 1331 hb = hash_futex(&key);
b0c29f79
DB
1332
1333 /* Make sure we really have tasks to wakeup */
1334 if (!hb_waiters_pending(hb))
1335 goto out_put_key;
1336
e2970f2f 1337 spin_lock(&hb->lock);
1da177e4 1338
0d00c7b2 1339 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1340 if (match_futex (&this->key, &key)) {
52400ba9 1341 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1342 ret = -EINVAL;
1343 break;
1344 }
cd689985
TG
1345
1346 /* Check if one of the bits is set in both bitsets */
1347 if (!(this->bitset & bitset))
1348 continue;
1349
1d0dcb3a 1350 mark_wake_futex(&wake_q, this);
1da177e4
LT
1351 if (++ret >= nr_wake)
1352 break;
1353 }
1354 }
1355
e2970f2f 1356 spin_unlock(&hb->lock);
1d0dcb3a 1357 wake_up_q(&wake_q);
b0c29f79 1358out_put_key:
ae791a2d 1359 put_futex_key(&key);
42d35d48 1360out:
1da177e4
LT
1361 return ret;
1362}
1363
4732efbe
JJ
1364/*
1365 * Wake up all waiters hashed on the physical page that is mapped
1366 * to this virtual address:
1367 */
e2970f2f 1368static int
b41277dc 1369futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1370 int nr_wake, int nr_wake2, int op)
4732efbe 1371{
38d47c1b 1372 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1373 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1374 struct futex_q *this, *next;
e4dc5b7a 1375 int ret, op_ret;
1d0dcb3a 1376 WAKE_Q(wake_q);
4732efbe 1377
e4dc5b7a 1378retry:
9ea71503 1379 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1380 if (unlikely(ret != 0))
1381 goto out;
9ea71503 1382 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1383 if (unlikely(ret != 0))
42d35d48 1384 goto out_put_key1;
4732efbe 1385
e2970f2f
IM
1386 hb1 = hash_futex(&key1);
1387 hb2 = hash_futex(&key2);
4732efbe 1388
e4dc5b7a 1389retry_private:
eaaea803 1390 double_lock_hb(hb1, hb2);
e2970f2f 1391 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1392 if (unlikely(op_ret < 0)) {
4732efbe 1393
5eb3dc62 1394 double_unlock_hb(hb1, hb2);
4732efbe 1395
7ee1dd3f 1396#ifndef CONFIG_MMU
e2970f2f
IM
1397 /*
1398 * we don't get EFAULT from MMU faults if we don't have an MMU,
1399 * but we might get them from range checking
1400 */
7ee1dd3f 1401 ret = op_ret;
42d35d48 1402 goto out_put_keys;
7ee1dd3f
DH
1403#endif
1404
796f8d9b
DG
1405 if (unlikely(op_ret != -EFAULT)) {
1406 ret = op_ret;
42d35d48 1407 goto out_put_keys;
796f8d9b
DG
1408 }
1409
d0725992 1410 ret = fault_in_user_writeable(uaddr2);
4732efbe 1411 if (ret)
de87fcc1 1412 goto out_put_keys;
4732efbe 1413
b41277dc 1414 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1415 goto retry_private;
1416
ae791a2d
TG
1417 put_futex_key(&key2);
1418 put_futex_key(&key1);
e4dc5b7a 1419 goto retry;
4732efbe
JJ
1420 }
1421
0d00c7b2 1422 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1423 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1424 if (this->pi_state || this->rt_waiter) {
1425 ret = -EINVAL;
1426 goto out_unlock;
1427 }
1d0dcb3a 1428 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1429 if (++ret >= nr_wake)
1430 break;
1431 }
1432 }
1433
1434 if (op_ret > 0) {
4732efbe 1435 op_ret = 0;
0d00c7b2 1436 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1437 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1438 if (this->pi_state || this->rt_waiter) {
1439 ret = -EINVAL;
1440 goto out_unlock;
1441 }
1d0dcb3a 1442 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1443 if (++op_ret >= nr_wake2)
1444 break;
1445 }
1446 }
1447 ret += op_ret;
1448 }
1449
aa10990e 1450out_unlock:
5eb3dc62 1451 double_unlock_hb(hb1, hb2);
1d0dcb3a 1452 wake_up_q(&wake_q);
42d35d48 1453out_put_keys:
ae791a2d 1454 put_futex_key(&key2);
42d35d48 1455out_put_key1:
ae791a2d 1456 put_futex_key(&key1);
42d35d48 1457out:
4732efbe
JJ
1458 return ret;
1459}
1460
9121e478
DH
1461/**
1462 * requeue_futex() - Requeue a futex_q from one hb to another
1463 * @q: the futex_q to requeue
1464 * @hb1: the source hash_bucket
1465 * @hb2: the target hash_bucket
1466 * @key2: the new key for the requeued futex_q
1467 */
1468static inline
1469void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1470 struct futex_hash_bucket *hb2, union futex_key *key2)
1471{
1472
1473 /*
1474 * If key1 and key2 hash to the same bucket, no need to
1475 * requeue.
1476 */
1477 if (likely(&hb1->chain != &hb2->chain)) {
1478 plist_del(&q->list, &hb1->chain);
11d4616b 1479 hb_waiters_dec(hb1);
9121e478 1480 plist_add(&q->list, &hb2->chain);
11d4616b 1481 hb_waiters_inc(hb2);
9121e478 1482 q->lock_ptr = &hb2->lock;
9121e478
DH
1483 }
1484 get_futex_key_refs(key2);
1485 q->key = *key2;
1486}
1487
52400ba9
DH
1488/**
1489 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1490 * @q: the futex_q
1491 * @key: the key of the requeue target futex
1492 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1493 *
1494 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1495 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1496 * to the requeue target futex so the waiter can detect the wakeup on the right
1497 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1498 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1499 * to protect access to the pi_state to fixup the owner later. Must be called
1500 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1501 */
1502static inline
beda2c7e
DH
1503void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1504 struct futex_hash_bucket *hb)
52400ba9 1505{
52400ba9
DH
1506 get_futex_key_refs(key);
1507 q->key = *key;
1508
2e12978a 1509 __unqueue_futex(q);
52400ba9
DH
1510
1511 WARN_ON(!q->rt_waiter);
1512 q->rt_waiter = NULL;
1513
beda2c7e 1514 q->lock_ptr = &hb->lock;
beda2c7e 1515
f1a11e05 1516 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1517}
1518
1519/**
1520 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1521 * @pifutex: the user address of the to futex
1522 * @hb1: the from futex hash bucket, must be locked by the caller
1523 * @hb2: the to futex hash bucket, must be locked by the caller
1524 * @key1: the from futex key
1525 * @key2: the to futex key
1526 * @ps: address to store the pi_state pointer
1527 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1528 *
1529 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1530 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1531 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1532 * hb1 and hb2 must be held by the caller.
52400ba9 1533 *
6c23cbbd
RD
1534 * Return:
1535 * 0 - failed to acquire the lock atomically;
866293ee 1536 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1537 * <0 - error
1538 */
1539static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1540 struct futex_hash_bucket *hb1,
1541 struct futex_hash_bucket *hb2,
1542 union futex_key *key1, union futex_key *key2,
bab5bc9e 1543 struct futex_pi_state **ps, int set_waiters)
52400ba9 1544{
bab5bc9e 1545 struct futex_q *top_waiter = NULL;
52400ba9 1546 u32 curval;
866293ee 1547 int ret, vpid;
52400ba9
DH
1548
1549 if (get_futex_value_locked(&curval, pifutex))
1550 return -EFAULT;
1551
ab51fbab
DB
1552 if (unlikely(should_fail_futex(true)))
1553 return -EFAULT;
1554
bab5bc9e
DH
1555 /*
1556 * Find the top_waiter and determine if there are additional waiters.
1557 * If the caller intends to requeue more than 1 waiter to pifutex,
1558 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1559 * as we have means to handle the possible fault. If not, don't set
1560 * the bit unecessarily as it will force the subsequent unlock to enter
1561 * the kernel.
1562 */
52400ba9
DH
1563 top_waiter = futex_top_waiter(hb1, key1);
1564
1565 /* There are no waiters, nothing for us to do. */
1566 if (!top_waiter)
1567 return 0;
1568
84bc4af5
DH
1569 /* Ensure we requeue to the expected futex. */
1570 if (!match_futex(top_waiter->requeue_pi_key, key2))
1571 return -EINVAL;
1572
52400ba9 1573 /*
bab5bc9e
DH
1574 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1575 * the contended case or if set_waiters is 1. The pi_state is returned
1576 * in ps in contended cases.
52400ba9 1577 */
866293ee 1578 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1579 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1580 set_waiters);
866293ee 1581 if (ret == 1) {
beda2c7e 1582 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1583 return vpid;
1584 }
52400ba9
DH
1585 return ret;
1586}
1587
1588/**
1589 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1590 * @uaddr1: source futex user address
b41277dc 1591 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1592 * @uaddr2: target futex user address
1593 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1594 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1595 * @cmpval: @uaddr1 expected value (or %NULL)
1596 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1597 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1598 *
1599 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1600 * uaddr2 atomically on behalf of the top waiter.
1601 *
6c23cbbd
RD
1602 * Return:
1603 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1604 * <0 - on error
1da177e4 1605 */
b41277dc
DH
1606static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1607 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1608 u32 *cmpval, int requeue_pi)
1da177e4 1609{
38d47c1b 1610 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1611 int drop_count = 0, task_count = 0, ret;
1612 struct futex_pi_state *pi_state = NULL;
e2970f2f 1613 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1614 struct futex_q *this, *next;
1d0dcb3a 1615 WAKE_Q(wake_q);
52400ba9
DH
1616
1617 if (requeue_pi) {
e9c243a5
TG
1618 /*
1619 * Requeue PI only works on two distinct uaddrs. This
1620 * check is only valid for private futexes. See below.
1621 */
1622 if (uaddr1 == uaddr2)
1623 return -EINVAL;
1624
52400ba9
DH
1625 /*
1626 * requeue_pi requires a pi_state, try to allocate it now
1627 * without any locks in case it fails.
1628 */
1629 if (refill_pi_state_cache())
1630 return -ENOMEM;
1631 /*
1632 * requeue_pi must wake as many tasks as it can, up to nr_wake
1633 * + nr_requeue, since it acquires the rt_mutex prior to
1634 * returning to userspace, so as to not leave the rt_mutex with
1635 * waiters and no owner. However, second and third wake-ups
1636 * cannot be predicted as they involve race conditions with the
1637 * first wake and a fault while looking up the pi_state. Both
1638 * pthread_cond_signal() and pthread_cond_broadcast() should
1639 * use nr_wake=1.
1640 */
1641 if (nr_wake != 1)
1642 return -EINVAL;
1643 }
1da177e4 1644
42d35d48 1645retry:
9ea71503 1646 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1647 if (unlikely(ret != 0))
1648 goto out;
9ea71503
SB
1649 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1650 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1651 if (unlikely(ret != 0))
42d35d48 1652 goto out_put_key1;
1da177e4 1653
e9c243a5
TG
1654 /*
1655 * The check above which compares uaddrs is not sufficient for
1656 * shared futexes. We need to compare the keys:
1657 */
1658 if (requeue_pi && match_futex(&key1, &key2)) {
1659 ret = -EINVAL;
1660 goto out_put_keys;
1661 }
1662
e2970f2f
IM
1663 hb1 = hash_futex(&key1);
1664 hb2 = hash_futex(&key2);
1da177e4 1665
e4dc5b7a 1666retry_private:
69cd9eba 1667 hb_waiters_inc(hb2);
8b8f319f 1668 double_lock_hb(hb1, hb2);
1da177e4 1669
e2970f2f
IM
1670 if (likely(cmpval != NULL)) {
1671 u32 curval;
1da177e4 1672
e2970f2f 1673 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1674
1675 if (unlikely(ret)) {
5eb3dc62 1676 double_unlock_hb(hb1, hb2);
69cd9eba 1677 hb_waiters_dec(hb2);
1da177e4 1678
e2970f2f 1679 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1680 if (ret)
1681 goto out_put_keys;
1da177e4 1682
b41277dc 1683 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1684 goto retry_private;
1da177e4 1685
ae791a2d
TG
1686 put_futex_key(&key2);
1687 put_futex_key(&key1);
e4dc5b7a 1688 goto retry;
1da177e4 1689 }
e2970f2f 1690 if (curval != *cmpval) {
1da177e4
LT
1691 ret = -EAGAIN;
1692 goto out_unlock;
1693 }
1694 }
1695
52400ba9 1696 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1697 /*
1698 * Attempt to acquire uaddr2 and wake the top waiter. If we
1699 * intend to requeue waiters, force setting the FUTEX_WAITERS
1700 * bit. We force this here where we are able to easily handle
1701 * faults rather in the requeue loop below.
1702 */
52400ba9 1703 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1704 &key2, &pi_state, nr_requeue);
52400ba9
DH
1705
1706 /*
1707 * At this point the top_waiter has either taken uaddr2 or is
1708 * waiting on it. If the former, then the pi_state will not
1709 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1710 * reference to it. If the lock was taken, ret contains the
1711 * vpid of the top waiter task.
ecb38b78
TG
1712 * If the lock was not taken, we have pi_state and an initial
1713 * refcount on it. In case of an error we have nothing.
52400ba9 1714 */
866293ee 1715 if (ret > 0) {
52400ba9 1716 WARN_ON(pi_state);
89061d3d 1717 drop_count++;
52400ba9 1718 task_count++;
866293ee 1719 /*
ecb38b78
TG
1720 * If we acquired the lock, then the user space value
1721 * of uaddr2 should be vpid. It cannot be changed by
1722 * the top waiter as it is blocked on hb2 lock if it
1723 * tries to do so. If something fiddled with it behind
1724 * our back the pi state lookup might unearth it. So
1725 * we rather use the known value than rereading and
1726 * handing potential crap to lookup_pi_state.
1727 *
1728 * If that call succeeds then we have pi_state and an
1729 * initial refcount on it.
866293ee 1730 */
54a21788 1731 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1732 }
1733
1734 switch (ret) {
1735 case 0:
ecb38b78 1736 /* We hold a reference on the pi state. */
52400ba9 1737 break;
4959f2de
TG
1738
1739 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1740 case -EFAULT:
1741 double_unlock_hb(hb1, hb2);
69cd9eba 1742 hb_waiters_dec(hb2);
ae791a2d
TG
1743 put_futex_key(&key2);
1744 put_futex_key(&key1);
d0725992 1745 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1746 if (!ret)
1747 goto retry;
1748 goto out;
1749 case -EAGAIN:
af54d6a1
TG
1750 /*
1751 * Two reasons for this:
1752 * - Owner is exiting and we just wait for the
1753 * exit to complete.
1754 * - The user space value changed.
1755 */
52400ba9 1756 double_unlock_hb(hb1, hb2);
69cd9eba 1757 hb_waiters_dec(hb2);
ae791a2d
TG
1758 put_futex_key(&key2);
1759 put_futex_key(&key1);
52400ba9
DH
1760 cond_resched();
1761 goto retry;
1762 default:
1763 goto out_unlock;
1764 }
1765 }
1766
0d00c7b2 1767 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1768 if (task_count - nr_wake >= nr_requeue)
1769 break;
1770
1771 if (!match_futex(&this->key, &key1))
1da177e4 1772 continue;
52400ba9 1773
392741e0
DH
1774 /*
1775 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1776 * be paired with each other and no other futex ops.
aa10990e
DH
1777 *
1778 * We should never be requeueing a futex_q with a pi_state,
1779 * which is awaiting a futex_unlock_pi().
392741e0
DH
1780 */
1781 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1782 (!requeue_pi && this->rt_waiter) ||
1783 this->pi_state) {
392741e0
DH
1784 ret = -EINVAL;
1785 break;
1786 }
52400ba9
DH
1787
1788 /*
1789 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1790 * lock, we already woke the top_waiter. If not, it will be
1791 * woken by futex_unlock_pi().
1792 */
1793 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1794 mark_wake_futex(&wake_q, this);
52400ba9
DH
1795 continue;
1796 }
1da177e4 1797
84bc4af5
DH
1798 /* Ensure we requeue to the expected futex for requeue_pi. */
1799 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1800 ret = -EINVAL;
1801 break;
1802 }
1803
52400ba9
DH
1804 /*
1805 * Requeue nr_requeue waiters and possibly one more in the case
1806 * of requeue_pi if we couldn't acquire the lock atomically.
1807 */
1808 if (requeue_pi) {
ecb38b78
TG
1809 /*
1810 * Prepare the waiter to take the rt_mutex. Take a
1811 * refcount on the pi_state and store the pointer in
1812 * the futex_q object of the waiter.
1813 */
52400ba9
DH
1814 atomic_inc(&pi_state->refcount);
1815 this->pi_state = pi_state;
1816 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1817 this->rt_waiter,
c051b21f 1818 this->task);
52400ba9 1819 if (ret == 1) {
ecb38b78
TG
1820 /*
1821 * We got the lock. We do neither drop the
1822 * refcount on pi_state nor clear
1823 * this->pi_state because the waiter needs the
1824 * pi_state for cleaning up the user space
1825 * value. It will drop the refcount after
1826 * doing so.
1827 */
beda2c7e 1828 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1829 drop_count++;
52400ba9
DH
1830 continue;
1831 } else if (ret) {
ecb38b78
TG
1832 /*
1833 * rt_mutex_start_proxy_lock() detected a
1834 * potential deadlock when we tried to queue
1835 * that waiter. Drop the pi_state reference
1836 * which we took above and remove the pointer
1837 * to the state from the waiters futex_q
1838 * object.
1839 */
52400ba9 1840 this->pi_state = NULL;
29e9ee5d 1841 put_pi_state(pi_state);
52400ba9
DH
1842 goto out_unlock;
1843 }
1da177e4 1844 }
52400ba9
DH
1845 requeue_futex(this, hb1, hb2, &key2);
1846 drop_count++;
1da177e4
LT
1847 }
1848
1849out_unlock:
ecb38b78
TG
1850 /*
1851 * We took an extra initial reference to the pi_state either
1852 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1853 * need to drop it here again.
1854 */
29e9ee5d 1855 put_pi_state(pi_state);
5eb3dc62 1856 double_unlock_hb(hb1, hb2);
1d0dcb3a 1857 wake_up_q(&wake_q);
69cd9eba 1858 hb_waiters_dec(hb2);
1da177e4 1859
cd84a42f
DH
1860 /*
1861 * drop_futex_key_refs() must be called outside the spinlocks. During
1862 * the requeue we moved futex_q's from the hash bucket at key1 to the
1863 * one at key2 and updated their key pointer. We no longer need to
1864 * hold the references to key1.
1865 */
1da177e4 1866 while (--drop_count >= 0)
9adef58b 1867 drop_futex_key_refs(&key1);
1da177e4 1868
42d35d48 1869out_put_keys:
ae791a2d 1870 put_futex_key(&key2);
42d35d48 1871out_put_key1:
ae791a2d 1872 put_futex_key(&key1);
42d35d48 1873out:
52400ba9 1874 return ret ? ret : task_count;
1da177e4
LT
1875}
1876
1877/* The key must be already stored in q->key. */
82af7aca 1878static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1879 __acquires(&hb->lock)
1da177e4 1880{
e2970f2f 1881 struct futex_hash_bucket *hb;
1da177e4 1882
e2970f2f 1883 hb = hash_futex(&q->key);
11d4616b
LT
1884
1885 /*
1886 * Increment the counter before taking the lock so that
1887 * a potential waker won't miss a to-be-slept task that is
1888 * waiting for the spinlock. This is safe as all queue_lock()
1889 * users end up calling queue_me(). Similarly, for housekeeping,
1890 * decrement the counter at queue_unlock() when some error has
1891 * occurred and we don't end up adding the task to the list.
1892 */
1893 hb_waiters_inc(hb);
1894
e2970f2f 1895 q->lock_ptr = &hb->lock;
1da177e4 1896
b0c29f79 1897 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1898 return hb;
1da177e4
LT
1899}
1900
d40d65c8 1901static inline void
0d00c7b2 1902queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1903 __releases(&hb->lock)
d40d65c8
DH
1904{
1905 spin_unlock(&hb->lock);
11d4616b 1906 hb_waiters_dec(hb);
d40d65c8
DH
1907}
1908
1909/**
1910 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1911 * @q: The futex_q to enqueue
1912 * @hb: The destination hash bucket
1913 *
1914 * The hb->lock must be held by the caller, and is released here. A call to
1915 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1916 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1917 * or nothing if the unqueue is done as part of the wake process and the unqueue
1918 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1919 * an example).
1920 */
82af7aca 1921static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1922 __releases(&hb->lock)
1da177e4 1923{
ec92d082
PP
1924 int prio;
1925
1926 /*
1927 * The priority used to register this element is
1928 * - either the real thread-priority for the real-time threads
1929 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1930 * - or MAX_RT_PRIO for non-RT threads.
1931 * Thus, all RT-threads are woken first in priority order, and
1932 * the others are woken last, in FIFO order.
1933 */
1934 prio = min(current->normal_prio, MAX_RT_PRIO);
1935
1936 plist_node_init(&q->list, prio);
ec92d082 1937 plist_add(&q->list, &hb->chain);
c87e2837 1938 q->task = current;
e2970f2f 1939 spin_unlock(&hb->lock);
1da177e4
LT
1940}
1941
d40d65c8
DH
1942/**
1943 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1944 * @q: The futex_q to unqueue
1945 *
1946 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1947 * be paired with exactly one earlier call to queue_me().
1948 *
6c23cbbd
RD
1949 * Return:
1950 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1951 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1952 */
1da177e4
LT
1953static int unqueue_me(struct futex_q *q)
1954{
1da177e4 1955 spinlock_t *lock_ptr;
e2970f2f 1956 int ret = 0;
1da177e4
LT
1957
1958 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1959retry:
1da177e4 1960 lock_ptr = q->lock_ptr;
e91467ec 1961 barrier();
c80544dc 1962 if (lock_ptr != NULL) {
1da177e4
LT
1963 spin_lock(lock_ptr);
1964 /*
1965 * q->lock_ptr can change between reading it and
1966 * spin_lock(), causing us to take the wrong lock. This
1967 * corrects the race condition.
1968 *
1969 * Reasoning goes like this: if we have the wrong lock,
1970 * q->lock_ptr must have changed (maybe several times)
1971 * between reading it and the spin_lock(). It can
1972 * change again after the spin_lock() but only if it was
1973 * already changed before the spin_lock(). It cannot,
1974 * however, change back to the original value. Therefore
1975 * we can detect whether we acquired the correct lock.
1976 */
1977 if (unlikely(lock_ptr != q->lock_ptr)) {
1978 spin_unlock(lock_ptr);
1979 goto retry;
1980 }
2e12978a 1981 __unqueue_futex(q);
c87e2837
IM
1982
1983 BUG_ON(q->pi_state);
1984
1da177e4
LT
1985 spin_unlock(lock_ptr);
1986 ret = 1;
1987 }
1988
9adef58b 1989 drop_futex_key_refs(&q->key);
1da177e4
LT
1990 return ret;
1991}
1992
c87e2837
IM
1993/*
1994 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1995 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1996 * and dropped here.
c87e2837 1997 */
d0aa7a70 1998static void unqueue_me_pi(struct futex_q *q)
15e408cd 1999 __releases(q->lock_ptr)
c87e2837 2000{
2e12978a 2001 __unqueue_futex(q);
c87e2837
IM
2002
2003 BUG_ON(!q->pi_state);
29e9ee5d 2004 put_pi_state(q->pi_state);
c87e2837
IM
2005 q->pi_state = NULL;
2006
d0aa7a70 2007 spin_unlock(q->lock_ptr);
c87e2837
IM
2008}
2009
d0aa7a70 2010/*
cdf71a10 2011 * Fixup the pi_state owner with the new owner.
d0aa7a70 2012 *
778e9a9c
AK
2013 * Must be called with hash bucket lock held and mm->sem held for non
2014 * private futexes.
d0aa7a70 2015 */
778e9a9c 2016static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2017 struct task_struct *newowner)
d0aa7a70 2018{
cdf71a10 2019 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2020 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2021 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2022 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2023 int ret;
d0aa7a70
PP
2024
2025 /* Owner died? */
1b7558e4
TG
2026 if (!pi_state->owner)
2027 newtid |= FUTEX_OWNER_DIED;
2028
2029 /*
2030 * We are here either because we stole the rtmutex from the
8161239a
LJ
2031 * previous highest priority waiter or we are the highest priority
2032 * waiter but failed to get the rtmutex the first time.
2033 * We have to replace the newowner TID in the user space variable.
2034 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2035 *
b2d0994b
DH
2036 * Note: We write the user space value _before_ changing the pi_state
2037 * because we can fault here. Imagine swapped out pages or a fork
2038 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2039 *
2040 * Modifying pi_state _before_ the user space value would
2041 * leave the pi_state in an inconsistent state when we fault
2042 * here, because we need to drop the hash bucket lock to
2043 * handle the fault. This might be observed in the PID check
2044 * in lookup_pi_state.
2045 */
2046retry:
2047 if (get_futex_value_locked(&uval, uaddr))
2048 goto handle_fault;
2049
2050 while (1) {
2051 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2052
37a9d912 2053 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2054 goto handle_fault;
2055 if (curval == uval)
2056 break;
2057 uval = curval;
2058 }
2059
2060 /*
2061 * We fixed up user space. Now we need to fix the pi_state
2062 * itself.
2063 */
d0aa7a70 2064 if (pi_state->owner != NULL) {
1d615482 2065 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2066 WARN_ON(list_empty(&pi_state->list));
2067 list_del_init(&pi_state->list);
1d615482 2068 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2069 }
d0aa7a70 2070
cdf71a10 2071 pi_state->owner = newowner;
d0aa7a70 2072
1d615482 2073 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2074 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2075 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2076 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2077 return 0;
d0aa7a70 2078
d0aa7a70 2079 /*
1b7558e4 2080 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2081 * lock here. That gives the other task (either the highest priority
2082 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2083 * chance to try the fixup of the pi_state. So once we are
2084 * back from handling the fault we need to check the pi_state
2085 * after reacquiring the hash bucket lock and before trying to
2086 * do another fixup. When the fixup has been done already we
2087 * simply return.
d0aa7a70 2088 */
1b7558e4
TG
2089handle_fault:
2090 spin_unlock(q->lock_ptr);
778e9a9c 2091
d0725992 2092 ret = fault_in_user_writeable(uaddr);
778e9a9c 2093
1b7558e4 2094 spin_lock(q->lock_ptr);
778e9a9c 2095
1b7558e4
TG
2096 /*
2097 * Check if someone else fixed it for us:
2098 */
2099 if (pi_state->owner != oldowner)
2100 return 0;
2101
2102 if (ret)
2103 return ret;
2104
2105 goto retry;
d0aa7a70
PP
2106}
2107
72c1bbf3 2108static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2109
dd973998
DH
2110/**
2111 * fixup_owner() - Post lock pi_state and corner case management
2112 * @uaddr: user address of the futex
dd973998
DH
2113 * @q: futex_q (contains pi_state and access to the rt_mutex)
2114 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2115 *
2116 * After attempting to lock an rt_mutex, this function is called to cleanup
2117 * the pi_state owner as well as handle race conditions that may allow us to
2118 * acquire the lock. Must be called with the hb lock held.
2119 *
6c23cbbd
RD
2120 * Return:
2121 * 1 - success, lock taken;
2122 * 0 - success, lock not taken;
dd973998
DH
2123 * <0 - on error (-EFAULT)
2124 */
ae791a2d 2125static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2126{
2127 struct task_struct *owner;
2128 int ret = 0;
2129
2130 if (locked) {
2131 /*
2132 * Got the lock. We might not be the anticipated owner if we
2133 * did a lock-steal - fix up the PI-state in that case:
2134 */
2135 if (q->pi_state->owner != current)
ae791a2d 2136 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2137 goto out;
2138 }
2139
2140 /*
2141 * Catch the rare case, where the lock was released when we were on the
2142 * way back before we locked the hash bucket.
2143 */
2144 if (q->pi_state->owner == current) {
2145 /*
2146 * Try to get the rt_mutex now. This might fail as some other
2147 * task acquired the rt_mutex after we removed ourself from the
2148 * rt_mutex waiters list.
2149 */
2150 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2151 locked = 1;
2152 goto out;
2153 }
2154
2155 /*
2156 * pi_state is incorrect, some other task did a lock steal and
2157 * we returned due to timeout or signal without taking the
8161239a 2158 * rt_mutex. Too late.
dd973998 2159 */
8161239a 2160 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2161 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2162 if (!owner)
2163 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2164 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2165 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2166 goto out;
2167 }
2168
2169 /*
2170 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2171 * the owner of the rt_mutex.
dd973998
DH
2172 */
2173 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2174 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2175 "pi-state %p\n", ret,
2176 q->pi_state->pi_mutex.owner,
2177 q->pi_state->owner);
2178
2179out:
2180 return ret ? ret : locked;
2181}
2182
ca5f9524
DH
2183/**
2184 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2185 * @hb: the futex hash bucket, must be locked by the caller
2186 * @q: the futex_q to queue up on
2187 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2188 */
2189static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2190 struct hrtimer_sleeper *timeout)
ca5f9524 2191{
9beba3c5
DH
2192 /*
2193 * The task state is guaranteed to be set before another task can
b92b8b35 2194 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2195 * queue_me() calls spin_unlock() upon completion, both serializing
2196 * access to the hash list and forcing another memory barrier.
2197 */
f1a11e05 2198 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2199 queue_me(q, hb);
ca5f9524
DH
2200
2201 /* Arm the timer */
2e4b0d3f 2202 if (timeout)
ca5f9524 2203 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2204
2205 /*
0729e196
DH
2206 * If we have been removed from the hash list, then another task
2207 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2208 */
2209 if (likely(!plist_node_empty(&q->list))) {
2210 /*
2211 * If the timer has already expired, current will already be
2212 * flagged for rescheduling. Only call schedule if there
2213 * is no timeout, or if it has yet to expire.
2214 */
2215 if (!timeout || timeout->task)
88c8004f 2216 freezable_schedule();
ca5f9524
DH
2217 }
2218 __set_current_state(TASK_RUNNING);
2219}
2220
f801073f
DH
2221/**
2222 * futex_wait_setup() - Prepare to wait on a futex
2223 * @uaddr: the futex userspace address
2224 * @val: the expected value
b41277dc 2225 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2226 * @q: the associated futex_q
2227 * @hb: storage for hash_bucket pointer to be returned to caller
2228 *
2229 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2230 * compare it with the expected value. Handle atomic faults internally.
2231 * Return with the hb lock held and a q.key reference on success, and unlocked
2232 * with no q.key reference on failure.
2233 *
6c23cbbd
RD
2234 * Return:
2235 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2236 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2237 */
b41277dc 2238static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2239 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2240{
e2970f2f
IM
2241 u32 uval;
2242 int ret;
1da177e4 2243
1da177e4 2244 /*
b2d0994b 2245 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2246 * Order is important:
2247 *
2248 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2249 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2250 *
2251 * The basic logical guarantee of a futex is that it blocks ONLY
2252 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2253 * any cond. If we locked the hash-bucket after testing *uaddr, that
2254 * would open a race condition where we could block indefinitely with
1da177e4
LT
2255 * cond(var) false, which would violate the guarantee.
2256 *
8fe8f545
ML
2257 * On the other hand, we insert q and release the hash-bucket only
2258 * after testing *uaddr. This guarantees that futex_wait() will NOT
2259 * absorb a wakeup if *uaddr does not match the desired values
2260 * while the syscall executes.
1da177e4 2261 */
f801073f 2262retry:
9ea71503 2263 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2264 if (unlikely(ret != 0))
a5a2a0c7 2265 return ret;
f801073f
DH
2266
2267retry_private:
2268 *hb = queue_lock(q);
2269
e2970f2f 2270 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2271
f801073f 2272 if (ret) {
0d00c7b2 2273 queue_unlock(*hb);
1da177e4 2274
e2970f2f 2275 ret = get_user(uval, uaddr);
e4dc5b7a 2276 if (ret)
f801073f 2277 goto out;
1da177e4 2278
b41277dc 2279 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2280 goto retry_private;
2281
ae791a2d 2282 put_futex_key(&q->key);
e4dc5b7a 2283 goto retry;
1da177e4 2284 }
ca5f9524 2285
f801073f 2286 if (uval != val) {
0d00c7b2 2287 queue_unlock(*hb);
f801073f 2288 ret = -EWOULDBLOCK;
2fff78c7 2289 }
1da177e4 2290
f801073f
DH
2291out:
2292 if (ret)
ae791a2d 2293 put_futex_key(&q->key);
f801073f
DH
2294 return ret;
2295}
2296
b41277dc
DH
2297static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2298 ktime_t *abs_time, u32 bitset)
f801073f
DH
2299{
2300 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2301 struct restart_block *restart;
2302 struct futex_hash_bucket *hb;
5bdb05f9 2303 struct futex_q q = futex_q_init;
f801073f
DH
2304 int ret;
2305
2306 if (!bitset)
2307 return -EINVAL;
f801073f
DH
2308 q.bitset = bitset;
2309
2310 if (abs_time) {
2311 to = &timeout;
2312
b41277dc
DH
2313 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2314 CLOCK_REALTIME : CLOCK_MONOTONIC,
2315 HRTIMER_MODE_ABS);
f801073f
DH
2316 hrtimer_init_sleeper(to, current);
2317 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2318 current->timer_slack_ns);
2319 }
2320
d58e6576 2321retry:
7ada876a
DH
2322 /*
2323 * Prepare to wait on uaddr. On success, holds hb lock and increments
2324 * q.key refs.
2325 */
b41277dc 2326 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2327 if (ret)
2328 goto out;
2329
ca5f9524 2330 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2331 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2332
2333 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2334 ret = 0;
7ada876a 2335 /* unqueue_me() drops q.key ref */
1da177e4 2336 if (!unqueue_me(&q))
7ada876a 2337 goto out;
2fff78c7 2338 ret = -ETIMEDOUT;
ca5f9524 2339 if (to && !to->task)
7ada876a 2340 goto out;
72c1bbf3 2341
e2970f2f 2342 /*
d58e6576
TG
2343 * We expect signal_pending(current), but we might be the
2344 * victim of a spurious wakeup as well.
e2970f2f 2345 */
7ada876a 2346 if (!signal_pending(current))
d58e6576 2347 goto retry;
d58e6576 2348
2fff78c7 2349 ret = -ERESTARTSYS;
c19384b5 2350 if (!abs_time)
7ada876a 2351 goto out;
1da177e4 2352
f56141e3 2353 restart = &current->restart_block;
2fff78c7 2354 restart->fn = futex_wait_restart;
a3c74c52 2355 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2356 restart->futex.val = val;
2357 restart->futex.time = abs_time->tv64;
2358 restart->futex.bitset = bitset;
0cd9c649 2359 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2360
2fff78c7
PZ
2361 ret = -ERESTART_RESTARTBLOCK;
2362
42d35d48 2363out:
ca5f9524
DH
2364 if (to) {
2365 hrtimer_cancel(&to->timer);
2366 destroy_hrtimer_on_stack(&to->timer);
2367 }
c87e2837
IM
2368 return ret;
2369}
2370
72c1bbf3
NP
2371
2372static long futex_wait_restart(struct restart_block *restart)
2373{
a3c74c52 2374 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2375 ktime_t t, *tp = NULL;
72c1bbf3 2376
a72188d8
DH
2377 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2378 t.tv64 = restart->futex.time;
2379 tp = &t;
2380 }
72c1bbf3 2381 restart->fn = do_no_restart_syscall;
b41277dc
DH
2382
2383 return (long)futex_wait(uaddr, restart->futex.flags,
2384 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2385}
2386
2387
c87e2837
IM
2388/*
2389 * Userspace tried a 0 -> TID atomic transition of the futex value
2390 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2391 * if there are waiters then it will block as a consequence of relying
2392 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2393 * a 0 value of the futex too.).
2394 *
2395 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2396 */
996636dd 2397static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2398 ktime_t *time, int trylock)
c87e2837 2399{
c5780e97 2400 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2401 struct futex_hash_bucket *hb;
5bdb05f9 2402 struct futex_q q = futex_q_init;
dd973998 2403 int res, ret;
c87e2837
IM
2404
2405 if (refill_pi_state_cache())
2406 return -ENOMEM;
2407
c19384b5 2408 if (time) {
c5780e97 2409 to = &timeout;
237fc6e7
TG
2410 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2411 HRTIMER_MODE_ABS);
c5780e97 2412 hrtimer_init_sleeper(to, current);
cc584b21 2413 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2414 }
2415
42d35d48 2416retry:
9ea71503 2417 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2418 if (unlikely(ret != 0))
42d35d48 2419 goto out;
c87e2837 2420
e4dc5b7a 2421retry_private:
82af7aca 2422 hb = queue_lock(&q);
c87e2837 2423
bab5bc9e 2424 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2425 if (unlikely(ret)) {
767f509c
DB
2426 /*
2427 * Atomic work succeeded and we got the lock,
2428 * or failed. Either way, we do _not_ block.
2429 */
778e9a9c 2430 switch (ret) {
1a52084d
DH
2431 case 1:
2432 /* We got the lock. */
2433 ret = 0;
2434 goto out_unlock_put_key;
2435 case -EFAULT:
2436 goto uaddr_faulted;
778e9a9c
AK
2437 case -EAGAIN:
2438 /*
af54d6a1
TG
2439 * Two reasons for this:
2440 * - Task is exiting and we just wait for the
2441 * exit to complete.
2442 * - The user space value changed.
778e9a9c 2443 */
0d00c7b2 2444 queue_unlock(hb);
ae791a2d 2445 put_futex_key(&q.key);
778e9a9c
AK
2446 cond_resched();
2447 goto retry;
778e9a9c 2448 default:
42d35d48 2449 goto out_unlock_put_key;
c87e2837 2450 }
c87e2837
IM
2451 }
2452
2453 /*
2454 * Only actually queue now that the atomic ops are done:
2455 */
82af7aca 2456 queue_me(&q, hb);
c87e2837 2457
c87e2837
IM
2458 WARN_ON(!q.pi_state);
2459 /*
2460 * Block on the PI mutex:
2461 */
c051b21f
TG
2462 if (!trylock) {
2463 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2464 } else {
c87e2837
IM
2465 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2466 /* Fixup the trylock return value: */
2467 ret = ret ? 0 : -EWOULDBLOCK;
2468 }
2469
a99e4e41 2470 spin_lock(q.lock_ptr);
dd973998
DH
2471 /*
2472 * Fixup the pi_state owner and possibly acquire the lock if we
2473 * haven't already.
2474 */
ae791a2d 2475 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2476 /*
2477 * If fixup_owner() returned an error, proprogate that. If it acquired
2478 * the lock, clear our -ETIMEDOUT or -EINTR.
2479 */
2480 if (res)
2481 ret = (res < 0) ? res : 0;
c87e2837 2482
e8f6386c 2483 /*
dd973998
DH
2484 * If fixup_owner() faulted and was unable to handle the fault, unlock
2485 * it and return the fault to userspace.
e8f6386c
DH
2486 */
2487 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2488 rt_mutex_unlock(&q.pi_state->pi_mutex);
2489
778e9a9c
AK
2490 /* Unqueue and drop the lock */
2491 unqueue_me_pi(&q);
c87e2837 2492
5ecb01cf 2493 goto out_put_key;
c87e2837 2494
42d35d48 2495out_unlock_put_key:
0d00c7b2 2496 queue_unlock(hb);
c87e2837 2497
42d35d48 2498out_put_key:
ae791a2d 2499 put_futex_key(&q.key);
42d35d48 2500out:
237fc6e7
TG
2501 if (to)
2502 destroy_hrtimer_on_stack(&to->timer);
dd973998 2503 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2504
42d35d48 2505uaddr_faulted:
0d00c7b2 2506 queue_unlock(hb);
778e9a9c 2507
d0725992 2508 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2509 if (ret)
2510 goto out_put_key;
c87e2837 2511
b41277dc 2512 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2513 goto retry_private;
2514
ae791a2d 2515 put_futex_key(&q.key);
e4dc5b7a 2516 goto retry;
c87e2837
IM
2517}
2518
c87e2837
IM
2519/*
2520 * Userspace attempted a TID -> 0 atomic transition, and failed.
2521 * This is the in-kernel slowpath: we look up the PI state (if any),
2522 * and do the rt-mutex unlock.
2523 */
b41277dc 2524static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2525{
ccf9e6a8 2526 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2527 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2528 struct futex_hash_bucket *hb;
2529 struct futex_q *match;
e4dc5b7a 2530 int ret;
c87e2837
IM
2531
2532retry:
2533 if (get_user(uval, uaddr))
2534 return -EFAULT;
2535 /*
2536 * We release only a lock we actually own:
2537 */
c0c9ed15 2538 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2539 return -EPERM;
c87e2837 2540
9ea71503 2541 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2542 if (ret)
2543 return ret;
c87e2837
IM
2544
2545 hb = hash_futex(&key);
2546 spin_lock(&hb->lock);
2547
c87e2837 2548 /*
ccf9e6a8
TG
2549 * Check waiters first. We do not trust user space values at
2550 * all and we at least want to know if user space fiddled
2551 * with the futex value instead of blindly unlocking.
c87e2837 2552 */
ccf9e6a8
TG
2553 match = futex_top_waiter(hb, &key);
2554 if (match) {
802ab58d
SAS
2555 ret = wake_futex_pi(uaddr, uval, match, hb);
2556 /*
2557 * In case of success wake_futex_pi dropped the hash
2558 * bucket lock.
2559 */
2560 if (!ret)
2561 goto out_putkey;
c87e2837 2562 /*
ccf9e6a8
TG
2563 * The atomic access to the futex value generated a
2564 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2565 */
2566 if (ret == -EFAULT)
2567 goto pi_faulted;
802ab58d
SAS
2568 /*
2569 * wake_futex_pi has detected invalid state. Tell user
2570 * space.
2571 */
c87e2837
IM
2572 goto out_unlock;
2573 }
ccf9e6a8 2574
c87e2837 2575 /*
ccf9e6a8
TG
2576 * We have no kernel internal state, i.e. no waiters in the
2577 * kernel. Waiters which are about to queue themselves are stuck
2578 * on hb->lock. So we can safely ignore them. We do neither
2579 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2580 * owner.
c87e2837 2581 */
ccf9e6a8 2582 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2583 goto pi_faulted;
c87e2837 2584
ccf9e6a8
TG
2585 /*
2586 * If uval has changed, let user space handle it.
2587 */
2588 ret = (curval == uval) ? 0 : -EAGAIN;
2589
c87e2837
IM
2590out_unlock:
2591 spin_unlock(&hb->lock);
802ab58d 2592out_putkey:
ae791a2d 2593 put_futex_key(&key);
c87e2837
IM
2594 return ret;
2595
2596pi_faulted:
778e9a9c 2597 spin_unlock(&hb->lock);
ae791a2d 2598 put_futex_key(&key);
c87e2837 2599
d0725992 2600 ret = fault_in_user_writeable(uaddr);
b5686363 2601 if (!ret)
c87e2837
IM
2602 goto retry;
2603
1da177e4
LT
2604 return ret;
2605}
2606
52400ba9
DH
2607/**
2608 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2609 * @hb: the hash_bucket futex_q was original enqueued on
2610 * @q: the futex_q woken while waiting to be requeued
2611 * @key2: the futex_key of the requeue target futex
2612 * @timeout: the timeout associated with the wait (NULL if none)
2613 *
2614 * Detect if the task was woken on the initial futex as opposed to the requeue
2615 * target futex. If so, determine if it was a timeout or a signal that caused
2616 * the wakeup and return the appropriate error code to the caller. Must be
2617 * called with the hb lock held.
2618 *
6c23cbbd
RD
2619 * Return:
2620 * 0 = no early wakeup detected;
2621 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2622 */
2623static inline
2624int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2625 struct futex_q *q, union futex_key *key2,
2626 struct hrtimer_sleeper *timeout)
2627{
2628 int ret = 0;
2629
2630 /*
2631 * With the hb lock held, we avoid races while we process the wakeup.
2632 * We only need to hold hb (and not hb2) to ensure atomicity as the
2633 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2634 * It can't be requeued from uaddr2 to something else since we don't
2635 * support a PI aware source futex for requeue.
2636 */
2637 if (!match_futex(&q->key, key2)) {
2638 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2639 /*
2640 * We were woken prior to requeue by a timeout or a signal.
2641 * Unqueue the futex_q and determine which it was.
2642 */
2e12978a 2643 plist_del(&q->list, &hb->chain);
11d4616b 2644 hb_waiters_dec(hb);
52400ba9 2645
d58e6576 2646 /* Handle spurious wakeups gracefully */
11df6ddd 2647 ret = -EWOULDBLOCK;
52400ba9
DH
2648 if (timeout && !timeout->task)
2649 ret = -ETIMEDOUT;
d58e6576 2650 else if (signal_pending(current))
1c840c14 2651 ret = -ERESTARTNOINTR;
52400ba9
DH
2652 }
2653 return ret;
2654}
2655
2656/**
2657 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2658 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2659 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2660 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2661 * @val: the expected value of uaddr
2662 * @abs_time: absolute timeout
56ec1607 2663 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2664 * @uaddr2: the pi futex we will take prior to returning to user-space
2665 *
2666 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2667 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2668 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2669 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2670 * without one, the pi logic would not know which task to boost/deboost, if
2671 * there was a need to.
52400ba9
DH
2672 *
2673 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2674 * via the following--
52400ba9 2675 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2676 * 2) wakeup on uaddr2 after a requeue
2677 * 3) signal
2678 * 4) timeout
52400ba9 2679 *
cc6db4e6 2680 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2681 *
2682 * If 2, we may then block on trying to take the rt_mutex and return via:
2683 * 5) successful lock
2684 * 6) signal
2685 * 7) timeout
2686 * 8) other lock acquisition failure
2687 *
cc6db4e6 2688 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2689 *
2690 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2691 *
6c23cbbd
RD
2692 * Return:
2693 * 0 - On success;
52400ba9
DH
2694 * <0 - On error
2695 */
b41277dc 2696static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2697 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2698 u32 __user *uaddr2)
52400ba9
DH
2699{
2700 struct hrtimer_sleeper timeout, *to = NULL;
2701 struct rt_mutex_waiter rt_waiter;
2702 struct rt_mutex *pi_mutex = NULL;
52400ba9 2703 struct futex_hash_bucket *hb;
5bdb05f9
DH
2704 union futex_key key2 = FUTEX_KEY_INIT;
2705 struct futex_q q = futex_q_init;
52400ba9 2706 int res, ret;
52400ba9 2707
6f7b0a2a
DH
2708 if (uaddr == uaddr2)
2709 return -EINVAL;
2710
52400ba9
DH
2711 if (!bitset)
2712 return -EINVAL;
2713
2714 if (abs_time) {
2715 to = &timeout;
b41277dc
DH
2716 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2717 CLOCK_REALTIME : CLOCK_MONOTONIC,
2718 HRTIMER_MODE_ABS);
52400ba9
DH
2719 hrtimer_init_sleeper(to, current);
2720 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2721 current->timer_slack_ns);
2722 }
2723
2724 /*
2725 * The waiter is allocated on our stack, manipulated by the requeue
2726 * code while we sleep on uaddr.
2727 */
2728 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2729 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2730 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2731 rt_waiter.task = NULL;
2732
9ea71503 2733 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2734 if (unlikely(ret != 0))
2735 goto out;
2736
84bc4af5
DH
2737 q.bitset = bitset;
2738 q.rt_waiter = &rt_waiter;
2739 q.requeue_pi_key = &key2;
2740
7ada876a
DH
2741 /*
2742 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2743 * count.
2744 */
b41277dc 2745 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2746 if (ret)
2747 goto out_key2;
52400ba9 2748
e9c243a5
TG
2749 /*
2750 * The check above which compares uaddrs is not sufficient for
2751 * shared futexes. We need to compare the keys:
2752 */
2753 if (match_futex(&q.key, &key2)) {
13c42c2f 2754 queue_unlock(hb);
e9c243a5
TG
2755 ret = -EINVAL;
2756 goto out_put_keys;
2757 }
2758
52400ba9 2759 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2760 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2761
2762 spin_lock(&hb->lock);
2763 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2764 spin_unlock(&hb->lock);
2765 if (ret)
2766 goto out_put_keys;
2767
2768 /*
2769 * In order for us to be here, we know our q.key == key2, and since
2770 * we took the hb->lock above, we also know that futex_requeue() has
2771 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2772 * race with the atomic proxy lock acquisition by the requeue code. The
2773 * futex_requeue dropped our key1 reference and incremented our key2
2774 * reference count.
52400ba9
DH
2775 */
2776
2777 /* Check if the requeue code acquired the second futex for us. */
2778 if (!q.rt_waiter) {
2779 /*
2780 * Got the lock. We might not be the anticipated owner if we
2781 * did a lock-steal - fix up the PI-state in that case.
2782 */
2783 if (q.pi_state && (q.pi_state->owner != current)) {
2784 spin_lock(q.lock_ptr);
ae791a2d 2785 ret = fixup_pi_state_owner(uaddr2, &q, current);
fb75a428
TG
2786 /*
2787 * Drop the reference to the pi state which
2788 * the requeue_pi() code acquired for us.
2789 */
29e9ee5d 2790 put_pi_state(q.pi_state);
52400ba9
DH
2791 spin_unlock(q.lock_ptr);
2792 }
2793 } else {
2794 /*
2795 * We have been woken up by futex_unlock_pi(), a timeout, or a
2796 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2797 * the pi_state.
2798 */
f27071cb 2799 WARN_ON(!q.pi_state);
52400ba9 2800 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2801 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2802 debug_rt_mutex_free_waiter(&rt_waiter);
2803
2804 spin_lock(q.lock_ptr);
2805 /*
2806 * Fixup the pi_state owner and possibly acquire the lock if we
2807 * haven't already.
2808 */
ae791a2d 2809 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2810 /*
2811 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2812 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2813 */
2814 if (res)
2815 ret = (res < 0) ? res : 0;
2816
2817 /* Unqueue and drop the lock. */
2818 unqueue_me_pi(&q);
2819 }
2820
2821 /*
2822 * If fixup_pi_state_owner() faulted and was unable to handle the
2823 * fault, unlock the rt_mutex and return the fault to userspace.
2824 */
2825 if (ret == -EFAULT) {
b6070a8d 2826 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2827 rt_mutex_unlock(pi_mutex);
2828 } else if (ret == -EINTR) {
52400ba9 2829 /*
cc6db4e6
DH
2830 * We've already been requeued, but cannot restart by calling
2831 * futex_lock_pi() directly. We could restart this syscall, but
2832 * it would detect that the user space "val" changed and return
2833 * -EWOULDBLOCK. Save the overhead of the restart and return
2834 * -EWOULDBLOCK directly.
52400ba9 2835 */
2070887f 2836 ret = -EWOULDBLOCK;
52400ba9
DH
2837 }
2838
2839out_put_keys:
ae791a2d 2840 put_futex_key(&q.key);
c8b15a70 2841out_key2:
ae791a2d 2842 put_futex_key(&key2);
52400ba9
DH
2843
2844out:
2845 if (to) {
2846 hrtimer_cancel(&to->timer);
2847 destroy_hrtimer_on_stack(&to->timer);
2848 }
2849 return ret;
2850}
2851
0771dfef
IM
2852/*
2853 * Support for robust futexes: the kernel cleans up held futexes at
2854 * thread exit time.
2855 *
2856 * Implementation: user-space maintains a per-thread list of locks it
2857 * is holding. Upon do_exit(), the kernel carefully walks this list,
2858 * and marks all locks that are owned by this thread with the
c87e2837 2859 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2860 * always manipulated with the lock held, so the list is private and
2861 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2862 * field, to allow the kernel to clean up if the thread dies after
2863 * acquiring the lock, but just before it could have added itself to
2864 * the list. There can only be one such pending lock.
2865 */
2866
2867/**
d96ee56c
DH
2868 * sys_set_robust_list() - Set the robust-futex list head of a task
2869 * @head: pointer to the list-head
2870 * @len: length of the list-head, as userspace expects
0771dfef 2871 */
836f92ad
HC
2872SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2873 size_t, len)
0771dfef 2874{
a0c1e907
TG
2875 if (!futex_cmpxchg_enabled)
2876 return -ENOSYS;
0771dfef
IM
2877 /*
2878 * The kernel knows only one size for now:
2879 */
2880 if (unlikely(len != sizeof(*head)))
2881 return -EINVAL;
2882
2883 current->robust_list = head;
2884
2885 return 0;
2886}
2887
2888/**
d96ee56c
DH
2889 * sys_get_robust_list() - Get the robust-futex list head of a task
2890 * @pid: pid of the process [zero for current task]
2891 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2892 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2893 */
836f92ad
HC
2894SYSCALL_DEFINE3(get_robust_list, int, pid,
2895 struct robust_list_head __user * __user *, head_ptr,
2896 size_t __user *, len_ptr)
0771dfef 2897{
ba46df98 2898 struct robust_list_head __user *head;
0771dfef 2899 unsigned long ret;
bdbb776f 2900 struct task_struct *p;
0771dfef 2901
a0c1e907
TG
2902 if (!futex_cmpxchg_enabled)
2903 return -ENOSYS;
2904
bdbb776f
KC
2905 rcu_read_lock();
2906
2907 ret = -ESRCH;
0771dfef 2908 if (!pid)
bdbb776f 2909 p = current;
0771dfef 2910 else {
228ebcbe 2911 p = find_task_by_vpid(pid);
0771dfef
IM
2912 if (!p)
2913 goto err_unlock;
0771dfef
IM
2914 }
2915
bdbb776f
KC
2916 ret = -EPERM;
2917 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2918 goto err_unlock;
2919
2920 head = p->robust_list;
2921 rcu_read_unlock();
2922
0771dfef
IM
2923 if (put_user(sizeof(*head), len_ptr))
2924 return -EFAULT;
2925 return put_user(head, head_ptr);
2926
2927err_unlock:
aaa2a97e 2928 rcu_read_unlock();
0771dfef
IM
2929
2930 return ret;
2931}
2932
2933/*
2934 * Process a futex-list entry, check whether it's owned by the
2935 * dying task, and do notification if so:
2936 */
e3f2ddea 2937int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2938{
7cfdaf38 2939 u32 uval, uninitialized_var(nval), mval;
0771dfef 2940
8f17d3a5
IM
2941retry:
2942 if (get_user(uval, uaddr))
0771dfef
IM
2943 return -1;
2944
b488893a 2945 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2946 /*
2947 * Ok, this dying thread is truly holding a futex
2948 * of interest. Set the OWNER_DIED bit atomically
2949 * via cmpxchg, and if the value had FUTEX_WAITERS
2950 * set, wake up a waiter (if any). (We have to do a
2951 * futex_wake() even if OWNER_DIED is already set -
2952 * to handle the rare but possible case of recursive
2953 * thread-death.) The rest of the cleanup is done in
2954 * userspace.
2955 */
e3f2ddea 2956 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2957 /*
2958 * We are not holding a lock here, but we want to have
2959 * the pagefault_disable/enable() protection because
2960 * we want to handle the fault gracefully. If the
2961 * access fails we try to fault in the futex with R/W
2962 * verification via get_user_pages. get_user() above
2963 * does not guarantee R/W access. If that fails we
2964 * give up and leave the futex locked.
2965 */
2966 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2967 if (fault_in_user_writeable(uaddr))
2968 return -1;
2969 goto retry;
2970 }
c87e2837 2971 if (nval != uval)
8f17d3a5 2972 goto retry;
0771dfef 2973
e3f2ddea
IM
2974 /*
2975 * Wake robust non-PI futexes here. The wakeup of
2976 * PI futexes happens in exit_pi_state():
2977 */
36cf3b5c 2978 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2979 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2980 }
2981 return 0;
2982}
2983
e3f2ddea
IM
2984/*
2985 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2986 */
2987static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2988 struct robust_list __user * __user *head,
1dcc41bb 2989 unsigned int *pi)
e3f2ddea
IM
2990{
2991 unsigned long uentry;
2992
ba46df98 2993 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2994 return -EFAULT;
2995
ba46df98 2996 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2997 *pi = uentry & 1;
2998
2999 return 0;
3000}
3001
0771dfef
IM
3002/*
3003 * Walk curr->robust_list (very carefully, it's a userspace list!)
3004 * and mark any locks found there dead, and notify any waiters.
3005 *
3006 * We silently return on any sign of list-walking problem.
3007 */
3008void exit_robust_list(struct task_struct *curr)
3009{
3010 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3011 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3012 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3013 unsigned int uninitialized_var(next_pi);
0771dfef 3014 unsigned long futex_offset;
9f96cb1e 3015 int rc;
0771dfef 3016
a0c1e907
TG
3017 if (!futex_cmpxchg_enabled)
3018 return;
3019
0771dfef
IM
3020 /*
3021 * Fetch the list head (which was registered earlier, via
3022 * sys_set_robust_list()):
3023 */
e3f2ddea 3024 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3025 return;
3026 /*
3027 * Fetch the relative futex offset:
3028 */
3029 if (get_user(futex_offset, &head->futex_offset))
3030 return;
3031 /*
3032 * Fetch any possibly pending lock-add first, and handle it
3033 * if it exists:
3034 */
e3f2ddea 3035 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3036 return;
e3f2ddea 3037
9f96cb1e 3038 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3039 while (entry != &head->list) {
9f96cb1e
MS
3040 /*
3041 * Fetch the next entry in the list before calling
3042 * handle_futex_death:
3043 */
3044 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3045 /*
3046 * A pending lock might already be on the list, so
c87e2837 3047 * don't process it twice:
0771dfef
IM
3048 */
3049 if (entry != pending)
ba46df98 3050 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3051 curr, pi))
0771dfef 3052 return;
9f96cb1e 3053 if (rc)
0771dfef 3054 return;
9f96cb1e
MS
3055 entry = next_entry;
3056 pi = next_pi;
0771dfef
IM
3057 /*
3058 * Avoid excessively long or circular lists:
3059 */
3060 if (!--limit)
3061 break;
3062
3063 cond_resched();
3064 }
9f96cb1e
MS
3065
3066 if (pending)
3067 handle_futex_death((void __user *)pending + futex_offset,
3068 curr, pip);
0771dfef
IM
3069}
3070
c19384b5 3071long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3072 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3073{
81b40539 3074 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3075 unsigned int flags = 0;
34f01cc1
ED
3076
3077 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3078 flags |= FLAGS_SHARED;
1da177e4 3079
b41277dc
DH
3080 if (op & FUTEX_CLOCK_REALTIME) {
3081 flags |= FLAGS_CLOCKRT;
3082 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3083 return -ENOSYS;
3084 }
1da177e4 3085
59263b51
TG
3086 switch (cmd) {
3087 case FUTEX_LOCK_PI:
3088 case FUTEX_UNLOCK_PI:
3089 case FUTEX_TRYLOCK_PI:
3090 case FUTEX_WAIT_REQUEUE_PI:
3091 case FUTEX_CMP_REQUEUE_PI:
3092 if (!futex_cmpxchg_enabled)
3093 return -ENOSYS;
3094 }
3095
34f01cc1 3096 switch (cmd) {
1da177e4 3097 case FUTEX_WAIT:
cd689985
TG
3098 val3 = FUTEX_BITSET_MATCH_ANY;
3099 case FUTEX_WAIT_BITSET:
81b40539 3100 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3101 case FUTEX_WAKE:
cd689985
TG
3102 val3 = FUTEX_BITSET_MATCH_ANY;
3103 case FUTEX_WAKE_BITSET:
81b40539 3104 return futex_wake(uaddr, flags, val, val3);
1da177e4 3105 case FUTEX_REQUEUE:
81b40539 3106 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3107 case FUTEX_CMP_REQUEUE:
81b40539 3108 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3109 case FUTEX_WAKE_OP:
81b40539 3110 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3111 case FUTEX_LOCK_PI:
996636dd 3112 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3113 case FUTEX_UNLOCK_PI:
81b40539 3114 return futex_unlock_pi(uaddr, flags);
c87e2837 3115 case FUTEX_TRYLOCK_PI:
996636dd 3116 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3117 case FUTEX_WAIT_REQUEUE_PI:
3118 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3119 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3120 uaddr2);
52400ba9 3121 case FUTEX_CMP_REQUEUE_PI:
81b40539 3122 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3123 }
81b40539 3124 return -ENOSYS;
1da177e4
LT
3125}
3126
3127
17da2bd9
HC
3128SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3129 struct timespec __user *, utime, u32 __user *, uaddr2,
3130 u32, val3)
1da177e4 3131{
c19384b5
PP
3132 struct timespec ts;
3133 ktime_t t, *tp = NULL;
e2970f2f 3134 u32 val2 = 0;
34f01cc1 3135 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3136
cd689985 3137 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3138 cmd == FUTEX_WAIT_BITSET ||
3139 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3140 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3141 return -EFAULT;
c19384b5 3142 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3143 return -EFAULT;
c19384b5 3144 if (!timespec_valid(&ts))
9741ef96 3145 return -EINVAL;
c19384b5
PP
3146
3147 t = timespec_to_ktime(ts);
34f01cc1 3148 if (cmd == FUTEX_WAIT)
5a7780e7 3149 t = ktime_add_safe(ktime_get(), t);
c19384b5 3150 tp = &t;
1da177e4
LT
3151 }
3152 /*
52400ba9 3153 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3154 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3155 */
f54f0986 3156 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3157 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3158 val2 = (u32) (unsigned long) utime;
1da177e4 3159
c19384b5 3160 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3161}
3162
03b8c7b6 3163static void __init futex_detect_cmpxchg(void)
1da177e4 3164{
03b8c7b6 3165#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3166 u32 curval;
03b8c7b6
HC
3167
3168 /*
3169 * This will fail and we want it. Some arch implementations do
3170 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3171 * functionality. We want to know that before we call in any
3172 * of the complex code paths. Also we want to prevent
3173 * registration of robust lists in that case. NULL is
3174 * guaranteed to fault and we get -EFAULT on functional
3175 * implementation, the non-functional ones will return
3176 * -ENOSYS.
3177 */
3178 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3179 futex_cmpxchg_enabled = 1;
3180#endif
3181}
3182
3183static int __init futex_init(void)
3184{
63b1a816 3185 unsigned int futex_shift;
a52b89eb
DB
3186 unsigned long i;
3187
3188#if CONFIG_BASE_SMALL
3189 futex_hashsize = 16;
3190#else
3191 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3192#endif
3193
3194 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3195 futex_hashsize, 0,
3196 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3197 &futex_shift, NULL,
3198 futex_hashsize, futex_hashsize);
3199 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3200
3201 futex_detect_cmpxchg();
a0c1e907 3202
a52b89eb 3203 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3204 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3205 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3206 spin_lock_init(&futex_queues[i].lock);
3207 }
3208
1da177e4
LT
3209 return 0;
3210}
f6d107fb 3211__initcall(futex_init);