]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Fix compat_futex to be same as futex for REQUEUE_PI
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
c87e2837
IM
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
1da177e4
LT
92/*
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
95 *
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 98 * The order of wakup is always to make the first condition true, then
73500ac5 99 * wake up q->waiter, then make the second condition true.
1da177e4
LT
100 */
101struct futex_q {
ec92d082 102 struct plist_node list;
f1a11e05
TG
103 /* Waiter reference */
104 struct task_struct *task;
1da177e4 105
e2970f2f 106 /* Which hash list lock to use: */
1da177e4
LT
107 spinlock_t *lock_ptr;
108
e2970f2f 109 /* Key which the futex is hashed on: */
1da177e4
LT
110 union futex_key key;
111
c87e2837
IM
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
cd689985 114
52400ba9
DH
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
117
cd689985
TG
118 /* Bitset for the optional bitmasked wakeup */
119 u32 bitset;
1da177e4
LT
120};
121
122/*
b2d0994b
DH
123 * Hash buckets are shared by all the futex_keys that hash to the same
124 * location. Each key may have multiple futex_q structures, one for each task
125 * waiting on a futex.
1da177e4
LT
126 */
127struct futex_hash_bucket {
ec92d082
PP
128 spinlock_t lock;
129 struct plist_head chain;
1da177e4
LT
130};
131
132static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
133
1da177e4
LT
134/*
135 * We hash on the keys returned from get_futex_key (see below).
136 */
137static struct futex_hash_bucket *hash_futex(union futex_key *key)
138{
139 u32 hash = jhash2((u32*)&key->both.word,
140 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
141 key->both.offset);
142 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
143}
144
145/*
146 * Return 1 if two futex_keys are equal, 0 otherwise.
147 */
148static inline int match_futex(union futex_key *key1, union futex_key *key2)
149{
150 return (key1->both.word == key2->both.word
151 && key1->both.ptr == key2->both.ptr
152 && key1->both.offset == key2->both.offset);
153}
154
38d47c1b
PZ
155/*
156 * Take a reference to the resource addressed by a key.
157 * Can be called while holding spinlocks.
158 *
159 */
160static void get_futex_key_refs(union futex_key *key)
161{
162 if (!key->both.ptr)
163 return;
164
165 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
166 case FUT_OFF_INODE:
167 atomic_inc(&key->shared.inode->i_count);
168 break;
169 case FUT_OFF_MMSHARED:
170 atomic_inc(&key->private.mm->mm_count);
171 break;
172 }
173}
174
175/*
176 * Drop a reference to the resource addressed by a key.
177 * The hash bucket spinlock must not be held.
178 */
179static void drop_futex_key_refs(union futex_key *key)
180{
90621c40
DH
181 if (!key->both.ptr) {
182 /* If we're here then we tried to put a key we failed to get */
183 WARN_ON_ONCE(1);
38d47c1b 184 return;
90621c40 185 }
38d47c1b
PZ
186
187 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188 case FUT_OFF_INODE:
189 iput(key->shared.inode);
190 break;
191 case FUT_OFF_MMSHARED:
192 mmdrop(key->private.mm);
193 break;
194 }
195}
196
34f01cc1
ED
197/**
198 * get_futex_key - Get parameters which are the keys for a futex.
199 * @uaddr: virtual address of the futex
b2d0994b 200 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1 201 * @key: address where result is stored.
64d1304a 202 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
34f01cc1
ED
203 *
204 * Returns a negative error code or 0
205 * The key words are stored in *key on success.
1da177e4 206 *
f3a43f3f 207 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
208 * offset_within_page). For private mappings, it's (uaddr, current->mm).
209 * We can usually work out the index without swapping in the page.
210 *
b2d0994b 211 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 212 */
64d1304a
TG
213static int
214get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 215{
e2970f2f 216 unsigned long address = (unsigned long)uaddr;
1da177e4 217 struct mm_struct *mm = current->mm;
1da177e4
LT
218 struct page *page;
219 int err;
220
221 /*
222 * The futex address must be "naturally" aligned.
223 */
e2970f2f 224 key->both.offset = address % PAGE_SIZE;
34f01cc1 225 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 226 return -EINVAL;
e2970f2f 227 address -= key->both.offset;
1da177e4 228
34f01cc1
ED
229 /*
230 * PROCESS_PRIVATE futexes are fast.
231 * As the mm cannot disappear under us and the 'key' only needs
232 * virtual address, we dont even have to find the underlying vma.
233 * Note : We do have to check 'uaddr' is a valid user address,
234 * but access_ok() should be faster than find_vma()
235 */
236 if (!fshared) {
64d1304a 237 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
34f01cc1
ED
238 return -EFAULT;
239 key->private.mm = mm;
240 key->private.address = address;
42569c39 241 get_futex_key_refs(key);
34f01cc1
ED
242 return 0;
243 }
1da177e4 244
38d47c1b 245again:
64d1304a 246 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
38d47c1b
PZ
247 if (err < 0)
248 return err;
249
ce2ae53b 250 page = compound_head(page);
38d47c1b
PZ
251 lock_page(page);
252 if (!page->mapping) {
253 unlock_page(page);
254 put_page(page);
255 goto again;
256 }
1da177e4
LT
257
258 /*
259 * Private mappings are handled in a simple way.
260 *
261 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
262 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 263 * the object not the particular process.
1da177e4 264 */
38d47c1b
PZ
265 if (PageAnon(page)) {
266 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 267 key->private.mm = mm;
e2970f2f 268 key->private.address = address;
38d47c1b
PZ
269 } else {
270 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
271 key->shared.inode = page->mapping->host;
272 key->shared.pgoff = page->index;
1da177e4
LT
273 }
274
38d47c1b 275 get_futex_key_refs(key);
1da177e4 276
38d47c1b
PZ
277 unlock_page(page);
278 put_page(page);
279 return 0;
1da177e4
LT
280}
281
38d47c1b 282static inline
c2f9f201 283void put_futex_key(int fshared, union futex_key *key)
1da177e4 284{
38d47c1b 285 drop_futex_key_refs(key);
1da177e4
LT
286}
287
d0725992
TG
288/*
289 * fault_in_user_writeable - fault in user address and verify RW access
290 * @uaddr: pointer to faulting user space address
291 *
292 * Slow path to fixup the fault we just took in the atomic write
293 * access to @uaddr.
294 *
295 * We have no generic implementation of a non destructive write to the
296 * user address. We know that we faulted in the atomic pagefault
297 * disabled section so we can as well avoid the #PF overhead by
298 * calling get_user_pages() right away.
299 */
300static int fault_in_user_writeable(u32 __user *uaddr)
301{
302 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
aa715284 303 1, 1, 0, NULL, NULL);
d0725992
TG
304 return ret < 0 ? ret : 0;
305}
306
4b1c486b
DH
307/**
308 * futex_top_waiter() - Return the highest priority waiter on a futex
309 * @hb: the hash bucket the futex_q's reside in
310 * @key: the futex key (to distinguish it from other futex futex_q's)
311 *
312 * Must be called with the hb lock held.
313 */
314static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
315 union futex_key *key)
316{
317 struct futex_q *this;
318
319 plist_for_each_entry(this, &hb->chain, list) {
320 if (match_futex(&this->key, key))
321 return this;
322 }
323 return NULL;
324}
325
36cf3b5c
TG
326static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
327{
328 u32 curval;
329
330 pagefault_disable();
331 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
332 pagefault_enable();
333
334 return curval;
335}
336
337static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
338{
339 int ret;
340
a866374a 341 pagefault_disable();
e2970f2f 342 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 343 pagefault_enable();
1da177e4
LT
344
345 return ret ? -EFAULT : 0;
346}
347
c87e2837
IM
348
349/*
350 * PI code:
351 */
352static int refill_pi_state_cache(void)
353{
354 struct futex_pi_state *pi_state;
355
356 if (likely(current->pi_state_cache))
357 return 0;
358
4668edc3 359 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
360
361 if (!pi_state)
362 return -ENOMEM;
363
c87e2837
IM
364 INIT_LIST_HEAD(&pi_state->list);
365 /* pi_mutex gets initialized later */
366 pi_state->owner = NULL;
367 atomic_set(&pi_state->refcount, 1);
38d47c1b 368 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
369
370 current->pi_state_cache = pi_state;
371
372 return 0;
373}
374
375static struct futex_pi_state * alloc_pi_state(void)
376{
377 struct futex_pi_state *pi_state = current->pi_state_cache;
378
379 WARN_ON(!pi_state);
380 current->pi_state_cache = NULL;
381
382 return pi_state;
383}
384
385static void free_pi_state(struct futex_pi_state *pi_state)
386{
387 if (!atomic_dec_and_test(&pi_state->refcount))
388 return;
389
390 /*
391 * If pi_state->owner is NULL, the owner is most probably dying
392 * and has cleaned up the pi_state already
393 */
394 if (pi_state->owner) {
395 spin_lock_irq(&pi_state->owner->pi_lock);
396 list_del_init(&pi_state->list);
397 spin_unlock_irq(&pi_state->owner->pi_lock);
398
399 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
400 }
401
402 if (current->pi_state_cache)
403 kfree(pi_state);
404 else {
405 /*
406 * pi_state->list is already empty.
407 * clear pi_state->owner.
408 * refcount is at 0 - put it back to 1.
409 */
410 pi_state->owner = NULL;
411 atomic_set(&pi_state->refcount, 1);
412 current->pi_state_cache = pi_state;
413 }
414}
415
416/*
417 * Look up the task based on what TID userspace gave us.
418 * We dont trust it.
419 */
420static struct task_struct * futex_find_get_task(pid_t pid)
421{
422 struct task_struct *p;
c69e8d9c 423 const struct cred *cred = current_cred(), *pcred;
c87e2837 424
d359b549 425 rcu_read_lock();
228ebcbe 426 p = find_task_by_vpid(pid);
c69e8d9c 427 if (!p) {
a06381fe 428 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
429 } else {
430 pcred = __task_cred(p);
431 if (cred->euid != pcred->euid &&
432 cred->euid != pcred->uid)
433 p = ERR_PTR(-ESRCH);
434 else
435 get_task_struct(p);
436 }
a06381fe 437
d359b549 438 rcu_read_unlock();
c87e2837
IM
439
440 return p;
441}
442
443/*
444 * This task is holding PI mutexes at exit time => bad.
445 * Kernel cleans up PI-state, but userspace is likely hosed.
446 * (Robust-futex cleanup is separate and might save the day for userspace.)
447 */
448void exit_pi_state_list(struct task_struct *curr)
449{
c87e2837
IM
450 struct list_head *next, *head = &curr->pi_state_list;
451 struct futex_pi_state *pi_state;
627371d7 452 struct futex_hash_bucket *hb;
38d47c1b 453 union futex_key key = FUTEX_KEY_INIT;
c87e2837 454
a0c1e907
TG
455 if (!futex_cmpxchg_enabled)
456 return;
c87e2837
IM
457 /*
458 * We are a ZOMBIE and nobody can enqueue itself on
459 * pi_state_list anymore, but we have to be careful
627371d7 460 * versus waiters unqueueing themselves:
c87e2837
IM
461 */
462 spin_lock_irq(&curr->pi_lock);
463 while (!list_empty(head)) {
464
465 next = head->next;
466 pi_state = list_entry(next, struct futex_pi_state, list);
467 key = pi_state->key;
627371d7 468 hb = hash_futex(&key);
c87e2837
IM
469 spin_unlock_irq(&curr->pi_lock);
470
c87e2837
IM
471 spin_lock(&hb->lock);
472
473 spin_lock_irq(&curr->pi_lock);
627371d7
IM
474 /*
475 * We dropped the pi-lock, so re-check whether this
476 * task still owns the PI-state:
477 */
c87e2837
IM
478 if (head->next != next) {
479 spin_unlock(&hb->lock);
480 continue;
481 }
482
c87e2837 483 WARN_ON(pi_state->owner != curr);
627371d7
IM
484 WARN_ON(list_empty(&pi_state->list));
485 list_del_init(&pi_state->list);
c87e2837
IM
486 pi_state->owner = NULL;
487 spin_unlock_irq(&curr->pi_lock);
488
489 rt_mutex_unlock(&pi_state->pi_mutex);
490
491 spin_unlock(&hb->lock);
492
493 spin_lock_irq(&curr->pi_lock);
494 }
495 spin_unlock_irq(&curr->pi_lock);
496}
497
498static int
d0aa7a70
PP
499lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
500 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
501{
502 struct futex_pi_state *pi_state = NULL;
503 struct futex_q *this, *next;
ec92d082 504 struct plist_head *head;
c87e2837 505 struct task_struct *p;
778e9a9c 506 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
507
508 head = &hb->chain;
509
ec92d082 510 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 511 if (match_futex(&this->key, key)) {
c87e2837
IM
512 /*
513 * Another waiter already exists - bump up
514 * the refcount and return its pi_state:
515 */
516 pi_state = this->pi_state;
06a9ec29
TG
517 /*
518 * Userspace might have messed up non PI and PI futexes
519 */
520 if (unlikely(!pi_state))
521 return -EINVAL;
522
627371d7 523 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
524 WARN_ON(pid && pi_state->owner &&
525 pi_state->owner->pid != pid);
627371d7 526
c87e2837 527 atomic_inc(&pi_state->refcount);
d0aa7a70 528 *ps = pi_state;
c87e2837
IM
529
530 return 0;
531 }
532 }
533
534 /*
e3f2ddea 535 * We are the first waiter - try to look up the real owner and attach
778e9a9c 536 * the new pi_state to it, but bail out when TID = 0
c87e2837 537 */
778e9a9c 538 if (!pid)
e3f2ddea 539 return -ESRCH;
c87e2837 540 p = futex_find_get_task(pid);
778e9a9c
AK
541 if (IS_ERR(p))
542 return PTR_ERR(p);
543
544 /*
545 * We need to look at the task state flags to figure out,
546 * whether the task is exiting. To protect against the do_exit
547 * change of the task flags, we do this protected by
548 * p->pi_lock:
549 */
550 spin_lock_irq(&p->pi_lock);
551 if (unlikely(p->flags & PF_EXITING)) {
552 /*
553 * The task is on the way out. When PF_EXITPIDONE is
554 * set, we know that the task has finished the
555 * cleanup:
556 */
557 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
558
559 spin_unlock_irq(&p->pi_lock);
560 put_task_struct(p);
561 return ret;
562 }
c87e2837
IM
563
564 pi_state = alloc_pi_state();
565
566 /*
567 * Initialize the pi_mutex in locked state and make 'p'
568 * the owner of it:
569 */
570 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
571
572 /* Store the key for possible exit cleanups: */
d0aa7a70 573 pi_state->key = *key;
c87e2837 574
627371d7 575 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
576 list_add(&pi_state->list, &p->pi_state_list);
577 pi_state->owner = p;
578 spin_unlock_irq(&p->pi_lock);
579
580 put_task_struct(p);
581
d0aa7a70 582 *ps = pi_state;
c87e2837
IM
583
584 return 0;
585}
586
1a52084d
DH
587/**
588 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
bab5bc9e
DH
589 * @uaddr: the pi futex user address
590 * @hb: the pi futex hash bucket
591 * @key: the futex key associated with uaddr and hb
592 * @ps: the pi_state pointer where we store the result of the
593 * lookup
594 * @task: the task to perform the atomic lock work for. This will
595 * be "current" except in the case of requeue pi.
596 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
597 *
598 * Returns:
599 * 0 - ready to wait
600 * 1 - acquired the lock
601 * <0 - error
602 *
603 * The hb->lock and futex_key refs shall be held by the caller.
604 */
605static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
606 union futex_key *key,
607 struct futex_pi_state **ps,
bab5bc9e 608 struct task_struct *task, int set_waiters)
1a52084d
DH
609{
610 int lock_taken, ret, ownerdied = 0;
611 u32 uval, newval, curval;
612
613retry:
614 ret = lock_taken = 0;
615
616 /*
617 * To avoid races, we attempt to take the lock here again
618 * (by doing a 0 -> TID atomic cmpxchg), while holding all
619 * the locks. It will most likely not succeed.
620 */
621 newval = task_pid_vnr(task);
bab5bc9e
DH
622 if (set_waiters)
623 newval |= FUTEX_WAITERS;
1a52084d
DH
624
625 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
626
627 if (unlikely(curval == -EFAULT))
628 return -EFAULT;
629
630 /*
631 * Detect deadlocks.
632 */
633 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
634 return -EDEADLK;
635
636 /*
637 * Surprise - we got the lock. Just return to userspace:
638 */
639 if (unlikely(!curval))
640 return 1;
641
642 uval = curval;
643
644 /*
645 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
646 * to wake at the next unlock.
647 */
648 newval = curval | FUTEX_WAITERS;
649
650 /*
651 * There are two cases, where a futex might have no owner (the
652 * owner TID is 0): OWNER_DIED. We take over the futex in this
653 * case. We also do an unconditional take over, when the owner
654 * of the futex died.
655 *
656 * This is safe as we are protected by the hash bucket lock !
657 */
658 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
659 /* Keep the OWNER_DIED bit */
660 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
661 ownerdied = 0;
662 lock_taken = 1;
663 }
664
665 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
666
667 if (unlikely(curval == -EFAULT))
668 return -EFAULT;
669 if (unlikely(curval != uval))
670 goto retry;
671
672 /*
673 * We took the lock due to owner died take over.
674 */
675 if (unlikely(lock_taken))
676 return 1;
677
678 /*
679 * We dont have the lock. Look up the PI state (or create it if
680 * we are the first waiter):
681 */
682 ret = lookup_pi_state(uval, hb, key, ps);
683
684 if (unlikely(ret)) {
685 switch (ret) {
686 case -ESRCH:
687 /*
688 * No owner found for this futex. Check if the
689 * OWNER_DIED bit is set to figure out whether
690 * this is a robust futex or not.
691 */
692 if (get_futex_value_locked(&curval, uaddr))
693 return -EFAULT;
694
695 /*
696 * We simply start over in case of a robust
697 * futex. The code above will take the futex
698 * and return happy.
699 */
700 if (curval & FUTEX_OWNER_DIED) {
701 ownerdied = 1;
702 goto retry;
703 }
704 default:
705 break;
706 }
707 }
708
709 return ret;
710}
711
1da177e4
LT
712/*
713 * The hash bucket lock must be held when this is called.
714 * Afterwards, the futex_q must not be accessed.
715 */
716static void wake_futex(struct futex_q *q)
717{
f1a11e05
TG
718 struct task_struct *p = q->task;
719
1da177e4 720 /*
f1a11e05
TG
721 * We set q->lock_ptr = NULL _before_ we wake up the task. If
722 * a non futex wake up happens on another CPU then the task
723 * might exit and p would dereference a non existing task
724 * struct. Prevent this by holding a reference on p across the
725 * wake up.
1da177e4 726 */
f1a11e05
TG
727 get_task_struct(p);
728
729 plist_del(&q->list, &q->list.plist);
1da177e4 730 /*
f1a11e05
TG
731 * The waiting task can free the futex_q as soon as
732 * q->lock_ptr = NULL is written, without taking any locks. A
733 * memory barrier is required here to prevent the following
734 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 735 */
ccdea2f8 736 smp_wmb();
1da177e4 737 q->lock_ptr = NULL;
f1a11e05
TG
738
739 wake_up_state(p, TASK_NORMAL);
740 put_task_struct(p);
1da177e4
LT
741}
742
c87e2837
IM
743static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
744{
745 struct task_struct *new_owner;
746 struct futex_pi_state *pi_state = this->pi_state;
747 u32 curval, newval;
748
749 if (!pi_state)
750 return -EINVAL;
751
21778867 752 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
753 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
754
755 /*
756 * This happens when we have stolen the lock and the original
757 * pending owner did not enqueue itself back on the rt_mutex.
758 * Thats not a tragedy. We know that way, that a lock waiter
759 * is on the fly. We make the futex_q waiter the pending owner.
760 */
761 if (!new_owner)
762 new_owner = this->task;
763
764 /*
765 * We pass it to the next owner. (The WAITERS bit is always
766 * kept enabled while there is PI state around. We must also
767 * preserve the owner died bit.)
768 */
e3f2ddea 769 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
770 int ret = 0;
771
b488893a 772 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 773
36cf3b5c 774 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 775
e3f2ddea 776 if (curval == -EFAULT)
778e9a9c 777 ret = -EFAULT;
cde898fa 778 else if (curval != uval)
778e9a9c
AK
779 ret = -EINVAL;
780 if (ret) {
781 spin_unlock(&pi_state->pi_mutex.wait_lock);
782 return ret;
783 }
e3f2ddea 784 }
c87e2837 785
627371d7
IM
786 spin_lock_irq(&pi_state->owner->pi_lock);
787 WARN_ON(list_empty(&pi_state->list));
788 list_del_init(&pi_state->list);
789 spin_unlock_irq(&pi_state->owner->pi_lock);
790
791 spin_lock_irq(&new_owner->pi_lock);
792 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
793 list_add(&pi_state->list, &new_owner->pi_state_list);
794 pi_state->owner = new_owner;
627371d7
IM
795 spin_unlock_irq(&new_owner->pi_lock);
796
21778867 797 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
798 rt_mutex_unlock(&pi_state->pi_mutex);
799
800 return 0;
801}
802
803static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
804{
805 u32 oldval;
806
807 /*
808 * There is no waiter, so we unlock the futex. The owner died
809 * bit has not to be preserved here. We are the owner:
810 */
36cf3b5c 811 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
812
813 if (oldval == -EFAULT)
814 return oldval;
815 if (oldval != uval)
816 return -EAGAIN;
817
818 return 0;
819}
820
8b8f319f
IM
821/*
822 * Express the locking dependencies for lockdep:
823 */
824static inline void
825double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
826{
827 if (hb1 <= hb2) {
828 spin_lock(&hb1->lock);
829 if (hb1 < hb2)
830 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
831 } else { /* hb1 > hb2 */
832 spin_lock(&hb2->lock);
833 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
834 }
835}
836
5eb3dc62
DH
837static inline void
838double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
839{
f061d351 840 spin_unlock(&hb1->lock);
88f502fe
IM
841 if (hb1 != hb2)
842 spin_unlock(&hb2->lock);
5eb3dc62
DH
843}
844
1da177e4 845/*
b2d0994b 846 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 847 */
c2f9f201 848static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 849{
e2970f2f 850 struct futex_hash_bucket *hb;
1da177e4 851 struct futex_q *this, *next;
ec92d082 852 struct plist_head *head;
38d47c1b 853 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
854 int ret;
855
cd689985
TG
856 if (!bitset)
857 return -EINVAL;
858
64d1304a 859 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
1da177e4
LT
860 if (unlikely(ret != 0))
861 goto out;
862
e2970f2f
IM
863 hb = hash_futex(&key);
864 spin_lock(&hb->lock);
865 head = &hb->chain;
1da177e4 866
ec92d082 867 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 868 if (match_futex (&this->key, &key)) {
52400ba9 869 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
870 ret = -EINVAL;
871 break;
872 }
cd689985
TG
873
874 /* Check if one of the bits is set in both bitsets */
875 if (!(this->bitset & bitset))
876 continue;
877
1da177e4
LT
878 wake_futex(this);
879 if (++ret >= nr_wake)
880 break;
881 }
882 }
883
e2970f2f 884 spin_unlock(&hb->lock);
38d47c1b 885 put_futex_key(fshared, &key);
42d35d48 886out:
1da177e4
LT
887 return ret;
888}
889
4732efbe
JJ
890/*
891 * Wake up all waiters hashed on the physical page that is mapped
892 * to this virtual address:
893 */
e2970f2f 894static int
c2f9f201 895futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 896 int nr_wake, int nr_wake2, int op)
4732efbe 897{
38d47c1b 898 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 899 struct futex_hash_bucket *hb1, *hb2;
ec92d082 900 struct plist_head *head;
4732efbe 901 struct futex_q *this, *next;
e4dc5b7a 902 int ret, op_ret;
4732efbe 903
e4dc5b7a 904retry:
64d1304a 905 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
4732efbe
JJ
906 if (unlikely(ret != 0))
907 goto out;
64d1304a 908 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
4732efbe 909 if (unlikely(ret != 0))
42d35d48 910 goto out_put_key1;
4732efbe 911
e2970f2f
IM
912 hb1 = hash_futex(&key1);
913 hb2 = hash_futex(&key2);
4732efbe 914
8b8f319f 915 double_lock_hb(hb1, hb2);
e4dc5b7a 916retry_private:
e2970f2f 917 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 918 if (unlikely(op_ret < 0)) {
4732efbe 919
5eb3dc62 920 double_unlock_hb(hb1, hb2);
4732efbe 921
7ee1dd3f 922#ifndef CONFIG_MMU
e2970f2f
IM
923 /*
924 * we don't get EFAULT from MMU faults if we don't have an MMU,
925 * but we might get them from range checking
926 */
7ee1dd3f 927 ret = op_ret;
42d35d48 928 goto out_put_keys;
7ee1dd3f
DH
929#endif
930
796f8d9b
DG
931 if (unlikely(op_ret != -EFAULT)) {
932 ret = op_ret;
42d35d48 933 goto out_put_keys;
796f8d9b
DG
934 }
935
d0725992 936 ret = fault_in_user_writeable(uaddr2);
4732efbe 937 if (ret)
de87fcc1 938 goto out_put_keys;
4732efbe 939
e4dc5b7a
DH
940 if (!fshared)
941 goto retry_private;
942
de87fcc1
DH
943 put_futex_key(fshared, &key2);
944 put_futex_key(fshared, &key1);
e4dc5b7a 945 goto retry;
4732efbe
JJ
946 }
947
e2970f2f 948 head = &hb1->chain;
4732efbe 949
ec92d082 950 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
951 if (match_futex (&this->key, &key1)) {
952 wake_futex(this);
953 if (++ret >= nr_wake)
954 break;
955 }
956 }
957
958 if (op_ret > 0) {
e2970f2f 959 head = &hb2->chain;
4732efbe
JJ
960
961 op_ret = 0;
ec92d082 962 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
963 if (match_futex (&this->key, &key2)) {
964 wake_futex(this);
965 if (++op_ret >= nr_wake2)
966 break;
967 }
968 }
969 ret += op_ret;
970 }
971
5eb3dc62 972 double_unlock_hb(hb1, hb2);
42d35d48 973out_put_keys:
38d47c1b 974 put_futex_key(fshared, &key2);
42d35d48 975out_put_key1:
38d47c1b 976 put_futex_key(fshared, &key1);
42d35d48 977out:
4732efbe
JJ
978 return ret;
979}
980
9121e478
DH
981/**
982 * requeue_futex() - Requeue a futex_q from one hb to another
983 * @q: the futex_q to requeue
984 * @hb1: the source hash_bucket
985 * @hb2: the target hash_bucket
986 * @key2: the new key for the requeued futex_q
987 */
988static inline
989void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
990 struct futex_hash_bucket *hb2, union futex_key *key2)
991{
992
993 /*
994 * If key1 and key2 hash to the same bucket, no need to
995 * requeue.
996 */
997 if (likely(&hb1->chain != &hb2->chain)) {
998 plist_del(&q->list, &hb1->chain);
999 plist_add(&q->list, &hb2->chain);
1000 q->lock_ptr = &hb2->lock;
1001#ifdef CONFIG_DEBUG_PI_LIST
1002 q->list.plist.lock = &hb2->lock;
1003#endif
1004 }
1005 get_futex_key_refs(key2);
1006 q->key = *key2;
1007}
1008
52400ba9
DH
1009/**
1010 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1011 * q: the futex_q
1012 * key: the key of the requeue target futex
beda2c7e 1013 * hb: the hash_bucket of the requeue target futex
52400ba9
DH
1014 *
1015 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1016 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1017 * to the requeue target futex so the waiter can detect the wakeup on the right
1018 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1019 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1020 * to protect access to the pi_state to fixup the owner later. Must be called
1021 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1022 */
1023static inline
beda2c7e
DH
1024void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1025 struct futex_hash_bucket *hb)
52400ba9
DH
1026{
1027 drop_futex_key_refs(&q->key);
1028 get_futex_key_refs(key);
1029 q->key = *key;
1030
1031 WARN_ON(plist_node_empty(&q->list));
1032 plist_del(&q->list, &q->list.plist);
1033
1034 WARN_ON(!q->rt_waiter);
1035 q->rt_waiter = NULL;
1036
beda2c7e
DH
1037 q->lock_ptr = &hb->lock;
1038#ifdef CONFIG_DEBUG_PI_LIST
1039 q->list.plist.lock = &hb->lock;
1040#endif
1041
f1a11e05 1042 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1043}
1044
1045/**
1046 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1047 * @pifutex: the user address of the to futex
1048 * @hb1: the from futex hash bucket, must be locked by the caller
1049 * @hb2: the to futex hash bucket, must be locked by the caller
1050 * @key1: the from futex key
1051 * @key2: the to futex key
1052 * @ps: address to store the pi_state pointer
1053 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1054 *
1055 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1056 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1057 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1058 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1059 *
1060 * Returns:
1061 * 0 - failed to acquire the lock atomicly
1062 * 1 - acquired the lock
1063 * <0 - error
1064 */
1065static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1066 struct futex_hash_bucket *hb1,
1067 struct futex_hash_bucket *hb2,
1068 union futex_key *key1, union futex_key *key2,
bab5bc9e 1069 struct futex_pi_state **ps, int set_waiters)
52400ba9 1070{
bab5bc9e 1071 struct futex_q *top_waiter = NULL;
52400ba9
DH
1072 u32 curval;
1073 int ret;
1074
1075 if (get_futex_value_locked(&curval, pifutex))
1076 return -EFAULT;
1077
bab5bc9e
DH
1078 /*
1079 * Find the top_waiter and determine if there are additional waiters.
1080 * If the caller intends to requeue more than 1 waiter to pifutex,
1081 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1082 * as we have means to handle the possible fault. If not, don't set
1083 * the bit unecessarily as it will force the subsequent unlock to enter
1084 * the kernel.
1085 */
52400ba9
DH
1086 top_waiter = futex_top_waiter(hb1, key1);
1087
1088 /* There are no waiters, nothing for us to do. */
1089 if (!top_waiter)
1090 return 0;
1091
1092 /*
bab5bc9e
DH
1093 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1094 * the contended case or if set_waiters is 1. The pi_state is returned
1095 * in ps in contended cases.
52400ba9 1096 */
bab5bc9e
DH
1097 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1098 set_waiters);
52400ba9 1099 if (ret == 1)
beda2c7e 1100 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1101
1102 return ret;
1103}
1104
1105/**
1106 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1107 * uaddr1: source futex user address
1108 * uaddr2: target futex user address
1109 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1110 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1111 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1112 * pi futex (pi to pi requeue is not supported)
1113 *
1114 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1115 * uaddr2 atomically on behalf of the top waiter.
1116 *
1117 * Returns:
1118 * >=0 - on success, the number of tasks requeued or woken
1119 * <0 - on error
1da177e4 1120 */
c2f9f201 1121static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
52400ba9
DH
1122 int nr_wake, int nr_requeue, u32 *cmpval,
1123 int requeue_pi)
1da177e4 1124{
38d47c1b 1125 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1126 int drop_count = 0, task_count = 0, ret;
1127 struct futex_pi_state *pi_state = NULL;
e2970f2f 1128 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1129 struct plist_head *head1;
1da177e4 1130 struct futex_q *this, *next;
52400ba9
DH
1131 u32 curval2;
1132
1133 if (requeue_pi) {
1134 /*
1135 * requeue_pi requires a pi_state, try to allocate it now
1136 * without any locks in case it fails.
1137 */
1138 if (refill_pi_state_cache())
1139 return -ENOMEM;
1140 /*
1141 * requeue_pi must wake as many tasks as it can, up to nr_wake
1142 * + nr_requeue, since it acquires the rt_mutex prior to
1143 * returning to userspace, so as to not leave the rt_mutex with
1144 * waiters and no owner. However, second and third wake-ups
1145 * cannot be predicted as they involve race conditions with the
1146 * first wake and a fault while looking up the pi_state. Both
1147 * pthread_cond_signal() and pthread_cond_broadcast() should
1148 * use nr_wake=1.
1149 */
1150 if (nr_wake != 1)
1151 return -EINVAL;
1152 }
1da177e4 1153
42d35d48 1154retry:
52400ba9
DH
1155 if (pi_state != NULL) {
1156 /*
1157 * We will have to lookup the pi_state again, so free this one
1158 * to keep the accounting correct.
1159 */
1160 free_pi_state(pi_state);
1161 pi_state = NULL;
1162 }
1163
64d1304a 1164 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1da177e4
LT
1165 if (unlikely(ret != 0))
1166 goto out;
521c1808
TG
1167 ret = get_futex_key(uaddr2, fshared, &key2,
1168 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1169 if (unlikely(ret != 0))
42d35d48 1170 goto out_put_key1;
1da177e4 1171
e2970f2f
IM
1172 hb1 = hash_futex(&key1);
1173 hb2 = hash_futex(&key2);
1da177e4 1174
e4dc5b7a 1175retry_private:
8b8f319f 1176 double_lock_hb(hb1, hb2);
1da177e4 1177
e2970f2f
IM
1178 if (likely(cmpval != NULL)) {
1179 u32 curval;
1da177e4 1180
e2970f2f 1181 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1182
1183 if (unlikely(ret)) {
5eb3dc62 1184 double_unlock_hb(hb1, hb2);
1da177e4 1185
e2970f2f 1186 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1187 if (ret)
1188 goto out_put_keys;
1da177e4 1189
e4dc5b7a
DH
1190 if (!fshared)
1191 goto retry_private;
1da177e4 1192
e4dc5b7a
DH
1193 put_futex_key(fshared, &key2);
1194 put_futex_key(fshared, &key1);
1195 goto retry;
1da177e4 1196 }
e2970f2f 1197 if (curval != *cmpval) {
1da177e4
LT
1198 ret = -EAGAIN;
1199 goto out_unlock;
1200 }
1201 }
1202
52400ba9 1203 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1204 /*
1205 * Attempt to acquire uaddr2 and wake the top waiter. If we
1206 * intend to requeue waiters, force setting the FUTEX_WAITERS
1207 * bit. We force this here where we are able to easily handle
1208 * faults rather in the requeue loop below.
1209 */
52400ba9 1210 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1211 &key2, &pi_state, nr_requeue);
52400ba9
DH
1212
1213 /*
1214 * At this point the top_waiter has either taken uaddr2 or is
1215 * waiting on it. If the former, then the pi_state will not
1216 * exist yet, look it up one more time to ensure we have a
1217 * reference to it.
1218 */
1219 if (ret == 1) {
1220 WARN_ON(pi_state);
1221 task_count++;
1222 ret = get_futex_value_locked(&curval2, uaddr2);
1223 if (!ret)
1224 ret = lookup_pi_state(curval2, hb2, &key2,
1225 &pi_state);
1226 }
1227
1228 switch (ret) {
1229 case 0:
1230 break;
1231 case -EFAULT:
1232 double_unlock_hb(hb1, hb2);
1233 put_futex_key(fshared, &key2);
1234 put_futex_key(fshared, &key1);
d0725992 1235 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1236 if (!ret)
1237 goto retry;
1238 goto out;
1239 case -EAGAIN:
1240 /* The owner was exiting, try again. */
1241 double_unlock_hb(hb1, hb2);
1242 put_futex_key(fshared, &key2);
1243 put_futex_key(fshared, &key1);
1244 cond_resched();
1245 goto retry;
1246 default:
1247 goto out_unlock;
1248 }
1249 }
1250
e2970f2f 1251 head1 = &hb1->chain;
ec92d082 1252 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1253 if (task_count - nr_wake >= nr_requeue)
1254 break;
1255
1256 if (!match_futex(&this->key, &key1))
1da177e4 1257 continue;
52400ba9
DH
1258
1259 WARN_ON(!requeue_pi && this->rt_waiter);
1260 WARN_ON(requeue_pi && !this->rt_waiter);
1261
1262 /*
1263 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1264 * lock, we already woke the top_waiter. If not, it will be
1265 * woken by futex_unlock_pi().
1266 */
1267 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1268 wake_futex(this);
52400ba9
DH
1269 continue;
1270 }
1da177e4 1271
52400ba9
DH
1272 /*
1273 * Requeue nr_requeue waiters and possibly one more in the case
1274 * of requeue_pi if we couldn't acquire the lock atomically.
1275 */
1276 if (requeue_pi) {
1277 /* Prepare the waiter to take the rt_mutex. */
1278 atomic_inc(&pi_state->refcount);
1279 this->pi_state = pi_state;
1280 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1281 this->rt_waiter,
1282 this->task, 1);
1283 if (ret == 1) {
1284 /* We got the lock. */
beda2c7e 1285 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
1286 continue;
1287 } else if (ret) {
1288 /* -EDEADLK */
1289 this->pi_state = NULL;
1290 free_pi_state(pi_state);
1291 goto out_unlock;
1292 }
1da177e4 1293 }
52400ba9
DH
1294 requeue_futex(this, hb1, hb2, &key2);
1295 drop_count++;
1da177e4
LT
1296 }
1297
1298out_unlock:
5eb3dc62 1299 double_unlock_hb(hb1, hb2);
1da177e4 1300
cd84a42f
DH
1301 /*
1302 * drop_futex_key_refs() must be called outside the spinlocks. During
1303 * the requeue we moved futex_q's from the hash bucket at key1 to the
1304 * one at key2 and updated their key pointer. We no longer need to
1305 * hold the references to key1.
1306 */
1da177e4 1307 while (--drop_count >= 0)
9adef58b 1308 drop_futex_key_refs(&key1);
1da177e4 1309
42d35d48 1310out_put_keys:
38d47c1b 1311 put_futex_key(fshared, &key2);
42d35d48 1312out_put_key1:
38d47c1b 1313 put_futex_key(fshared, &key1);
42d35d48 1314out:
52400ba9
DH
1315 if (pi_state != NULL)
1316 free_pi_state(pi_state);
1317 return ret ? ret : task_count;
1da177e4
LT
1318}
1319
1320/* The key must be already stored in q->key. */
82af7aca 1321static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1322{
e2970f2f 1323 struct futex_hash_bucket *hb;
1da177e4 1324
9adef58b 1325 get_futex_key_refs(&q->key);
e2970f2f
IM
1326 hb = hash_futex(&q->key);
1327 q->lock_ptr = &hb->lock;
1da177e4 1328
e2970f2f
IM
1329 spin_lock(&hb->lock);
1330 return hb;
1da177e4
LT
1331}
1332
82af7aca 1333static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1334{
ec92d082
PP
1335 int prio;
1336
1337 /*
1338 * The priority used to register this element is
1339 * - either the real thread-priority for the real-time threads
1340 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1341 * - or MAX_RT_PRIO for non-RT threads.
1342 * Thus, all RT-threads are woken first in priority order, and
1343 * the others are woken last, in FIFO order.
1344 */
1345 prio = min(current->normal_prio, MAX_RT_PRIO);
1346
1347 plist_node_init(&q->list, prio);
1348#ifdef CONFIG_DEBUG_PI_LIST
1349 q->list.plist.lock = &hb->lock;
1350#endif
1351 plist_add(&q->list, &hb->chain);
c87e2837 1352 q->task = current;
e2970f2f 1353 spin_unlock(&hb->lock);
1da177e4
LT
1354}
1355
1356static inline void
e2970f2f 1357queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1358{
e2970f2f 1359 spin_unlock(&hb->lock);
9adef58b 1360 drop_futex_key_refs(&q->key);
1da177e4
LT
1361}
1362
1363/*
1364 * queue_me and unqueue_me must be called as a pair, each
1365 * exactly once. They are called with the hashed spinlock held.
1366 */
1367
1da177e4
LT
1368/* Return 1 if we were still queued (ie. 0 means we were woken) */
1369static int unqueue_me(struct futex_q *q)
1370{
1da177e4 1371 spinlock_t *lock_ptr;
e2970f2f 1372 int ret = 0;
1da177e4
LT
1373
1374 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1375retry:
1da177e4 1376 lock_ptr = q->lock_ptr;
e91467ec 1377 barrier();
c80544dc 1378 if (lock_ptr != NULL) {
1da177e4
LT
1379 spin_lock(lock_ptr);
1380 /*
1381 * q->lock_ptr can change between reading it and
1382 * spin_lock(), causing us to take the wrong lock. This
1383 * corrects the race condition.
1384 *
1385 * Reasoning goes like this: if we have the wrong lock,
1386 * q->lock_ptr must have changed (maybe several times)
1387 * between reading it and the spin_lock(). It can
1388 * change again after the spin_lock() but only if it was
1389 * already changed before the spin_lock(). It cannot,
1390 * however, change back to the original value. Therefore
1391 * we can detect whether we acquired the correct lock.
1392 */
1393 if (unlikely(lock_ptr != q->lock_ptr)) {
1394 spin_unlock(lock_ptr);
1395 goto retry;
1396 }
ec92d082
PP
1397 WARN_ON(plist_node_empty(&q->list));
1398 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1399
1400 BUG_ON(q->pi_state);
1401
1da177e4
LT
1402 spin_unlock(lock_ptr);
1403 ret = 1;
1404 }
1405
9adef58b 1406 drop_futex_key_refs(&q->key);
1da177e4
LT
1407 return ret;
1408}
1409
c87e2837
IM
1410/*
1411 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1412 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1413 * and dropped here.
c87e2837 1414 */
d0aa7a70 1415static void unqueue_me_pi(struct futex_q *q)
c87e2837 1416{
ec92d082
PP
1417 WARN_ON(plist_node_empty(&q->list));
1418 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1419
1420 BUG_ON(!q->pi_state);
1421 free_pi_state(q->pi_state);
1422 q->pi_state = NULL;
1423
d0aa7a70 1424 spin_unlock(q->lock_ptr);
c87e2837 1425
9adef58b 1426 drop_futex_key_refs(&q->key);
c87e2837
IM
1427}
1428
d0aa7a70 1429/*
cdf71a10 1430 * Fixup the pi_state owner with the new owner.
d0aa7a70 1431 *
778e9a9c
AK
1432 * Must be called with hash bucket lock held and mm->sem held for non
1433 * private futexes.
d0aa7a70 1434 */
778e9a9c 1435static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1436 struct task_struct *newowner, int fshared)
d0aa7a70 1437{
cdf71a10 1438 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1439 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1440 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1441 u32 uval, curval, newval;
e4dc5b7a 1442 int ret;
d0aa7a70
PP
1443
1444 /* Owner died? */
1b7558e4
TG
1445 if (!pi_state->owner)
1446 newtid |= FUTEX_OWNER_DIED;
1447
1448 /*
1449 * We are here either because we stole the rtmutex from the
1450 * pending owner or we are the pending owner which failed to
1451 * get the rtmutex. We have to replace the pending owner TID
1452 * in the user space variable. This must be atomic as we have
1453 * to preserve the owner died bit here.
1454 *
b2d0994b
DH
1455 * Note: We write the user space value _before_ changing the pi_state
1456 * because we can fault here. Imagine swapped out pages or a fork
1457 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1458 *
1459 * Modifying pi_state _before_ the user space value would
1460 * leave the pi_state in an inconsistent state when we fault
1461 * here, because we need to drop the hash bucket lock to
1462 * handle the fault. This might be observed in the PID check
1463 * in lookup_pi_state.
1464 */
1465retry:
1466 if (get_futex_value_locked(&uval, uaddr))
1467 goto handle_fault;
1468
1469 while (1) {
1470 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1471
1472 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1473
1474 if (curval == -EFAULT)
1475 goto handle_fault;
1476 if (curval == uval)
1477 break;
1478 uval = curval;
1479 }
1480
1481 /*
1482 * We fixed up user space. Now we need to fix the pi_state
1483 * itself.
1484 */
d0aa7a70
PP
1485 if (pi_state->owner != NULL) {
1486 spin_lock_irq(&pi_state->owner->pi_lock);
1487 WARN_ON(list_empty(&pi_state->list));
1488 list_del_init(&pi_state->list);
1489 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1490 }
d0aa7a70 1491
cdf71a10 1492 pi_state->owner = newowner;
d0aa7a70 1493
cdf71a10 1494 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1495 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1496 list_add(&pi_state->list, &newowner->pi_state_list);
1497 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1498 return 0;
d0aa7a70 1499
d0aa7a70 1500 /*
1b7558e4
TG
1501 * To handle the page fault we need to drop the hash bucket
1502 * lock here. That gives the other task (either the pending
1503 * owner itself or the task which stole the rtmutex) the
1504 * chance to try the fixup of the pi_state. So once we are
1505 * back from handling the fault we need to check the pi_state
1506 * after reacquiring the hash bucket lock and before trying to
1507 * do another fixup. When the fixup has been done already we
1508 * simply return.
d0aa7a70 1509 */
1b7558e4
TG
1510handle_fault:
1511 spin_unlock(q->lock_ptr);
778e9a9c 1512
d0725992 1513 ret = fault_in_user_writeable(uaddr);
778e9a9c 1514
1b7558e4 1515 spin_lock(q->lock_ptr);
778e9a9c 1516
1b7558e4
TG
1517 /*
1518 * Check if someone else fixed it for us:
1519 */
1520 if (pi_state->owner != oldowner)
1521 return 0;
1522
1523 if (ret)
1524 return ret;
1525
1526 goto retry;
d0aa7a70
PP
1527}
1528
34f01cc1
ED
1529/*
1530 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1531 * we encode in the 'flags' shared capability
34f01cc1 1532 */
1acdac10
TG
1533#define FLAGS_SHARED 0x01
1534#define FLAGS_CLOCKRT 0x02
a72188d8 1535#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1536
72c1bbf3 1537static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1538
dd973998
DH
1539/**
1540 * fixup_owner() - Post lock pi_state and corner case management
1541 * @uaddr: user address of the futex
1542 * @fshared: whether the futex is shared (1) or not (0)
1543 * @q: futex_q (contains pi_state and access to the rt_mutex)
1544 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1545 *
1546 * After attempting to lock an rt_mutex, this function is called to cleanup
1547 * the pi_state owner as well as handle race conditions that may allow us to
1548 * acquire the lock. Must be called with the hb lock held.
1549 *
1550 * Returns:
1551 * 1 - success, lock taken
1552 * 0 - success, lock not taken
1553 * <0 - on error (-EFAULT)
1554 */
1555static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1556 int locked)
1557{
1558 struct task_struct *owner;
1559 int ret = 0;
1560
1561 if (locked) {
1562 /*
1563 * Got the lock. We might not be the anticipated owner if we
1564 * did a lock-steal - fix up the PI-state in that case:
1565 */
1566 if (q->pi_state->owner != current)
1567 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1568 goto out;
1569 }
1570
1571 /*
1572 * Catch the rare case, where the lock was released when we were on the
1573 * way back before we locked the hash bucket.
1574 */
1575 if (q->pi_state->owner == current) {
1576 /*
1577 * Try to get the rt_mutex now. This might fail as some other
1578 * task acquired the rt_mutex after we removed ourself from the
1579 * rt_mutex waiters list.
1580 */
1581 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1582 locked = 1;
1583 goto out;
1584 }
1585
1586 /*
1587 * pi_state is incorrect, some other task did a lock steal and
1588 * we returned due to timeout or signal without taking the
1589 * rt_mutex. Too late. We can access the rt_mutex_owner without
1590 * locking, as the other task is now blocked on the hash bucket
1591 * lock. Fix the state up.
1592 */
1593 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1594 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1595 goto out;
1596 }
1597
1598 /*
1599 * Paranoia check. If we did not take the lock, then we should not be
1600 * the owner, nor the pending owner, of the rt_mutex.
1601 */
1602 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1603 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1604 "pi-state %p\n", ret,
1605 q->pi_state->pi_mutex.owner,
1606 q->pi_state->owner);
1607
1608out:
1609 return ret ? ret : locked;
1610}
1611
ca5f9524
DH
1612/**
1613 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1614 * @hb: the futex hash bucket, must be locked by the caller
1615 * @q: the futex_q to queue up on
1616 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1617 */
1618static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1619 struct hrtimer_sleeper *timeout)
ca5f9524
DH
1620{
1621 queue_me(q, hb);
1622
1623 /*
1624 * There might have been scheduling since the queue_me(), as we
1625 * cannot hold a spinlock across the get_user() in case it
1626 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
f1a11e05 1627 * queueing ourselves into the futex hash. This code thus has to
ca5f9524
DH
1628 * rely on the futex_wake() code removing us from hash when it
1629 * wakes us up.
1630 */
f1a11e05 1631 set_current_state(TASK_INTERRUPTIBLE);
ca5f9524
DH
1632
1633 /* Arm the timer */
1634 if (timeout) {
1635 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1636 if (!hrtimer_active(&timeout->timer))
1637 timeout->task = NULL;
1638 }
1639
1640 /*
1641 * !plist_node_empty() is safe here without any lock.
1642 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1643 */
1644 if (likely(!plist_node_empty(&q->list))) {
1645 /*
1646 * If the timer has already expired, current will already be
1647 * flagged for rescheduling. Only call schedule if there
1648 * is no timeout, or if it has yet to expire.
1649 */
1650 if (!timeout || timeout->task)
1651 schedule();
1652 }
1653 __set_current_state(TASK_RUNNING);
1654}
1655
f801073f
DH
1656/**
1657 * futex_wait_setup() - Prepare to wait on a futex
1658 * @uaddr: the futex userspace address
1659 * @val: the expected value
1660 * @fshared: whether the futex is shared (1) or not (0)
1661 * @q: the associated futex_q
1662 * @hb: storage for hash_bucket pointer to be returned to caller
1663 *
1664 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1665 * compare it with the expected value. Handle atomic faults internally.
1666 * Return with the hb lock held and a q.key reference on success, and unlocked
1667 * with no q.key reference on failure.
1668 *
1669 * Returns:
1670 * 0 - uaddr contains val and hb has been locked
1671 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1672 */
1673static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1674 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1675{
e2970f2f
IM
1676 u32 uval;
1677 int ret;
1da177e4 1678
1da177e4 1679 /*
b2d0994b 1680 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1681 * Order is important:
1682 *
1683 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1684 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1685 *
1686 * The basic logical guarantee of a futex is that it blocks ONLY
1687 * if cond(var) is known to be true at the time of blocking, for
1688 * any cond. If we queued after testing *uaddr, that would open
1689 * a race condition where we could block indefinitely with
1690 * cond(var) false, which would violate the guarantee.
1691 *
1692 * A consequence is that futex_wait() can return zero and absorb
1693 * a wakeup when *uaddr != val on entry to the syscall. This is
1694 * rare, but normal.
1da177e4 1695 */
f801073f
DH
1696retry:
1697 q->key = FUTEX_KEY_INIT;
521c1808 1698 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
f801073f 1699 if (unlikely(ret != 0))
a5a2a0c7 1700 return ret;
f801073f
DH
1701
1702retry_private:
1703 *hb = queue_lock(q);
1704
e2970f2f 1705 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1706
f801073f
DH
1707 if (ret) {
1708 queue_unlock(q, *hb);
1da177e4 1709
e2970f2f 1710 ret = get_user(uval, uaddr);
e4dc5b7a 1711 if (ret)
f801073f 1712 goto out;
1da177e4 1713
e4dc5b7a
DH
1714 if (!fshared)
1715 goto retry_private;
1716
f801073f 1717 put_futex_key(fshared, &q->key);
e4dc5b7a 1718 goto retry;
1da177e4 1719 }
ca5f9524 1720
f801073f
DH
1721 if (uval != val) {
1722 queue_unlock(q, *hb);
1723 ret = -EWOULDBLOCK;
2fff78c7 1724 }
1da177e4 1725
f801073f
DH
1726out:
1727 if (ret)
1728 put_futex_key(fshared, &q->key);
1729 return ret;
1730}
1731
1732static int futex_wait(u32 __user *uaddr, int fshared,
1733 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1734{
1735 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1736 struct restart_block *restart;
1737 struct futex_hash_bucket *hb;
1738 struct futex_q q;
1739 int ret;
1740
1741 if (!bitset)
1742 return -EINVAL;
1743
1744 q.pi_state = NULL;
1745 q.bitset = bitset;
52400ba9 1746 q.rt_waiter = NULL;
f801073f
DH
1747
1748 if (abs_time) {
1749 to = &timeout;
1750
1751 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1752 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1753 hrtimer_init_sleeper(to, current);
1754 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1755 current->timer_slack_ns);
1756 }
1757
1758 /* Prepare to wait on uaddr. */
1759 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1760 if (ret)
1761 goto out;
1762
ca5f9524 1763 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1764 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1765
1766 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1767 ret = 0;
1da177e4 1768 if (!unqueue_me(&q))
2fff78c7
PZ
1769 goto out_put_key;
1770 ret = -ETIMEDOUT;
ca5f9524 1771 if (to && !to->task)
2fff78c7 1772 goto out_put_key;
72c1bbf3 1773
e2970f2f
IM
1774 /*
1775 * We expect signal_pending(current), but another thread may
1776 * have handled it for us already.
1777 */
2fff78c7 1778 ret = -ERESTARTSYS;
c19384b5 1779 if (!abs_time)
2fff78c7 1780 goto out_put_key;
1da177e4 1781
2fff78c7
PZ
1782 restart = &current_thread_info()->restart_block;
1783 restart->fn = futex_wait_restart;
1784 restart->futex.uaddr = (u32 *)uaddr;
1785 restart->futex.val = val;
1786 restart->futex.time = abs_time->tv64;
1787 restart->futex.bitset = bitset;
a72188d8 1788 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1789
1790 if (fshared)
1791 restart->futex.flags |= FLAGS_SHARED;
1792 if (clockrt)
1793 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1794
2fff78c7
PZ
1795 ret = -ERESTART_RESTARTBLOCK;
1796
1797out_put_key:
1798 put_futex_key(fshared, &q.key);
42d35d48 1799out:
ca5f9524
DH
1800 if (to) {
1801 hrtimer_cancel(&to->timer);
1802 destroy_hrtimer_on_stack(&to->timer);
1803 }
c87e2837
IM
1804 return ret;
1805}
1806
72c1bbf3
NP
1807
1808static long futex_wait_restart(struct restart_block *restart)
1809{
ce6bd420 1810 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1811 int fshared = 0;
a72188d8 1812 ktime_t t, *tp = NULL;
72c1bbf3 1813
a72188d8
DH
1814 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1815 t.tv64 = restart->futex.time;
1816 tp = &t;
1817 }
72c1bbf3 1818 restart->fn = do_no_restart_syscall;
ce6bd420 1819 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1820 fshared = 1;
a72188d8 1821 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1822 restart->futex.bitset,
1823 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1824}
1825
1826
c87e2837
IM
1827/*
1828 * Userspace tried a 0 -> TID atomic transition of the futex value
1829 * and failed. The kernel side here does the whole locking operation:
1830 * if there are waiters then it will block, it does PI, etc. (Due to
1831 * races the kernel might see a 0 value of the futex too.)
1832 */
c2f9f201 1833static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1834 int detect, ktime_t *time, int trylock)
c87e2837 1835{
c5780e97 1836 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1837 struct futex_hash_bucket *hb;
c87e2837 1838 struct futex_q q;
dd973998 1839 int res, ret;
c87e2837
IM
1840
1841 if (refill_pi_state_cache())
1842 return -ENOMEM;
1843
c19384b5 1844 if (time) {
c5780e97 1845 to = &timeout;
237fc6e7
TG
1846 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1847 HRTIMER_MODE_ABS);
c5780e97 1848 hrtimer_init_sleeper(to, current);
cc584b21 1849 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1850 }
1851
c87e2837 1852 q.pi_state = NULL;
52400ba9 1853 q.rt_waiter = NULL;
42d35d48 1854retry:
38d47c1b 1855 q.key = FUTEX_KEY_INIT;
64d1304a 1856 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
c87e2837 1857 if (unlikely(ret != 0))
42d35d48 1858 goto out;
c87e2837 1859
e4dc5b7a 1860retry_private:
82af7aca 1861 hb = queue_lock(&q);
c87e2837 1862
bab5bc9e 1863 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1864 if (unlikely(ret)) {
778e9a9c 1865 switch (ret) {
1a52084d
DH
1866 case 1:
1867 /* We got the lock. */
1868 ret = 0;
1869 goto out_unlock_put_key;
1870 case -EFAULT:
1871 goto uaddr_faulted;
778e9a9c
AK
1872 case -EAGAIN:
1873 /*
1874 * Task is exiting and we just wait for the
1875 * exit to complete.
1876 */
1877 queue_unlock(&q, hb);
de87fcc1 1878 put_futex_key(fshared, &q.key);
778e9a9c
AK
1879 cond_resched();
1880 goto retry;
778e9a9c 1881 default:
42d35d48 1882 goto out_unlock_put_key;
c87e2837 1883 }
c87e2837
IM
1884 }
1885
1886 /*
1887 * Only actually queue now that the atomic ops are done:
1888 */
82af7aca 1889 queue_me(&q, hb);
c87e2837 1890
c87e2837
IM
1891 WARN_ON(!q.pi_state);
1892 /*
1893 * Block on the PI mutex:
1894 */
1895 if (!trylock)
1896 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1897 else {
1898 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1899 /* Fixup the trylock return value: */
1900 ret = ret ? 0 : -EWOULDBLOCK;
1901 }
1902
a99e4e41 1903 spin_lock(q.lock_ptr);
dd973998
DH
1904 /*
1905 * Fixup the pi_state owner and possibly acquire the lock if we
1906 * haven't already.
1907 */
1908 res = fixup_owner(uaddr, fshared, &q, !ret);
1909 /*
1910 * If fixup_owner() returned an error, proprogate that. If it acquired
1911 * the lock, clear our -ETIMEDOUT or -EINTR.
1912 */
1913 if (res)
1914 ret = (res < 0) ? res : 0;
c87e2837 1915
e8f6386c 1916 /*
dd973998
DH
1917 * If fixup_owner() faulted and was unable to handle the fault, unlock
1918 * it and return the fault to userspace.
e8f6386c
DH
1919 */
1920 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1921 rt_mutex_unlock(&q.pi_state->pi_mutex);
1922
778e9a9c
AK
1923 /* Unqueue and drop the lock */
1924 unqueue_me_pi(&q);
c87e2837 1925
dd973998 1926 goto out;
c87e2837 1927
42d35d48 1928out_unlock_put_key:
c87e2837
IM
1929 queue_unlock(&q, hb);
1930
42d35d48 1931out_put_key:
38d47c1b 1932 put_futex_key(fshared, &q.key);
42d35d48 1933out:
237fc6e7
TG
1934 if (to)
1935 destroy_hrtimer_on_stack(&to->timer);
dd973998 1936 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1937
42d35d48 1938uaddr_faulted:
778e9a9c
AK
1939 queue_unlock(&q, hb);
1940
d0725992 1941 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
1942 if (ret)
1943 goto out_put_key;
c87e2837 1944
e4dc5b7a
DH
1945 if (!fshared)
1946 goto retry_private;
1947
1948 put_futex_key(fshared, &q.key);
1949 goto retry;
c87e2837
IM
1950}
1951
c87e2837
IM
1952/*
1953 * Userspace attempted a TID -> 0 atomic transition, and failed.
1954 * This is the in-kernel slowpath: we look up the PI state (if any),
1955 * and do the rt-mutex unlock.
1956 */
c2f9f201 1957static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1958{
1959 struct futex_hash_bucket *hb;
1960 struct futex_q *this, *next;
1961 u32 uval;
ec92d082 1962 struct plist_head *head;
38d47c1b 1963 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 1964 int ret;
c87e2837
IM
1965
1966retry:
1967 if (get_user(uval, uaddr))
1968 return -EFAULT;
1969 /*
1970 * We release only a lock we actually own:
1971 */
b488893a 1972 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1973 return -EPERM;
c87e2837 1974
64d1304a 1975 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
c87e2837
IM
1976 if (unlikely(ret != 0))
1977 goto out;
1978
1979 hb = hash_futex(&key);
1980 spin_lock(&hb->lock);
1981
c87e2837
IM
1982 /*
1983 * To avoid races, try to do the TID -> 0 atomic transition
1984 * again. If it succeeds then we can return without waking
1985 * anyone else up:
1986 */
36cf3b5c 1987 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1988 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1989
c87e2837
IM
1990
1991 if (unlikely(uval == -EFAULT))
1992 goto pi_faulted;
1993 /*
1994 * Rare case: we managed to release the lock atomically,
1995 * no need to wake anyone else up:
1996 */
b488893a 1997 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1998 goto out_unlock;
1999
2000 /*
2001 * Ok, other tasks may need to be woken up - check waiters
2002 * and do the wakeup if necessary:
2003 */
2004 head = &hb->chain;
2005
ec92d082 2006 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2007 if (!match_futex (&this->key, &key))
2008 continue;
2009 ret = wake_futex_pi(uaddr, uval, this);
2010 /*
2011 * The atomic access to the futex value
2012 * generated a pagefault, so retry the
2013 * user-access and the wakeup:
2014 */
2015 if (ret == -EFAULT)
2016 goto pi_faulted;
2017 goto out_unlock;
2018 }
2019 /*
2020 * No waiters - kernel unlocks the futex:
2021 */
e3f2ddea
IM
2022 if (!(uval & FUTEX_OWNER_DIED)) {
2023 ret = unlock_futex_pi(uaddr, uval);
2024 if (ret == -EFAULT)
2025 goto pi_faulted;
2026 }
c87e2837
IM
2027
2028out_unlock:
2029 spin_unlock(&hb->lock);
38d47c1b 2030 put_futex_key(fshared, &key);
c87e2837 2031
42d35d48 2032out:
c87e2837
IM
2033 return ret;
2034
2035pi_faulted:
778e9a9c 2036 spin_unlock(&hb->lock);
e4dc5b7a 2037 put_futex_key(fshared, &key);
c87e2837 2038
d0725992 2039 ret = fault_in_user_writeable(uaddr);
b5686363 2040 if (!ret)
c87e2837
IM
2041 goto retry;
2042
1da177e4
LT
2043 return ret;
2044}
2045
52400ba9
DH
2046/**
2047 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2048 * @hb: the hash_bucket futex_q was original enqueued on
2049 * @q: the futex_q woken while waiting to be requeued
2050 * @key2: the futex_key of the requeue target futex
2051 * @timeout: the timeout associated with the wait (NULL if none)
2052 *
2053 * Detect if the task was woken on the initial futex as opposed to the requeue
2054 * target futex. If so, determine if it was a timeout or a signal that caused
2055 * the wakeup and return the appropriate error code to the caller. Must be
2056 * called with the hb lock held.
2057 *
2058 * Returns
2059 * 0 - no early wakeup detected
1c840c14 2060 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2061 */
2062static inline
2063int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2064 struct futex_q *q, union futex_key *key2,
2065 struct hrtimer_sleeper *timeout)
2066{
2067 int ret = 0;
2068
2069 /*
2070 * With the hb lock held, we avoid races while we process the wakeup.
2071 * We only need to hold hb (and not hb2) to ensure atomicity as the
2072 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2073 * It can't be requeued from uaddr2 to something else since we don't
2074 * support a PI aware source futex for requeue.
2075 */
2076 if (!match_futex(&q->key, key2)) {
2077 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2078 /*
2079 * We were woken prior to requeue by a timeout or a signal.
2080 * Unqueue the futex_q and determine which it was.
2081 */
2082 plist_del(&q->list, &q->list.plist);
2083 drop_futex_key_refs(&q->key);
2084
2085 if (timeout && !timeout->task)
2086 ret = -ETIMEDOUT;
1c840c14
TG
2087 else
2088 ret = -ERESTARTNOINTR;
52400ba9
DH
2089 }
2090 return ret;
2091}
2092
2093/**
2094 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2095 * @uaddr: the futex we initialyl wait on (non-pi)
2096 * @fshared: whether the futexes are shared (1) or not (0). They must be
2097 * the same type, no requeueing from private to shared, etc.
2098 * @val: the expected value of uaddr
2099 * @abs_time: absolute timeout
2100 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2101 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2102 * @uaddr2: the pi futex we will take prior to returning to user-space
2103 *
2104 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2105 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2106 * complete the acquisition of the rt_mutex prior to returning to userspace.
2107 * This ensures the rt_mutex maintains an owner when it has waiters; without
2108 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2109 * need to.
2110 *
2111 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2112 * via the following:
2113 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2114 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2115 * 3) signal (before or after requeue)
2116 * 4) timeout (before or after requeue)
2117 *
2118 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2119 *
2120 * If 2, we may then block on trying to take the rt_mutex and return via:
2121 * 5) successful lock
2122 * 6) signal
2123 * 7) timeout
2124 * 8) other lock acquisition failure
2125 *
2126 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2127 *
2128 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2129 *
2130 * Returns:
2131 * 0 - On success
2132 * <0 - On error
2133 */
2134static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2135 u32 val, ktime_t *abs_time, u32 bitset,
2136 int clockrt, u32 __user *uaddr2)
2137{
2138 struct hrtimer_sleeper timeout, *to = NULL;
2139 struct rt_mutex_waiter rt_waiter;
2140 struct rt_mutex *pi_mutex = NULL;
52400ba9
DH
2141 struct futex_hash_bucket *hb;
2142 union futex_key key2;
2143 struct futex_q q;
2144 int res, ret;
52400ba9
DH
2145
2146 if (!bitset)
2147 return -EINVAL;
2148
2149 if (abs_time) {
2150 to = &timeout;
2151 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2152 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2153 hrtimer_init_sleeper(to, current);
2154 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2155 current->timer_slack_ns);
2156 }
2157
2158 /*
2159 * The waiter is allocated on our stack, manipulated by the requeue
2160 * code while we sleep on uaddr.
2161 */
2162 debug_rt_mutex_init_waiter(&rt_waiter);
2163 rt_waiter.task = NULL;
2164
2165 q.pi_state = NULL;
2166 q.bitset = bitset;
2167 q.rt_waiter = &rt_waiter;
2168
2169 key2 = FUTEX_KEY_INIT;
521c1808 2170 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
52400ba9
DH
2171 if (unlikely(ret != 0))
2172 goto out;
2173
2174 /* Prepare to wait on uaddr. */
2175 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
c8b15a70
TG
2176 if (ret)
2177 goto out_key2;
52400ba9
DH
2178
2179 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2180 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2181
2182 spin_lock(&hb->lock);
2183 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2184 spin_unlock(&hb->lock);
2185 if (ret)
2186 goto out_put_keys;
2187
2188 /*
2189 * In order for us to be here, we know our q.key == key2, and since
2190 * we took the hb->lock above, we also know that futex_requeue() has
2191 * completed and we no longer have to concern ourselves with a wakeup
2192 * race with the atomic proxy lock acquition by the requeue code.
2193 */
2194
2195 /* Check if the requeue code acquired the second futex for us. */
2196 if (!q.rt_waiter) {
2197 /*
2198 * Got the lock. We might not be the anticipated owner if we
2199 * did a lock-steal - fix up the PI-state in that case.
2200 */
2201 if (q.pi_state && (q.pi_state->owner != current)) {
2202 spin_lock(q.lock_ptr);
2203 ret = fixup_pi_state_owner(uaddr2, &q, current,
2204 fshared);
2205 spin_unlock(q.lock_ptr);
2206 }
2207 } else {
2208 /*
2209 * We have been woken up by futex_unlock_pi(), a timeout, or a
2210 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2211 * the pi_state.
2212 */
2213 WARN_ON(!&q.pi_state);
2214 pi_mutex = &q.pi_state->pi_mutex;
2215 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2216 debug_rt_mutex_free_waiter(&rt_waiter);
2217
2218 spin_lock(q.lock_ptr);
2219 /*
2220 * Fixup the pi_state owner and possibly acquire the lock if we
2221 * haven't already.
2222 */
2223 res = fixup_owner(uaddr2, fshared, &q, !ret);
2224 /*
2225 * If fixup_owner() returned an error, proprogate that. If it
2226 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2227 */
2228 if (res)
2229 ret = (res < 0) ? res : 0;
2230
2231 /* Unqueue and drop the lock. */
2232 unqueue_me_pi(&q);
2233 }
2234
2235 /*
2236 * If fixup_pi_state_owner() faulted and was unable to handle the
2237 * fault, unlock the rt_mutex and return the fault to userspace.
2238 */
2239 if (ret == -EFAULT) {
2240 if (rt_mutex_owner(pi_mutex) == current)
2241 rt_mutex_unlock(pi_mutex);
2242 } else if (ret == -EINTR) {
52400ba9 2243 /*
2070887f
TG
2244 * We've already been requeued, but we have no way to
2245 * restart by calling futex_lock_pi() directly. We
2246 * could restart the syscall, but that will look at
2247 * the user space value and return right away. So we
2248 * drop back with EWOULDBLOCK to tell user space that
2249 * "val" has been changed. That's the same what the
2250 * restart of the syscall would do in
2251 * futex_wait_setup().
52400ba9 2252 */
2070887f 2253 ret = -EWOULDBLOCK;
52400ba9
DH
2254 }
2255
2256out_put_keys:
2257 put_futex_key(fshared, &q.key);
c8b15a70 2258out_key2:
52400ba9
DH
2259 put_futex_key(fshared, &key2);
2260
2261out:
2262 if (to) {
2263 hrtimer_cancel(&to->timer);
2264 destroy_hrtimer_on_stack(&to->timer);
2265 }
2266 return ret;
2267}
2268
0771dfef
IM
2269/*
2270 * Support for robust futexes: the kernel cleans up held futexes at
2271 * thread exit time.
2272 *
2273 * Implementation: user-space maintains a per-thread list of locks it
2274 * is holding. Upon do_exit(), the kernel carefully walks this list,
2275 * and marks all locks that are owned by this thread with the
c87e2837 2276 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2277 * always manipulated with the lock held, so the list is private and
2278 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2279 * field, to allow the kernel to clean up if the thread dies after
2280 * acquiring the lock, but just before it could have added itself to
2281 * the list. There can only be one such pending lock.
2282 */
2283
2284/**
2285 * sys_set_robust_list - set the robust-futex list head of a task
2286 * @head: pointer to the list-head
2287 * @len: length of the list-head, as userspace expects
2288 */
836f92ad
HC
2289SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2290 size_t, len)
0771dfef 2291{
a0c1e907
TG
2292 if (!futex_cmpxchg_enabled)
2293 return -ENOSYS;
0771dfef
IM
2294 /*
2295 * The kernel knows only one size for now:
2296 */
2297 if (unlikely(len != sizeof(*head)))
2298 return -EINVAL;
2299
2300 current->robust_list = head;
2301
2302 return 0;
2303}
2304
2305/**
2306 * sys_get_robust_list - get the robust-futex list head of a task
2307 * @pid: pid of the process [zero for current task]
2308 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2309 * @len_ptr: pointer to a length field, the kernel fills in the header size
2310 */
836f92ad
HC
2311SYSCALL_DEFINE3(get_robust_list, int, pid,
2312 struct robust_list_head __user * __user *, head_ptr,
2313 size_t __user *, len_ptr)
0771dfef 2314{
ba46df98 2315 struct robust_list_head __user *head;
0771dfef 2316 unsigned long ret;
c69e8d9c 2317 const struct cred *cred = current_cred(), *pcred;
0771dfef 2318
a0c1e907
TG
2319 if (!futex_cmpxchg_enabled)
2320 return -ENOSYS;
2321
0771dfef
IM
2322 if (!pid)
2323 head = current->robust_list;
2324 else {
2325 struct task_struct *p;
2326
2327 ret = -ESRCH;
aaa2a97e 2328 rcu_read_lock();
228ebcbe 2329 p = find_task_by_vpid(pid);
0771dfef
IM
2330 if (!p)
2331 goto err_unlock;
2332 ret = -EPERM;
c69e8d9c
DH
2333 pcred = __task_cred(p);
2334 if (cred->euid != pcred->euid &&
2335 cred->euid != pcred->uid &&
76aac0e9 2336 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2337 goto err_unlock;
2338 head = p->robust_list;
aaa2a97e 2339 rcu_read_unlock();
0771dfef
IM
2340 }
2341
2342 if (put_user(sizeof(*head), len_ptr))
2343 return -EFAULT;
2344 return put_user(head, head_ptr);
2345
2346err_unlock:
aaa2a97e 2347 rcu_read_unlock();
0771dfef
IM
2348
2349 return ret;
2350}
2351
2352/*
2353 * Process a futex-list entry, check whether it's owned by the
2354 * dying task, and do notification if so:
2355 */
e3f2ddea 2356int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2357{
e3f2ddea 2358 u32 uval, nval, mval;
0771dfef 2359
8f17d3a5
IM
2360retry:
2361 if (get_user(uval, uaddr))
0771dfef
IM
2362 return -1;
2363
b488893a 2364 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2365 /*
2366 * Ok, this dying thread is truly holding a futex
2367 * of interest. Set the OWNER_DIED bit atomically
2368 * via cmpxchg, and if the value had FUTEX_WAITERS
2369 * set, wake up a waiter (if any). (We have to do a
2370 * futex_wake() even if OWNER_DIED is already set -
2371 * to handle the rare but possible case of recursive
2372 * thread-death.) The rest of the cleanup is done in
2373 * userspace.
2374 */
e3f2ddea
IM
2375 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2376 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2377
c87e2837
IM
2378 if (nval == -EFAULT)
2379 return -1;
2380
2381 if (nval != uval)
8f17d3a5 2382 goto retry;
0771dfef 2383
e3f2ddea
IM
2384 /*
2385 * Wake robust non-PI futexes here. The wakeup of
2386 * PI futexes happens in exit_pi_state():
2387 */
36cf3b5c 2388 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2389 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2390 }
2391 return 0;
2392}
2393
e3f2ddea
IM
2394/*
2395 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2396 */
2397static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
2398 struct robust_list __user * __user *head,
2399 int *pi)
e3f2ddea
IM
2400{
2401 unsigned long uentry;
2402
ba46df98 2403 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2404 return -EFAULT;
2405
ba46df98 2406 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2407 *pi = uentry & 1;
2408
2409 return 0;
2410}
2411
0771dfef
IM
2412/*
2413 * Walk curr->robust_list (very carefully, it's a userspace list!)
2414 * and mark any locks found there dead, and notify any waiters.
2415 *
2416 * We silently return on any sign of list-walking problem.
2417 */
2418void exit_robust_list(struct task_struct *curr)
2419{
2420 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2421 struct robust_list __user *entry, *next_entry, *pending;
2422 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2423 unsigned long futex_offset;
9f96cb1e 2424 int rc;
0771dfef 2425
a0c1e907
TG
2426 if (!futex_cmpxchg_enabled)
2427 return;
2428
0771dfef
IM
2429 /*
2430 * Fetch the list head (which was registered earlier, via
2431 * sys_set_robust_list()):
2432 */
e3f2ddea 2433 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2434 return;
2435 /*
2436 * Fetch the relative futex offset:
2437 */
2438 if (get_user(futex_offset, &head->futex_offset))
2439 return;
2440 /*
2441 * Fetch any possibly pending lock-add first, and handle it
2442 * if it exists:
2443 */
e3f2ddea 2444 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2445 return;
e3f2ddea 2446
9f96cb1e 2447 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2448 while (entry != &head->list) {
9f96cb1e
MS
2449 /*
2450 * Fetch the next entry in the list before calling
2451 * handle_futex_death:
2452 */
2453 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2454 /*
2455 * A pending lock might already be on the list, so
c87e2837 2456 * don't process it twice:
0771dfef
IM
2457 */
2458 if (entry != pending)
ba46df98 2459 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2460 curr, pi))
0771dfef 2461 return;
9f96cb1e 2462 if (rc)
0771dfef 2463 return;
9f96cb1e
MS
2464 entry = next_entry;
2465 pi = next_pi;
0771dfef
IM
2466 /*
2467 * Avoid excessively long or circular lists:
2468 */
2469 if (!--limit)
2470 break;
2471
2472 cond_resched();
2473 }
9f96cb1e
MS
2474
2475 if (pending)
2476 handle_futex_death((void __user *)pending + futex_offset,
2477 curr, pip);
0771dfef
IM
2478}
2479
c19384b5 2480long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2481 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2482{
1acdac10 2483 int clockrt, ret = -ENOSYS;
34f01cc1 2484 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2485 int fshared = 0;
34f01cc1
ED
2486
2487 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2488 fshared = 1;
1da177e4 2489
1acdac10 2490 clockrt = op & FUTEX_CLOCK_REALTIME;
52400ba9 2491 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1acdac10 2492 return -ENOSYS;
1da177e4 2493
34f01cc1 2494 switch (cmd) {
1da177e4 2495 case FUTEX_WAIT:
cd689985
TG
2496 val3 = FUTEX_BITSET_MATCH_ANY;
2497 case FUTEX_WAIT_BITSET:
1acdac10 2498 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2499 break;
2500 case FUTEX_WAKE:
cd689985
TG
2501 val3 = FUTEX_BITSET_MATCH_ANY;
2502 case FUTEX_WAKE_BITSET:
2503 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2504 break;
1da177e4 2505 case FUTEX_REQUEUE:
52400ba9 2506 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2507 break;
2508 case FUTEX_CMP_REQUEUE:
52400ba9
DH
2509 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2510 0);
1da177e4 2511 break;
4732efbe 2512 case FUTEX_WAKE_OP:
34f01cc1 2513 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2514 break;
c87e2837 2515 case FUTEX_LOCK_PI:
a0c1e907
TG
2516 if (futex_cmpxchg_enabled)
2517 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2518 break;
2519 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2520 if (futex_cmpxchg_enabled)
2521 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2522 break;
2523 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2524 if (futex_cmpxchg_enabled)
2525 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2526 break;
52400ba9
DH
2527 case FUTEX_WAIT_REQUEUE_PI:
2528 val3 = FUTEX_BITSET_MATCH_ANY;
2529 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2530 clockrt, uaddr2);
2531 break;
52400ba9
DH
2532 case FUTEX_CMP_REQUEUE_PI:
2533 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2534 1);
2535 break;
1da177e4
LT
2536 default:
2537 ret = -ENOSYS;
2538 }
2539 return ret;
2540}
2541
2542
17da2bd9
HC
2543SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2544 struct timespec __user *, utime, u32 __user *, uaddr2,
2545 u32, val3)
1da177e4 2546{
c19384b5
PP
2547 struct timespec ts;
2548 ktime_t t, *tp = NULL;
e2970f2f 2549 u32 val2 = 0;
34f01cc1 2550 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2551
cd689985 2552 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2553 cmd == FUTEX_WAIT_BITSET ||
2554 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2555 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2556 return -EFAULT;
c19384b5 2557 if (!timespec_valid(&ts))
9741ef96 2558 return -EINVAL;
c19384b5
PP
2559
2560 t = timespec_to_ktime(ts);
34f01cc1 2561 if (cmd == FUTEX_WAIT)
5a7780e7 2562 t = ktime_add_safe(ktime_get(), t);
c19384b5 2563 tp = &t;
1da177e4
LT
2564 }
2565 /*
52400ba9 2566 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2567 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2568 */
f54f0986 2569 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2570 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2571 val2 = (u32) (unsigned long) utime;
1da177e4 2572
c19384b5 2573 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2574}
2575
f6d107fb 2576static int __init futex_init(void)
1da177e4 2577{
a0c1e907 2578 u32 curval;
3e4ab747 2579 int i;
95362fa9 2580
a0c1e907
TG
2581 /*
2582 * This will fail and we want it. Some arch implementations do
2583 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2584 * functionality. We want to know that before we call in any
2585 * of the complex code paths. Also we want to prevent
2586 * registration of robust lists in that case. NULL is
2587 * guaranteed to fault and we get -EFAULT on functional
2588 * implementation, the non functional ones will return
2589 * -ENOSYS.
2590 */
2591 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2592 if (curval == -EFAULT)
2593 futex_cmpxchg_enabled = 1;
2594
3e4ab747
TG
2595 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2596 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2597 spin_lock_init(&futex_queues[i].lock);
2598 }
2599
1da177e4
LT
2600 return 0;
2601}
f6d107fb 2602__initcall(futex_init);