]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
futex: Restructure futex_requeue()
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
88c8004f 38#include <linux/freezer.h>
57c8a661 39#include <linux/memblock.h>
ab51fbab 40#include <linux/fault-inject.h>
c2f7d08c 41#include <linux/time_namespace.h>
b488893a 42
4732efbe 43#include <asm/futex.h>
1da177e4 44
1696a8be 45#include "locking/rtmutex_common.h"
c87e2837 46
99b60ce6 47/*
d7e8af1a
DB
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
99b60ce6
TG
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
99b60ce6
TG
59 *
60 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
99b60ce6 64 *
b0c29f79
DB
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 90 *
b0c29f79
DB
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
99b60ce6
TG
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
b0c29f79 99 *
d7e8af1a 100 * waiters++; (a)
8ad7b378
DB
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
99b60ce6 111 * if (uval == val)
b0c29f79 112 * queue();
99b60ce6 113 * unlock(hash_bucket(futex));
b0c29f79
DB
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
d7e8af1a
DB
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 118 *
d7e8af1a
DB
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 121 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
d7e8af1a
DB
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
145 */
146
04e7712f
AB
147#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148#define futex_cmpxchg_enabled 1
149#else
150static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 151#endif
a0c1e907 152
b41277dc
DH
153/*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
784bdf3b
TG
157#ifdef CONFIG_MMU
158# define FLAGS_SHARED 0x01
159#else
160/*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164# define FLAGS_SHARED 0x00
165#endif
b41277dc
DH
166#define FLAGS_CLOCKRT 0x02
167#define FLAGS_HAS_TIMEOUT 0x04
168
c87e2837
IM
169/*
170 * Priority Inheritance state:
171 */
172struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
830e6acc 182 struct rt_mutex_base pi_mutex;
c87e2837
IM
183
184 struct task_struct *owner;
49262de2 185 refcount_t refcount;
c87e2837
IM
186
187 union futex_key key;
3859a271 188} __randomize_layout;
c87e2837 189
d8d88fbb
DH
190/**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 192 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 *
ac6424b9 201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
202 * we can wake only the relevant ones (hashed queues may be shared).
203 *
204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 206 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
207 * the second.
208 *
209 * PI futexes are typically woken before they are removed from the hash list via
210 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
211 */
212struct futex_q {
ec92d082 213 struct plist_node list;
1da177e4 214
d8d88fbb 215 struct task_struct *task;
1da177e4 216 spinlock_t *lock_ptr;
1da177e4 217 union futex_key key;
c87e2837 218 struct futex_pi_state *pi_state;
52400ba9 219 struct rt_mutex_waiter *rt_waiter;
84bc4af5 220 union futex_key *requeue_pi_key;
cd689985 221 u32 bitset;
3859a271 222} __randomize_layout;
1da177e4 223
5bdb05f9
DH
224static const struct futex_q futex_q_init = {
225 /* list gets initialized in queue_me()*/
226 .key = FUTEX_KEY_INIT,
227 .bitset = FUTEX_BITSET_MATCH_ANY
228};
229
1da177e4 230/*
b2d0994b
DH
231 * Hash buckets are shared by all the futex_keys that hash to the same
232 * location. Each key may have multiple futex_q structures, one for each task
233 * waiting on a futex.
1da177e4
LT
234 */
235struct futex_hash_bucket {
11d4616b 236 atomic_t waiters;
ec92d082
PP
237 spinlock_t lock;
238 struct plist_head chain;
a52b89eb 239} ____cacheline_aligned_in_smp;
1da177e4 240
ac742d37
RV
241/*
242 * The base of the bucket array and its size are always used together
243 * (after initialization only in hash_futex()), so ensure that they
244 * reside in the same cacheline.
245 */
246static struct {
247 struct futex_hash_bucket *queues;
248 unsigned long hashsize;
249} __futex_data __read_mostly __aligned(2*sizeof(long));
250#define futex_queues (__futex_data.queues)
251#define futex_hashsize (__futex_data.hashsize)
a52b89eb 252
1da177e4 253
ab51fbab
DB
254/*
255 * Fault injections for futexes.
256 */
257#ifdef CONFIG_FAIL_FUTEX
258
259static struct {
260 struct fault_attr attr;
261
621a5f7a 262 bool ignore_private;
ab51fbab
DB
263} fail_futex = {
264 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 265 .ignore_private = false,
ab51fbab
DB
266};
267
268static int __init setup_fail_futex(char *str)
269{
270 return setup_fault_attr(&fail_futex.attr, str);
271}
272__setup("fail_futex=", setup_fail_futex);
273
5d285a7f 274static bool should_fail_futex(bool fshared)
ab51fbab
DB
275{
276 if (fail_futex.ignore_private && !fshared)
277 return false;
278
279 return should_fail(&fail_futex.attr, 1);
280}
281
282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284static int __init fail_futex_debugfs(void)
285{
286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 struct dentry *dir;
288
289 dir = fault_create_debugfs_attr("fail_futex", NULL,
290 &fail_futex.attr);
291 if (IS_ERR(dir))
292 return PTR_ERR(dir);
293
0365aeba
GKH
294 debugfs_create_bool("ignore-private", mode, dir,
295 &fail_futex.ignore_private);
ab51fbab
DB
296 return 0;
297}
298
299late_initcall(fail_futex_debugfs);
300
301#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303#else
304static inline bool should_fail_futex(bool fshared)
305{
306 return false;
307}
308#endif /* CONFIG_FAIL_FUTEX */
309
ba31c1a4
TG
310#ifdef CONFIG_COMPAT
311static void compat_exit_robust_list(struct task_struct *curr);
ba31c1a4
TG
312#endif
313
11d4616b
LT
314/*
315 * Reflects a new waiter being added to the waitqueue.
316 */
317static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
318{
319#ifdef CONFIG_SMP
11d4616b 320 atomic_inc(&hb->waiters);
b0c29f79 321 /*
11d4616b 322 * Full barrier (A), see the ordering comment above.
b0c29f79 323 */
4e857c58 324 smp_mb__after_atomic();
11d4616b
LT
325#endif
326}
327
328/*
329 * Reflects a waiter being removed from the waitqueue by wakeup
330 * paths.
331 */
332static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333{
334#ifdef CONFIG_SMP
335 atomic_dec(&hb->waiters);
336#endif
337}
b0c29f79 338
11d4616b
LT
339static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340{
341#ifdef CONFIG_SMP
4b39f99c
PZ
342 /*
343 * Full barrier (B), see the ordering comment above.
344 */
345 smp_mb();
11d4616b 346 return atomic_read(&hb->waiters);
b0c29f79 347#else
11d4616b 348 return 1;
b0c29f79
DB
349#endif
350}
351
e8b61b3f
TG
352/**
353 * hash_futex - Return the hash bucket in the global hash
354 * @key: Pointer to the futex key for which the hash is calculated
355 *
356 * We hash on the keys returned from get_futex_key (see below) and return the
357 * corresponding hash bucket in the global hash.
1da177e4
LT
358 */
359static struct futex_hash_bucket *hash_futex(union futex_key *key)
360{
8d677436 361 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 362 key->both.offset);
8d677436 363
a52b89eb 364 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
365}
366
e8b61b3f
TG
367
368/**
369 * match_futex - Check whether two futex keys are equal
370 * @key1: Pointer to key1
371 * @key2: Pointer to key2
372 *
1da177e4
LT
373 * Return 1 if two futex_keys are equal, 0 otherwise.
374 */
375static inline int match_futex(union futex_key *key1, union futex_key *key2)
376{
2bc87203
DH
377 return (key1 && key2
378 && key1->both.word == key2->both.word
1da177e4
LT
379 && key1->both.ptr == key2->both.ptr
380 && key1->both.offset == key2->both.offset);
381}
382
96d4f267
LT
383enum futex_access {
384 FUTEX_READ,
385 FUTEX_WRITE
386};
387
5ca584d9
WL
388/**
389 * futex_setup_timer - set up the sleeping hrtimer.
390 * @time: ptr to the given timeout value
391 * @timeout: the hrtimer_sleeper structure to be set up
392 * @flags: futex flags
393 * @range_ns: optional range in ns
394 *
395 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396 * value given
397 */
398static inline struct hrtimer_sleeper *
399futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400 int flags, u64 range_ns)
401{
402 if (!time)
403 return NULL;
404
dbc1625f
SAS
405 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406 CLOCK_REALTIME : CLOCK_MONOTONIC,
407 HRTIMER_MODE_ABS);
5ca584d9
WL
408 /*
409 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410 * effectively the same as calling hrtimer_set_expires().
411 */
412 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414 return timeout;
415}
416
8019ad13
PZ
417/*
418 * Generate a machine wide unique identifier for this inode.
419 *
420 * This relies on u64 not wrapping in the life-time of the machine; which with
421 * 1ns resolution means almost 585 years.
422 *
423 * This further relies on the fact that a well formed program will not unmap
424 * the file while it has a (shared) futex waiting on it. This mapping will have
425 * a file reference which pins the mount and inode.
426 *
427 * If for some reason an inode gets evicted and read back in again, it will get
428 * a new sequence number and will _NOT_ match, even though it is the exact same
429 * file.
430 *
431 * It is important that match_futex() will never have a false-positive, esp.
432 * for PI futexes that can mess up the state. The above argues that false-negatives
433 * are only possible for malformed programs.
434 */
435static u64 get_inode_sequence_number(struct inode *inode)
436{
437 static atomic64_t i_seq;
438 u64 old;
439
440 /* Does the inode already have a sequence number? */
441 old = atomic64_read(&inode->i_sequence);
442 if (likely(old))
443 return old;
444
445 for (;;) {
446 u64 new = atomic64_add_return(1, &i_seq);
447 if (WARN_ON_ONCE(!new))
448 continue;
449
450 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451 if (old)
452 return old;
453 return new;
454 }
455}
456
34f01cc1 457/**
d96ee56c
DH
458 * get_futex_key() - Get parameters which are the keys for a futex
459 * @uaddr: virtual address of the futex
92613085 460 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 461 * @key: address where result is stored.
96d4f267
LT
462 * @rw: mapping needs to be read/write (values: FUTEX_READ,
463 * FUTEX_WRITE)
34f01cc1 464 *
6c23cbbd
RD
465 * Return: a negative error code or 0
466 *
7b4ff1ad 467 * The key words are stored in @key on success.
1da177e4 468 *
8019ad13 469 * For shared mappings (when @fshared), the key is:
03c109d6 470 *
8019ad13 471 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 472 *
8019ad13
PZ
473 * [ also see get_inode_sequence_number() ]
474 *
475 * For private mappings (or when !@fshared), the key is:
03c109d6 476 *
8019ad13
PZ
477 * ( current->mm, address, 0 )
478 *
479 * This allows (cross process, where applicable) identification of the futex
480 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 481 *
b2d0994b 482 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 483 */
92613085
AA
484static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485 enum futex_access rw)
1da177e4 486{
e2970f2f 487 unsigned long address = (unsigned long)uaddr;
1da177e4 488 struct mm_struct *mm = current->mm;
077fa7ae 489 struct page *page, *tail;
14d27abd 490 struct address_space *mapping;
9ea71503 491 int err, ro = 0;
1da177e4
LT
492
493 /*
494 * The futex address must be "naturally" aligned.
495 */
e2970f2f 496 key->both.offset = address % PAGE_SIZE;
34f01cc1 497 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 498 return -EINVAL;
e2970f2f 499 address -= key->both.offset;
1da177e4 500
96d4f267 501 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
502 return -EFAULT;
503
ab51fbab
DB
504 if (unlikely(should_fail_futex(fshared)))
505 return -EFAULT;
506
34f01cc1
ED
507 /*
508 * PROCESS_PRIVATE futexes are fast.
509 * As the mm cannot disappear under us and the 'key' only needs
510 * virtual address, we dont even have to find the underlying vma.
511 * Note : We do have to check 'uaddr' is a valid user address,
512 * but access_ok() should be faster than find_vma()
513 */
514 if (!fshared) {
34f01cc1
ED
515 key->private.mm = mm;
516 key->private.address = address;
517 return 0;
518 }
1da177e4 519
38d47c1b 520again:
ab51fbab 521 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 522 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
523 return -EFAULT;
524
73b0140b 525 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
526 /*
527 * If write access is not required (eg. FUTEX_WAIT), try
528 * and get read-only access.
529 */
96d4f267 530 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
531 err = get_user_pages_fast(address, 1, 0, &page);
532 ro = 1;
533 }
38d47c1b
PZ
534 if (err < 0)
535 return err;
9ea71503
SB
536 else
537 err = 0;
38d47c1b 538
65d8fc77
MG
539 /*
540 * The treatment of mapping from this point on is critical. The page
541 * lock protects many things but in this context the page lock
542 * stabilizes mapping, prevents inode freeing in the shared
543 * file-backed region case and guards against movement to swap cache.
544 *
545 * Strictly speaking the page lock is not needed in all cases being
546 * considered here and page lock forces unnecessarily serialization
547 * From this point on, mapping will be re-verified if necessary and
548 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
549 *
550 * Mapping checks require the head page for any compound page so the
551 * head page and mapping is looked up now. For anonymous pages, it
552 * does not matter if the page splits in the future as the key is
553 * based on the address. For filesystem-backed pages, the tail is
554 * required as the index of the page determines the key. For
555 * base pages, there is no tail page and tail == page.
65d8fc77 556 */
077fa7ae 557 tail = page;
65d8fc77
MG
558 page = compound_head(page);
559 mapping = READ_ONCE(page->mapping);
560
e6780f72 561 /*
14d27abd 562 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
563 * page; but it might be the ZERO_PAGE or in the gate area or
564 * in a special mapping (all cases which we are happy to fail);
565 * or it may have been a good file page when get_user_pages_fast
566 * found it, but truncated or holepunched or subjected to
567 * invalidate_complete_page2 before we got the page lock (also
568 * cases which we are happy to fail). And we hold a reference,
569 * so refcount care in invalidate_complete_page's remove_mapping
570 * prevents drop_caches from setting mapping to NULL beneath us.
571 *
572 * The case we do have to guard against is when memory pressure made
573 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 574 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 575 */
65d8fc77
MG
576 if (unlikely(!mapping)) {
577 int shmem_swizzled;
578
579 /*
580 * Page lock is required to identify which special case above
581 * applies. If this is really a shmem page then the page lock
582 * will prevent unexpected transitions.
583 */
584 lock_page(page);
585 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
586 unlock_page(page);
587 put_page(page);
65d8fc77 588
e6780f72
HD
589 if (shmem_swizzled)
590 goto again;
65d8fc77 591
e6780f72 592 return -EFAULT;
38d47c1b 593 }
1da177e4
LT
594
595 /*
596 * Private mappings are handled in a simple way.
597 *
65d8fc77
MG
598 * If the futex key is stored on an anonymous page, then the associated
599 * object is the mm which is implicitly pinned by the calling process.
600 *
1da177e4
LT
601 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 603 * the object not the particular process.
1da177e4 604 */
14d27abd 605 if (PageAnon(page)) {
9ea71503
SB
606 /*
607 * A RO anonymous page will never change and thus doesn't make
608 * sense for futex operations.
609 */
92613085 610 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
611 err = -EFAULT;
612 goto out;
613 }
614
38d47c1b 615 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 616 key->private.mm = mm;
e2970f2f 617 key->private.address = address;
65d8fc77 618
38d47c1b 619 } else {
65d8fc77
MG
620 struct inode *inode;
621
622 /*
623 * The associated futex object in this case is the inode and
624 * the page->mapping must be traversed. Ordinarily this should
625 * be stabilised under page lock but it's not strictly
626 * necessary in this case as we just want to pin the inode, not
627 * update the radix tree or anything like that.
628 *
629 * The RCU read lock is taken as the inode is finally freed
630 * under RCU. If the mapping still matches expectations then the
631 * mapping->host can be safely accessed as being a valid inode.
632 */
633 rcu_read_lock();
634
635 if (READ_ONCE(page->mapping) != mapping) {
636 rcu_read_unlock();
637 put_page(page);
638
639 goto again;
640 }
641
642 inode = READ_ONCE(mapping->host);
643 if (!inode) {
644 rcu_read_unlock();
645 put_page(page);
646
647 goto again;
648 }
649
38d47c1b 650 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 651 key->shared.i_seq = get_inode_sequence_number(inode);
fe19bd3d 652 key->shared.pgoff = page_to_pgoff(tail);
65d8fc77 653 rcu_read_unlock();
1da177e4
LT
654 }
655
9ea71503 656out:
14d27abd 657 put_page(page);
9ea71503 658 return err;
1da177e4
LT
659}
660
d96ee56c
DH
661/**
662 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
663 * @uaddr: pointer to faulting user space address
664 *
665 * Slow path to fixup the fault we just took in the atomic write
666 * access to @uaddr.
667 *
fb62db2b 668 * We have no generic implementation of a non-destructive write to the
d0725992
TG
669 * user address. We know that we faulted in the atomic pagefault
670 * disabled section so we can as well avoid the #PF overhead by
671 * calling get_user_pages() right away.
672 */
673static int fault_in_user_writeable(u32 __user *uaddr)
674{
722d0172
AK
675 struct mm_struct *mm = current->mm;
676 int ret;
677
d8ed45c5 678 mmap_read_lock(mm);
64019a2e 679 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 680 FAULT_FLAG_WRITE, NULL);
d8ed45c5 681 mmap_read_unlock(mm);
722d0172 682
d0725992
TG
683 return ret < 0 ? ret : 0;
684}
685
4b1c486b
DH
686/**
687 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
688 * @hb: the hash bucket the futex_q's reside in
689 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
690 *
691 * Must be called with the hb lock held.
692 */
693static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694 union futex_key *key)
695{
696 struct futex_q *this;
697
698 plist_for_each_entry(this, &hb->chain, list) {
699 if (match_futex(&this->key, key))
700 return this;
701 }
702 return NULL;
703}
704
37a9d912
ML
705static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706 u32 uval, u32 newval)
36cf3b5c 707{
37a9d912 708 int ret;
36cf3b5c
TG
709
710 pagefault_disable();
37a9d912 711 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
712 pagefault_enable();
713
37a9d912 714 return ret;
36cf3b5c
TG
715}
716
717static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
718{
719 int ret;
720
a866374a 721 pagefault_disable();
bd28b145 722 ret = __get_user(*dest, from);
a866374a 723 pagefault_enable();
1da177e4
LT
724
725 return ret ? -EFAULT : 0;
726}
727
c87e2837
IM
728
729/*
730 * PI code:
731 */
732static int refill_pi_state_cache(void)
733{
734 struct futex_pi_state *pi_state;
735
736 if (likely(current->pi_state_cache))
737 return 0;
738
4668edc3 739 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
740
741 if (!pi_state)
742 return -ENOMEM;
743
c87e2837
IM
744 INIT_LIST_HEAD(&pi_state->list);
745 /* pi_mutex gets initialized later */
746 pi_state->owner = NULL;
49262de2 747 refcount_set(&pi_state->refcount, 1);
38d47c1b 748 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
749
750 current->pi_state_cache = pi_state;
751
752 return 0;
753}
754
bf92cf3a 755static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
756{
757 struct futex_pi_state *pi_state = current->pi_state_cache;
758
759 WARN_ON(!pi_state);
760 current->pi_state_cache = NULL;
761
762 return pi_state;
763}
764
c5cade20
TG
765static void pi_state_update_owner(struct futex_pi_state *pi_state,
766 struct task_struct *new_owner)
767{
768 struct task_struct *old_owner = pi_state->owner;
769
770 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772 if (old_owner) {
773 raw_spin_lock(&old_owner->pi_lock);
774 WARN_ON(list_empty(&pi_state->list));
775 list_del_init(&pi_state->list);
776 raw_spin_unlock(&old_owner->pi_lock);
777 }
778
779 if (new_owner) {
780 raw_spin_lock(&new_owner->pi_lock);
781 WARN_ON(!list_empty(&pi_state->list));
782 list_add(&pi_state->list, &new_owner->pi_state_list);
783 pi_state->owner = new_owner;
784 raw_spin_unlock(&new_owner->pi_lock);
785 }
786}
787
bf92cf3a
PZ
788static void get_pi_state(struct futex_pi_state *pi_state)
789{
49262de2 790 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
791}
792
30a6b803 793/*
29e9ee5d
TG
794 * Drops a reference to the pi_state object and frees or caches it
795 * when the last reference is gone.
30a6b803 796 */
29e9ee5d 797static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 798{
30a6b803
BS
799 if (!pi_state)
800 return;
801
49262de2 802 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
803 return;
804
805 /*
806 * If pi_state->owner is NULL, the owner is most probably dying
807 * and has cleaned up the pi_state already
808 */
809 if (pi_state->owner) {
1e106aa3 810 unsigned long flags;
c87e2837 811
1e106aa3 812 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
6ccc84f9 813 pi_state_update_owner(pi_state, NULL);
2156ac19 814 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
1e106aa3 815 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
c87e2837
IM
816 }
817
c74aef2d 818 if (current->pi_state_cache) {
c87e2837 819 kfree(pi_state);
c74aef2d 820 } else {
c87e2837
IM
821 /*
822 * pi_state->list is already empty.
823 * clear pi_state->owner.
824 * refcount is at 0 - put it back to 1.
825 */
826 pi_state->owner = NULL;
49262de2 827 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
828 current->pi_state_cache = pi_state;
829 }
830}
831
bc2eecd7
NP
832#ifdef CONFIG_FUTEX_PI
833
c87e2837
IM
834/*
835 * This task is holding PI mutexes at exit time => bad.
836 * Kernel cleans up PI-state, but userspace is likely hosed.
837 * (Robust-futex cleanup is separate and might save the day for userspace.)
838 */
ba31c1a4 839static void exit_pi_state_list(struct task_struct *curr)
c87e2837 840{
c87e2837
IM
841 struct list_head *next, *head = &curr->pi_state_list;
842 struct futex_pi_state *pi_state;
627371d7 843 struct futex_hash_bucket *hb;
38d47c1b 844 union futex_key key = FUTEX_KEY_INIT;
c87e2837 845
a0c1e907
TG
846 if (!futex_cmpxchg_enabled)
847 return;
c87e2837
IM
848 /*
849 * We are a ZOMBIE and nobody can enqueue itself on
850 * pi_state_list anymore, but we have to be careful
627371d7 851 * versus waiters unqueueing themselves:
c87e2837 852 */
1d615482 853 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 854 while (!list_empty(head)) {
c87e2837
IM
855 next = head->next;
856 pi_state = list_entry(next, struct futex_pi_state, list);
857 key = pi_state->key;
627371d7 858 hb = hash_futex(&key);
153fbd12
PZ
859
860 /*
861 * We can race against put_pi_state() removing itself from the
862 * list (a waiter going away). put_pi_state() will first
863 * decrement the reference count and then modify the list, so
864 * its possible to see the list entry but fail this reference
865 * acquire.
866 *
867 * In that case; drop the locks to let put_pi_state() make
868 * progress and retry the loop.
869 */
49262de2 870 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
871 raw_spin_unlock_irq(&curr->pi_lock);
872 cpu_relax();
873 raw_spin_lock_irq(&curr->pi_lock);
874 continue;
875 }
1d615482 876 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 877
c87e2837 878 spin_lock(&hb->lock);
c74aef2d
PZ
879 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880 raw_spin_lock(&curr->pi_lock);
627371d7
IM
881 /*
882 * We dropped the pi-lock, so re-check whether this
883 * task still owns the PI-state:
884 */
c87e2837 885 if (head->next != next) {
153fbd12 886 /* retain curr->pi_lock for the loop invariant */
c74aef2d 887 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 888 spin_unlock(&hb->lock);
153fbd12 889 put_pi_state(pi_state);
c87e2837
IM
890 continue;
891 }
892
c87e2837 893 WARN_ON(pi_state->owner != curr);
627371d7
IM
894 WARN_ON(list_empty(&pi_state->list));
895 list_del_init(&pi_state->list);
c87e2837 896 pi_state->owner = NULL;
c87e2837 897
153fbd12 898 raw_spin_unlock(&curr->pi_lock);
c74aef2d 899 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
900 spin_unlock(&hb->lock);
901
16ffa12d
PZ
902 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903 put_pi_state(pi_state);
904
1d615482 905 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 906 }
1d615482 907 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 908}
ba31c1a4
TG
909#else
910static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
911#endif
912
54a21788
TG
913/*
914 * We need to check the following states:
915 *
916 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
917 *
918 * [1] NULL | --- | --- | 0 | 0/1 | Valid
919 * [2] NULL | --- | --- | >0 | 0/1 | Valid
920 *
921 * [3] Found | NULL | -- | Any | 0/1 | Invalid
922 *
923 * [4] Found | Found | NULL | 0 | 1 | Valid
924 * [5] Found | Found | NULL | >0 | 1 | Invalid
925 *
926 * [6] Found | Found | task | 0 | 1 | Valid
927 *
928 * [7] Found | Found | NULL | Any | 0 | Invalid
929 *
930 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
931 * [9] Found | Found | task | 0 | 0 | Invalid
932 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
933 *
934 * [1] Indicates that the kernel can acquire the futex atomically. We
7b7b8a2c 935 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
54a21788
TG
936 *
937 * [2] Valid, if TID does not belong to a kernel thread. If no matching
938 * thread is found then it indicates that the owner TID has died.
939 *
940 * [3] Invalid. The waiter is queued on a non PI futex
941 *
942 * [4] Valid state after exit_robust_list(), which sets the user space
943 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944 *
945 * [5] The user space value got manipulated between exit_robust_list()
946 * and exit_pi_state_list()
947 *
948 * [6] Valid state after exit_pi_state_list() which sets the new owner in
949 * the pi_state but cannot access the user space value.
950 *
951 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952 *
953 * [8] Owner and user space value match
954 *
955 * [9] There is no transient state which sets the user space TID to 0
956 * except exit_robust_list(), but this is indicated by the
957 * FUTEX_OWNER_DIED bit. See [4]
958 *
959 * [10] There is no transient state which leaves owner and user space
34b1a1ce
TG
960 * TID out of sync. Except one error case where the kernel is denied
961 * write access to the user address, see fixup_pi_state_owner().
734009e9
PZ
962 *
963 *
964 * Serialization and lifetime rules:
965 *
966 * hb->lock:
967 *
968 * hb -> futex_q, relation
969 * futex_q -> pi_state, relation
970 *
971 * (cannot be raw because hb can contain arbitrary amount
972 * of futex_q's)
973 *
974 * pi_mutex->wait_lock:
975 *
976 * {uval, pi_state}
977 *
978 * (and pi_mutex 'obviously')
979 *
980 * p->pi_lock:
981 *
982 * p->pi_state_list -> pi_state->list, relation
c2e4bfe0 983 * pi_mutex->owner -> pi_state->owner, relation
734009e9
PZ
984 *
985 * pi_state->refcount:
986 *
987 * pi_state lifetime
988 *
989 *
990 * Lock order:
991 *
992 * hb->lock
993 * pi_mutex->wait_lock
994 * p->pi_lock
995 *
54a21788 996 */
e60cbc5c
TG
997
998/*
999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
734009e9
PZ
1003static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004 struct futex_pi_state *pi_state,
e60cbc5c 1005 struct futex_pi_state **ps)
c87e2837 1006{
778e9a9c 1007 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1008 u32 uval2;
1009 int ret;
c87e2837 1010
e60cbc5c
TG
1011 /*
1012 * Userspace might have messed up non-PI and PI futexes [3]
1013 */
1014 if (unlikely(!pi_state))
1015 return -EINVAL;
06a9ec29 1016
734009e9
PZ
1017 /*
1018 * We get here with hb->lock held, and having found a
1019 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021 * which in turn means that futex_lock_pi() still has a reference on
1022 * our pi_state.
16ffa12d
PZ
1023 *
1024 * The waiter holding a reference on @pi_state also protects against
1025 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027 * free pi_state before we can take a reference ourselves.
734009e9 1028 */
49262de2 1029 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1030
734009e9
PZ
1031 /*
1032 * Now that we have a pi_state, we can acquire wait_lock
1033 * and do the state validation.
1034 */
1035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037 /*
1038 * Since {uval, pi_state} is serialized by wait_lock, and our current
1039 * uval was read without holding it, it can have changed. Verify it
1040 * still is what we expect it to be, otherwise retry the entire
1041 * operation.
1042 */
1043 if (get_futex_value_locked(&uval2, uaddr))
1044 goto out_efault;
1045
1046 if (uval != uval2)
1047 goto out_eagain;
1048
e60cbc5c
TG
1049 /*
1050 * Handle the owner died case:
1051 */
1052 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1053 /*
e60cbc5c
TG
1054 * exit_pi_state_list sets owner to NULL and wakes the
1055 * topmost waiter. The task which acquires the
1056 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1057 */
e60cbc5c 1058 if (!pi_state->owner) {
59647b6a 1059 /*
e60cbc5c
TG
1060 * No pi state owner, but the user space TID
1061 * is not 0. Inconsistent state. [5]
59647b6a 1062 */
e60cbc5c 1063 if (pid)
734009e9 1064 goto out_einval;
bd1dbcc6 1065 /*
e60cbc5c 1066 * Take a ref on the state and return success. [4]
866293ee 1067 */
734009e9 1068 goto out_attach;
c87e2837 1069 }
bd1dbcc6
TG
1070
1071 /*
e60cbc5c
TG
1072 * If TID is 0, then either the dying owner has not
1073 * yet executed exit_pi_state_list() or some waiter
1074 * acquired the rtmutex in the pi state, but did not
1075 * yet fixup the TID in user space.
1076 *
1077 * Take a ref on the state and return success. [6]
1078 */
1079 if (!pid)
734009e9 1080 goto out_attach;
e60cbc5c
TG
1081 } else {
1082 /*
1083 * If the owner died bit is not set, then the pi_state
1084 * must have an owner. [7]
bd1dbcc6 1085 */
e60cbc5c 1086 if (!pi_state->owner)
734009e9 1087 goto out_einval;
c87e2837
IM
1088 }
1089
e60cbc5c
TG
1090 /*
1091 * Bail out if user space manipulated the futex value. If pi
1092 * state exists then the owner TID must be the same as the
1093 * user space TID. [9/10]
1094 */
1095 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1096 goto out_einval;
1097
1098out_attach:
bf92cf3a 1099 get_pi_state(pi_state);
734009e9 1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1101 *ps = pi_state;
1102 return 0;
734009e9
PZ
1103
1104out_einval:
1105 ret = -EINVAL;
1106 goto out_error;
1107
1108out_eagain:
1109 ret = -EAGAIN;
1110 goto out_error;
1111
1112out_efault:
1113 ret = -EFAULT;
1114 goto out_error;
1115
1116out_error:
1117 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118 return ret;
e60cbc5c
TG
1119}
1120
3ef240ea
TG
1121/**
1122 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1123 * @ret: owner's current futex lock status
3ef240ea
TG
1124 * @exiting: Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129{
1130 if (ret != -EBUSY) {
1131 WARN_ON_ONCE(exiting);
1132 return;
1133 }
1134
1135 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136 return;
1137
1138 mutex_lock(&exiting->futex_exit_mutex);
1139 /*
1140 * No point in doing state checking here. If the waiter got here
1141 * while the task was in exec()->exec_futex_release() then it can
1142 * have any FUTEX_STATE_* value when the waiter has acquired the
1143 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144 * already. Highly unlikely and not a problem. Just one more round
1145 * through the futex maze.
1146 */
1147 mutex_unlock(&exiting->futex_exit_mutex);
1148
1149 put_task_struct(exiting);
1150}
1151
da791a66
TG
1152static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153 struct task_struct *tsk)
1154{
1155 u32 uval2;
1156
1157 /*
ac31c7ff
TG
1158 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159 * caller that the alleged owner is busy.
da791a66 1160 */
3d4775df 1161 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1162 return -EBUSY;
da791a66
TG
1163
1164 /*
1165 * Reread the user space value to handle the following situation:
1166 *
1167 * CPU0 CPU1
1168 *
1169 * sys_exit() sys_futex()
1170 * do_exit() futex_lock_pi()
1171 * futex_lock_pi_atomic()
1172 * exit_signals(tsk) No waiters:
1173 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1174 * mm_release(tsk) Set waiter bit
1175 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1176 * Set owner died attach_to_pi_owner() {
1177 * *uaddr = 0xC0000000; tsk = get_task(PID);
1178 * } if (!tsk->flags & PF_EXITING) {
1179 * ... attach();
3d4775df
TG
1180 * tsk->futex_state = } else {
1181 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1182 * FUTEX_STATE_DEAD)
da791a66
TG
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206}
1207
04e1b2e5
TG
1208/*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
da791a66 1212static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1213 struct futex_pi_state **ps,
1214 struct task_struct **exiting)
e60cbc5c 1215{
e60cbc5c 1216 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1217 struct futex_pi_state *pi_state;
1218 struct task_struct *p;
e60cbc5c 1219
c87e2837 1220 /*
e3f2ddea 1221 * We are the first waiter - try to look up the real owner and attach
54a21788 1222 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1223 *
1224 * The !pid check is paranoid. None of the call sites should end up
1225 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1226 */
778e9a9c 1227 if (!pid)
da791a66 1228 return -EAGAIN;
2ee08260 1229 p = find_get_task_by_vpid(pid);
7a0ea09a 1230 if (!p)
da791a66 1231 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1232
a2129464 1233 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1234 put_task_struct(p);
1235 return -EPERM;
1236 }
1237
778e9a9c 1238 /*
3d4775df
TG
1239 * We need to look at the task state to figure out, whether the
1240 * task is exiting. To protect against the change of the task state
1241 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1242 */
1d615482 1243 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1244 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1245 /*
3d4775df
TG
1246 * The task is on the way out. When the futex state is
1247 * FUTEX_STATE_DEAD, we know that the task has finished
1248 * the cleanup:
778e9a9c 1249 */
da791a66 1250 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1251
1d615482 1252 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1253 /*
1254 * If the owner task is between FUTEX_STATE_EXITING and
1255 * FUTEX_STATE_DEAD then store the task pointer and keep
1256 * the reference on the task struct. The calling code will
1257 * drop all locks, wait for the task to reach
1258 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259 * required to prevent a live lock when the current task
1260 * preempted the exiting task between the two states.
1261 */
1262 if (ret == -EBUSY)
1263 *exiting = p;
1264 else
1265 put_task_struct(p);
778e9a9c
AK
1266 return ret;
1267 }
c87e2837 1268
54a21788
TG
1269 /*
1270 * No existing pi state. First waiter. [2]
734009e9
PZ
1271 *
1272 * This creates pi_state, we have hb->lock held, this means nothing can
1273 * observe this state, wait_lock is irrelevant.
54a21788 1274 */
c87e2837
IM
1275 pi_state = alloc_pi_state();
1276
1277 /*
04e1b2e5 1278 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1279 * the owner of it:
1280 */
1281 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283 /* Store the key for possible exit cleanups: */
d0aa7a70 1284 pi_state->key = *key;
c87e2837 1285
627371d7 1286 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1287 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1288 /*
1289 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290 * because there is no concurrency as the object is not published yet.
1291 */
c87e2837 1292 pi_state->owner = p;
1d615482 1293 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1294
1295 put_task_struct(p);
1296
d0aa7a70 1297 *ps = pi_state;
c87e2837
IM
1298
1299 return 0;
1300}
1301
af54d6a1
TG
1302static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1303{
6b4f4bc9 1304 int err;
3f649ab7 1305 u32 curval;
af54d6a1 1306
ab51fbab
DB
1307 if (unlikely(should_fail_futex(true)))
1308 return -EFAULT;
1309
6b4f4bc9
WD
1310 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1311 if (unlikely(err))
1312 return err;
af54d6a1 1313
734009e9 1314 /* If user space value changed, let the caller retry */
af54d6a1
TG
1315 return curval != uval ? -EAGAIN : 0;
1316}
1317
1a52084d 1318/**
d96ee56c 1319 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1320 * @uaddr: the pi futex user address
1321 * @hb: the pi futex hash bucket
1322 * @key: the futex key associated with uaddr and hb
1323 * @ps: the pi_state pointer where we store the result of the
1324 * lookup
1325 * @task: the task to perform the atomic lock work for. This will
1326 * be "current" except in the case of requeue pi.
3ef240ea
TG
1327 * @exiting: Pointer to store the task pointer of the owner task
1328 * which is in the middle of exiting
bab5bc9e 1329 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1330 *
6c23cbbd 1331 * Return:
7b4ff1ad
MCC
1332 * - 0 - ready to wait;
1333 * - 1 - acquired the lock;
1334 * - <0 - error
1a52084d 1335 *
c363b7ed 1336 * The hb->lock must be held by the caller.
3ef240ea
TG
1337 *
1338 * @exiting is only set when the return value is -EBUSY. If so, this holds
1339 * a refcount on the exiting task on return and the caller needs to drop it
1340 * after waiting for the exit to complete.
1a52084d
DH
1341 */
1342static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1343 union futex_key *key,
1344 struct futex_pi_state **ps,
3ef240ea
TG
1345 struct task_struct *task,
1346 struct task_struct **exiting,
1347 int set_waiters)
1a52084d 1348{
af54d6a1 1349 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1350 struct futex_q *top_waiter;
af54d6a1 1351 int ret;
1a52084d
DH
1352
1353 /*
af54d6a1
TG
1354 * Read the user space value first so we can validate a few
1355 * things before proceeding further.
1a52084d 1356 */
af54d6a1 1357 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1358 return -EFAULT;
1359
ab51fbab
DB
1360 if (unlikely(should_fail_futex(true)))
1361 return -EFAULT;
1362
1a52084d
DH
1363 /*
1364 * Detect deadlocks.
1365 */
af54d6a1 1366 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1367 return -EDEADLK;
1368
ab51fbab
DB
1369 if ((unlikely(should_fail_futex(true))))
1370 return -EDEADLK;
1371
1a52084d 1372 /*
af54d6a1
TG
1373 * Lookup existing state first. If it exists, try to attach to
1374 * its pi_state.
1a52084d 1375 */
499f5aca
PZ
1376 top_waiter = futex_top_waiter(hb, key);
1377 if (top_waiter)
734009e9 1378 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1379
1380 /*
af54d6a1
TG
1381 * No waiter and user TID is 0. We are here because the
1382 * waiters or the owner died bit is set or called from
1383 * requeue_cmp_pi or for whatever reason something took the
1384 * syscall.
1a52084d 1385 */
af54d6a1 1386 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1387 /*
af54d6a1
TG
1388 * We take over the futex. No other waiters and the user space
1389 * TID is 0. We preserve the owner died bit.
59fa6245 1390 */
af54d6a1
TG
1391 newval = uval & FUTEX_OWNER_DIED;
1392 newval |= vpid;
1a52084d 1393
af54d6a1
TG
1394 /* The futex requeue_pi code can enforce the waiters bit */
1395 if (set_waiters)
1396 newval |= FUTEX_WAITERS;
1397
1398 ret = lock_pi_update_atomic(uaddr, uval, newval);
1399 /* If the take over worked, return 1 */
1400 return ret < 0 ? ret : 1;
1401 }
1a52084d
DH
1402
1403 /*
af54d6a1
TG
1404 * First waiter. Set the waiters bit before attaching ourself to
1405 * the owner. If owner tries to unlock, it will be forced into
1406 * the kernel and blocked on hb->lock.
1a52084d 1407 */
af54d6a1
TG
1408 newval = uval | FUTEX_WAITERS;
1409 ret = lock_pi_update_atomic(uaddr, uval, newval);
1410 if (ret)
1411 return ret;
1a52084d 1412 /*
af54d6a1
TG
1413 * If the update of the user space value succeeded, we try to
1414 * attach to the owner. If that fails, no harm done, we only
1415 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1416 */
3ef240ea 1417 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1418}
1419
2e12978a
LJ
1420/**
1421 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1422 * @q: The futex_q to unqueue
1423 *
1424 * The q->lock_ptr must not be NULL and must be held by the caller.
1425 */
1426static void __unqueue_futex(struct futex_q *q)
1427{
1428 struct futex_hash_bucket *hb;
1429
4de1a293 1430 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1431 return;
4de1a293 1432 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1433
1434 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1435 plist_del(&q->list, &hb->chain);
11d4616b 1436 hb_waiters_dec(hb);
2e12978a
LJ
1437}
1438
1da177e4
LT
1439/*
1440 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1441 * Afterwards, the futex_q must not be accessed. Callers
1442 * must ensure to later call wake_up_q() for the actual
1443 * wakeups to occur.
1da177e4 1444 */
1d0dcb3a 1445static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1446{
f1a11e05
TG
1447 struct task_struct *p = q->task;
1448
aa10990e
DH
1449 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1450 return;
1451
b061c38b 1452 get_task_struct(p);
2e12978a 1453 __unqueue_futex(q);
1da177e4 1454 /*
38fcd06e
DHV
1455 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1456 * is written, without taking any locks. This is possible in the event
1457 * of a spurious wakeup, for example. A memory barrier is required here
1458 * to prevent the following store to lock_ptr from getting ahead of the
1459 * plist_del in __unqueue_futex().
1da177e4 1460 */
1b367ece 1461 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1462
1463 /*
1464 * Queue the task for later wakeup for after we've released
75145904 1465 * the hb->lock.
b061c38b 1466 */
07879c6a 1467 wake_q_add_safe(wake_q, p);
1da177e4
LT
1468}
1469
16ffa12d
PZ
1470/*
1471 * Caller must hold a reference on @pi_state.
1472 */
1473static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1474{
9a4b99fc 1475 struct rt_mutex_waiter *top_waiter;
16ffa12d 1476 struct task_struct *new_owner;
aa2bfe55 1477 bool postunlock = false;
7980aa39
TG
1478 DEFINE_RT_WAKE_Q(wqh);
1479 u32 curval, newval;
13fbca4c 1480 int ret = 0;
c87e2837 1481
9a4b99fc
DB
1482 top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1483 if (WARN_ON_ONCE(!top_waiter)) {
16ffa12d 1484 /*
bebe5b51 1485 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1486 *
1487 * When this happens, give up our locks and try again, giving
1488 * the futex_lock_pi() instance time to complete, either by
1489 * waiting on the rtmutex or removing itself from the futex
1490 * queue.
1491 */
1492 ret = -EAGAIN;
1493 goto out_unlock;
73d786bd 1494 }
c87e2837 1495
9a4b99fc
DB
1496 new_owner = top_waiter->task;
1497
c87e2837 1498 /*
16ffa12d
PZ
1499 * We pass it to the next owner. The WAITERS bit is always kept
1500 * enabled while there is PI state around. We cleanup the owner
1501 * died bit, because we are the owner.
c87e2837 1502 */
13fbca4c 1503 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1504
921c7ebd 1505 if (unlikely(should_fail_futex(true))) {
ab51fbab 1506 ret = -EFAULT;
921c7ebd
MN
1507 goto out_unlock;
1508 }
ab51fbab 1509
6b4f4bc9
WD
1510 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1511 if (!ret && (curval != uval)) {
89e9e66b
SAS
1512 /*
1513 * If a unconditional UNLOCK_PI operation (user space did not
1514 * try the TID->0 transition) raced with a waiter setting the
1515 * FUTEX_WAITERS flag between get_user() and locking the hash
1516 * bucket lock, retry the operation.
1517 */
1518 if ((FUTEX_TID_MASK & curval) == uval)
1519 ret = -EAGAIN;
1520 else
1521 ret = -EINVAL;
1522 }
734009e9 1523
c5cade20
TG
1524 if (!ret) {
1525 /*
1526 * This is a point of no return; once we modified the uval
1527 * there is no going back and subsequent operations must
1528 * not fail.
1529 */
1530 pi_state_update_owner(pi_state, new_owner);
7980aa39 1531 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
c5cade20 1532 }
5293c2ef 1533
16ffa12d 1534out_unlock:
5293c2ef 1535 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1536
aa2bfe55 1537 if (postunlock)
7980aa39 1538 rt_mutex_postunlock(&wqh);
c87e2837 1539
16ffa12d 1540 return ret;
c87e2837
IM
1541}
1542
8b8f319f
IM
1543/*
1544 * Express the locking dependencies for lockdep:
1545 */
1546static inline void
1547double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1548{
1549 if (hb1 <= hb2) {
1550 spin_lock(&hb1->lock);
1551 if (hb1 < hb2)
1552 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1553 } else { /* hb1 > hb2 */
1554 spin_lock(&hb2->lock);
1555 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1556 }
1557}
1558
5eb3dc62
DH
1559static inline void
1560double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1561{
f061d351 1562 spin_unlock(&hb1->lock);
88f502fe
IM
1563 if (hb1 != hb2)
1564 spin_unlock(&hb2->lock);
5eb3dc62
DH
1565}
1566
1da177e4 1567/*
b2d0994b 1568 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1569 */
b41277dc
DH
1570static int
1571futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1572{
e2970f2f 1573 struct futex_hash_bucket *hb;
1da177e4 1574 struct futex_q *this, *next;
38d47c1b 1575 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1576 int ret;
194a6b5b 1577 DEFINE_WAKE_Q(wake_q);
1da177e4 1578
cd689985
TG
1579 if (!bitset)
1580 return -EINVAL;
1581
96d4f267 1582 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1583 if (unlikely(ret != 0))
d7c5ed73 1584 return ret;
1da177e4 1585
e2970f2f 1586 hb = hash_futex(&key);
b0c29f79
DB
1587
1588 /* Make sure we really have tasks to wakeup */
1589 if (!hb_waiters_pending(hb))
d7c5ed73 1590 return ret;
b0c29f79 1591
e2970f2f 1592 spin_lock(&hb->lock);
1da177e4 1593
0d00c7b2 1594 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1595 if (match_futex (&this->key, &key)) {
52400ba9 1596 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1597 ret = -EINVAL;
1598 break;
1599 }
cd689985
TG
1600
1601 /* Check if one of the bits is set in both bitsets */
1602 if (!(this->bitset & bitset))
1603 continue;
1604
1d0dcb3a 1605 mark_wake_futex(&wake_q, this);
1da177e4
LT
1606 if (++ret >= nr_wake)
1607 break;
1608 }
1609 }
1610
e2970f2f 1611 spin_unlock(&hb->lock);
1d0dcb3a 1612 wake_up_q(&wake_q);
1da177e4
LT
1613 return ret;
1614}
1615
30d6e0a4
JS
1616static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1617{
1618 unsigned int op = (encoded_op & 0x70000000) >> 28;
1619 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1620 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1621 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1622 int oldval, ret;
1623
1624 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1625 if (oparg < 0 || oparg > 31) {
1626 char comm[sizeof(current->comm)];
1627 /*
1628 * kill this print and return -EINVAL when userspace
1629 * is sane again
1630 */
1631 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1632 get_task_comm(comm, current), oparg);
1633 oparg &= 31;
1634 }
30d6e0a4
JS
1635 oparg = 1 << oparg;
1636 }
1637
a08971e9 1638 pagefault_disable();
30d6e0a4 1639 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1640 pagefault_enable();
30d6e0a4
JS
1641 if (ret)
1642 return ret;
1643
1644 switch (cmp) {
1645 case FUTEX_OP_CMP_EQ:
1646 return oldval == cmparg;
1647 case FUTEX_OP_CMP_NE:
1648 return oldval != cmparg;
1649 case FUTEX_OP_CMP_LT:
1650 return oldval < cmparg;
1651 case FUTEX_OP_CMP_GE:
1652 return oldval >= cmparg;
1653 case FUTEX_OP_CMP_LE:
1654 return oldval <= cmparg;
1655 case FUTEX_OP_CMP_GT:
1656 return oldval > cmparg;
1657 default:
1658 return -ENOSYS;
1659 }
1660}
1661
4732efbe
JJ
1662/*
1663 * Wake up all waiters hashed on the physical page that is mapped
1664 * to this virtual address:
1665 */
e2970f2f 1666static int
b41277dc 1667futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1668 int nr_wake, int nr_wake2, int op)
4732efbe 1669{
38d47c1b 1670 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1671 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1672 struct futex_q *this, *next;
e4dc5b7a 1673 int ret, op_ret;
194a6b5b 1674 DEFINE_WAKE_Q(wake_q);
4732efbe 1675
e4dc5b7a 1676retry:
96d4f267 1677 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1678 if (unlikely(ret != 0))
d7c5ed73 1679 return ret;
96d4f267 1680 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1681 if (unlikely(ret != 0))
d7c5ed73 1682 return ret;
4732efbe 1683
e2970f2f
IM
1684 hb1 = hash_futex(&key1);
1685 hb2 = hash_futex(&key2);
4732efbe 1686
e4dc5b7a 1687retry_private:
eaaea803 1688 double_lock_hb(hb1, hb2);
e2970f2f 1689 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1690 if (unlikely(op_ret < 0)) {
5eb3dc62 1691 double_unlock_hb(hb1, hb2);
4732efbe 1692
6b4f4bc9
WD
1693 if (!IS_ENABLED(CONFIG_MMU) ||
1694 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1695 /*
1696 * we don't get EFAULT from MMU faults if we don't have
1697 * an MMU, but we might get them from range checking
1698 */
796f8d9b 1699 ret = op_ret;
d7c5ed73 1700 return ret;
796f8d9b
DG
1701 }
1702
6b4f4bc9
WD
1703 if (op_ret == -EFAULT) {
1704 ret = fault_in_user_writeable(uaddr2);
1705 if (ret)
d7c5ed73 1706 return ret;
6b4f4bc9 1707 }
4732efbe 1708
6b4f4bc9 1709 cond_resched();
a82adc76
PB
1710 if (!(flags & FLAGS_SHARED))
1711 goto retry_private;
e4dc5b7a 1712 goto retry;
4732efbe
JJ
1713 }
1714
0d00c7b2 1715 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1716 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1717 if (this->pi_state || this->rt_waiter) {
1718 ret = -EINVAL;
1719 goto out_unlock;
1720 }
1d0dcb3a 1721 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1722 if (++ret >= nr_wake)
1723 break;
1724 }
1725 }
1726
1727 if (op_ret > 0) {
4732efbe 1728 op_ret = 0;
0d00c7b2 1729 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1730 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1731 if (this->pi_state || this->rt_waiter) {
1732 ret = -EINVAL;
1733 goto out_unlock;
1734 }
1d0dcb3a 1735 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1736 if (++op_ret >= nr_wake2)
1737 break;
1738 }
1739 }
1740 ret += op_ret;
1741 }
1742
aa10990e 1743out_unlock:
5eb3dc62 1744 double_unlock_hb(hb1, hb2);
1d0dcb3a 1745 wake_up_q(&wake_q);
4732efbe
JJ
1746 return ret;
1747}
1748
9121e478
DH
1749/**
1750 * requeue_futex() - Requeue a futex_q from one hb to another
1751 * @q: the futex_q to requeue
1752 * @hb1: the source hash_bucket
1753 * @hb2: the target hash_bucket
1754 * @key2: the new key for the requeued futex_q
1755 */
1756static inline
1757void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1758 struct futex_hash_bucket *hb2, union futex_key *key2)
1759{
1760
1761 /*
1762 * If key1 and key2 hash to the same bucket, no need to
1763 * requeue.
1764 */
1765 if (likely(&hb1->chain != &hb2->chain)) {
1766 plist_del(&q->list, &hb1->chain);
11d4616b 1767 hb_waiters_dec(hb1);
11d4616b 1768 hb_waiters_inc(hb2);
fe1bce9e 1769 plist_add(&q->list, &hb2->chain);
9121e478 1770 q->lock_ptr = &hb2->lock;
9121e478 1771 }
9121e478
DH
1772 q->key = *key2;
1773}
1774
52400ba9
DH
1775/**
1776 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1777 * @q: the futex_q
1778 * @key: the key of the requeue target futex
1779 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1780 *
1781 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1782 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1783 * to the requeue target futex so the waiter can detect the wakeup on the right
1784 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1785 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1786 * to protect access to the pi_state to fixup the owner later. Must be called
1787 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1788 */
1789static inline
beda2c7e
DH
1790void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1791 struct futex_hash_bucket *hb)
52400ba9 1792{
52400ba9
DH
1793 q->key = *key;
1794
2e12978a 1795 __unqueue_futex(q);
52400ba9
DH
1796
1797 WARN_ON(!q->rt_waiter);
1798 q->rt_waiter = NULL;
1799
beda2c7e 1800 q->lock_ptr = &hb->lock;
beda2c7e 1801
f1a11e05 1802 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1803}
1804
1805/**
1806 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1807 * @pifutex: the user address of the to futex
1808 * @hb1: the from futex hash bucket, must be locked by the caller
1809 * @hb2: the to futex hash bucket, must be locked by the caller
1810 * @key1: the from futex key
1811 * @key2: the to futex key
1812 * @ps: address to store the pi_state pointer
3ef240ea
TG
1813 * @exiting: Pointer to store the task pointer of the owner task
1814 * which is in the middle of exiting
bab5bc9e 1815 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1816 *
1817 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1818 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1819 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1820 * hb1 and hb2 must be held by the caller.
52400ba9 1821 *
3ef240ea
TG
1822 * @exiting is only set when the return value is -EBUSY. If so, this holds
1823 * a refcount on the exiting task on return and the caller needs to drop it
1824 * after waiting for the exit to complete.
1825 *
6c23cbbd 1826 * Return:
7b4ff1ad
MCC
1827 * - 0 - failed to acquire the lock atomically;
1828 * - >0 - acquired the lock, return value is vpid of the top_waiter
1829 * - <0 - error
52400ba9 1830 */
3ef240ea
TG
1831static int
1832futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1833 struct futex_hash_bucket *hb2, union futex_key *key1,
1834 union futex_key *key2, struct futex_pi_state **ps,
1835 struct task_struct **exiting, int set_waiters)
52400ba9 1836{
bab5bc9e 1837 struct futex_q *top_waiter = NULL;
52400ba9 1838 u32 curval;
866293ee 1839 int ret, vpid;
52400ba9
DH
1840
1841 if (get_futex_value_locked(&curval, pifutex))
1842 return -EFAULT;
1843
ab51fbab
DB
1844 if (unlikely(should_fail_futex(true)))
1845 return -EFAULT;
1846
bab5bc9e
DH
1847 /*
1848 * Find the top_waiter and determine if there are additional waiters.
1849 * If the caller intends to requeue more than 1 waiter to pifutex,
1850 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1851 * as we have means to handle the possible fault. If not, don't set
93d0955e 1852 * the bit unnecessarily as it will force the subsequent unlock to enter
bab5bc9e
DH
1853 * the kernel.
1854 */
52400ba9
DH
1855 top_waiter = futex_top_waiter(hb1, key1);
1856
1857 /* There are no waiters, nothing for us to do. */
1858 if (!top_waiter)
1859 return 0;
1860
dc7109aa
TG
1861 /*
1862 * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
1863 * and waiting on the 'waitqueue' futex which is always !PI.
1864 */
1865 if (!top_waiter->rt_waiter || top_waiter->pi_state)
1866 ret = -EINVAL;
1867
84bc4af5
DH
1868 /* Ensure we requeue to the expected futex. */
1869 if (!match_futex(top_waiter->requeue_pi_key, key2))
1870 return -EINVAL;
1871
52400ba9 1872 /*
bab5bc9e
DH
1873 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1874 * the contended case or if set_waiters is 1. The pi_state is returned
1875 * in ps in contended cases.
52400ba9 1876 */
866293ee 1877 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1878 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1879 exiting, set_waiters);
866293ee 1880 if (ret == 1) {
beda2c7e 1881 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1882 return vpid;
1883 }
52400ba9
DH
1884 return ret;
1885}
1886
1887/**
1888 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1889 * @uaddr1: source futex user address
b41277dc 1890 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1891 * @uaddr2: target futex user address
1892 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1893 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1894 * @cmpval: @uaddr1 expected value (or %NULL)
1895 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1896 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1897 *
1898 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1899 * uaddr2 atomically on behalf of the top waiter.
1900 *
6c23cbbd 1901 * Return:
7b4ff1ad
MCC
1902 * - >=0 - on success, the number of tasks requeued or woken;
1903 * - <0 - on error
1da177e4 1904 */
b41277dc
DH
1905static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1906 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1907 u32 *cmpval, int requeue_pi)
1da177e4 1908{
38d47c1b 1909 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1910 int task_count = 0, ret;
52400ba9 1911 struct futex_pi_state *pi_state = NULL;
e2970f2f 1912 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1913 struct futex_q *this, *next;
194a6b5b 1914 DEFINE_WAKE_Q(wake_q);
52400ba9 1915
fbe0e839
LJ
1916 if (nr_wake < 0 || nr_requeue < 0)
1917 return -EINVAL;
1918
bc2eecd7
NP
1919 /*
1920 * When PI not supported: return -ENOSYS if requeue_pi is true,
1921 * consequently the compiler knows requeue_pi is always false past
1922 * this point which will optimize away all the conditional code
1923 * further down.
1924 */
1925 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1926 return -ENOSYS;
1927
52400ba9 1928 if (requeue_pi) {
e9c243a5
TG
1929 /*
1930 * Requeue PI only works on two distinct uaddrs. This
1931 * check is only valid for private futexes. See below.
1932 */
1933 if (uaddr1 == uaddr2)
1934 return -EINVAL;
1935
52400ba9
DH
1936 /*
1937 * requeue_pi requires a pi_state, try to allocate it now
1938 * without any locks in case it fails.
1939 */
1940 if (refill_pi_state_cache())
1941 return -ENOMEM;
1942 /*
1943 * requeue_pi must wake as many tasks as it can, up to nr_wake
1944 * + nr_requeue, since it acquires the rt_mutex prior to
1945 * returning to userspace, so as to not leave the rt_mutex with
1946 * waiters and no owner. However, second and third wake-ups
1947 * cannot be predicted as they involve race conditions with the
1948 * first wake and a fault while looking up the pi_state. Both
1949 * pthread_cond_signal() and pthread_cond_broadcast() should
1950 * use nr_wake=1.
1951 */
1952 if (nr_wake != 1)
1953 return -EINVAL;
1954 }
1da177e4 1955
42d35d48 1956retry:
96d4f267 1957 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1958 if (unlikely(ret != 0))
d7c5ed73 1959 return ret;
9ea71503 1960 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1961 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1962 if (unlikely(ret != 0))
d7c5ed73 1963 return ret;
1da177e4 1964
e9c243a5
TG
1965 /*
1966 * The check above which compares uaddrs is not sufficient for
1967 * shared futexes. We need to compare the keys:
1968 */
d7c5ed73
AA
1969 if (requeue_pi && match_futex(&key1, &key2))
1970 return -EINVAL;
e9c243a5 1971
e2970f2f
IM
1972 hb1 = hash_futex(&key1);
1973 hb2 = hash_futex(&key2);
1da177e4 1974
e4dc5b7a 1975retry_private:
69cd9eba 1976 hb_waiters_inc(hb2);
8b8f319f 1977 double_lock_hb(hb1, hb2);
1da177e4 1978
e2970f2f
IM
1979 if (likely(cmpval != NULL)) {
1980 u32 curval;
1da177e4 1981
e2970f2f 1982 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1983
1984 if (unlikely(ret)) {
5eb3dc62 1985 double_unlock_hb(hb1, hb2);
69cd9eba 1986 hb_waiters_dec(hb2);
1da177e4 1987
e2970f2f 1988 ret = get_user(curval, uaddr1);
e4dc5b7a 1989 if (ret)
d7c5ed73 1990 return ret;
1da177e4 1991
b41277dc 1992 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1993 goto retry_private;
1da177e4 1994
e4dc5b7a 1995 goto retry;
1da177e4 1996 }
e2970f2f 1997 if (curval != *cmpval) {
1da177e4
LT
1998 ret = -EAGAIN;
1999 goto out_unlock;
2000 }
2001 }
2002
8e74633d 2003 if (requeue_pi) {
3ef240ea
TG
2004 struct task_struct *exiting = NULL;
2005
bab5bc9e
DH
2006 /*
2007 * Attempt to acquire uaddr2 and wake the top waiter. If we
2008 * intend to requeue waiters, force setting the FUTEX_WAITERS
2009 * bit. We force this here where we are able to easily handle
2010 * faults rather in the requeue loop below.
2011 */
52400ba9 2012 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2013 &key2, &pi_state,
2014 &exiting, nr_requeue);
52400ba9
DH
2015
2016 /*
2017 * At this point the top_waiter has either taken uaddr2 or is
2018 * waiting on it. If the former, then the pi_state will not
2019 * exist yet, look it up one more time to ensure we have a
f6f4ec00
TG
2020 * reference to it. If the lock was taken, @ret contains the
2021 * VPID of the top waiter task.
ecb38b78
TG
2022 * If the lock was not taken, we have pi_state and an initial
2023 * refcount on it. In case of an error we have nothing.
52400ba9 2024 */
866293ee 2025 if (ret > 0) {
52400ba9
DH
2026 WARN_ON(pi_state);
2027 task_count++;
866293ee 2028 /*
f6f4ec00
TG
2029 * If futex_proxy_trylock_atomic() acquired the
2030 * user space futex, then the user space value
2031 * @uaddr2 has been set to the @hb1's top waiter
2032 * task VPID. This task is guaranteed to be alive
2033 * and cannot be exiting because it is either
2034 * sleeping or blocked on @hb2 lock.
2035 *
2036 * The @uaddr2 futex cannot have waiters either as
2037 * otherwise futex_proxy_trylock_atomic() would not
2038 * have succeeded.
ecb38b78 2039 *
f6f4ec00
TG
2040 * In order to requeue waiters to @hb2, pi state is
2041 * required. Hand in the VPID value (@ret) and
2042 * allocate PI state with an initial refcount on
2043 * it.
866293ee 2044 */
f6f4ec00
TG
2045 ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
2046 &exiting);
2047 WARN_ON(ret);
52400ba9
DH
2048 }
2049
2050 switch (ret) {
2051 case 0:
ecb38b78 2052 /* We hold a reference on the pi state. */
52400ba9 2053 break;
4959f2de
TG
2054
2055 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2056 case -EFAULT:
2057 double_unlock_hb(hb1, hb2);
69cd9eba 2058 hb_waiters_dec(hb2);
d0725992 2059 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2060 if (!ret)
2061 goto retry;
d7c5ed73 2062 return ret;
ac31c7ff 2063 case -EBUSY:
52400ba9 2064 case -EAGAIN:
af54d6a1
TG
2065 /*
2066 * Two reasons for this:
ac31c7ff 2067 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2068 * exit to complete.
ac31c7ff 2069 * - EAGAIN: The user space value changed.
af54d6a1 2070 */
52400ba9 2071 double_unlock_hb(hb1, hb2);
69cd9eba 2072 hb_waiters_dec(hb2);
3ef240ea
TG
2073 /*
2074 * Handle the case where the owner is in the middle of
2075 * exiting. Wait for the exit to complete otherwise
2076 * this task might loop forever, aka. live lock.
2077 */
2078 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2079 cond_resched();
2080 goto retry;
2081 default:
2082 goto out_unlock;
2083 }
2084 }
2085
0d00c7b2 2086 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2087 if (task_count - nr_wake >= nr_requeue)
2088 break;
2089
2090 if (!match_futex(&this->key, &key1))
1da177e4 2091 continue;
52400ba9 2092
392741e0 2093 /*
93d0955e 2094 * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
392741e0 2095 * be paired with each other and no other futex ops.
aa10990e
DH
2096 *
2097 * We should never be requeueing a futex_q with a pi_state,
2098 * which is awaiting a futex_unlock_pi().
392741e0
DH
2099 */
2100 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2101 (!requeue_pi && this->rt_waiter) ||
2102 this->pi_state) {
392741e0
DH
2103 ret = -EINVAL;
2104 break;
2105 }
52400ba9 2106
64b7b715
TG
2107 /* Plain futexes just wake or requeue and are done */
2108 if (!requeue_pi) {
2109 if (++task_count <= nr_wake)
2110 mark_wake_futex(&wake_q, this);
2111 else
2112 requeue_futex(this, hb1, hb2, &key2);
52400ba9
DH
2113 continue;
2114 }
1da177e4 2115
84bc4af5 2116 /* Ensure we requeue to the expected futex for requeue_pi. */
64b7b715 2117 if (!match_futex(this->requeue_pi_key, &key2)) {
84bc4af5
DH
2118 ret = -EINVAL;
2119 break;
2120 }
2121
52400ba9
DH
2122 /*
2123 * Requeue nr_requeue waiters and possibly one more in the case
2124 * of requeue_pi if we couldn't acquire the lock atomically.
64b7b715
TG
2125 *
2126 * Prepare the waiter to take the rt_mutex. Take a refcount
2127 * on the pi_state and store the pointer in the futex_q
2128 * object of the waiter.
52400ba9 2129 */
64b7b715
TG
2130 get_pi_state(pi_state);
2131 this->pi_state = pi_state;
2132 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2133 this->rt_waiter, this->task);
2134 if (ret == 1) {
ecb38b78 2135 /*
64b7b715
TG
2136 * We got the lock. We do neither drop the refcount
2137 * on pi_state nor clear this->pi_state because the
2138 * waiter needs the pi_state for cleaning up the
2139 * user space value. It will drop the refcount
2140 * after doing so.
ecb38b78 2141 */
64b7b715
TG
2142 requeue_pi_wake_futex(this, &key2, hb2);
2143 task_count++;
2144 continue;
2145 } else if (ret) {
2146 /*
2147 * rt_mutex_start_proxy_lock() detected a potential
2148 * deadlock when we tried to queue that waiter.
2149 * Drop the pi_state reference which we took above
2150 * and remove the pointer to the state from the
2151 * waiters futex_q object.
2152 */
2153 this->pi_state = NULL;
2154 put_pi_state(pi_state);
2155 /*
2156 * We stop queueing more waiters and let user space
2157 * deal with the mess.
2158 */
2159 break;
1da177e4 2160 }
64b7b715 2161 /* Waiter is queued, move it to hb2 */
52400ba9 2162 requeue_futex(this, hb1, hb2, &key2);
64b7b715 2163 task_count++;
1da177e4
LT
2164 }
2165
ecb38b78 2166 /*
f6f4ec00
TG
2167 * We took an extra initial reference to the pi_state either in
2168 * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
2169 * to drop it here again.
ecb38b78 2170 */
29e9ee5d 2171 put_pi_state(pi_state);
885c2cb7
TG
2172
2173out_unlock:
5eb3dc62 2174 double_unlock_hb(hb1, hb2);
1d0dcb3a 2175 wake_up_q(&wake_q);
69cd9eba 2176 hb_waiters_dec(hb2);
52400ba9 2177 return ret ? ret : task_count;
1da177e4
LT
2178}
2179
2180/* The key must be already stored in q->key. */
82af7aca 2181static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2182 __acquires(&hb->lock)
1da177e4 2183{
e2970f2f 2184 struct futex_hash_bucket *hb;
1da177e4 2185
e2970f2f 2186 hb = hash_futex(&q->key);
11d4616b
LT
2187
2188 /*
2189 * Increment the counter before taking the lock so that
2190 * a potential waker won't miss a to-be-slept task that is
2191 * waiting for the spinlock. This is safe as all queue_lock()
2192 * users end up calling queue_me(). Similarly, for housekeeping,
2193 * decrement the counter at queue_unlock() when some error has
2194 * occurred and we don't end up adding the task to the list.
2195 */
6f568ebe 2196 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2197
e2970f2f 2198 q->lock_ptr = &hb->lock;
1da177e4 2199
6f568ebe 2200 spin_lock(&hb->lock);
e2970f2f 2201 return hb;
1da177e4
LT
2202}
2203
d40d65c8 2204static inline void
0d00c7b2 2205queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2206 __releases(&hb->lock)
d40d65c8
DH
2207{
2208 spin_unlock(&hb->lock);
11d4616b 2209 hb_waiters_dec(hb);
d40d65c8
DH
2210}
2211
cfafcd11 2212static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2213{
ec92d082
PP
2214 int prio;
2215
2216 /*
2217 * The priority used to register this element is
2218 * - either the real thread-priority for the real-time threads
2219 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2220 * - or MAX_RT_PRIO for non-RT threads.
2221 * Thus, all RT-threads are woken first in priority order, and
2222 * the others are woken last, in FIFO order.
2223 */
2224 prio = min(current->normal_prio, MAX_RT_PRIO);
2225
2226 plist_node_init(&q->list, prio);
ec92d082 2227 plist_add(&q->list, &hb->chain);
c87e2837 2228 q->task = current;
cfafcd11
PZ
2229}
2230
2231/**
2232 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2233 * @q: The futex_q to enqueue
2234 * @hb: The destination hash bucket
2235 *
2236 * The hb->lock must be held by the caller, and is released here. A call to
2237 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2238 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2239 * or nothing if the unqueue is done as part of the wake process and the unqueue
2240 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2241 * an example).
2242 */
2243static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2244 __releases(&hb->lock)
2245{
2246 __queue_me(q, hb);
e2970f2f 2247 spin_unlock(&hb->lock);
1da177e4
LT
2248}
2249
d40d65c8
DH
2250/**
2251 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2252 * @q: The futex_q to unqueue
2253 *
2254 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2255 * be paired with exactly one earlier call to queue_me().
2256 *
6c23cbbd 2257 * Return:
7b4ff1ad
MCC
2258 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2259 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2260 */
1da177e4
LT
2261static int unqueue_me(struct futex_q *q)
2262{
1da177e4 2263 spinlock_t *lock_ptr;
e2970f2f 2264 int ret = 0;
1da177e4
LT
2265
2266 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2267retry:
29b75eb2
JZ
2268 /*
2269 * q->lock_ptr can change between this read and the following spin_lock.
2270 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2271 * optimizing lock_ptr out of the logic below.
2272 */
2273 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2274 if (lock_ptr != NULL) {
1da177e4
LT
2275 spin_lock(lock_ptr);
2276 /*
2277 * q->lock_ptr can change between reading it and
2278 * spin_lock(), causing us to take the wrong lock. This
2279 * corrects the race condition.
2280 *
2281 * Reasoning goes like this: if we have the wrong lock,
2282 * q->lock_ptr must have changed (maybe several times)
2283 * between reading it and the spin_lock(). It can
2284 * change again after the spin_lock() but only if it was
2285 * already changed before the spin_lock(). It cannot,
2286 * however, change back to the original value. Therefore
2287 * we can detect whether we acquired the correct lock.
2288 */
2289 if (unlikely(lock_ptr != q->lock_ptr)) {
2290 spin_unlock(lock_ptr);
2291 goto retry;
2292 }
2e12978a 2293 __unqueue_futex(q);
c87e2837
IM
2294
2295 BUG_ON(q->pi_state);
2296
1da177e4
LT
2297 spin_unlock(lock_ptr);
2298 ret = 1;
2299 }
2300
1da177e4
LT
2301 return ret;
2302}
2303
c87e2837 2304/*
93d0955e 2305 * PI futexes can not be requeued and must remove themselves from the
a3f2428d 2306 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
c87e2837 2307 */
d0aa7a70 2308static void unqueue_me_pi(struct futex_q *q)
c87e2837 2309{
2e12978a 2310 __unqueue_futex(q);
c87e2837
IM
2311
2312 BUG_ON(!q->pi_state);
29e9ee5d 2313 put_pi_state(q->pi_state);
c87e2837 2314 q->pi_state = NULL;
c87e2837
IM
2315}
2316
f2dac39d
TG
2317static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2318 struct task_struct *argowner)
d0aa7a70 2319{
d0aa7a70 2320 struct futex_pi_state *pi_state = q->pi_state;
c1e2f0ea 2321 struct task_struct *oldowner, *newowner;
f2dac39d
TG
2322 u32 uval, curval, newval, newtid;
2323 int err = 0;
734009e9
PZ
2324
2325 oldowner = pi_state->owner;
1b7558e4
TG
2326
2327 /*
c1e2f0ea 2328 * We are here because either:
16ffa12d 2329 *
c1e2f0ea
PZ
2330 * - we stole the lock and pi_state->owner needs updating to reflect
2331 * that (@argowner == current),
2332 *
2333 * or:
2334 *
2335 * - someone stole our lock and we need to fix things to point to the
2336 * new owner (@argowner == NULL).
2337 *
2338 * Either way, we have to replace the TID in the user space variable.
8161239a 2339 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2340 *
b2d0994b
DH
2341 * Note: We write the user space value _before_ changing the pi_state
2342 * because we can fault here. Imagine swapped out pages or a fork
2343 * that marked all the anonymous memory readonly for cow.
1b7558e4 2344 *
734009e9
PZ
2345 * Modifying pi_state _before_ the user space value would leave the
2346 * pi_state in an inconsistent state when we fault here, because we
2347 * need to drop the locks to handle the fault. This might be observed
f6f4ec00 2348 * in the PID checks when attaching to PI state .
1b7558e4
TG
2349 */
2350retry:
c1e2f0ea
PZ
2351 if (!argowner) {
2352 if (oldowner != current) {
2353 /*
2354 * We raced against a concurrent self; things are
2355 * already fixed up. Nothing to do.
2356 */
f2dac39d 2357 return 0;
c1e2f0ea
PZ
2358 }
2359
2360 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
12bb3f7f 2361 /* We got the lock. pi_state is correct. Tell caller. */
f2dac39d 2362 return 1;
c1e2f0ea
PZ
2363 }
2364
2365 /*
9f5d1c33
MG
2366 * The trylock just failed, so either there is an owner or
2367 * there is a higher priority waiter than this one.
c1e2f0ea
PZ
2368 */
2369 newowner = rt_mutex_owner(&pi_state->pi_mutex);
9f5d1c33
MG
2370 /*
2371 * If the higher priority waiter has not yet taken over the
2372 * rtmutex then newowner is NULL. We can't return here with
2373 * that state because it's inconsistent vs. the user space
2374 * state. So drop the locks and try again. It's a valid
2375 * situation and not any different from the other retry
2376 * conditions.
2377 */
2378 if (unlikely(!newowner)) {
2379 err = -EAGAIN;
2380 goto handle_err;
2381 }
c1e2f0ea
PZ
2382 } else {
2383 WARN_ON_ONCE(argowner != current);
2384 if (oldowner == current) {
2385 /*
2386 * We raced against a concurrent self; things are
2387 * already fixed up. Nothing to do.
2388 */
f2dac39d 2389 return 1;
c1e2f0ea
PZ
2390 }
2391 newowner = argowner;
2392 }
2393
2394 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2395 /* Owner died? */
2396 if (!pi_state->owner)
2397 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2398
6b4f4bc9
WD
2399 err = get_futex_value_locked(&uval, uaddr);
2400 if (err)
2401 goto handle_err;
1b7558e4 2402
16ffa12d 2403 for (;;) {
1b7558e4
TG
2404 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2405
6b4f4bc9
WD
2406 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2407 if (err)
2408 goto handle_err;
2409
1b7558e4
TG
2410 if (curval == uval)
2411 break;
2412 uval = curval;
2413 }
2414
2415 /*
2416 * We fixed up user space. Now we need to fix the pi_state
2417 * itself.
2418 */
c5cade20 2419 pi_state_update_owner(pi_state, newowner);
d0aa7a70 2420
12bb3f7f 2421 return argowner == current;
d0aa7a70 2422
d0aa7a70 2423 /*
6b4f4bc9
WD
2424 * In order to reschedule or handle a page fault, we need to drop the
2425 * locks here. In the case of a fault, this gives the other task
2426 * (either the highest priority waiter itself or the task which stole
2427 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2428 * are back from handling the fault we need to check the pi_state after
2429 * reacquiring the locks and before trying to do another fixup. When
2430 * the fixup has been done already we simply return.
734009e9
PZ
2431 *
2432 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2433 * drop hb->lock since the caller owns the hb -> futex_q relation.
2434 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2435 */
6b4f4bc9 2436handle_err:
734009e9 2437 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2438 spin_unlock(q->lock_ptr);
778e9a9c 2439
6b4f4bc9
WD
2440 switch (err) {
2441 case -EFAULT:
f2dac39d 2442 err = fault_in_user_writeable(uaddr);
6b4f4bc9
WD
2443 break;
2444
2445 case -EAGAIN:
2446 cond_resched();
f2dac39d 2447 err = 0;
6b4f4bc9
WD
2448 break;
2449
2450 default:
2451 WARN_ON_ONCE(1);
6b4f4bc9
WD
2452 break;
2453 }
778e9a9c 2454
1b7558e4 2455 spin_lock(q->lock_ptr);
734009e9 2456 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2457
1b7558e4
TG
2458 /*
2459 * Check if someone else fixed it for us:
2460 */
f2dac39d
TG
2461 if (pi_state->owner != oldowner)
2462 return argowner == current;
1b7558e4 2463
f2dac39d
TG
2464 /* Retry if err was -EAGAIN or the fault in succeeded */
2465 if (!err)
2466 goto retry;
1b7558e4 2467
34b1a1ce
TG
2468 /*
2469 * fault_in_user_writeable() failed so user state is immutable. At
2470 * best we can make the kernel state consistent but user state will
2471 * be most likely hosed and any subsequent unlock operation will be
2472 * rejected due to PI futex rule [10].
2473 *
2474 * Ensure that the rtmutex owner is also the pi_state owner despite
2475 * the user space value claiming something different. There is no
2476 * point in unlocking the rtmutex if current is the owner as it
2477 * would need to wait until the next waiter has taken the rtmutex
2478 * to guarantee consistent state. Keep it simple. Userspace asked
2479 * for this wreckaged state.
2480 *
2481 * The rtmutex has an owner - either current or some other
2482 * task. See the EAGAIN loop above.
2483 */
2484 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
734009e9 2485
f2dac39d
TG
2486 return err;
2487}
734009e9 2488
f2dac39d
TG
2489static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2490 struct task_struct *argowner)
2491{
2492 struct futex_pi_state *pi_state = q->pi_state;
2493 int ret;
2494
2495 lockdep_assert_held(q->lock_ptr);
2496
2497 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2498 ret = __fixup_pi_state_owner(uaddr, q, argowner);
734009e9
PZ
2499 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2500 return ret;
d0aa7a70
PP
2501}
2502
72c1bbf3 2503static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2504
dd973998
DH
2505/**
2506 * fixup_owner() - Post lock pi_state and corner case management
2507 * @uaddr: user address of the futex
dd973998
DH
2508 * @q: futex_q (contains pi_state and access to the rt_mutex)
2509 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2510 *
2511 * After attempting to lock an rt_mutex, this function is called to cleanup
2512 * the pi_state owner as well as handle race conditions that may allow us to
2513 * acquire the lock. Must be called with the hb lock held.
2514 *
6c23cbbd 2515 * Return:
7b4ff1ad
MCC
2516 * - 1 - success, lock taken;
2517 * - 0 - success, lock not taken;
2518 * - <0 - on error (-EFAULT)
dd973998 2519 */
ae791a2d 2520static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2521{
dd973998
DH
2522 if (locked) {
2523 /*
2524 * Got the lock. We might not be the anticipated owner if we
2525 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2526 *
c1e2f0ea
PZ
2527 * Speculative pi_state->owner read (we don't hold wait_lock);
2528 * since we own the lock pi_state->owner == current is the
2529 * stable state, anything else needs more attention.
dd973998
DH
2530 */
2531 if (q->pi_state->owner != current)
12bb3f7f
TG
2532 return fixup_pi_state_owner(uaddr, q, current);
2533 return 1;
dd973998
DH
2534 }
2535
c1e2f0ea
PZ
2536 /*
2537 * If we didn't get the lock; check if anybody stole it from us. In
2538 * that case, we need to fix up the uval to point to them instead of
2539 * us, otherwise bad things happen. [10]
2540 *
2541 * Another speculative read; pi_state->owner == current is unstable
2542 * but needs our attention.
2543 */
12bb3f7f
TG
2544 if (q->pi_state->owner == current)
2545 return fixup_pi_state_owner(uaddr, q, NULL);
c1e2f0ea 2546
dd973998
DH
2547 /*
2548 * Paranoia check. If we did not take the lock, then we should not be
04b79c55 2549 * the owner of the rt_mutex. Warn and establish consistent state.
dd973998 2550 */
04b79c55
TG
2551 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2552 return fixup_pi_state_owner(uaddr, q, current);
dd973998 2553
12bb3f7f 2554 return 0;
dd973998
DH
2555}
2556
ca5f9524
DH
2557/**
2558 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2559 * @hb: the futex hash bucket, must be locked by the caller
2560 * @q: the futex_q to queue up on
2561 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2562 */
2563static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2564 struct hrtimer_sleeper *timeout)
ca5f9524 2565{
9beba3c5
DH
2566 /*
2567 * The task state is guaranteed to be set before another task can
b92b8b35 2568 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2569 * queue_me() calls spin_unlock() upon completion, both serializing
2570 * access to the hash list and forcing another memory barrier.
2571 */
f1a11e05 2572 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2573 queue_me(q, hb);
ca5f9524
DH
2574
2575 /* Arm the timer */
2e4b0d3f 2576 if (timeout)
9dd8813e 2577 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2578
2579 /*
0729e196
DH
2580 * If we have been removed from the hash list, then another task
2581 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2582 */
2583 if (likely(!plist_node_empty(&q->list))) {
2584 /*
2585 * If the timer has already expired, current will already be
2586 * flagged for rescheduling. Only call schedule if there
2587 * is no timeout, or if it has yet to expire.
2588 */
2589 if (!timeout || timeout->task)
88c8004f 2590 freezable_schedule();
ca5f9524
DH
2591 }
2592 __set_current_state(TASK_RUNNING);
2593}
2594
f801073f
DH
2595/**
2596 * futex_wait_setup() - Prepare to wait on a futex
2597 * @uaddr: the futex userspace address
2598 * @val: the expected value
b41277dc 2599 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2600 * @q: the associated futex_q
2601 * @hb: storage for hash_bucket pointer to be returned to caller
2602 *
2603 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2604 * compare it with the expected value. Handle atomic faults internally.
c363b7ed 2605 * Return with the hb lock held on success, and unlocked on failure.
f801073f 2606 *
6c23cbbd 2607 * Return:
7b4ff1ad
MCC
2608 * - 0 - uaddr contains val and hb has been locked;
2609 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2610 */
b41277dc 2611static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2612 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2613{
e2970f2f
IM
2614 u32 uval;
2615 int ret;
1da177e4 2616
1da177e4 2617 /*
b2d0994b 2618 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2619 * Order is important:
2620 *
2621 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2622 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2623 *
2624 * The basic logical guarantee of a futex is that it blocks ONLY
2625 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2626 * any cond. If we locked the hash-bucket after testing *uaddr, that
2627 * would open a race condition where we could block indefinitely with
1da177e4
LT
2628 * cond(var) false, which would violate the guarantee.
2629 *
8fe8f545
ML
2630 * On the other hand, we insert q and release the hash-bucket only
2631 * after testing *uaddr. This guarantees that futex_wait() will NOT
2632 * absorb a wakeup if *uaddr does not match the desired values
2633 * while the syscall executes.
1da177e4 2634 */
f801073f 2635retry:
96d4f267 2636 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2637 if (unlikely(ret != 0))
a5a2a0c7 2638 return ret;
f801073f
DH
2639
2640retry_private:
2641 *hb = queue_lock(q);
2642
e2970f2f 2643 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2644
f801073f 2645 if (ret) {
0d00c7b2 2646 queue_unlock(*hb);
1da177e4 2647
e2970f2f 2648 ret = get_user(uval, uaddr);
e4dc5b7a 2649 if (ret)
d7c5ed73 2650 return ret;
1da177e4 2651
b41277dc 2652 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2653 goto retry_private;
2654
e4dc5b7a 2655 goto retry;
1da177e4 2656 }
ca5f9524 2657
f801073f 2658 if (uval != val) {
0d00c7b2 2659 queue_unlock(*hb);
f801073f 2660 ret = -EWOULDBLOCK;
2fff78c7 2661 }
1da177e4 2662
f801073f
DH
2663 return ret;
2664}
2665
b41277dc
DH
2666static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2667 ktime_t *abs_time, u32 bitset)
f801073f 2668{
5ca584d9 2669 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2670 struct restart_block *restart;
2671 struct futex_hash_bucket *hb;
5bdb05f9 2672 struct futex_q q = futex_q_init;
f801073f
DH
2673 int ret;
2674
2675 if (!bitset)
2676 return -EINVAL;
f801073f
DH
2677 q.bitset = bitset;
2678
5ca584d9
WL
2679 to = futex_setup_timer(abs_time, &timeout, flags,
2680 current->timer_slack_ns);
d58e6576 2681retry:
7ada876a 2682 /*
c363b7ed
TG
2683 * Prepare to wait on uaddr. On success, it holds hb->lock and q
2684 * is initialized.
7ada876a 2685 */
b41277dc 2686 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2687 if (ret)
2688 goto out;
2689
ca5f9524 2690 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2691 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2692
2693 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2694 ret = 0;
1da177e4 2695 if (!unqueue_me(&q))
7ada876a 2696 goto out;
2fff78c7 2697 ret = -ETIMEDOUT;
ca5f9524 2698 if (to && !to->task)
7ada876a 2699 goto out;
72c1bbf3 2700
e2970f2f 2701 /*
d58e6576
TG
2702 * We expect signal_pending(current), but we might be the
2703 * victim of a spurious wakeup as well.
e2970f2f 2704 */
7ada876a 2705 if (!signal_pending(current))
d58e6576 2706 goto retry;
d58e6576 2707
2fff78c7 2708 ret = -ERESTARTSYS;
c19384b5 2709 if (!abs_time)
7ada876a 2710 goto out;
1da177e4 2711
f56141e3 2712 restart = &current->restart_block;
a3c74c52 2713 restart->futex.uaddr = uaddr;
2fff78c7 2714 restart->futex.val = val;
2456e855 2715 restart->futex.time = *abs_time;
2fff78c7 2716 restart->futex.bitset = bitset;
0cd9c649 2717 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2718
5abbe51a 2719 ret = set_restart_fn(restart, futex_wait_restart);
2fff78c7 2720
42d35d48 2721out:
ca5f9524
DH
2722 if (to) {
2723 hrtimer_cancel(&to->timer);
2724 destroy_hrtimer_on_stack(&to->timer);
2725 }
c87e2837
IM
2726 return ret;
2727}
2728
72c1bbf3
NP
2729
2730static long futex_wait_restart(struct restart_block *restart)
2731{
a3c74c52 2732 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2733 ktime_t t, *tp = NULL;
72c1bbf3 2734
a72188d8 2735 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2736 t = restart->futex.time;
a72188d8
DH
2737 tp = &t;
2738 }
72c1bbf3 2739 restart->fn = do_no_restart_syscall;
b41277dc
DH
2740
2741 return (long)futex_wait(uaddr, restart->futex.flags,
2742 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2743}
2744
2745
c87e2837
IM
2746/*
2747 * Userspace tried a 0 -> TID atomic transition of the futex value
2748 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2749 * if there are waiters then it will block as a consequence of relying
2750 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2751 * a 0 value of the futex too.).
2752 *
2753 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2754 */
996636dd 2755static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2756 ktime_t *time, int trylock)
c87e2837 2757{
5ca584d9 2758 struct hrtimer_sleeper timeout, *to;
3ef240ea 2759 struct task_struct *exiting = NULL;
cfafcd11 2760 struct rt_mutex_waiter rt_waiter;
c87e2837 2761 struct futex_hash_bucket *hb;
5bdb05f9 2762 struct futex_q q = futex_q_init;
dd973998 2763 int res, ret;
c87e2837 2764
bc2eecd7
NP
2765 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2766 return -ENOSYS;
2767
c87e2837
IM
2768 if (refill_pi_state_cache())
2769 return -ENOMEM;
2770
e112c413 2771 to = futex_setup_timer(time, &timeout, flags, 0);
c5780e97 2772
42d35d48 2773retry:
96d4f267 2774 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2775 if (unlikely(ret != 0))
42d35d48 2776 goto out;
c87e2837 2777
e4dc5b7a 2778retry_private:
82af7aca 2779 hb = queue_lock(&q);
c87e2837 2780
3ef240ea
TG
2781 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2782 &exiting, 0);
c87e2837 2783 if (unlikely(ret)) {
767f509c
DB
2784 /*
2785 * Atomic work succeeded and we got the lock,
2786 * or failed. Either way, we do _not_ block.
2787 */
778e9a9c 2788 switch (ret) {
1a52084d
DH
2789 case 1:
2790 /* We got the lock. */
2791 ret = 0;
2792 goto out_unlock_put_key;
2793 case -EFAULT:
2794 goto uaddr_faulted;
ac31c7ff 2795 case -EBUSY:
778e9a9c
AK
2796 case -EAGAIN:
2797 /*
af54d6a1 2798 * Two reasons for this:
ac31c7ff 2799 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2800 * exit to complete.
ac31c7ff 2801 * - EAGAIN: The user space value changed.
778e9a9c 2802 */
0d00c7b2 2803 queue_unlock(hb);
3ef240ea
TG
2804 /*
2805 * Handle the case where the owner is in the middle of
2806 * exiting. Wait for the exit to complete otherwise
2807 * this task might loop forever, aka. live lock.
2808 */
2809 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2810 cond_resched();
2811 goto retry;
778e9a9c 2812 default:
42d35d48 2813 goto out_unlock_put_key;
c87e2837 2814 }
c87e2837
IM
2815 }
2816
cfafcd11
PZ
2817 WARN_ON(!q.pi_state);
2818
c87e2837
IM
2819 /*
2820 * Only actually queue now that the atomic ops are done:
2821 */
cfafcd11 2822 __queue_me(&q, hb);
c87e2837 2823
cfafcd11 2824 if (trylock) {
5293c2ef 2825 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2826 /* Fixup the trylock return value: */
2827 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2828 goto no_block;
c87e2837
IM
2829 }
2830
56222b21
PZ
2831 rt_mutex_init_waiter(&rt_waiter);
2832
cfafcd11 2833 /*
56222b21
PZ
2834 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2835 * hold it while doing rt_mutex_start_proxy(), because then it will
2836 * include hb->lock in the blocking chain, even through we'll not in
2837 * fact hold it while blocking. This will lead it to report -EDEADLK
2838 * and BUG when futex_unlock_pi() interleaves with this.
2839 *
2840 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2841 * latter before calling __rt_mutex_start_proxy_lock(). This
2842 * interleaves with futex_unlock_pi() -- which does a similar lock
2843 * handoff -- such that the latter can observe the futex_q::pi_state
2844 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2845 */
56222b21
PZ
2846 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2847 spin_unlock(q.lock_ptr);
1a1fb985
TG
2848 /*
2849 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2850 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2851 * it sees the futex_q::pi_state.
2852 */
56222b21
PZ
2853 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2854 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2855
cfafcd11
PZ
2856 if (ret) {
2857 if (ret == 1)
2858 ret = 0;
1a1fb985 2859 goto cleanup;
cfafcd11
PZ
2860 }
2861
cfafcd11 2862 if (unlikely(to))
9dd8813e 2863 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2864
2865 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2866
1a1fb985 2867cleanup:
a99e4e41 2868 spin_lock(q.lock_ptr);
cfafcd11 2869 /*
1a1fb985 2870 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2871 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2872 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2873 * lists consistent.
56222b21
PZ
2874 *
2875 * In particular; it is important that futex_unlock_pi() can not
2876 * observe this inconsistency.
cfafcd11
PZ
2877 */
2878 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2879 ret = 0;
2880
2881no_block:
dd973998
DH
2882 /*
2883 * Fixup the pi_state owner and possibly acquire the lock if we
2884 * haven't already.
2885 */
ae791a2d 2886 res = fixup_owner(uaddr, &q, !ret);
dd973998 2887 /*
93d0955e 2888 * If fixup_owner() returned an error, propagate that. If it acquired
dd973998
DH
2889 * the lock, clear our -ETIMEDOUT or -EINTR.
2890 */
2891 if (res)
2892 ret = (res < 0) ? res : 0;
c87e2837 2893
778e9a9c 2894 unqueue_me_pi(&q);
a3f2428d 2895 spin_unlock(q.lock_ptr);
9180bd46 2896 goto out;
c87e2837 2897
42d35d48 2898out_unlock_put_key:
0d00c7b2 2899 queue_unlock(hb);
c87e2837 2900
42d35d48 2901out:
97181f9b
TG
2902 if (to) {
2903 hrtimer_cancel(&to->timer);
237fc6e7 2904 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2905 }
dd973998 2906 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2907
42d35d48 2908uaddr_faulted:
0d00c7b2 2909 queue_unlock(hb);
778e9a9c 2910
d0725992 2911 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2912 if (ret)
9180bd46 2913 goto out;
c87e2837 2914
b41277dc 2915 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2916 goto retry_private;
2917
e4dc5b7a 2918 goto retry;
c87e2837
IM
2919}
2920
c87e2837
IM
2921/*
2922 * Userspace attempted a TID -> 0 atomic transition, and failed.
2923 * This is the in-kernel slowpath: we look up the PI state (if any),
2924 * and do the rt-mutex unlock.
2925 */
b41277dc 2926static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2927{
3f649ab7 2928 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2929 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2930 struct futex_hash_bucket *hb;
499f5aca 2931 struct futex_q *top_waiter;
e4dc5b7a 2932 int ret;
c87e2837 2933
bc2eecd7
NP
2934 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2935 return -ENOSYS;
2936
c87e2837
IM
2937retry:
2938 if (get_user(uval, uaddr))
2939 return -EFAULT;
2940 /*
2941 * We release only a lock we actually own:
2942 */
c0c9ed15 2943 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2944 return -EPERM;
c87e2837 2945
96d4f267 2946 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2947 if (ret)
2948 return ret;
c87e2837
IM
2949
2950 hb = hash_futex(&key);
2951 spin_lock(&hb->lock);
2952
c87e2837 2953 /*
ccf9e6a8
TG
2954 * Check waiters first. We do not trust user space values at
2955 * all and we at least want to know if user space fiddled
2956 * with the futex value instead of blindly unlocking.
c87e2837 2957 */
499f5aca
PZ
2958 top_waiter = futex_top_waiter(hb, &key);
2959 if (top_waiter) {
16ffa12d
PZ
2960 struct futex_pi_state *pi_state = top_waiter->pi_state;
2961
2962 ret = -EINVAL;
2963 if (!pi_state)
2964 goto out_unlock;
2965
2966 /*
2967 * If current does not own the pi_state then the futex is
2968 * inconsistent and user space fiddled with the futex value.
2969 */
2970 if (pi_state->owner != current)
2971 goto out_unlock;
2972
bebe5b51 2973 get_pi_state(pi_state);
802ab58d 2974 /*
bebe5b51
PZ
2975 * By taking wait_lock while still holding hb->lock, we ensure
2976 * there is no point where we hold neither; and therefore
2977 * wake_futex_pi() must observe a state consistent with what we
2978 * observed.
1a1fb985
TG
2979 *
2980 * In particular; this forces __rt_mutex_start_proxy() to
2981 * complete such that we're guaranteed to observe the
2982 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 2983 */
bebe5b51 2984 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2985 spin_unlock(&hb->lock);
2986
c74aef2d 2987 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
2988 ret = wake_futex_pi(uaddr, uval, pi_state);
2989
2990 put_pi_state(pi_state);
2991
2992 /*
2993 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2994 */
2995 if (!ret)
0f943850 2996 return ret;
c87e2837 2997 /*
ccf9e6a8
TG
2998 * The atomic access to the futex value generated a
2999 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3000 */
3001 if (ret == -EFAULT)
3002 goto pi_faulted;
89e9e66b
SAS
3003 /*
3004 * A unconditional UNLOCK_PI op raced against a waiter
3005 * setting the FUTEX_WAITERS bit. Try again.
3006 */
6b4f4bc9
WD
3007 if (ret == -EAGAIN)
3008 goto pi_retry;
802ab58d
SAS
3009 /*
3010 * wake_futex_pi has detected invalid state. Tell user
3011 * space.
3012 */
0f943850 3013 return ret;
c87e2837 3014 }
ccf9e6a8 3015
c87e2837 3016 /*
ccf9e6a8
TG
3017 * We have no kernel internal state, i.e. no waiters in the
3018 * kernel. Waiters which are about to queue themselves are stuck
3019 * on hb->lock. So we can safely ignore them. We do neither
3020 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3021 * owner.
c87e2837 3022 */
6b4f4bc9 3023 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3024 spin_unlock(&hb->lock);
6b4f4bc9
WD
3025 switch (ret) {
3026 case -EFAULT:
3027 goto pi_faulted;
3028
3029 case -EAGAIN:
3030 goto pi_retry;
3031
3032 default:
3033 WARN_ON_ONCE(1);
0f943850 3034 return ret;
6b4f4bc9 3035 }
16ffa12d 3036 }
c87e2837 3037
ccf9e6a8
TG
3038 /*
3039 * If uval has changed, let user space handle it.
3040 */
3041 ret = (curval == uval) ? 0 : -EAGAIN;
3042
c87e2837
IM
3043out_unlock:
3044 spin_unlock(&hb->lock);
c87e2837
IM
3045 return ret;
3046
6b4f4bc9 3047pi_retry:
6b4f4bc9
WD
3048 cond_resched();
3049 goto retry;
3050
c87e2837 3051pi_faulted:
c87e2837 3052
d0725992 3053 ret = fault_in_user_writeable(uaddr);
b5686363 3054 if (!ret)
c87e2837
IM
3055 goto retry;
3056
1da177e4
LT
3057 return ret;
3058}
3059
52400ba9
DH
3060/**
3061 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3062 * @hb: the hash_bucket futex_q was original enqueued on
3063 * @q: the futex_q woken while waiting to be requeued
3064 * @key2: the futex_key of the requeue target futex
3065 * @timeout: the timeout associated with the wait (NULL if none)
3066 *
3067 * Detect if the task was woken on the initial futex as opposed to the requeue
3068 * target futex. If so, determine if it was a timeout or a signal that caused
3069 * the wakeup and return the appropriate error code to the caller. Must be
3070 * called with the hb lock held.
3071 *
6c23cbbd 3072 * Return:
7b4ff1ad
MCC
3073 * - 0 = no early wakeup detected;
3074 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3075 */
3076static inline
3077int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3078 struct futex_q *q, union futex_key *key2,
3079 struct hrtimer_sleeper *timeout)
3080{
3081 int ret = 0;
3082
3083 /*
3084 * With the hb lock held, we avoid races while we process the wakeup.
3085 * We only need to hold hb (and not hb2) to ensure atomicity as the
3086 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3087 * It can't be requeued from uaddr2 to something else since we don't
3088 * support a PI aware source futex for requeue.
3089 */
3090 if (!match_futex(&q->key, key2)) {
3091 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3092 /*
3093 * We were woken prior to requeue by a timeout or a signal.
3094 * Unqueue the futex_q and determine which it was.
3095 */
2e12978a 3096 plist_del(&q->list, &hb->chain);
11d4616b 3097 hb_waiters_dec(hb);
52400ba9 3098
d58e6576 3099 /* Handle spurious wakeups gracefully */
11df6ddd 3100 ret = -EWOULDBLOCK;
52400ba9
DH
3101 if (timeout && !timeout->task)
3102 ret = -ETIMEDOUT;
d58e6576 3103 else if (signal_pending(current))
1c840c14 3104 ret = -ERESTARTNOINTR;
52400ba9
DH
3105 }
3106 return ret;
3107}
3108
3109/**
3110 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3111 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3112 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3113 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3114 * @val: the expected value of uaddr
3115 * @abs_time: absolute timeout
56ec1607 3116 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3117 * @uaddr2: the pi futex we will take prior to returning to user-space
3118 *
3119 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3120 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3121 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3122 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3123 * without one, the pi logic would not know which task to boost/deboost, if
3124 * there was a need to.
52400ba9
DH
3125 *
3126 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3127 * via the following--
52400ba9 3128 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3129 * 2) wakeup on uaddr2 after a requeue
3130 * 3) signal
3131 * 4) timeout
52400ba9 3132 *
cc6db4e6 3133 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3134 *
3135 * If 2, we may then block on trying to take the rt_mutex and return via:
3136 * 5) successful lock
3137 * 6) signal
3138 * 7) timeout
3139 * 8) other lock acquisition failure
3140 *
cc6db4e6 3141 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3142 *
3143 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3144 *
6c23cbbd 3145 * Return:
7b4ff1ad
MCC
3146 * - 0 - On success;
3147 * - <0 - On error
52400ba9 3148 */
b41277dc 3149static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3150 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3151 u32 __user *uaddr2)
52400ba9 3152{
5ca584d9 3153 struct hrtimer_sleeper timeout, *to;
52400ba9 3154 struct rt_mutex_waiter rt_waiter;
52400ba9 3155 struct futex_hash_bucket *hb;
5bdb05f9
DH
3156 union futex_key key2 = FUTEX_KEY_INIT;
3157 struct futex_q q = futex_q_init;
52400ba9 3158 int res, ret;
52400ba9 3159
bc2eecd7
NP
3160 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3161 return -ENOSYS;
3162
6f7b0a2a
DH
3163 if (uaddr == uaddr2)
3164 return -EINVAL;
3165
52400ba9
DH
3166 if (!bitset)
3167 return -EINVAL;
3168
5ca584d9
WL
3169 to = futex_setup_timer(abs_time, &timeout, flags,
3170 current->timer_slack_ns);
52400ba9
DH
3171
3172 /*
3173 * The waiter is allocated on our stack, manipulated by the requeue
3174 * code while we sleep on uaddr.
3175 */
50809358 3176 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3177
96d4f267 3178 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3179 if (unlikely(ret != 0))
3180 goto out;
3181
84bc4af5
DH
3182 q.bitset = bitset;
3183 q.rt_waiter = &rt_waiter;
3184 q.requeue_pi_key = &key2;
3185
7ada876a 3186 /*
c363b7ed
TG
3187 * Prepare to wait on uaddr. On success, it holds hb->lock and q
3188 * is initialized.
7ada876a 3189 */
b41277dc 3190 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3191 if (ret)
9180bd46 3192 goto out;
52400ba9 3193
e9c243a5
TG
3194 /*
3195 * The check above which compares uaddrs is not sufficient for
3196 * shared futexes. We need to compare the keys:
3197 */
3198 if (match_futex(&q.key, &key2)) {
13c42c2f 3199 queue_unlock(hb);
e9c243a5 3200 ret = -EINVAL;
9180bd46 3201 goto out;
e9c243a5
TG
3202 }
3203
52400ba9 3204 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3205 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3206
3207 spin_lock(&hb->lock);
3208 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3209 spin_unlock(&hb->lock);
3210 if (ret)
9180bd46 3211 goto out;
52400ba9
DH
3212
3213 /*
3214 * In order for us to be here, we know our q.key == key2, and since
3215 * we took the hb->lock above, we also know that futex_requeue() has
3216 * completed and we no longer have to concern ourselves with a wakeup
c363b7ed 3217 * race with the atomic proxy lock acquisition by the requeue code.
52400ba9
DH
3218 */
3219
a1565aa4
DB
3220 /*
3221 * Check if the requeue code acquired the second futex for us and do
3222 * any pertinent fixup.
3223 */
52400ba9 3224 if (!q.rt_waiter) {
52400ba9
DH
3225 if (q.pi_state && (q.pi_state->owner != current)) {
3226 spin_lock(q.lock_ptr);
a1565aa4 3227 ret = fixup_owner(uaddr2, &q, true);
fb75a428
TG
3228 /*
3229 * Drop the reference to the pi state which
3230 * the requeue_pi() code acquired for us.
3231 */
29e9ee5d 3232 put_pi_state(q.pi_state);
52400ba9 3233 spin_unlock(q.lock_ptr);
12bb3f7f
TG
3234 /*
3235 * Adjust the return value. It's either -EFAULT or
3236 * success (1) but the caller expects 0 for success.
3237 */
3238 ret = ret < 0 ? ret : 0;
52400ba9
DH
3239 }
3240 } else {
830e6acc 3241 struct rt_mutex_base *pi_mutex;
c236c8e9 3242
52400ba9
DH
3243 /*
3244 * We have been woken up by futex_unlock_pi(), a timeout, or a
3245 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3246 * the pi_state.
3247 */
f27071cb 3248 WARN_ON(!q.pi_state);
52400ba9 3249 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3250 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3251
3252 spin_lock(q.lock_ptr);
38d589f2
PZ
3253 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3254 ret = 0;
3255
3256 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3257 /*
3258 * Fixup the pi_state owner and possibly acquire the lock if we
3259 * haven't already.
3260 */
ae791a2d 3261 res = fixup_owner(uaddr2, &q, !ret);
52400ba9 3262 /*
93d0955e 3263 * If fixup_owner() returned an error, propagate that. If it
56ec1607 3264 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3265 */
3266 if (res)
3267 ret = (res < 0) ? res : 0;
3268
52400ba9 3269 unqueue_me_pi(&q);
a3f2428d 3270 spin_unlock(q.lock_ptr);
52400ba9
DH
3271 }
3272
c236c8e9 3273 if (ret == -EINTR) {
52400ba9 3274 /*
cc6db4e6
DH
3275 * We've already been requeued, but cannot restart by calling
3276 * futex_lock_pi() directly. We could restart this syscall, but
3277 * it would detect that the user space "val" changed and return
3278 * -EWOULDBLOCK. Save the overhead of the restart and return
3279 * -EWOULDBLOCK directly.
52400ba9 3280 */
2070887f 3281 ret = -EWOULDBLOCK;
52400ba9
DH
3282 }
3283
52400ba9
DH
3284out:
3285 if (to) {
3286 hrtimer_cancel(&to->timer);
3287 destroy_hrtimer_on_stack(&to->timer);
3288 }
3289 return ret;
3290}
3291
0771dfef
IM
3292/*
3293 * Support for robust futexes: the kernel cleans up held futexes at
3294 * thread exit time.
3295 *
3296 * Implementation: user-space maintains a per-thread list of locks it
3297 * is holding. Upon do_exit(), the kernel carefully walks this list,
3298 * and marks all locks that are owned by this thread with the
c87e2837 3299 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3300 * always manipulated with the lock held, so the list is private and
3301 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3302 * field, to allow the kernel to clean up if the thread dies after
3303 * acquiring the lock, but just before it could have added itself to
3304 * the list. There can only be one such pending lock.
3305 */
3306
3307/**
d96ee56c
DH
3308 * sys_set_robust_list() - Set the robust-futex list head of a task
3309 * @head: pointer to the list-head
3310 * @len: length of the list-head, as userspace expects
0771dfef 3311 */
836f92ad
HC
3312SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3313 size_t, len)
0771dfef 3314{
a0c1e907
TG
3315 if (!futex_cmpxchg_enabled)
3316 return -ENOSYS;
0771dfef
IM
3317 /*
3318 * The kernel knows only one size for now:
3319 */
3320 if (unlikely(len != sizeof(*head)))
3321 return -EINVAL;
3322
3323 current->robust_list = head;
3324
3325 return 0;
3326}
3327
3328/**
d96ee56c
DH
3329 * sys_get_robust_list() - Get the robust-futex list head of a task
3330 * @pid: pid of the process [zero for current task]
3331 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3332 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3333 */
836f92ad
HC
3334SYSCALL_DEFINE3(get_robust_list, int, pid,
3335 struct robust_list_head __user * __user *, head_ptr,
3336 size_t __user *, len_ptr)
0771dfef 3337{
ba46df98 3338 struct robust_list_head __user *head;
0771dfef 3339 unsigned long ret;
bdbb776f 3340 struct task_struct *p;
0771dfef 3341
a0c1e907
TG
3342 if (!futex_cmpxchg_enabled)
3343 return -ENOSYS;
3344
bdbb776f
KC
3345 rcu_read_lock();
3346
3347 ret = -ESRCH;
0771dfef 3348 if (!pid)
bdbb776f 3349 p = current;
0771dfef 3350 else {
228ebcbe 3351 p = find_task_by_vpid(pid);
0771dfef
IM
3352 if (!p)
3353 goto err_unlock;
0771dfef
IM
3354 }
3355
bdbb776f 3356 ret = -EPERM;
caaee623 3357 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3358 goto err_unlock;
3359
3360 head = p->robust_list;
3361 rcu_read_unlock();
3362
0771dfef
IM
3363 if (put_user(sizeof(*head), len_ptr))
3364 return -EFAULT;
3365 return put_user(head, head_ptr);
3366
3367err_unlock:
aaa2a97e 3368 rcu_read_unlock();
0771dfef
IM
3369
3370 return ret;
3371}
3372
ca16d5be
YT
3373/* Constants for the pending_op argument of handle_futex_death */
3374#define HANDLE_DEATH_PENDING true
3375#define HANDLE_DEATH_LIST false
3376
0771dfef
IM
3377/*
3378 * Process a futex-list entry, check whether it's owned by the
3379 * dying task, and do notification if so:
3380 */
ca16d5be
YT
3381static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3382 bool pi, bool pending_op)
0771dfef 3383{
3f649ab7 3384 u32 uval, nval, mval;
6b4f4bc9 3385 int err;
0771dfef 3386
5a07168d
CJ
3387 /* Futex address must be 32bit aligned */
3388 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3389 return -1;
3390
8f17d3a5
IM
3391retry:
3392 if (get_user(uval, uaddr))
0771dfef
IM
3393 return -1;
3394
ca16d5be
YT
3395 /*
3396 * Special case for regular (non PI) futexes. The unlock path in
3397 * user space has two race scenarios:
3398 *
3399 * 1. The unlock path releases the user space futex value and
3400 * before it can execute the futex() syscall to wake up
3401 * waiters it is killed.
3402 *
3403 * 2. A woken up waiter is killed before it can acquire the
3404 * futex in user space.
3405 *
3406 * In both cases the TID validation below prevents a wakeup of
3407 * potential waiters which can cause these waiters to block
3408 * forever.
3409 *
3410 * In both cases the following conditions are met:
3411 *
3412 * 1) task->robust_list->list_op_pending != NULL
3413 * @pending_op == true
3414 * 2) User space futex value == 0
3415 * 3) Regular futex: @pi == false
3416 *
3417 * If these conditions are met, it is safe to attempt waking up a
3418 * potential waiter without touching the user space futex value and
3419 * trying to set the OWNER_DIED bit. The user space futex value is
3420 * uncontended and the rest of the user space mutex state is
3421 * consistent, so a woken waiter will just take over the
3422 * uncontended futex. Setting the OWNER_DIED bit would create
3423 * inconsistent state and malfunction of the user space owner died
3424 * handling.
3425 */
3426 if (pending_op && !pi && !uval) {
3427 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3428 return 0;
3429 }
3430
6b4f4bc9
WD
3431 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3432 return 0;
3433
3434 /*
3435 * Ok, this dying thread is truly holding a futex
3436 * of interest. Set the OWNER_DIED bit atomically
3437 * via cmpxchg, and if the value had FUTEX_WAITERS
3438 * set, wake up a waiter (if any). (We have to do a
3439 * futex_wake() even if OWNER_DIED is already set -
3440 * to handle the rare but possible case of recursive
3441 * thread-death.) The rest of the cleanup is done in
3442 * userspace.
3443 */
3444 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3445
3446 /*
3447 * We are not holding a lock here, but we want to have
3448 * the pagefault_disable/enable() protection because
3449 * we want to handle the fault gracefully. If the
3450 * access fails we try to fault in the futex with R/W
3451 * verification via get_user_pages. get_user() above
3452 * does not guarantee R/W access. If that fails we
3453 * give up and leave the futex locked.
3454 */
3455 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3456 switch (err) {
3457 case -EFAULT:
6e0aa9f8
TG
3458 if (fault_in_user_writeable(uaddr))
3459 return -1;
3460 goto retry;
6b4f4bc9
WD
3461
3462 case -EAGAIN:
3463 cond_resched();
8f17d3a5 3464 goto retry;
0771dfef 3465
6b4f4bc9
WD
3466 default:
3467 WARN_ON_ONCE(1);
3468 return err;
3469 }
0771dfef 3470 }
6b4f4bc9
WD
3471
3472 if (nval != uval)
3473 goto retry;
3474
3475 /*
3476 * Wake robust non-PI futexes here. The wakeup of
3477 * PI futexes happens in exit_pi_state():
3478 */
3479 if (!pi && (uval & FUTEX_WAITERS))
3480 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3481
0771dfef
IM
3482 return 0;
3483}
3484
e3f2ddea
IM
3485/*
3486 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3487 */
3488static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3489 struct robust_list __user * __user *head,
1dcc41bb 3490 unsigned int *pi)
e3f2ddea
IM
3491{
3492 unsigned long uentry;
3493
ba46df98 3494 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3495 return -EFAULT;
3496
ba46df98 3497 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3498 *pi = uentry & 1;
3499
3500 return 0;
3501}
3502
0771dfef
IM
3503/*
3504 * Walk curr->robust_list (very carefully, it's a userspace list!)
3505 * and mark any locks found there dead, and notify any waiters.
3506 *
3507 * We silently return on any sign of list-walking problem.
3508 */
ba31c1a4 3509static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3510{
3511 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3512 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3513 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3514 unsigned int next_pi;
0771dfef 3515 unsigned long futex_offset;
9f96cb1e 3516 int rc;
0771dfef 3517
a0c1e907
TG
3518 if (!futex_cmpxchg_enabled)
3519 return;
3520
0771dfef
IM
3521 /*
3522 * Fetch the list head (which was registered earlier, via
3523 * sys_set_robust_list()):
3524 */
e3f2ddea 3525 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3526 return;
3527 /*
3528 * Fetch the relative futex offset:
3529 */
3530 if (get_user(futex_offset, &head->futex_offset))
3531 return;
3532 /*
3533 * Fetch any possibly pending lock-add first, and handle it
3534 * if it exists:
3535 */
e3f2ddea 3536 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3537 return;
e3f2ddea 3538
9f96cb1e 3539 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3540 while (entry != &head->list) {
9f96cb1e
MS
3541 /*
3542 * Fetch the next entry in the list before calling
3543 * handle_futex_death:
3544 */
3545 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3546 /*
3547 * A pending lock might already be on the list, so
c87e2837 3548 * don't process it twice:
0771dfef 3549 */
ca16d5be 3550 if (entry != pending) {
ba46df98 3551 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3552 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3553 return;
ca16d5be 3554 }
9f96cb1e 3555 if (rc)
0771dfef 3556 return;
9f96cb1e
MS
3557 entry = next_entry;
3558 pi = next_pi;
0771dfef
IM
3559 /*
3560 * Avoid excessively long or circular lists:
3561 */
3562 if (!--limit)
3563 break;
3564
3565 cond_resched();
3566 }
9f96cb1e 3567
ca16d5be 3568 if (pending) {
9f96cb1e 3569 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3570 curr, pip, HANDLE_DEATH_PENDING);
3571 }
0771dfef
IM
3572}
3573
af8cbda2 3574static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3575{
3576 if (unlikely(tsk->robust_list)) {
3577 exit_robust_list(tsk);
3578 tsk->robust_list = NULL;
3579 }
3580
3581#ifdef CONFIG_COMPAT
3582 if (unlikely(tsk->compat_robust_list)) {
3583 compat_exit_robust_list(tsk);
3584 tsk->compat_robust_list = NULL;
3585 }
3586#endif
3587
3588 if (unlikely(!list_empty(&tsk->pi_state_list)))
3589 exit_pi_state_list(tsk);
3590}
3591
18f69438
TG
3592/**
3593 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3594 * @tsk: task to set the state on
3595 *
3596 * Set the futex exit state of the task lockless. The futex waiter code
3597 * observes that state when a task is exiting and loops until the task has
3598 * actually finished the futex cleanup. The worst case for this is that the
3599 * waiter runs through the wait loop until the state becomes visible.
3600 *
3601 * This is called from the recursive fault handling path in do_exit().
3602 *
3603 * This is best effort. Either the futex exit code has run already or
3604 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3605 * take it over. If not, the problem is pushed back to user space. If the
3606 * futex exit code did not run yet, then an already queued waiter might
3607 * block forever, but there is nothing which can be done about that.
3608 */
3609void futex_exit_recursive(struct task_struct *tsk)
3610{
3f186d97
TG
3611 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3612 if (tsk->futex_state == FUTEX_STATE_EXITING)
3613 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3614 tsk->futex_state = FUTEX_STATE_DEAD;
3615}
3616
af8cbda2 3617static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3618{
3f186d97
TG
3619 /*
3620 * Prevent various race issues against a concurrent incoming waiter
3621 * including live locks by forcing the waiter to block on
3622 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3623 * attach_to_pi_owner().
3624 */
3625 mutex_lock(&tsk->futex_exit_mutex);
3626
18f69438 3627 /*
4a8e991b
TG
3628 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3629 *
3630 * This ensures that all subsequent checks of tsk->futex_state in
3631 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3632 * tsk->pi_lock held.
3633 *
3634 * It guarantees also that a pi_state which was queued right before
3635 * the state change under tsk->pi_lock by a concurrent waiter must
3636 * be observed in exit_pi_state_list().
18f69438
TG
3637 */
3638 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3639 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3640 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3641}
18f69438 3642
af8cbda2
TG
3643static void futex_cleanup_end(struct task_struct *tsk, int state)
3644{
3645 /*
3646 * Lockless store. The only side effect is that an observer might
3647 * take another loop until it becomes visible.
3648 */
3649 tsk->futex_state = state;
3f186d97
TG
3650 /*
3651 * Drop the exit protection. This unblocks waiters which observed
3652 * FUTEX_STATE_EXITING to reevaluate the state.
3653 */
3654 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3655}
18f69438 3656
af8cbda2
TG
3657void futex_exec_release(struct task_struct *tsk)
3658{
3659 /*
3660 * The state handling is done for consistency, but in the case of
93d0955e 3661 * exec() there is no way to prevent further damage as the PID stays
af8cbda2
TG
3662 * the same. But for the unlikely and arguably buggy case that a
3663 * futex is held on exec(), this provides at least as much state
3664 * consistency protection which is possible.
3665 */
3666 futex_cleanup_begin(tsk);
3667 futex_cleanup(tsk);
3668 /*
3669 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3670 * exec a new binary.
3671 */
3672 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3673}
3674
3675void futex_exit_release(struct task_struct *tsk)
3676{
3677 futex_cleanup_begin(tsk);
3678 futex_cleanup(tsk);
3679 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3680}
3681
c19384b5 3682long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3683 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3684{
81b40539 3685 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3686 unsigned int flags = 0;
34f01cc1
ED
3687
3688 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3689 flags |= FLAGS_SHARED;
1da177e4 3690
b41277dc
DH
3691 if (op & FUTEX_CLOCK_REALTIME) {
3692 flags |= FLAGS_CLOCKRT;
bf22a697
TG
3693 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3694 cmd != FUTEX_LOCK_PI2)
b41277dc
DH
3695 return -ENOSYS;
3696 }
1da177e4 3697
59263b51
TG
3698 switch (cmd) {
3699 case FUTEX_LOCK_PI:
bf22a697 3700 case FUTEX_LOCK_PI2:
59263b51
TG
3701 case FUTEX_UNLOCK_PI:
3702 case FUTEX_TRYLOCK_PI:
3703 case FUTEX_WAIT_REQUEUE_PI:
3704 case FUTEX_CMP_REQUEUE_PI:
3705 if (!futex_cmpxchg_enabled)
3706 return -ENOSYS;
3707 }
3708
34f01cc1 3709 switch (cmd) {
1da177e4 3710 case FUTEX_WAIT:
cd689985 3711 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3712 fallthrough;
cd689985 3713 case FUTEX_WAIT_BITSET:
81b40539 3714 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3715 case FUTEX_WAKE:
cd689985 3716 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3717 fallthrough;
cd689985 3718 case FUTEX_WAKE_BITSET:
81b40539 3719 return futex_wake(uaddr, flags, val, val3);
1da177e4 3720 case FUTEX_REQUEUE:
81b40539 3721 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3722 case FUTEX_CMP_REQUEUE:
81b40539 3723 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3724 case FUTEX_WAKE_OP:
81b40539 3725 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3726 case FUTEX_LOCK_PI:
e112c413 3727 flags |= FLAGS_CLOCKRT;
bf22a697
TG
3728 fallthrough;
3729 case FUTEX_LOCK_PI2:
996636dd 3730 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3731 case FUTEX_UNLOCK_PI:
81b40539 3732 return futex_unlock_pi(uaddr, flags);
c87e2837 3733 case FUTEX_TRYLOCK_PI:
996636dd 3734 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3735 case FUTEX_WAIT_REQUEUE_PI:
3736 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3737 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3738 uaddr2);
52400ba9 3739 case FUTEX_CMP_REQUEUE_PI:
81b40539 3740 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3741 }
81b40539 3742 return -ENOSYS;
1da177e4
LT
3743}
3744
51cf94d1
TG
3745static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3746{
3747 switch (cmd) {
3748 case FUTEX_WAIT:
3749 case FUTEX_LOCK_PI:
bf22a697 3750 case FUTEX_LOCK_PI2:
51cf94d1
TG
3751 case FUTEX_WAIT_BITSET:
3752 case FUTEX_WAIT_REQUEUE_PI:
3753 return true;
3754 }
3755 return false;
3756}
3757
3758static __always_inline int
3759futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3760{
3761 if (!timespec64_valid(ts))
3762 return -EINVAL;
3763
3764 *t = timespec64_to_ktime(*ts);
3765 if (cmd == FUTEX_WAIT)
3766 *t = ktime_add_safe(ktime_get(), *t);
3767 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3768 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3769 return 0;
3770}
1da177e4 3771
17da2bd9 3772SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c
AC
3773 const struct __kernel_timespec __user *, utime,
3774 u32 __user *, uaddr2, u32, val3)
1da177e4 3775{
51cf94d1 3776 int ret, cmd = op & FUTEX_CMD_MASK;
c19384b5 3777 ktime_t t, *tp = NULL;
51cf94d1 3778 struct timespec64 ts;
1da177e4 3779
51cf94d1 3780 if (utime && futex_cmd_has_timeout(cmd)) {
ab51fbab
DB
3781 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3782 return -EFAULT;
bec2f7cb 3783 if (get_timespec64(&ts, utime))
1da177e4 3784 return -EFAULT;
51cf94d1
TG
3785 ret = futex_init_timeout(cmd, op, &ts, &t);
3786 if (ret)
3787 return ret;
c19384b5 3788 tp = &t;
1da177e4 3789 }
1da177e4 3790
b097d5ed 3791 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
1da177e4
LT
3792}
3793
04e7712f
AB
3794#ifdef CONFIG_COMPAT
3795/*
3796 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3797 */
3798static inline int
3799compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3800 compat_uptr_t __user *head, unsigned int *pi)
3801{
3802 if (get_user(*uentry, head))
3803 return -EFAULT;
3804
3805 *entry = compat_ptr((*uentry) & ~1);
3806 *pi = (unsigned int)(*uentry) & 1;
3807
3808 return 0;
3809}
3810
3811static void __user *futex_uaddr(struct robust_list __user *entry,
3812 compat_long_t futex_offset)
3813{
3814 compat_uptr_t base = ptr_to_compat(entry);
3815 void __user *uaddr = compat_ptr(base + futex_offset);
3816
3817 return uaddr;
3818}
3819
3820/*
3821 * Walk curr->robust_list (very carefully, it's a userspace list!)
3822 * and mark any locks found there dead, and notify any waiters.
3823 *
3824 * We silently return on any sign of list-walking problem.
3825 */
ba31c1a4 3826static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3827{
3828 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3829 struct robust_list __user *entry, *next_entry, *pending;
3830 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3831 unsigned int next_pi;
04e7712f
AB
3832 compat_uptr_t uentry, next_uentry, upending;
3833 compat_long_t futex_offset;
3834 int rc;
3835
3836 if (!futex_cmpxchg_enabled)
3837 return;
3838
3839 /*
3840 * Fetch the list head (which was registered earlier, via
3841 * sys_set_robust_list()):
3842 */
3843 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3844 return;
3845 /*
3846 * Fetch the relative futex offset:
3847 */
3848 if (get_user(futex_offset, &head->futex_offset))
3849 return;
3850 /*
3851 * Fetch any possibly pending lock-add first, and handle it
3852 * if it exists:
3853 */
3854 if (compat_fetch_robust_entry(&upending, &pending,
3855 &head->list_op_pending, &pip))
3856 return;
3857
3858 next_entry = NULL; /* avoid warning with gcc */
3859 while (entry != (struct robust_list __user *) &head->list) {
3860 /*
3861 * Fetch the next entry in the list before calling
3862 * handle_futex_death:
3863 */
3864 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3865 (compat_uptr_t __user *)&entry->next, &next_pi);
3866 /*
3867 * A pending lock might already be on the list, so
3868 * dont process it twice:
3869 */
3870 if (entry != pending) {
3871 void __user *uaddr = futex_uaddr(entry, futex_offset);
3872
ca16d5be
YT
3873 if (handle_futex_death(uaddr, curr, pi,
3874 HANDLE_DEATH_LIST))
04e7712f
AB
3875 return;
3876 }
3877 if (rc)
3878 return;
3879 uentry = next_uentry;
3880 entry = next_entry;
3881 pi = next_pi;
3882 /*
3883 * Avoid excessively long or circular lists:
3884 */
3885 if (!--limit)
3886 break;
3887
3888 cond_resched();
3889 }
3890 if (pending) {
3891 void __user *uaddr = futex_uaddr(pending, futex_offset);
3892
ca16d5be 3893 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3894 }
3895}
3896
3897COMPAT_SYSCALL_DEFINE2(set_robust_list,
3898 struct compat_robust_list_head __user *, head,
3899 compat_size_t, len)
3900{
3901 if (!futex_cmpxchg_enabled)
3902 return -ENOSYS;
3903
3904 if (unlikely(len != sizeof(*head)))
3905 return -EINVAL;
3906
3907 current->compat_robust_list = head;
3908
3909 return 0;
3910}
3911
3912COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3913 compat_uptr_t __user *, head_ptr,
3914 compat_size_t __user *, len_ptr)
3915{
3916 struct compat_robust_list_head __user *head;
3917 unsigned long ret;
3918 struct task_struct *p;
3919
3920 if (!futex_cmpxchg_enabled)
3921 return -ENOSYS;
3922
3923 rcu_read_lock();
3924
3925 ret = -ESRCH;
3926 if (!pid)
3927 p = current;
3928 else {
3929 p = find_task_by_vpid(pid);
3930 if (!p)
3931 goto err_unlock;
3932 }
3933
3934 ret = -EPERM;
3935 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3936 goto err_unlock;
3937
3938 head = p->compat_robust_list;
3939 rcu_read_unlock();
3940
3941 if (put_user(sizeof(*head), len_ptr))
3942 return -EFAULT;
3943 return put_user(ptr_to_compat(head), head_ptr);
3944
3945err_unlock:
3946 rcu_read_unlock();
3947
3948 return ret;
3949}
bec2f7cb 3950#endif /* CONFIG_COMPAT */
04e7712f 3951
bec2f7cb 3952#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3953SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c 3954 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
04e7712f
AB
3955 u32, val3)
3956{
51cf94d1 3957 int ret, cmd = op & FUTEX_CMD_MASK;
04e7712f 3958 ktime_t t, *tp = NULL;
51cf94d1 3959 struct timespec64 ts;
04e7712f 3960
51cf94d1 3961 if (utime && futex_cmd_has_timeout(cmd)) {
bec2f7cb 3962 if (get_old_timespec32(&ts, utime))
04e7712f 3963 return -EFAULT;
51cf94d1
TG
3964 ret = futex_init_timeout(cmd, op, &ts, &t);
3965 if (ret)
3966 return ret;
04e7712f
AB
3967 tp = &t;
3968 }
04e7712f 3969
b097d5ed 3970 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
04e7712f 3971}
bec2f7cb 3972#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3973
03b8c7b6 3974static void __init futex_detect_cmpxchg(void)
1da177e4 3975{
03b8c7b6 3976#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3977 u32 curval;
03b8c7b6
HC
3978
3979 /*
3980 * This will fail and we want it. Some arch implementations do
3981 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3982 * functionality. We want to know that before we call in any
3983 * of the complex code paths. Also we want to prevent
3984 * registration of robust lists in that case. NULL is
3985 * guaranteed to fault and we get -EFAULT on functional
3986 * implementation, the non-functional ones will return
3987 * -ENOSYS.
3988 */
3989 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3990 futex_cmpxchg_enabled = 1;
3991#endif
3992}
3993
3994static int __init futex_init(void)
3995{
63b1a816 3996 unsigned int futex_shift;
a52b89eb
DB
3997 unsigned long i;
3998
3999#if CONFIG_BASE_SMALL
4000 futex_hashsize = 16;
4001#else
4002 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4003#endif
4004
4005 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4006 futex_hashsize, 0,
4007 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4008 &futex_shift, NULL,
4009 futex_hashsize, futex_hashsize);
4010 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4011
4012 futex_detect_cmpxchg();
a0c1e907 4013
a52b89eb 4014 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4015 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4016 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4017 spin_lock_init(&futex_queues[i].lock);
4018 }
4019
1da177e4
LT
4020 return 0;
4021}
25f71d1c 4022core_initcall(futex_init);