]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/futex.c
futex,rt_mutex: Provide futex specific rt_mutex API
[mirror_ubuntu-hirsute-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
1da177e4
LT
249};
250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
34f01cc1 491 * The key words are stored in *key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
38d47c1b 695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 696 key->shared.inode = inode;
077fa7ae 697 key->shared.pgoff = basepage_index(tail);
65d8fc77 698 rcu_read_unlock();
1da177e4
LT
699 }
700
9ea71503 701out:
14d27abd 702 put_page(page);
9ea71503 703 return err;
1da177e4
LT
704}
705
ae791a2d 706static inline void put_futex_key(union futex_key *key)
1da177e4 707{
38d47c1b 708 drop_futex_key_refs(key);
1da177e4
LT
709}
710
d96ee56c
DH
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
fb62db2b 718 * We have no generic implementation of a non-destructive write to the
d0725992
TG
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
722d0172
AK
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
2efaca92 729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 730 FAULT_FLAG_WRITE, NULL);
722d0172
AK
731 up_read(&mm->mmap_sem);
732
d0725992
TG
733 return ret < 0 ? ret : 0;
734}
735
4b1c486b
DH
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
37a9d912
ML
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
36cf3b5c 757{
37a9d912 758 int ret;
36cf3b5c
TG
759
760 pagefault_disable();
37a9d912 761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
762 pagefault_enable();
763
37a9d912 764 return ret;
36cf3b5c
TG
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
768{
769 int ret;
770
a866374a 771 pagefault_disable();
bd28b145 772 ret = __get_user(*dest, from);
a866374a 773 pagefault_enable();
1da177e4
LT
774
775 return ret ? -EFAULT : 0;
776}
777
c87e2837
IM
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
4668edc3 789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
790
791 if (!pi_state)
792 return -ENOMEM;
793
c87e2837
IM
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
38d47c1b 798 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
805static struct futex_pi_state * alloc_pi_state(void)
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
30a6b803 815/*
29e9ee5d
TG
816 * Drops a reference to the pi_state object and frees or caches it
817 * when the last reference is gone.
818 *
30a6b803
BS
819 * Must be called with the hb lock held.
820 */
29e9ee5d 821static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 822{
30a6b803
BS
823 if (!pi_state)
824 return;
825
c87e2837
IM
826 if (!atomic_dec_and_test(&pi_state->refcount))
827 return;
828
829 /*
830 * If pi_state->owner is NULL, the owner is most probably dying
831 * and has cleaned up the pi_state already
832 */
833 if (pi_state->owner) {
1d615482 834 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 835 list_del_init(&pi_state->list);
1d615482 836 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
837
838 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
839 }
840
841 if (current->pi_state_cache)
842 kfree(pi_state);
843 else {
844 /*
845 * pi_state->list is already empty.
846 * clear pi_state->owner.
847 * refcount is at 0 - put it back to 1.
848 */
849 pi_state->owner = NULL;
850 atomic_set(&pi_state->refcount, 1);
851 current->pi_state_cache = pi_state;
852 }
853}
854
855/*
856 * Look up the task based on what TID userspace gave us.
857 * We dont trust it.
858 */
859static struct task_struct * futex_find_get_task(pid_t pid)
860{
861 struct task_struct *p;
862
d359b549 863 rcu_read_lock();
228ebcbe 864 p = find_task_by_vpid(pid);
7a0ea09a
MH
865 if (p)
866 get_task_struct(p);
a06381fe 867
d359b549 868 rcu_read_unlock();
c87e2837
IM
869
870 return p;
871}
872
873/*
874 * This task is holding PI mutexes at exit time => bad.
875 * Kernel cleans up PI-state, but userspace is likely hosed.
876 * (Robust-futex cleanup is separate and might save the day for userspace.)
877 */
878void exit_pi_state_list(struct task_struct *curr)
879{
c87e2837
IM
880 struct list_head *next, *head = &curr->pi_state_list;
881 struct futex_pi_state *pi_state;
627371d7 882 struct futex_hash_bucket *hb;
38d47c1b 883 union futex_key key = FUTEX_KEY_INIT;
c87e2837 884
a0c1e907
TG
885 if (!futex_cmpxchg_enabled)
886 return;
c87e2837
IM
887 /*
888 * We are a ZOMBIE and nobody can enqueue itself on
889 * pi_state_list anymore, but we have to be careful
627371d7 890 * versus waiters unqueueing themselves:
c87e2837 891 */
1d615482 892 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
893 while (!list_empty(head)) {
894
895 next = head->next;
896 pi_state = list_entry(next, struct futex_pi_state, list);
897 key = pi_state->key;
627371d7 898 hb = hash_futex(&key);
1d615482 899 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 900
c87e2837
IM
901 spin_lock(&hb->lock);
902
1d615482 903 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
904 /*
905 * We dropped the pi-lock, so re-check whether this
906 * task still owns the PI-state:
907 */
c87e2837
IM
908 if (head->next != next) {
909 spin_unlock(&hb->lock);
910 continue;
911 }
912
c87e2837 913 WARN_ON(pi_state->owner != curr);
627371d7
IM
914 WARN_ON(list_empty(&pi_state->list));
915 list_del_init(&pi_state->list);
c87e2837 916 pi_state->owner = NULL;
1d615482 917 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 918
5293c2ef 919 rt_mutex_futex_unlock(&pi_state->pi_mutex);
c87e2837
IM
920
921 spin_unlock(&hb->lock);
922
1d615482 923 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 924 }
1d615482 925 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
926}
927
54a21788
TG
928/*
929 * We need to check the following states:
930 *
931 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
932 *
933 * [1] NULL | --- | --- | 0 | 0/1 | Valid
934 * [2] NULL | --- | --- | >0 | 0/1 | Valid
935 *
936 * [3] Found | NULL | -- | Any | 0/1 | Invalid
937 *
938 * [4] Found | Found | NULL | 0 | 1 | Valid
939 * [5] Found | Found | NULL | >0 | 1 | Invalid
940 *
941 * [6] Found | Found | task | 0 | 1 | Valid
942 *
943 * [7] Found | Found | NULL | Any | 0 | Invalid
944 *
945 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
946 * [9] Found | Found | task | 0 | 0 | Invalid
947 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
948 *
949 * [1] Indicates that the kernel can acquire the futex atomically. We
950 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
951 *
952 * [2] Valid, if TID does not belong to a kernel thread. If no matching
953 * thread is found then it indicates that the owner TID has died.
954 *
955 * [3] Invalid. The waiter is queued on a non PI futex
956 *
957 * [4] Valid state after exit_robust_list(), which sets the user space
958 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
959 *
960 * [5] The user space value got manipulated between exit_robust_list()
961 * and exit_pi_state_list()
962 *
963 * [6] Valid state after exit_pi_state_list() which sets the new owner in
964 * the pi_state but cannot access the user space value.
965 *
966 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
967 *
968 * [8] Owner and user space value match
969 *
970 * [9] There is no transient state which sets the user space TID to 0
971 * except exit_robust_list(), but this is indicated by the
972 * FUTEX_OWNER_DIED bit. See [4]
973 *
974 * [10] There is no transient state which leaves owner and user space
975 * TID out of sync.
976 */
e60cbc5c
TG
977
978/*
979 * Validate that the existing waiter has a pi_state and sanity check
980 * the pi_state against the user space value. If correct, attach to
981 * it.
982 */
983static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
984 struct futex_pi_state **ps)
c87e2837 985{
778e9a9c 986 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 987
e60cbc5c
TG
988 /*
989 * Userspace might have messed up non-PI and PI futexes [3]
990 */
991 if (unlikely(!pi_state))
992 return -EINVAL;
06a9ec29 993
e60cbc5c 994 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 995
e60cbc5c
TG
996 /*
997 * Handle the owner died case:
998 */
999 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1000 /*
e60cbc5c
TG
1001 * exit_pi_state_list sets owner to NULL and wakes the
1002 * topmost waiter. The task which acquires the
1003 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1004 */
e60cbc5c 1005 if (!pi_state->owner) {
59647b6a 1006 /*
e60cbc5c
TG
1007 * No pi state owner, but the user space TID
1008 * is not 0. Inconsistent state. [5]
59647b6a 1009 */
e60cbc5c
TG
1010 if (pid)
1011 return -EINVAL;
bd1dbcc6 1012 /*
e60cbc5c 1013 * Take a ref on the state and return success. [4]
866293ee 1014 */
e60cbc5c 1015 goto out_state;
c87e2837 1016 }
bd1dbcc6
TG
1017
1018 /*
e60cbc5c
TG
1019 * If TID is 0, then either the dying owner has not
1020 * yet executed exit_pi_state_list() or some waiter
1021 * acquired the rtmutex in the pi state, but did not
1022 * yet fixup the TID in user space.
1023 *
1024 * Take a ref on the state and return success. [6]
1025 */
1026 if (!pid)
1027 goto out_state;
1028 } else {
1029 /*
1030 * If the owner died bit is not set, then the pi_state
1031 * must have an owner. [7]
bd1dbcc6 1032 */
e60cbc5c 1033 if (!pi_state->owner)
bd1dbcc6 1034 return -EINVAL;
c87e2837
IM
1035 }
1036
e60cbc5c
TG
1037 /*
1038 * Bail out if user space manipulated the futex value. If pi
1039 * state exists then the owner TID must be the same as the
1040 * user space TID. [9/10]
1041 */
1042 if (pid != task_pid_vnr(pi_state->owner))
1043 return -EINVAL;
1044out_state:
1045 atomic_inc(&pi_state->refcount);
1046 *ps = pi_state;
1047 return 0;
1048}
1049
04e1b2e5
TG
1050/*
1051 * Lookup the task for the TID provided from user space and attach to
1052 * it after doing proper sanity checks.
1053 */
1054static int attach_to_pi_owner(u32 uval, union futex_key *key,
1055 struct futex_pi_state **ps)
e60cbc5c 1056{
e60cbc5c 1057 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1058 struct futex_pi_state *pi_state;
1059 struct task_struct *p;
e60cbc5c 1060
c87e2837 1061 /*
e3f2ddea 1062 * We are the first waiter - try to look up the real owner and attach
54a21788 1063 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1064 */
778e9a9c 1065 if (!pid)
e3f2ddea 1066 return -ESRCH;
c87e2837 1067 p = futex_find_get_task(pid);
7a0ea09a
MH
1068 if (!p)
1069 return -ESRCH;
778e9a9c 1070
a2129464 1071 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1072 put_task_struct(p);
1073 return -EPERM;
1074 }
1075
778e9a9c
AK
1076 /*
1077 * We need to look at the task state flags to figure out,
1078 * whether the task is exiting. To protect against the do_exit
1079 * change of the task flags, we do this protected by
1080 * p->pi_lock:
1081 */
1d615482 1082 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1083 if (unlikely(p->flags & PF_EXITING)) {
1084 /*
1085 * The task is on the way out. When PF_EXITPIDONE is
1086 * set, we know that the task has finished the
1087 * cleanup:
1088 */
1089 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1090
1d615482 1091 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1092 put_task_struct(p);
1093 return ret;
1094 }
c87e2837 1095
54a21788
TG
1096 /*
1097 * No existing pi state. First waiter. [2]
1098 */
c87e2837
IM
1099 pi_state = alloc_pi_state();
1100
1101 /*
04e1b2e5 1102 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1103 * the owner of it:
1104 */
1105 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1106
1107 /* Store the key for possible exit cleanups: */
d0aa7a70 1108 pi_state->key = *key;
c87e2837 1109
627371d7 1110 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1111 list_add(&pi_state->list, &p->pi_state_list);
1112 pi_state->owner = p;
1d615482 1113 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1114
1115 put_task_struct(p);
1116
d0aa7a70 1117 *ps = pi_state;
c87e2837
IM
1118
1119 return 0;
1120}
1121
04e1b2e5
TG
1122static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1123 union futex_key *key, struct futex_pi_state **ps)
1124{
499f5aca 1125 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1126
1127 /*
1128 * If there is a waiter on that futex, validate it and
1129 * attach to the pi_state when the validation succeeds.
1130 */
499f5aca
PZ
1131 if (top_waiter)
1132 return attach_to_pi_state(uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1133
1134 /*
1135 * We are the first waiter - try to look up the owner based on
1136 * @uval and attach to it.
1137 */
1138 return attach_to_pi_owner(uval, key, ps);
1139}
1140
af54d6a1
TG
1141static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1142{
1143 u32 uninitialized_var(curval);
1144
ab51fbab
DB
1145 if (unlikely(should_fail_futex(true)))
1146 return -EFAULT;
1147
af54d6a1
TG
1148 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1149 return -EFAULT;
1150
1151 /*If user space value changed, let the caller retry */
1152 return curval != uval ? -EAGAIN : 0;
1153}
1154
1a52084d 1155/**
d96ee56c 1156 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1157 * @uaddr: the pi futex user address
1158 * @hb: the pi futex hash bucket
1159 * @key: the futex key associated with uaddr and hb
1160 * @ps: the pi_state pointer where we store the result of the
1161 * lookup
1162 * @task: the task to perform the atomic lock work for. This will
1163 * be "current" except in the case of requeue pi.
1164 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1165 *
6c23cbbd
RD
1166 * Return:
1167 * 0 - ready to wait;
1168 * 1 - acquired the lock;
1a52084d
DH
1169 * <0 - error
1170 *
1171 * The hb->lock and futex_key refs shall be held by the caller.
1172 */
1173static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1174 union futex_key *key,
1175 struct futex_pi_state **ps,
bab5bc9e 1176 struct task_struct *task, int set_waiters)
1a52084d 1177{
af54d6a1 1178 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1179 struct futex_q *top_waiter;
af54d6a1 1180 int ret;
1a52084d
DH
1181
1182 /*
af54d6a1
TG
1183 * Read the user space value first so we can validate a few
1184 * things before proceeding further.
1a52084d 1185 */
af54d6a1 1186 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1187 return -EFAULT;
1188
ab51fbab
DB
1189 if (unlikely(should_fail_futex(true)))
1190 return -EFAULT;
1191
1a52084d
DH
1192 /*
1193 * Detect deadlocks.
1194 */
af54d6a1 1195 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1196 return -EDEADLK;
1197
ab51fbab
DB
1198 if ((unlikely(should_fail_futex(true))))
1199 return -EDEADLK;
1200
1a52084d 1201 /*
af54d6a1
TG
1202 * Lookup existing state first. If it exists, try to attach to
1203 * its pi_state.
1a52084d 1204 */
499f5aca
PZ
1205 top_waiter = futex_top_waiter(hb, key);
1206 if (top_waiter)
1207 return attach_to_pi_state(uval, top_waiter->pi_state, ps);
1a52084d
DH
1208
1209 /*
af54d6a1
TG
1210 * No waiter and user TID is 0. We are here because the
1211 * waiters or the owner died bit is set or called from
1212 * requeue_cmp_pi or for whatever reason something took the
1213 * syscall.
1a52084d 1214 */
af54d6a1 1215 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1216 /*
af54d6a1
TG
1217 * We take over the futex. No other waiters and the user space
1218 * TID is 0. We preserve the owner died bit.
59fa6245 1219 */
af54d6a1
TG
1220 newval = uval & FUTEX_OWNER_DIED;
1221 newval |= vpid;
1a52084d 1222
af54d6a1
TG
1223 /* The futex requeue_pi code can enforce the waiters bit */
1224 if (set_waiters)
1225 newval |= FUTEX_WAITERS;
1226
1227 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228 /* If the take over worked, return 1 */
1229 return ret < 0 ? ret : 1;
1230 }
1a52084d
DH
1231
1232 /*
af54d6a1
TG
1233 * First waiter. Set the waiters bit before attaching ourself to
1234 * the owner. If owner tries to unlock, it will be forced into
1235 * the kernel and blocked on hb->lock.
1a52084d 1236 */
af54d6a1
TG
1237 newval = uval | FUTEX_WAITERS;
1238 ret = lock_pi_update_atomic(uaddr, uval, newval);
1239 if (ret)
1240 return ret;
1a52084d 1241 /*
af54d6a1
TG
1242 * If the update of the user space value succeeded, we try to
1243 * attach to the owner. If that fails, no harm done, we only
1244 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1245 */
af54d6a1 1246 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1247}
1248
2e12978a
LJ
1249/**
1250 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1251 * @q: The futex_q to unqueue
1252 *
1253 * The q->lock_ptr must not be NULL and must be held by the caller.
1254 */
1255static void __unqueue_futex(struct futex_q *q)
1256{
1257 struct futex_hash_bucket *hb;
1258
29096202
SR
1259 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1260 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1261 return;
1262
1263 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1264 plist_del(&q->list, &hb->chain);
11d4616b 1265 hb_waiters_dec(hb);
2e12978a
LJ
1266}
1267
1da177e4
LT
1268/*
1269 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1270 * Afterwards, the futex_q must not be accessed. Callers
1271 * must ensure to later call wake_up_q() for the actual
1272 * wakeups to occur.
1da177e4 1273 */
1d0dcb3a 1274static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1275{
f1a11e05
TG
1276 struct task_struct *p = q->task;
1277
aa10990e
DH
1278 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1279 return;
1280
1da177e4 1281 /*
1d0dcb3a
DB
1282 * Queue the task for later wakeup for after we've released
1283 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1284 */
1d0dcb3a 1285 wake_q_add(wake_q, p);
2e12978a 1286 __unqueue_futex(q);
1da177e4 1287 /*
f1a11e05
TG
1288 * The waiting task can free the futex_q as soon as
1289 * q->lock_ptr = NULL is written, without taking any locks. A
1290 * memory barrier is required here to prevent the following
1291 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1292 */
1b367ece 1293 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1294}
1295
499f5aca 1296static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *top_waiter,
802ab58d 1297 struct futex_hash_bucket *hb)
c87e2837
IM
1298{
1299 struct task_struct *new_owner;
499f5aca 1300 struct futex_pi_state *pi_state = top_waiter->pi_state;
7cfdaf38 1301 u32 uninitialized_var(curval), newval;
194a6b5b 1302 DEFINE_WAKE_Q(wake_q);
802ab58d 1303 bool deboost;
13fbca4c 1304 int ret = 0;
c87e2837
IM
1305
1306 if (!pi_state)
1307 return -EINVAL;
1308
51246bfd
TG
1309 /*
1310 * If current does not own the pi_state then the futex is
1311 * inconsistent and user space fiddled with the futex value.
1312 */
1313 if (pi_state->owner != current)
1314 return -EINVAL;
1315
b4abf910 1316 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1317 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1318
1319 /*
f123c98e 1320 * It is possible that the next waiter (the one that brought
499f5aca 1321 * top_waiter owner to the kernel) timed out and is no longer
f123c98e 1322 * waiting on the lock.
c87e2837
IM
1323 */
1324 if (!new_owner)
499f5aca 1325 new_owner = top_waiter->task;
c87e2837
IM
1326
1327 /*
13fbca4c
TG
1328 * We pass it to the next owner. The WAITERS bit is always
1329 * kept enabled while there is PI state around. We cleanup the
1330 * owner died bit, because we are the owner.
c87e2837 1331 */
13fbca4c 1332 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1333
ab51fbab
DB
1334 if (unlikely(should_fail_futex(true)))
1335 ret = -EFAULT;
1336
89e9e66b 1337 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1338 ret = -EFAULT;
89e9e66b
SAS
1339 } else if (curval != uval) {
1340 /*
1341 * If a unconditional UNLOCK_PI operation (user space did not
1342 * try the TID->0 transition) raced with a waiter setting the
1343 * FUTEX_WAITERS flag between get_user() and locking the hash
1344 * bucket lock, retry the operation.
1345 */
1346 if ((FUTEX_TID_MASK & curval) == uval)
1347 ret = -EAGAIN;
1348 else
1349 ret = -EINVAL;
1350 }
13fbca4c 1351 if (ret) {
b4abf910 1352 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
13fbca4c 1353 return ret;
e3f2ddea 1354 }
c87e2837 1355
b4abf910 1356 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1357 WARN_ON(list_empty(&pi_state->list));
1358 list_del_init(&pi_state->list);
b4abf910 1359 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1360
b4abf910 1361 raw_spin_lock(&new_owner->pi_lock);
627371d7 1362 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1363 list_add(&pi_state->list, &new_owner->pi_state_list);
1364 pi_state->owner = new_owner;
b4abf910 1365 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1366
802ab58d 1367 /*
5293c2ef 1368 * We've updated the uservalue, this unlock cannot fail.
802ab58d 1369 */
5293c2ef
PZ
1370 deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1371
1372 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
802ab58d 1373 spin_unlock(&hb->lock);
5293c2ef
PZ
1374
1375 if (deboost) {
1376 wake_up_q(&wake_q);
802ab58d 1377 rt_mutex_adjust_prio(current);
5293c2ef 1378 }
c87e2837
IM
1379
1380 return 0;
1381}
1382
8b8f319f
IM
1383/*
1384 * Express the locking dependencies for lockdep:
1385 */
1386static inline void
1387double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1388{
1389 if (hb1 <= hb2) {
1390 spin_lock(&hb1->lock);
1391 if (hb1 < hb2)
1392 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1393 } else { /* hb1 > hb2 */
1394 spin_lock(&hb2->lock);
1395 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1396 }
1397}
1398
5eb3dc62
DH
1399static inline void
1400double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1401{
f061d351 1402 spin_unlock(&hb1->lock);
88f502fe
IM
1403 if (hb1 != hb2)
1404 spin_unlock(&hb2->lock);
5eb3dc62
DH
1405}
1406
1da177e4 1407/*
b2d0994b 1408 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1409 */
b41277dc
DH
1410static int
1411futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1412{
e2970f2f 1413 struct futex_hash_bucket *hb;
1da177e4 1414 struct futex_q *this, *next;
38d47c1b 1415 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1416 int ret;
194a6b5b 1417 DEFINE_WAKE_Q(wake_q);
1da177e4 1418
cd689985
TG
1419 if (!bitset)
1420 return -EINVAL;
1421
9ea71503 1422 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1423 if (unlikely(ret != 0))
1424 goto out;
1425
e2970f2f 1426 hb = hash_futex(&key);
b0c29f79
DB
1427
1428 /* Make sure we really have tasks to wakeup */
1429 if (!hb_waiters_pending(hb))
1430 goto out_put_key;
1431
e2970f2f 1432 spin_lock(&hb->lock);
1da177e4 1433
0d00c7b2 1434 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1435 if (match_futex (&this->key, &key)) {
52400ba9 1436 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1437 ret = -EINVAL;
1438 break;
1439 }
cd689985
TG
1440
1441 /* Check if one of the bits is set in both bitsets */
1442 if (!(this->bitset & bitset))
1443 continue;
1444
1d0dcb3a 1445 mark_wake_futex(&wake_q, this);
1da177e4
LT
1446 if (++ret >= nr_wake)
1447 break;
1448 }
1449 }
1450
e2970f2f 1451 spin_unlock(&hb->lock);
1d0dcb3a 1452 wake_up_q(&wake_q);
b0c29f79 1453out_put_key:
ae791a2d 1454 put_futex_key(&key);
42d35d48 1455out:
1da177e4
LT
1456 return ret;
1457}
1458
4732efbe
JJ
1459/*
1460 * Wake up all waiters hashed on the physical page that is mapped
1461 * to this virtual address:
1462 */
e2970f2f 1463static int
b41277dc 1464futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1465 int nr_wake, int nr_wake2, int op)
4732efbe 1466{
38d47c1b 1467 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1468 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1469 struct futex_q *this, *next;
e4dc5b7a 1470 int ret, op_ret;
194a6b5b 1471 DEFINE_WAKE_Q(wake_q);
4732efbe 1472
e4dc5b7a 1473retry:
9ea71503 1474 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1475 if (unlikely(ret != 0))
1476 goto out;
9ea71503 1477 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1478 if (unlikely(ret != 0))
42d35d48 1479 goto out_put_key1;
4732efbe 1480
e2970f2f
IM
1481 hb1 = hash_futex(&key1);
1482 hb2 = hash_futex(&key2);
4732efbe 1483
e4dc5b7a 1484retry_private:
eaaea803 1485 double_lock_hb(hb1, hb2);
e2970f2f 1486 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1487 if (unlikely(op_ret < 0)) {
4732efbe 1488
5eb3dc62 1489 double_unlock_hb(hb1, hb2);
4732efbe 1490
7ee1dd3f 1491#ifndef CONFIG_MMU
e2970f2f
IM
1492 /*
1493 * we don't get EFAULT from MMU faults if we don't have an MMU,
1494 * but we might get them from range checking
1495 */
7ee1dd3f 1496 ret = op_ret;
42d35d48 1497 goto out_put_keys;
7ee1dd3f
DH
1498#endif
1499
796f8d9b
DG
1500 if (unlikely(op_ret != -EFAULT)) {
1501 ret = op_ret;
42d35d48 1502 goto out_put_keys;
796f8d9b
DG
1503 }
1504
d0725992 1505 ret = fault_in_user_writeable(uaddr2);
4732efbe 1506 if (ret)
de87fcc1 1507 goto out_put_keys;
4732efbe 1508
b41277dc 1509 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1510 goto retry_private;
1511
ae791a2d
TG
1512 put_futex_key(&key2);
1513 put_futex_key(&key1);
e4dc5b7a 1514 goto retry;
4732efbe
JJ
1515 }
1516
0d00c7b2 1517 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1518 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1519 if (this->pi_state || this->rt_waiter) {
1520 ret = -EINVAL;
1521 goto out_unlock;
1522 }
1d0dcb3a 1523 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1524 if (++ret >= nr_wake)
1525 break;
1526 }
1527 }
1528
1529 if (op_ret > 0) {
4732efbe 1530 op_ret = 0;
0d00c7b2 1531 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1532 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1533 if (this->pi_state || this->rt_waiter) {
1534 ret = -EINVAL;
1535 goto out_unlock;
1536 }
1d0dcb3a 1537 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1538 if (++op_ret >= nr_wake2)
1539 break;
1540 }
1541 }
1542 ret += op_ret;
1543 }
1544
aa10990e 1545out_unlock:
5eb3dc62 1546 double_unlock_hb(hb1, hb2);
1d0dcb3a 1547 wake_up_q(&wake_q);
42d35d48 1548out_put_keys:
ae791a2d 1549 put_futex_key(&key2);
42d35d48 1550out_put_key1:
ae791a2d 1551 put_futex_key(&key1);
42d35d48 1552out:
4732efbe
JJ
1553 return ret;
1554}
1555
9121e478
DH
1556/**
1557 * requeue_futex() - Requeue a futex_q from one hb to another
1558 * @q: the futex_q to requeue
1559 * @hb1: the source hash_bucket
1560 * @hb2: the target hash_bucket
1561 * @key2: the new key for the requeued futex_q
1562 */
1563static inline
1564void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1565 struct futex_hash_bucket *hb2, union futex_key *key2)
1566{
1567
1568 /*
1569 * If key1 and key2 hash to the same bucket, no need to
1570 * requeue.
1571 */
1572 if (likely(&hb1->chain != &hb2->chain)) {
1573 plist_del(&q->list, &hb1->chain);
11d4616b 1574 hb_waiters_dec(hb1);
11d4616b 1575 hb_waiters_inc(hb2);
fe1bce9e 1576 plist_add(&q->list, &hb2->chain);
9121e478 1577 q->lock_ptr = &hb2->lock;
9121e478
DH
1578 }
1579 get_futex_key_refs(key2);
1580 q->key = *key2;
1581}
1582
52400ba9
DH
1583/**
1584 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1585 * @q: the futex_q
1586 * @key: the key of the requeue target futex
1587 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1588 *
1589 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1590 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1591 * to the requeue target futex so the waiter can detect the wakeup on the right
1592 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1593 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1594 * to protect access to the pi_state to fixup the owner later. Must be called
1595 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1596 */
1597static inline
beda2c7e
DH
1598void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1599 struct futex_hash_bucket *hb)
52400ba9 1600{
52400ba9
DH
1601 get_futex_key_refs(key);
1602 q->key = *key;
1603
2e12978a 1604 __unqueue_futex(q);
52400ba9
DH
1605
1606 WARN_ON(!q->rt_waiter);
1607 q->rt_waiter = NULL;
1608
beda2c7e 1609 q->lock_ptr = &hb->lock;
beda2c7e 1610
f1a11e05 1611 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1612}
1613
1614/**
1615 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1616 * @pifutex: the user address of the to futex
1617 * @hb1: the from futex hash bucket, must be locked by the caller
1618 * @hb2: the to futex hash bucket, must be locked by the caller
1619 * @key1: the from futex key
1620 * @key2: the to futex key
1621 * @ps: address to store the pi_state pointer
1622 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1623 *
1624 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1625 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1626 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1627 * hb1 and hb2 must be held by the caller.
52400ba9 1628 *
6c23cbbd
RD
1629 * Return:
1630 * 0 - failed to acquire the lock atomically;
866293ee 1631 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1632 * <0 - error
1633 */
1634static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1635 struct futex_hash_bucket *hb1,
1636 struct futex_hash_bucket *hb2,
1637 union futex_key *key1, union futex_key *key2,
bab5bc9e 1638 struct futex_pi_state **ps, int set_waiters)
52400ba9 1639{
bab5bc9e 1640 struct futex_q *top_waiter = NULL;
52400ba9 1641 u32 curval;
866293ee 1642 int ret, vpid;
52400ba9
DH
1643
1644 if (get_futex_value_locked(&curval, pifutex))
1645 return -EFAULT;
1646
ab51fbab
DB
1647 if (unlikely(should_fail_futex(true)))
1648 return -EFAULT;
1649
bab5bc9e
DH
1650 /*
1651 * Find the top_waiter and determine if there are additional waiters.
1652 * If the caller intends to requeue more than 1 waiter to pifutex,
1653 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1654 * as we have means to handle the possible fault. If not, don't set
1655 * the bit unecessarily as it will force the subsequent unlock to enter
1656 * the kernel.
1657 */
52400ba9
DH
1658 top_waiter = futex_top_waiter(hb1, key1);
1659
1660 /* There are no waiters, nothing for us to do. */
1661 if (!top_waiter)
1662 return 0;
1663
84bc4af5
DH
1664 /* Ensure we requeue to the expected futex. */
1665 if (!match_futex(top_waiter->requeue_pi_key, key2))
1666 return -EINVAL;
1667
52400ba9 1668 /*
bab5bc9e
DH
1669 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1670 * the contended case or if set_waiters is 1. The pi_state is returned
1671 * in ps in contended cases.
52400ba9 1672 */
866293ee 1673 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1674 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1675 set_waiters);
866293ee 1676 if (ret == 1) {
beda2c7e 1677 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1678 return vpid;
1679 }
52400ba9
DH
1680 return ret;
1681}
1682
1683/**
1684 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1685 * @uaddr1: source futex user address
b41277dc 1686 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1687 * @uaddr2: target futex user address
1688 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1689 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1690 * @cmpval: @uaddr1 expected value (or %NULL)
1691 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1692 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1693 *
1694 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1695 * uaddr2 atomically on behalf of the top waiter.
1696 *
6c23cbbd
RD
1697 * Return:
1698 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1699 * <0 - on error
1da177e4 1700 */
b41277dc
DH
1701static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1702 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1703 u32 *cmpval, int requeue_pi)
1da177e4 1704{
38d47c1b 1705 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1706 int drop_count = 0, task_count = 0, ret;
1707 struct futex_pi_state *pi_state = NULL;
e2970f2f 1708 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1709 struct futex_q *this, *next;
194a6b5b 1710 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1711
1712 if (requeue_pi) {
e9c243a5
TG
1713 /*
1714 * Requeue PI only works on two distinct uaddrs. This
1715 * check is only valid for private futexes. See below.
1716 */
1717 if (uaddr1 == uaddr2)
1718 return -EINVAL;
1719
52400ba9
DH
1720 /*
1721 * requeue_pi requires a pi_state, try to allocate it now
1722 * without any locks in case it fails.
1723 */
1724 if (refill_pi_state_cache())
1725 return -ENOMEM;
1726 /*
1727 * requeue_pi must wake as many tasks as it can, up to nr_wake
1728 * + nr_requeue, since it acquires the rt_mutex prior to
1729 * returning to userspace, so as to not leave the rt_mutex with
1730 * waiters and no owner. However, second and third wake-ups
1731 * cannot be predicted as they involve race conditions with the
1732 * first wake and a fault while looking up the pi_state. Both
1733 * pthread_cond_signal() and pthread_cond_broadcast() should
1734 * use nr_wake=1.
1735 */
1736 if (nr_wake != 1)
1737 return -EINVAL;
1738 }
1da177e4 1739
42d35d48 1740retry:
9ea71503 1741 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1742 if (unlikely(ret != 0))
1743 goto out;
9ea71503
SB
1744 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1745 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1746 if (unlikely(ret != 0))
42d35d48 1747 goto out_put_key1;
1da177e4 1748
e9c243a5
TG
1749 /*
1750 * The check above which compares uaddrs is not sufficient for
1751 * shared futexes. We need to compare the keys:
1752 */
1753 if (requeue_pi && match_futex(&key1, &key2)) {
1754 ret = -EINVAL;
1755 goto out_put_keys;
1756 }
1757
e2970f2f
IM
1758 hb1 = hash_futex(&key1);
1759 hb2 = hash_futex(&key2);
1da177e4 1760
e4dc5b7a 1761retry_private:
69cd9eba 1762 hb_waiters_inc(hb2);
8b8f319f 1763 double_lock_hb(hb1, hb2);
1da177e4 1764
e2970f2f
IM
1765 if (likely(cmpval != NULL)) {
1766 u32 curval;
1da177e4 1767
e2970f2f 1768 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1769
1770 if (unlikely(ret)) {
5eb3dc62 1771 double_unlock_hb(hb1, hb2);
69cd9eba 1772 hb_waiters_dec(hb2);
1da177e4 1773
e2970f2f 1774 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1775 if (ret)
1776 goto out_put_keys;
1da177e4 1777
b41277dc 1778 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1779 goto retry_private;
1da177e4 1780
ae791a2d
TG
1781 put_futex_key(&key2);
1782 put_futex_key(&key1);
e4dc5b7a 1783 goto retry;
1da177e4 1784 }
e2970f2f 1785 if (curval != *cmpval) {
1da177e4
LT
1786 ret = -EAGAIN;
1787 goto out_unlock;
1788 }
1789 }
1790
52400ba9 1791 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1792 /*
1793 * Attempt to acquire uaddr2 and wake the top waiter. If we
1794 * intend to requeue waiters, force setting the FUTEX_WAITERS
1795 * bit. We force this here where we are able to easily handle
1796 * faults rather in the requeue loop below.
1797 */
52400ba9 1798 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1799 &key2, &pi_state, nr_requeue);
52400ba9
DH
1800
1801 /*
1802 * At this point the top_waiter has either taken uaddr2 or is
1803 * waiting on it. If the former, then the pi_state will not
1804 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1805 * reference to it. If the lock was taken, ret contains the
1806 * vpid of the top waiter task.
ecb38b78
TG
1807 * If the lock was not taken, we have pi_state and an initial
1808 * refcount on it. In case of an error we have nothing.
52400ba9 1809 */
866293ee 1810 if (ret > 0) {
52400ba9 1811 WARN_ON(pi_state);
89061d3d 1812 drop_count++;
52400ba9 1813 task_count++;
866293ee 1814 /*
ecb38b78
TG
1815 * If we acquired the lock, then the user space value
1816 * of uaddr2 should be vpid. It cannot be changed by
1817 * the top waiter as it is blocked on hb2 lock if it
1818 * tries to do so. If something fiddled with it behind
1819 * our back the pi state lookup might unearth it. So
1820 * we rather use the known value than rereading and
1821 * handing potential crap to lookup_pi_state.
1822 *
1823 * If that call succeeds then we have pi_state and an
1824 * initial refcount on it.
866293ee 1825 */
54a21788 1826 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1827 }
1828
1829 switch (ret) {
1830 case 0:
ecb38b78 1831 /* We hold a reference on the pi state. */
52400ba9 1832 break;
4959f2de
TG
1833
1834 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1835 case -EFAULT:
1836 double_unlock_hb(hb1, hb2);
69cd9eba 1837 hb_waiters_dec(hb2);
ae791a2d
TG
1838 put_futex_key(&key2);
1839 put_futex_key(&key1);
d0725992 1840 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1841 if (!ret)
1842 goto retry;
1843 goto out;
1844 case -EAGAIN:
af54d6a1
TG
1845 /*
1846 * Two reasons for this:
1847 * - Owner is exiting and we just wait for the
1848 * exit to complete.
1849 * - The user space value changed.
1850 */
52400ba9 1851 double_unlock_hb(hb1, hb2);
69cd9eba 1852 hb_waiters_dec(hb2);
ae791a2d
TG
1853 put_futex_key(&key2);
1854 put_futex_key(&key1);
52400ba9
DH
1855 cond_resched();
1856 goto retry;
1857 default:
1858 goto out_unlock;
1859 }
1860 }
1861
0d00c7b2 1862 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1863 if (task_count - nr_wake >= nr_requeue)
1864 break;
1865
1866 if (!match_futex(&this->key, &key1))
1da177e4 1867 continue;
52400ba9 1868
392741e0
DH
1869 /*
1870 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1871 * be paired with each other and no other futex ops.
aa10990e
DH
1872 *
1873 * We should never be requeueing a futex_q with a pi_state,
1874 * which is awaiting a futex_unlock_pi().
392741e0
DH
1875 */
1876 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1877 (!requeue_pi && this->rt_waiter) ||
1878 this->pi_state) {
392741e0
DH
1879 ret = -EINVAL;
1880 break;
1881 }
52400ba9
DH
1882
1883 /*
1884 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1885 * lock, we already woke the top_waiter. If not, it will be
1886 * woken by futex_unlock_pi().
1887 */
1888 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1889 mark_wake_futex(&wake_q, this);
52400ba9
DH
1890 continue;
1891 }
1da177e4 1892
84bc4af5
DH
1893 /* Ensure we requeue to the expected futex for requeue_pi. */
1894 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1895 ret = -EINVAL;
1896 break;
1897 }
1898
52400ba9
DH
1899 /*
1900 * Requeue nr_requeue waiters and possibly one more in the case
1901 * of requeue_pi if we couldn't acquire the lock atomically.
1902 */
1903 if (requeue_pi) {
ecb38b78
TG
1904 /*
1905 * Prepare the waiter to take the rt_mutex. Take a
1906 * refcount on the pi_state and store the pointer in
1907 * the futex_q object of the waiter.
1908 */
52400ba9
DH
1909 atomic_inc(&pi_state->refcount);
1910 this->pi_state = pi_state;
1911 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1912 this->rt_waiter,
c051b21f 1913 this->task);
52400ba9 1914 if (ret == 1) {
ecb38b78
TG
1915 /*
1916 * We got the lock. We do neither drop the
1917 * refcount on pi_state nor clear
1918 * this->pi_state because the waiter needs the
1919 * pi_state for cleaning up the user space
1920 * value. It will drop the refcount after
1921 * doing so.
1922 */
beda2c7e 1923 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1924 drop_count++;
52400ba9
DH
1925 continue;
1926 } else if (ret) {
ecb38b78
TG
1927 /*
1928 * rt_mutex_start_proxy_lock() detected a
1929 * potential deadlock when we tried to queue
1930 * that waiter. Drop the pi_state reference
1931 * which we took above and remove the pointer
1932 * to the state from the waiters futex_q
1933 * object.
1934 */
52400ba9 1935 this->pi_state = NULL;
29e9ee5d 1936 put_pi_state(pi_state);
885c2cb7
TG
1937 /*
1938 * We stop queueing more waiters and let user
1939 * space deal with the mess.
1940 */
1941 break;
52400ba9 1942 }
1da177e4 1943 }
52400ba9
DH
1944 requeue_futex(this, hb1, hb2, &key2);
1945 drop_count++;
1da177e4
LT
1946 }
1947
ecb38b78
TG
1948 /*
1949 * We took an extra initial reference to the pi_state either
1950 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1951 * need to drop it here again.
1952 */
29e9ee5d 1953 put_pi_state(pi_state);
885c2cb7
TG
1954
1955out_unlock:
5eb3dc62 1956 double_unlock_hb(hb1, hb2);
1d0dcb3a 1957 wake_up_q(&wake_q);
69cd9eba 1958 hb_waiters_dec(hb2);
1da177e4 1959
cd84a42f
DH
1960 /*
1961 * drop_futex_key_refs() must be called outside the spinlocks. During
1962 * the requeue we moved futex_q's from the hash bucket at key1 to the
1963 * one at key2 and updated their key pointer. We no longer need to
1964 * hold the references to key1.
1965 */
1da177e4 1966 while (--drop_count >= 0)
9adef58b 1967 drop_futex_key_refs(&key1);
1da177e4 1968
42d35d48 1969out_put_keys:
ae791a2d 1970 put_futex_key(&key2);
42d35d48 1971out_put_key1:
ae791a2d 1972 put_futex_key(&key1);
42d35d48 1973out:
52400ba9 1974 return ret ? ret : task_count;
1da177e4
LT
1975}
1976
1977/* The key must be already stored in q->key. */
82af7aca 1978static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1979 __acquires(&hb->lock)
1da177e4 1980{
e2970f2f 1981 struct futex_hash_bucket *hb;
1da177e4 1982
e2970f2f 1983 hb = hash_futex(&q->key);
11d4616b
LT
1984
1985 /*
1986 * Increment the counter before taking the lock so that
1987 * a potential waker won't miss a to-be-slept task that is
1988 * waiting for the spinlock. This is safe as all queue_lock()
1989 * users end up calling queue_me(). Similarly, for housekeeping,
1990 * decrement the counter at queue_unlock() when some error has
1991 * occurred and we don't end up adding the task to the list.
1992 */
1993 hb_waiters_inc(hb);
1994
e2970f2f 1995 q->lock_ptr = &hb->lock;
1da177e4 1996
8ad7b378 1997 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 1998 return hb;
1da177e4
LT
1999}
2000
d40d65c8 2001static inline void
0d00c7b2 2002queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2003 __releases(&hb->lock)
d40d65c8
DH
2004{
2005 spin_unlock(&hb->lock);
11d4616b 2006 hb_waiters_dec(hb);
d40d65c8
DH
2007}
2008
2009/**
2010 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2011 * @q: The futex_q to enqueue
2012 * @hb: The destination hash bucket
2013 *
2014 * The hb->lock must be held by the caller, and is released here. A call to
2015 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2016 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2017 * or nothing if the unqueue is done as part of the wake process and the unqueue
2018 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2019 * an example).
2020 */
82af7aca 2021static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 2022 __releases(&hb->lock)
1da177e4 2023{
ec92d082
PP
2024 int prio;
2025
2026 /*
2027 * The priority used to register this element is
2028 * - either the real thread-priority for the real-time threads
2029 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2030 * - or MAX_RT_PRIO for non-RT threads.
2031 * Thus, all RT-threads are woken first in priority order, and
2032 * the others are woken last, in FIFO order.
2033 */
2034 prio = min(current->normal_prio, MAX_RT_PRIO);
2035
2036 plist_node_init(&q->list, prio);
ec92d082 2037 plist_add(&q->list, &hb->chain);
c87e2837 2038 q->task = current;
e2970f2f 2039 spin_unlock(&hb->lock);
1da177e4
LT
2040}
2041
d40d65c8
DH
2042/**
2043 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2044 * @q: The futex_q to unqueue
2045 *
2046 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2047 * be paired with exactly one earlier call to queue_me().
2048 *
6c23cbbd
RD
2049 * Return:
2050 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2051 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2052 */
1da177e4
LT
2053static int unqueue_me(struct futex_q *q)
2054{
1da177e4 2055 spinlock_t *lock_ptr;
e2970f2f 2056 int ret = 0;
1da177e4
LT
2057
2058 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2059retry:
29b75eb2
JZ
2060 /*
2061 * q->lock_ptr can change between this read and the following spin_lock.
2062 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2063 * optimizing lock_ptr out of the logic below.
2064 */
2065 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2066 if (lock_ptr != NULL) {
1da177e4
LT
2067 spin_lock(lock_ptr);
2068 /*
2069 * q->lock_ptr can change between reading it and
2070 * spin_lock(), causing us to take the wrong lock. This
2071 * corrects the race condition.
2072 *
2073 * Reasoning goes like this: if we have the wrong lock,
2074 * q->lock_ptr must have changed (maybe several times)
2075 * between reading it and the spin_lock(). It can
2076 * change again after the spin_lock() but only if it was
2077 * already changed before the spin_lock(). It cannot,
2078 * however, change back to the original value. Therefore
2079 * we can detect whether we acquired the correct lock.
2080 */
2081 if (unlikely(lock_ptr != q->lock_ptr)) {
2082 spin_unlock(lock_ptr);
2083 goto retry;
2084 }
2e12978a 2085 __unqueue_futex(q);
c87e2837
IM
2086
2087 BUG_ON(q->pi_state);
2088
1da177e4
LT
2089 spin_unlock(lock_ptr);
2090 ret = 1;
2091 }
2092
9adef58b 2093 drop_futex_key_refs(&q->key);
1da177e4
LT
2094 return ret;
2095}
2096
c87e2837
IM
2097/*
2098 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2099 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2100 * and dropped here.
c87e2837 2101 */
d0aa7a70 2102static void unqueue_me_pi(struct futex_q *q)
15e408cd 2103 __releases(q->lock_ptr)
c87e2837 2104{
2e12978a 2105 __unqueue_futex(q);
c87e2837
IM
2106
2107 BUG_ON(!q->pi_state);
29e9ee5d 2108 put_pi_state(q->pi_state);
c87e2837
IM
2109 q->pi_state = NULL;
2110
d0aa7a70 2111 spin_unlock(q->lock_ptr);
c87e2837
IM
2112}
2113
d0aa7a70 2114/*
cdf71a10 2115 * Fixup the pi_state owner with the new owner.
d0aa7a70 2116 *
778e9a9c
AK
2117 * Must be called with hash bucket lock held and mm->sem held for non
2118 * private futexes.
d0aa7a70 2119 */
778e9a9c 2120static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2121 struct task_struct *newowner)
d0aa7a70 2122{
cdf71a10 2123 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2124 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2125 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2126 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2127 int ret;
d0aa7a70
PP
2128
2129 /* Owner died? */
1b7558e4
TG
2130 if (!pi_state->owner)
2131 newtid |= FUTEX_OWNER_DIED;
2132
2133 /*
2134 * We are here either because we stole the rtmutex from the
8161239a
LJ
2135 * previous highest priority waiter or we are the highest priority
2136 * waiter but failed to get the rtmutex the first time.
2137 * We have to replace the newowner TID in the user space variable.
2138 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2139 *
b2d0994b
DH
2140 * Note: We write the user space value _before_ changing the pi_state
2141 * because we can fault here. Imagine swapped out pages or a fork
2142 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2143 *
2144 * Modifying pi_state _before_ the user space value would
2145 * leave the pi_state in an inconsistent state when we fault
2146 * here, because we need to drop the hash bucket lock to
2147 * handle the fault. This might be observed in the PID check
2148 * in lookup_pi_state.
2149 */
2150retry:
2151 if (get_futex_value_locked(&uval, uaddr))
2152 goto handle_fault;
2153
2154 while (1) {
2155 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2156
37a9d912 2157 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2158 goto handle_fault;
2159 if (curval == uval)
2160 break;
2161 uval = curval;
2162 }
2163
2164 /*
2165 * We fixed up user space. Now we need to fix the pi_state
2166 * itself.
2167 */
d0aa7a70 2168 if (pi_state->owner != NULL) {
1d615482 2169 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2170 WARN_ON(list_empty(&pi_state->list));
2171 list_del_init(&pi_state->list);
1d615482 2172 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2173 }
d0aa7a70 2174
cdf71a10 2175 pi_state->owner = newowner;
d0aa7a70 2176
1d615482 2177 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2178 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2179 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2180 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2181 return 0;
d0aa7a70 2182
d0aa7a70 2183 /*
1b7558e4 2184 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2185 * lock here. That gives the other task (either the highest priority
2186 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2187 * chance to try the fixup of the pi_state. So once we are
2188 * back from handling the fault we need to check the pi_state
2189 * after reacquiring the hash bucket lock and before trying to
2190 * do another fixup. When the fixup has been done already we
2191 * simply return.
d0aa7a70 2192 */
1b7558e4
TG
2193handle_fault:
2194 spin_unlock(q->lock_ptr);
778e9a9c 2195
d0725992 2196 ret = fault_in_user_writeable(uaddr);
778e9a9c 2197
1b7558e4 2198 spin_lock(q->lock_ptr);
778e9a9c 2199
1b7558e4
TG
2200 /*
2201 * Check if someone else fixed it for us:
2202 */
2203 if (pi_state->owner != oldowner)
2204 return 0;
2205
2206 if (ret)
2207 return ret;
2208
2209 goto retry;
d0aa7a70
PP
2210}
2211
72c1bbf3 2212static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2213
dd973998
DH
2214/**
2215 * fixup_owner() - Post lock pi_state and corner case management
2216 * @uaddr: user address of the futex
dd973998
DH
2217 * @q: futex_q (contains pi_state and access to the rt_mutex)
2218 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2219 *
2220 * After attempting to lock an rt_mutex, this function is called to cleanup
2221 * the pi_state owner as well as handle race conditions that may allow us to
2222 * acquire the lock. Must be called with the hb lock held.
2223 *
6c23cbbd
RD
2224 * Return:
2225 * 1 - success, lock taken;
2226 * 0 - success, lock not taken;
dd973998
DH
2227 * <0 - on error (-EFAULT)
2228 */
ae791a2d 2229static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2230{
2231 struct task_struct *owner;
2232 int ret = 0;
2233
2234 if (locked) {
2235 /*
2236 * Got the lock. We might not be the anticipated owner if we
2237 * did a lock-steal - fix up the PI-state in that case:
2238 */
2239 if (q->pi_state->owner != current)
ae791a2d 2240 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2241 goto out;
2242 }
2243
2244 /*
2245 * Catch the rare case, where the lock was released when we were on the
2246 * way back before we locked the hash bucket.
2247 */
2248 if (q->pi_state->owner == current) {
2249 /*
2250 * Try to get the rt_mutex now. This might fail as some other
2251 * task acquired the rt_mutex after we removed ourself from the
2252 * rt_mutex waiters list.
2253 */
5293c2ef 2254 if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) {
dd973998
DH
2255 locked = 1;
2256 goto out;
2257 }
2258
2259 /*
2260 * pi_state is incorrect, some other task did a lock steal and
2261 * we returned due to timeout or signal without taking the
8161239a 2262 * rt_mutex. Too late.
dd973998 2263 */
b4abf910 2264 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
dd973998 2265 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2266 if (!owner)
2267 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
b4abf910 2268 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2269 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2270 goto out;
2271 }
2272
2273 /*
2274 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2275 * the owner of the rt_mutex.
dd973998
DH
2276 */
2277 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2278 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2279 "pi-state %p\n", ret,
2280 q->pi_state->pi_mutex.owner,
2281 q->pi_state->owner);
2282
2283out:
2284 return ret ? ret : locked;
2285}
2286
ca5f9524
DH
2287/**
2288 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2289 * @hb: the futex hash bucket, must be locked by the caller
2290 * @q: the futex_q to queue up on
2291 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2292 */
2293static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2294 struct hrtimer_sleeper *timeout)
ca5f9524 2295{
9beba3c5
DH
2296 /*
2297 * The task state is guaranteed to be set before another task can
b92b8b35 2298 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2299 * queue_me() calls spin_unlock() upon completion, both serializing
2300 * access to the hash list and forcing another memory barrier.
2301 */
f1a11e05 2302 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2303 queue_me(q, hb);
ca5f9524
DH
2304
2305 /* Arm the timer */
2e4b0d3f 2306 if (timeout)
ca5f9524 2307 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2308
2309 /*
0729e196
DH
2310 * If we have been removed from the hash list, then another task
2311 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2312 */
2313 if (likely(!plist_node_empty(&q->list))) {
2314 /*
2315 * If the timer has already expired, current will already be
2316 * flagged for rescheduling. Only call schedule if there
2317 * is no timeout, or if it has yet to expire.
2318 */
2319 if (!timeout || timeout->task)
88c8004f 2320 freezable_schedule();
ca5f9524
DH
2321 }
2322 __set_current_state(TASK_RUNNING);
2323}
2324
f801073f
DH
2325/**
2326 * futex_wait_setup() - Prepare to wait on a futex
2327 * @uaddr: the futex userspace address
2328 * @val: the expected value
b41277dc 2329 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2330 * @q: the associated futex_q
2331 * @hb: storage for hash_bucket pointer to be returned to caller
2332 *
2333 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2334 * compare it with the expected value. Handle atomic faults internally.
2335 * Return with the hb lock held and a q.key reference on success, and unlocked
2336 * with no q.key reference on failure.
2337 *
6c23cbbd
RD
2338 * Return:
2339 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2340 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2341 */
b41277dc 2342static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2343 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2344{
e2970f2f
IM
2345 u32 uval;
2346 int ret;
1da177e4 2347
1da177e4 2348 /*
b2d0994b 2349 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2350 * Order is important:
2351 *
2352 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2353 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2354 *
2355 * The basic logical guarantee of a futex is that it blocks ONLY
2356 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2357 * any cond. If we locked the hash-bucket after testing *uaddr, that
2358 * would open a race condition where we could block indefinitely with
1da177e4
LT
2359 * cond(var) false, which would violate the guarantee.
2360 *
8fe8f545
ML
2361 * On the other hand, we insert q and release the hash-bucket only
2362 * after testing *uaddr. This guarantees that futex_wait() will NOT
2363 * absorb a wakeup if *uaddr does not match the desired values
2364 * while the syscall executes.
1da177e4 2365 */
f801073f 2366retry:
9ea71503 2367 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2368 if (unlikely(ret != 0))
a5a2a0c7 2369 return ret;
f801073f
DH
2370
2371retry_private:
2372 *hb = queue_lock(q);
2373
e2970f2f 2374 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2375
f801073f 2376 if (ret) {
0d00c7b2 2377 queue_unlock(*hb);
1da177e4 2378
e2970f2f 2379 ret = get_user(uval, uaddr);
e4dc5b7a 2380 if (ret)
f801073f 2381 goto out;
1da177e4 2382
b41277dc 2383 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2384 goto retry_private;
2385
ae791a2d 2386 put_futex_key(&q->key);
e4dc5b7a 2387 goto retry;
1da177e4 2388 }
ca5f9524 2389
f801073f 2390 if (uval != val) {
0d00c7b2 2391 queue_unlock(*hb);
f801073f 2392 ret = -EWOULDBLOCK;
2fff78c7 2393 }
1da177e4 2394
f801073f
DH
2395out:
2396 if (ret)
ae791a2d 2397 put_futex_key(&q->key);
f801073f
DH
2398 return ret;
2399}
2400
b41277dc
DH
2401static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2402 ktime_t *abs_time, u32 bitset)
f801073f
DH
2403{
2404 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2405 struct restart_block *restart;
2406 struct futex_hash_bucket *hb;
5bdb05f9 2407 struct futex_q q = futex_q_init;
f801073f
DH
2408 int ret;
2409
2410 if (!bitset)
2411 return -EINVAL;
f801073f
DH
2412 q.bitset = bitset;
2413
2414 if (abs_time) {
2415 to = &timeout;
2416
b41277dc
DH
2417 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2418 CLOCK_REALTIME : CLOCK_MONOTONIC,
2419 HRTIMER_MODE_ABS);
f801073f
DH
2420 hrtimer_init_sleeper(to, current);
2421 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2422 current->timer_slack_ns);
2423 }
2424
d58e6576 2425retry:
7ada876a
DH
2426 /*
2427 * Prepare to wait on uaddr. On success, holds hb lock and increments
2428 * q.key refs.
2429 */
b41277dc 2430 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2431 if (ret)
2432 goto out;
2433
ca5f9524 2434 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2435 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2436
2437 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2438 ret = 0;
7ada876a 2439 /* unqueue_me() drops q.key ref */
1da177e4 2440 if (!unqueue_me(&q))
7ada876a 2441 goto out;
2fff78c7 2442 ret = -ETIMEDOUT;
ca5f9524 2443 if (to && !to->task)
7ada876a 2444 goto out;
72c1bbf3 2445
e2970f2f 2446 /*
d58e6576
TG
2447 * We expect signal_pending(current), but we might be the
2448 * victim of a spurious wakeup as well.
e2970f2f 2449 */
7ada876a 2450 if (!signal_pending(current))
d58e6576 2451 goto retry;
d58e6576 2452
2fff78c7 2453 ret = -ERESTARTSYS;
c19384b5 2454 if (!abs_time)
7ada876a 2455 goto out;
1da177e4 2456
f56141e3 2457 restart = &current->restart_block;
2fff78c7 2458 restart->fn = futex_wait_restart;
a3c74c52 2459 restart->futex.uaddr = uaddr;
2fff78c7 2460 restart->futex.val = val;
2456e855 2461 restart->futex.time = *abs_time;
2fff78c7 2462 restart->futex.bitset = bitset;
0cd9c649 2463 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2464
2fff78c7
PZ
2465 ret = -ERESTART_RESTARTBLOCK;
2466
42d35d48 2467out:
ca5f9524
DH
2468 if (to) {
2469 hrtimer_cancel(&to->timer);
2470 destroy_hrtimer_on_stack(&to->timer);
2471 }
c87e2837
IM
2472 return ret;
2473}
2474
72c1bbf3
NP
2475
2476static long futex_wait_restart(struct restart_block *restart)
2477{
a3c74c52 2478 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2479 ktime_t t, *tp = NULL;
72c1bbf3 2480
a72188d8 2481 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2482 t = restart->futex.time;
a72188d8
DH
2483 tp = &t;
2484 }
72c1bbf3 2485 restart->fn = do_no_restart_syscall;
b41277dc
DH
2486
2487 return (long)futex_wait(uaddr, restart->futex.flags,
2488 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2489}
2490
2491
c87e2837
IM
2492/*
2493 * Userspace tried a 0 -> TID atomic transition of the futex value
2494 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2495 * if there are waiters then it will block as a consequence of relying
2496 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2497 * a 0 value of the futex too.).
2498 *
2499 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2500 */
996636dd 2501static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2502 ktime_t *time, int trylock)
c87e2837 2503{
c5780e97 2504 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2505 struct futex_hash_bucket *hb;
5bdb05f9 2506 struct futex_q q = futex_q_init;
dd973998 2507 int res, ret;
c87e2837
IM
2508
2509 if (refill_pi_state_cache())
2510 return -ENOMEM;
2511
c19384b5 2512 if (time) {
c5780e97 2513 to = &timeout;
237fc6e7
TG
2514 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2515 HRTIMER_MODE_ABS);
c5780e97 2516 hrtimer_init_sleeper(to, current);
cc584b21 2517 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2518 }
2519
42d35d48 2520retry:
9ea71503 2521 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2522 if (unlikely(ret != 0))
42d35d48 2523 goto out;
c87e2837 2524
e4dc5b7a 2525retry_private:
82af7aca 2526 hb = queue_lock(&q);
c87e2837 2527
bab5bc9e 2528 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2529 if (unlikely(ret)) {
767f509c
DB
2530 /*
2531 * Atomic work succeeded and we got the lock,
2532 * or failed. Either way, we do _not_ block.
2533 */
778e9a9c 2534 switch (ret) {
1a52084d
DH
2535 case 1:
2536 /* We got the lock. */
2537 ret = 0;
2538 goto out_unlock_put_key;
2539 case -EFAULT:
2540 goto uaddr_faulted;
778e9a9c
AK
2541 case -EAGAIN:
2542 /*
af54d6a1
TG
2543 * Two reasons for this:
2544 * - Task is exiting and we just wait for the
2545 * exit to complete.
2546 * - The user space value changed.
778e9a9c 2547 */
0d00c7b2 2548 queue_unlock(hb);
ae791a2d 2549 put_futex_key(&q.key);
778e9a9c
AK
2550 cond_resched();
2551 goto retry;
778e9a9c 2552 default:
42d35d48 2553 goto out_unlock_put_key;
c87e2837 2554 }
c87e2837
IM
2555 }
2556
2557 /*
2558 * Only actually queue now that the atomic ops are done:
2559 */
82af7aca 2560 queue_me(&q, hb);
c87e2837 2561
c87e2837
IM
2562 WARN_ON(!q.pi_state);
2563 /*
2564 * Block on the PI mutex:
2565 */
c051b21f
TG
2566 if (!trylock) {
2567 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2568 } else {
5293c2ef 2569 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2570 /* Fixup the trylock return value: */
2571 ret = ret ? 0 : -EWOULDBLOCK;
2572 }
2573
a99e4e41 2574 spin_lock(q.lock_ptr);
dd973998
DH
2575 /*
2576 * Fixup the pi_state owner and possibly acquire the lock if we
2577 * haven't already.
2578 */
ae791a2d 2579 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2580 /*
2581 * If fixup_owner() returned an error, proprogate that. If it acquired
2582 * the lock, clear our -ETIMEDOUT or -EINTR.
2583 */
2584 if (res)
2585 ret = (res < 0) ? res : 0;
c87e2837 2586
e8f6386c 2587 /*
dd973998
DH
2588 * If fixup_owner() faulted and was unable to handle the fault, unlock
2589 * it and return the fault to userspace.
e8f6386c
DH
2590 */
2591 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
5293c2ef 2592 rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
e8f6386c 2593
778e9a9c
AK
2594 /* Unqueue and drop the lock */
2595 unqueue_me_pi(&q);
c87e2837 2596
5ecb01cf 2597 goto out_put_key;
c87e2837 2598
42d35d48 2599out_unlock_put_key:
0d00c7b2 2600 queue_unlock(hb);
c87e2837 2601
42d35d48 2602out_put_key:
ae791a2d 2603 put_futex_key(&q.key);
42d35d48 2604out:
237fc6e7
TG
2605 if (to)
2606 destroy_hrtimer_on_stack(&to->timer);
dd973998 2607 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2608
42d35d48 2609uaddr_faulted:
0d00c7b2 2610 queue_unlock(hb);
778e9a9c 2611
d0725992 2612 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2613 if (ret)
2614 goto out_put_key;
c87e2837 2615
b41277dc 2616 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2617 goto retry_private;
2618
ae791a2d 2619 put_futex_key(&q.key);
e4dc5b7a 2620 goto retry;
c87e2837
IM
2621}
2622
c87e2837
IM
2623/*
2624 * Userspace attempted a TID -> 0 atomic transition, and failed.
2625 * This is the in-kernel slowpath: we look up the PI state (if any),
2626 * and do the rt-mutex unlock.
2627 */
b41277dc 2628static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2629{
ccf9e6a8 2630 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2631 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2632 struct futex_hash_bucket *hb;
499f5aca 2633 struct futex_q *top_waiter;
e4dc5b7a 2634 int ret;
c87e2837
IM
2635
2636retry:
2637 if (get_user(uval, uaddr))
2638 return -EFAULT;
2639 /*
2640 * We release only a lock we actually own:
2641 */
c0c9ed15 2642 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2643 return -EPERM;
c87e2837 2644
9ea71503 2645 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2646 if (ret)
2647 return ret;
c87e2837
IM
2648
2649 hb = hash_futex(&key);
2650 spin_lock(&hb->lock);
2651
c87e2837 2652 /*
ccf9e6a8
TG
2653 * Check waiters first. We do not trust user space values at
2654 * all and we at least want to know if user space fiddled
2655 * with the futex value instead of blindly unlocking.
c87e2837 2656 */
499f5aca
PZ
2657 top_waiter = futex_top_waiter(hb, &key);
2658 if (top_waiter) {
2659 ret = wake_futex_pi(uaddr, uval, top_waiter, hb);
802ab58d
SAS
2660 /*
2661 * In case of success wake_futex_pi dropped the hash
2662 * bucket lock.
2663 */
2664 if (!ret)
2665 goto out_putkey;
c87e2837 2666 /*
ccf9e6a8
TG
2667 * The atomic access to the futex value generated a
2668 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2669 */
2670 if (ret == -EFAULT)
2671 goto pi_faulted;
89e9e66b
SAS
2672 /*
2673 * A unconditional UNLOCK_PI op raced against a waiter
2674 * setting the FUTEX_WAITERS bit. Try again.
2675 */
2676 if (ret == -EAGAIN) {
2677 spin_unlock(&hb->lock);
2678 put_futex_key(&key);
2679 goto retry;
2680 }
802ab58d
SAS
2681 /*
2682 * wake_futex_pi has detected invalid state. Tell user
2683 * space.
2684 */
c87e2837
IM
2685 goto out_unlock;
2686 }
ccf9e6a8 2687
c87e2837 2688 /*
ccf9e6a8
TG
2689 * We have no kernel internal state, i.e. no waiters in the
2690 * kernel. Waiters which are about to queue themselves are stuck
2691 * on hb->lock. So we can safely ignore them. We do neither
2692 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2693 * owner.
c87e2837 2694 */
ccf9e6a8 2695 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2696 goto pi_faulted;
c87e2837 2697
ccf9e6a8
TG
2698 /*
2699 * If uval has changed, let user space handle it.
2700 */
2701 ret = (curval == uval) ? 0 : -EAGAIN;
2702
c87e2837
IM
2703out_unlock:
2704 spin_unlock(&hb->lock);
802ab58d 2705out_putkey:
ae791a2d 2706 put_futex_key(&key);
c87e2837
IM
2707 return ret;
2708
2709pi_faulted:
778e9a9c 2710 spin_unlock(&hb->lock);
ae791a2d 2711 put_futex_key(&key);
c87e2837 2712
d0725992 2713 ret = fault_in_user_writeable(uaddr);
b5686363 2714 if (!ret)
c87e2837
IM
2715 goto retry;
2716
1da177e4
LT
2717 return ret;
2718}
2719
52400ba9
DH
2720/**
2721 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2722 * @hb: the hash_bucket futex_q was original enqueued on
2723 * @q: the futex_q woken while waiting to be requeued
2724 * @key2: the futex_key of the requeue target futex
2725 * @timeout: the timeout associated with the wait (NULL if none)
2726 *
2727 * Detect if the task was woken on the initial futex as opposed to the requeue
2728 * target futex. If so, determine if it was a timeout or a signal that caused
2729 * the wakeup and return the appropriate error code to the caller. Must be
2730 * called with the hb lock held.
2731 *
6c23cbbd
RD
2732 * Return:
2733 * 0 = no early wakeup detected;
2734 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2735 */
2736static inline
2737int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2738 struct futex_q *q, union futex_key *key2,
2739 struct hrtimer_sleeper *timeout)
2740{
2741 int ret = 0;
2742
2743 /*
2744 * With the hb lock held, we avoid races while we process the wakeup.
2745 * We only need to hold hb (and not hb2) to ensure atomicity as the
2746 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2747 * It can't be requeued from uaddr2 to something else since we don't
2748 * support a PI aware source futex for requeue.
2749 */
2750 if (!match_futex(&q->key, key2)) {
2751 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2752 /*
2753 * We were woken prior to requeue by a timeout or a signal.
2754 * Unqueue the futex_q and determine which it was.
2755 */
2e12978a 2756 plist_del(&q->list, &hb->chain);
11d4616b 2757 hb_waiters_dec(hb);
52400ba9 2758
d58e6576 2759 /* Handle spurious wakeups gracefully */
11df6ddd 2760 ret = -EWOULDBLOCK;
52400ba9
DH
2761 if (timeout && !timeout->task)
2762 ret = -ETIMEDOUT;
d58e6576 2763 else if (signal_pending(current))
1c840c14 2764 ret = -ERESTARTNOINTR;
52400ba9
DH
2765 }
2766 return ret;
2767}
2768
2769/**
2770 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2771 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2772 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2773 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2774 * @val: the expected value of uaddr
2775 * @abs_time: absolute timeout
56ec1607 2776 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2777 * @uaddr2: the pi futex we will take prior to returning to user-space
2778 *
2779 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2780 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2781 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2782 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2783 * without one, the pi logic would not know which task to boost/deboost, if
2784 * there was a need to.
52400ba9
DH
2785 *
2786 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2787 * via the following--
52400ba9 2788 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2789 * 2) wakeup on uaddr2 after a requeue
2790 * 3) signal
2791 * 4) timeout
52400ba9 2792 *
cc6db4e6 2793 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2794 *
2795 * If 2, we may then block on trying to take the rt_mutex and return via:
2796 * 5) successful lock
2797 * 6) signal
2798 * 7) timeout
2799 * 8) other lock acquisition failure
2800 *
cc6db4e6 2801 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2802 *
2803 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2804 *
6c23cbbd
RD
2805 * Return:
2806 * 0 - On success;
52400ba9
DH
2807 * <0 - On error
2808 */
b41277dc 2809static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2810 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2811 u32 __user *uaddr2)
52400ba9
DH
2812{
2813 struct hrtimer_sleeper timeout, *to = NULL;
2814 struct rt_mutex_waiter rt_waiter;
52400ba9 2815 struct futex_hash_bucket *hb;
5bdb05f9
DH
2816 union futex_key key2 = FUTEX_KEY_INIT;
2817 struct futex_q q = futex_q_init;
52400ba9 2818 int res, ret;
52400ba9 2819
6f7b0a2a
DH
2820 if (uaddr == uaddr2)
2821 return -EINVAL;
2822
52400ba9
DH
2823 if (!bitset)
2824 return -EINVAL;
2825
2826 if (abs_time) {
2827 to = &timeout;
b41277dc
DH
2828 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2829 CLOCK_REALTIME : CLOCK_MONOTONIC,
2830 HRTIMER_MODE_ABS);
52400ba9
DH
2831 hrtimer_init_sleeper(to, current);
2832 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2833 current->timer_slack_ns);
2834 }
2835
2836 /*
2837 * The waiter is allocated on our stack, manipulated by the requeue
2838 * code while we sleep on uaddr.
2839 */
2840 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2841 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2842 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2843 rt_waiter.task = NULL;
2844
9ea71503 2845 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2846 if (unlikely(ret != 0))
2847 goto out;
2848
84bc4af5
DH
2849 q.bitset = bitset;
2850 q.rt_waiter = &rt_waiter;
2851 q.requeue_pi_key = &key2;
2852
7ada876a
DH
2853 /*
2854 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2855 * count.
2856 */
b41277dc 2857 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2858 if (ret)
2859 goto out_key2;
52400ba9 2860
e9c243a5
TG
2861 /*
2862 * The check above which compares uaddrs is not sufficient for
2863 * shared futexes. We need to compare the keys:
2864 */
2865 if (match_futex(&q.key, &key2)) {
13c42c2f 2866 queue_unlock(hb);
e9c243a5
TG
2867 ret = -EINVAL;
2868 goto out_put_keys;
2869 }
2870
52400ba9 2871 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2872 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2873
2874 spin_lock(&hb->lock);
2875 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2876 spin_unlock(&hb->lock);
2877 if (ret)
2878 goto out_put_keys;
2879
2880 /*
2881 * In order for us to be here, we know our q.key == key2, and since
2882 * we took the hb->lock above, we also know that futex_requeue() has
2883 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2884 * race with the atomic proxy lock acquisition by the requeue code. The
2885 * futex_requeue dropped our key1 reference and incremented our key2
2886 * reference count.
52400ba9
DH
2887 */
2888
2889 /* Check if the requeue code acquired the second futex for us. */
2890 if (!q.rt_waiter) {
2891 /*
2892 * Got the lock. We might not be the anticipated owner if we
2893 * did a lock-steal - fix up the PI-state in that case.
2894 */
2895 if (q.pi_state && (q.pi_state->owner != current)) {
2896 spin_lock(q.lock_ptr);
ae791a2d 2897 ret = fixup_pi_state_owner(uaddr2, &q, current);
9bbb25af 2898 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
5293c2ef 2899 rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
fb75a428
TG
2900 /*
2901 * Drop the reference to the pi state which
2902 * the requeue_pi() code acquired for us.
2903 */
29e9ee5d 2904 put_pi_state(q.pi_state);
52400ba9
DH
2905 spin_unlock(q.lock_ptr);
2906 }
2907 } else {
c236c8e9
PZ
2908 struct rt_mutex *pi_mutex;
2909
52400ba9
DH
2910 /*
2911 * We have been woken up by futex_unlock_pi(), a timeout, or a
2912 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2913 * the pi_state.
2914 */
f27071cb 2915 WARN_ON(!q.pi_state);
52400ba9 2916 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2917 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2918 debug_rt_mutex_free_waiter(&rt_waiter);
2919
2920 spin_lock(q.lock_ptr);
2921 /*
2922 * Fixup the pi_state owner and possibly acquire the lock if we
2923 * haven't already.
2924 */
ae791a2d 2925 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2926 /*
2927 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2928 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2929 */
2930 if (res)
2931 ret = (res < 0) ? res : 0;
2932
c236c8e9
PZ
2933 /*
2934 * If fixup_pi_state_owner() faulted and was unable to handle
2935 * the fault, unlock the rt_mutex and return the fault to
2936 * userspace.
2937 */
2938 if (ret && rt_mutex_owner(pi_mutex) == current)
5293c2ef 2939 rt_mutex_futex_unlock(pi_mutex);
c236c8e9 2940
52400ba9
DH
2941 /* Unqueue and drop the lock. */
2942 unqueue_me_pi(&q);
2943 }
2944
c236c8e9 2945 if (ret == -EINTR) {
52400ba9 2946 /*
cc6db4e6
DH
2947 * We've already been requeued, but cannot restart by calling
2948 * futex_lock_pi() directly. We could restart this syscall, but
2949 * it would detect that the user space "val" changed and return
2950 * -EWOULDBLOCK. Save the overhead of the restart and return
2951 * -EWOULDBLOCK directly.
52400ba9 2952 */
2070887f 2953 ret = -EWOULDBLOCK;
52400ba9
DH
2954 }
2955
2956out_put_keys:
ae791a2d 2957 put_futex_key(&q.key);
c8b15a70 2958out_key2:
ae791a2d 2959 put_futex_key(&key2);
52400ba9
DH
2960
2961out:
2962 if (to) {
2963 hrtimer_cancel(&to->timer);
2964 destroy_hrtimer_on_stack(&to->timer);
2965 }
2966 return ret;
2967}
2968
0771dfef
IM
2969/*
2970 * Support for robust futexes: the kernel cleans up held futexes at
2971 * thread exit time.
2972 *
2973 * Implementation: user-space maintains a per-thread list of locks it
2974 * is holding. Upon do_exit(), the kernel carefully walks this list,
2975 * and marks all locks that are owned by this thread with the
c87e2837 2976 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2977 * always manipulated with the lock held, so the list is private and
2978 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2979 * field, to allow the kernel to clean up if the thread dies after
2980 * acquiring the lock, but just before it could have added itself to
2981 * the list. There can only be one such pending lock.
2982 */
2983
2984/**
d96ee56c
DH
2985 * sys_set_robust_list() - Set the robust-futex list head of a task
2986 * @head: pointer to the list-head
2987 * @len: length of the list-head, as userspace expects
0771dfef 2988 */
836f92ad
HC
2989SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2990 size_t, len)
0771dfef 2991{
a0c1e907
TG
2992 if (!futex_cmpxchg_enabled)
2993 return -ENOSYS;
0771dfef
IM
2994 /*
2995 * The kernel knows only one size for now:
2996 */
2997 if (unlikely(len != sizeof(*head)))
2998 return -EINVAL;
2999
3000 current->robust_list = head;
3001
3002 return 0;
3003}
3004
3005/**
d96ee56c
DH
3006 * sys_get_robust_list() - Get the robust-futex list head of a task
3007 * @pid: pid of the process [zero for current task]
3008 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3009 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3010 */
836f92ad
HC
3011SYSCALL_DEFINE3(get_robust_list, int, pid,
3012 struct robust_list_head __user * __user *, head_ptr,
3013 size_t __user *, len_ptr)
0771dfef 3014{
ba46df98 3015 struct robust_list_head __user *head;
0771dfef 3016 unsigned long ret;
bdbb776f 3017 struct task_struct *p;
0771dfef 3018
a0c1e907
TG
3019 if (!futex_cmpxchg_enabled)
3020 return -ENOSYS;
3021
bdbb776f
KC
3022 rcu_read_lock();
3023
3024 ret = -ESRCH;
0771dfef 3025 if (!pid)
bdbb776f 3026 p = current;
0771dfef 3027 else {
228ebcbe 3028 p = find_task_by_vpid(pid);
0771dfef
IM
3029 if (!p)
3030 goto err_unlock;
0771dfef
IM
3031 }
3032
bdbb776f 3033 ret = -EPERM;
caaee623 3034 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3035 goto err_unlock;
3036
3037 head = p->robust_list;
3038 rcu_read_unlock();
3039
0771dfef
IM
3040 if (put_user(sizeof(*head), len_ptr))
3041 return -EFAULT;
3042 return put_user(head, head_ptr);
3043
3044err_unlock:
aaa2a97e 3045 rcu_read_unlock();
0771dfef
IM
3046
3047 return ret;
3048}
3049
3050/*
3051 * Process a futex-list entry, check whether it's owned by the
3052 * dying task, and do notification if so:
3053 */
e3f2ddea 3054int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3055{
7cfdaf38 3056 u32 uval, uninitialized_var(nval), mval;
0771dfef 3057
8f17d3a5
IM
3058retry:
3059 if (get_user(uval, uaddr))
0771dfef
IM
3060 return -1;
3061
b488893a 3062 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3063 /*
3064 * Ok, this dying thread is truly holding a futex
3065 * of interest. Set the OWNER_DIED bit atomically
3066 * via cmpxchg, and if the value had FUTEX_WAITERS
3067 * set, wake up a waiter (if any). (We have to do a
3068 * futex_wake() even if OWNER_DIED is already set -
3069 * to handle the rare but possible case of recursive
3070 * thread-death.) The rest of the cleanup is done in
3071 * userspace.
3072 */
e3f2ddea 3073 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3074 /*
3075 * We are not holding a lock here, but we want to have
3076 * the pagefault_disable/enable() protection because
3077 * we want to handle the fault gracefully. If the
3078 * access fails we try to fault in the futex with R/W
3079 * verification via get_user_pages. get_user() above
3080 * does not guarantee R/W access. If that fails we
3081 * give up and leave the futex locked.
3082 */
3083 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3084 if (fault_in_user_writeable(uaddr))
3085 return -1;
3086 goto retry;
3087 }
c87e2837 3088 if (nval != uval)
8f17d3a5 3089 goto retry;
0771dfef 3090
e3f2ddea
IM
3091 /*
3092 * Wake robust non-PI futexes here. The wakeup of
3093 * PI futexes happens in exit_pi_state():
3094 */
36cf3b5c 3095 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3096 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3097 }
3098 return 0;
3099}
3100
e3f2ddea
IM
3101/*
3102 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3103 */
3104static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3105 struct robust_list __user * __user *head,
1dcc41bb 3106 unsigned int *pi)
e3f2ddea
IM
3107{
3108 unsigned long uentry;
3109
ba46df98 3110 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3111 return -EFAULT;
3112
ba46df98 3113 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3114 *pi = uentry & 1;
3115
3116 return 0;
3117}
3118
0771dfef
IM
3119/*
3120 * Walk curr->robust_list (very carefully, it's a userspace list!)
3121 * and mark any locks found there dead, and notify any waiters.
3122 *
3123 * We silently return on any sign of list-walking problem.
3124 */
3125void exit_robust_list(struct task_struct *curr)
3126{
3127 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3128 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3129 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3130 unsigned int uninitialized_var(next_pi);
0771dfef 3131 unsigned long futex_offset;
9f96cb1e 3132 int rc;
0771dfef 3133
a0c1e907
TG
3134 if (!futex_cmpxchg_enabled)
3135 return;
3136
0771dfef
IM
3137 /*
3138 * Fetch the list head (which was registered earlier, via
3139 * sys_set_robust_list()):
3140 */
e3f2ddea 3141 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3142 return;
3143 /*
3144 * Fetch the relative futex offset:
3145 */
3146 if (get_user(futex_offset, &head->futex_offset))
3147 return;
3148 /*
3149 * Fetch any possibly pending lock-add first, and handle it
3150 * if it exists:
3151 */
e3f2ddea 3152 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3153 return;
e3f2ddea 3154
9f96cb1e 3155 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3156 while (entry != &head->list) {
9f96cb1e
MS
3157 /*
3158 * Fetch the next entry in the list before calling
3159 * handle_futex_death:
3160 */
3161 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3162 /*
3163 * A pending lock might already be on the list, so
c87e2837 3164 * don't process it twice:
0771dfef
IM
3165 */
3166 if (entry != pending)
ba46df98 3167 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3168 curr, pi))
0771dfef 3169 return;
9f96cb1e 3170 if (rc)
0771dfef 3171 return;
9f96cb1e
MS
3172 entry = next_entry;
3173 pi = next_pi;
0771dfef
IM
3174 /*
3175 * Avoid excessively long or circular lists:
3176 */
3177 if (!--limit)
3178 break;
3179
3180 cond_resched();
3181 }
9f96cb1e
MS
3182
3183 if (pending)
3184 handle_futex_death((void __user *)pending + futex_offset,
3185 curr, pip);
0771dfef
IM
3186}
3187
c19384b5 3188long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3189 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3190{
81b40539 3191 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3192 unsigned int flags = 0;
34f01cc1
ED
3193
3194 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3195 flags |= FLAGS_SHARED;
1da177e4 3196
b41277dc
DH
3197 if (op & FUTEX_CLOCK_REALTIME) {
3198 flags |= FLAGS_CLOCKRT;
337f1304
DH
3199 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3200 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3201 return -ENOSYS;
3202 }
1da177e4 3203
59263b51
TG
3204 switch (cmd) {
3205 case FUTEX_LOCK_PI:
3206 case FUTEX_UNLOCK_PI:
3207 case FUTEX_TRYLOCK_PI:
3208 case FUTEX_WAIT_REQUEUE_PI:
3209 case FUTEX_CMP_REQUEUE_PI:
3210 if (!futex_cmpxchg_enabled)
3211 return -ENOSYS;
3212 }
3213
34f01cc1 3214 switch (cmd) {
1da177e4 3215 case FUTEX_WAIT:
cd689985
TG
3216 val3 = FUTEX_BITSET_MATCH_ANY;
3217 case FUTEX_WAIT_BITSET:
81b40539 3218 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3219 case FUTEX_WAKE:
cd689985
TG
3220 val3 = FUTEX_BITSET_MATCH_ANY;
3221 case FUTEX_WAKE_BITSET:
81b40539 3222 return futex_wake(uaddr, flags, val, val3);
1da177e4 3223 case FUTEX_REQUEUE:
81b40539 3224 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3225 case FUTEX_CMP_REQUEUE:
81b40539 3226 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3227 case FUTEX_WAKE_OP:
81b40539 3228 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3229 case FUTEX_LOCK_PI:
996636dd 3230 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3231 case FUTEX_UNLOCK_PI:
81b40539 3232 return futex_unlock_pi(uaddr, flags);
c87e2837 3233 case FUTEX_TRYLOCK_PI:
996636dd 3234 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3235 case FUTEX_WAIT_REQUEUE_PI:
3236 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3237 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3238 uaddr2);
52400ba9 3239 case FUTEX_CMP_REQUEUE_PI:
81b40539 3240 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3241 }
81b40539 3242 return -ENOSYS;
1da177e4
LT
3243}
3244
3245
17da2bd9
HC
3246SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3247 struct timespec __user *, utime, u32 __user *, uaddr2,
3248 u32, val3)
1da177e4 3249{
c19384b5
PP
3250 struct timespec ts;
3251 ktime_t t, *tp = NULL;
e2970f2f 3252 u32 val2 = 0;
34f01cc1 3253 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3254
cd689985 3255 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3256 cmd == FUTEX_WAIT_BITSET ||
3257 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3258 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3259 return -EFAULT;
c19384b5 3260 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3261 return -EFAULT;
c19384b5 3262 if (!timespec_valid(&ts))
9741ef96 3263 return -EINVAL;
c19384b5
PP
3264
3265 t = timespec_to_ktime(ts);
34f01cc1 3266 if (cmd == FUTEX_WAIT)
5a7780e7 3267 t = ktime_add_safe(ktime_get(), t);
c19384b5 3268 tp = &t;
1da177e4
LT
3269 }
3270 /*
52400ba9 3271 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3272 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3273 */
f54f0986 3274 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3275 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3276 val2 = (u32) (unsigned long) utime;
1da177e4 3277
c19384b5 3278 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3279}
3280
03b8c7b6 3281static void __init futex_detect_cmpxchg(void)
1da177e4 3282{
03b8c7b6 3283#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3284 u32 curval;
03b8c7b6
HC
3285
3286 /*
3287 * This will fail and we want it. Some arch implementations do
3288 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3289 * functionality. We want to know that before we call in any
3290 * of the complex code paths. Also we want to prevent
3291 * registration of robust lists in that case. NULL is
3292 * guaranteed to fault and we get -EFAULT on functional
3293 * implementation, the non-functional ones will return
3294 * -ENOSYS.
3295 */
3296 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3297 futex_cmpxchg_enabled = 1;
3298#endif
3299}
3300
3301static int __init futex_init(void)
3302{
63b1a816 3303 unsigned int futex_shift;
a52b89eb
DB
3304 unsigned long i;
3305
3306#if CONFIG_BASE_SMALL
3307 futex_hashsize = 16;
3308#else
3309 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3310#endif
3311
3312 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3313 futex_hashsize, 0,
3314 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3315 &futex_shift, NULL,
3316 futex_hashsize, futex_hashsize);
3317 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3318
3319 futex_detect_cmpxchg();
a0c1e907 3320
a52b89eb 3321 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3322 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3323 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3324 spin_lock_init(&futex_queues[i].lock);
3325 }
3326
1da177e4
LT
3327 return 0;
3328}
25f71d1c 3329core_initcall(futex_init);