]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
futex: Fix inode life-time issue
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4
LT
35#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
7ed20e1a 45#include <linux/signal.h>
9984de1a 46#include <linux/export.h>
fd5eea42 47#include <linux/magic.h>
b488893a
PE
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
bdbb776f 50#include <linux/ptrace.h>
8bd75c77 51#include <linux/sched/rt.h>
84f001e1 52#include <linux/sched/wake_q.h>
6e84f315 53#include <linux/sched/mm.h>
13d60f4b 54#include <linux/hugetlb.h>
88c8004f 55#include <linux/freezer.h>
57c8a661 56#include <linux/memblock.h>
ab51fbab 57#include <linux/fault-inject.h>
49262de2 58#include <linux/refcount.h>
b488893a 59
4732efbe 60#include <asm/futex.h>
1da177e4 61
1696a8be 62#include "locking/rtmutex_common.h"
c87e2837 63
99b60ce6 64/*
d7e8af1a
DB
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
99b60ce6
TG
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
99b60ce6
TG
76 *
77 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
99b60ce6 81 *
b0c29f79
DB
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 107 *
b0c29f79
DB
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
99b60ce6
TG
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
b0c29f79 116 *
d7e8af1a 117 * waiters++; (a)
8ad7b378
DB
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
99b60ce6 128 * if (uval == val)
b0c29f79 129 * queue();
99b60ce6 130 * unlock(hash_bucket(futex));
b0c29f79
DB
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
d7e8af1a
DB
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 135 *
d7e8af1a
DB
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
d7e8af1a
DB
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
163 */
164
04e7712f
AB
165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166#define futex_cmpxchg_enabled 1
167#else
168static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 169#endif
a0c1e907 170
b41277dc
DH
171/*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
784bdf3b
TG
175#ifdef CONFIG_MMU
176# define FLAGS_SHARED 0x01
177#else
178/*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182# define FLAGS_SHARED 0x00
183#endif
b41277dc
DH
184#define FLAGS_CLOCKRT 0x02
185#define FLAGS_HAS_TIMEOUT 0x04
186
c87e2837
IM
187/*
188 * Priority Inheritance state:
189 */
190struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
49262de2 203 refcount_t refcount;
c87e2837
IM
204
205 union futex_key key;
3859a271 206} __randomize_layout;
c87e2837 207
d8d88fbb
DH
208/**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 210 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
ac6424b9 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 224 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
229 */
230struct futex_q {
ec92d082 231 struct plist_node list;
1da177e4 232
d8d88fbb 233 struct task_struct *task;
1da177e4 234 spinlock_t *lock_ptr;
1da177e4 235 union futex_key key;
c87e2837 236 struct futex_pi_state *pi_state;
52400ba9 237 struct rt_mutex_waiter *rt_waiter;
84bc4af5 238 union futex_key *requeue_pi_key;
cd689985 239 u32 bitset;
3859a271 240} __randomize_layout;
1da177e4 241
5bdb05f9
DH
242static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246};
247
1da177e4 248/*
b2d0994b
DH
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
1da177e4
LT
252 */
253struct futex_hash_bucket {
11d4616b 254 atomic_t waiters;
ec92d082
PP
255 spinlock_t lock;
256 struct plist_head chain;
a52b89eb 257} ____cacheline_aligned_in_smp;
1da177e4 258
ac742d37
RV
259/*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267} __futex_data __read_mostly __aligned(2*sizeof(long));
268#define futex_queues (__futex_data.queues)
269#define futex_hashsize (__futex_data.hashsize)
a52b89eb 270
1da177e4 271
ab51fbab
DB
272/*
273 * Fault injections for futexes.
274 */
275#ifdef CONFIG_FAIL_FUTEX
276
277static struct {
278 struct fault_attr attr;
279
621a5f7a 280 bool ignore_private;
ab51fbab
DB
281} fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 283 .ignore_private = false,
ab51fbab
DB
284};
285
286static int __init setup_fail_futex(char *str)
287{
288 return setup_fault_attr(&fail_futex.attr, str);
289}
290__setup("fail_futex=", setup_fail_futex);
291
5d285a7f 292static bool should_fail_futex(bool fshared)
ab51fbab
DB
293{
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298}
299
300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302static int __init fail_futex_debugfs(void)
303{
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
0365aeba
GKH
312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
ab51fbab
DB
314 return 0;
315}
316
317late_initcall(fail_futex_debugfs);
318
319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321#else
322static inline bool should_fail_futex(bool fshared)
323{
324 return false;
325}
326#endif /* CONFIG_FAIL_FUTEX */
327
ba31c1a4
TG
328#ifdef CONFIG_COMPAT
329static void compat_exit_robust_list(struct task_struct *curr);
330#else
331static inline void compat_exit_robust_list(struct task_struct *curr) { }
332#endif
333
b0c29f79
DB
334static inline void futex_get_mm(union futex_key *key)
335{
f1f10076 336 mmgrab(key->private.mm);
b0c29f79
DB
337 /*
338 * Ensure futex_get_mm() implies a full barrier such that
339 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 340 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 341 */
4e857c58 342 smp_mb__after_atomic();
b0c29f79
DB
343}
344
11d4616b
LT
345/*
346 * Reflects a new waiter being added to the waitqueue.
347 */
348static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
349{
350#ifdef CONFIG_SMP
11d4616b 351 atomic_inc(&hb->waiters);
b0c29f79 352 /*
11d4616b 353 * Full barrier (A), see the ordering comment above.
b0c29f79 354 */
4e857c58 355 smp_mb__after_atomic();
11d4616b
LT
356#endif
357}
358
359/*
360 * Reflects a waiter being removed from the waitqueue by wakeup
361 * paths.
362 */
363static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364{
365#ifdef CONFIG_SMP
366 atomic_dec(&hb->waiters);
367#endif
368}
b0c29f79 369
11d4616b
LT
370static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 return atomic_read(&hb->waiters);
b0c29f79 374#else
11d4616b 375 return 1;
b0c29f79
DB
376#endif
377}
378
e8b61b3f
TG
379/**
380 * hash_futex - Return the hash bucket in the global hash
381 * @key: Pointer to the futex key for which the hash is calculated
382 *
383 * We hash on the keys returned from get_futex_key (see below) and return the
384 * corresponding hash bucket in the global hash.
1da177e4
LT
385 */
386static struct futex_hash_bucket *hash_futex(union futex_key *key)
387{
388 u32 hash = jhash2((u32*)&key->both.word,
389 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390 key->both.offset);
a52b89eb 391 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
392}
393
e8b61b3f
TG
394
395/**
396 * match_futex - Check whether two futex keys are equal
397 * @key1: Pointer to key1
398 * @key2: Pointer to key2
399 *
1da177e4
LT
400 * Return 1 if two futex_keys are equal, 0 otherwise.
401 */
402static inline int match_futex(union futex_key *key1, union futex_key *key2)
403{
2bc87203
DH
404 return (key1 && key2
405 && key1->both.word == key2->both.word
1da177e4
LT
406 && key1->both.ptr == key2->both.ptr
407 && key1->both.offset == key2->both.offset);
408}
409
38d47c1b
PZ
410/*
411 * Take a reference to the resource addressed by a key.
412 * Can be called while holding spinlocks.
413 *
414 */
415static void get_futex_key_refs(union futex_key *key)
416{
417 if (!key->both.ptr)
418 return;
419
784bdf3b
TG
420 /*
421 * On MMU less systems futexes are always "private" as there is no per
422 * process address space. We need the smp wmb nevertheless - yes,
423 * arch/blackfin has MMU less SMP ...
424 */
425 if (!IS_ENABLED(CONFIG_MMU)) {
426 smp_mb(); /* explicit smp_mb(); (B) */
427 return;
428 }
429
38d47c1b
PZ
430 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431 case FUT_OFF_INODE:
8019ad13 432 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
433 break;
434 case FUT_OFF_MMSHARED:
8ad7b378 435 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 436 break;
76835b0e 437 default:
993b2ff2
DB
438 /*
439 * Private futexes do not hold reference on an inode or
440 * mm, therefore the only purpose of calling get_futex_key_refs
441 * is because we need the barrier for the lockless waiter check.
442 */
8ad7b378 443 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
444 }
445}
446
447/*
448 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
449 * The hash bucket spinlock must not be held. This is
450 * a no-op for private futexes, see comment in the get
451 * counterpart.
38d47c1b
PZ
452 */
453static void drop_futex_key_refs(union futex_key *key)
454{
90621c40
DH
455 if (!key->both.ptr) {
456 /* If we're here then we tried to put a key we failed to get */
457 WARN_ON_ONCE(1);
38d47c1b 458 return;
90621c40 459 }
38d47c1b 460
784bdf3b
TG
461 if (!IS_ENABLED(CONFIG_MMU))
462 return;
463
38d47c1b
PZ
464 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465 case FUT_OFF_INODE:
38d47c1b
PZ
466 break;
467 case FUT_OFF_MMSHARED:
468 mmdrop(key->private.mm);
469 break;
470 }
471}
472
96d4f267
LT
473enum futex_access {
474 FUTEX_READ,
475 FUTEX_WRITE
476};
477
5ca584d9
WL
478/**
479 * futex_setup_timer - set up the sleeping hrtimer.
480 * @time: ptr to the given timeout value
481 * @timeout: the hrtimer_sleeper structure to be set up
482 * @flags: futex flags
483 * @range_ns: optional range in ns
484 *
485 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
486 * value given
487 */
488static inline struct hrtimer_sleeper *
489futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
490 int flags, u64 range_ns)
491{
492 if (!time)
493 return NULL;
494
dbc1625f
SAS
495 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
496 CLOCK_REALTIME : CLOCK_MONOTONIC,
497 HRTIMER_MODE_ABS);
5ca584d9
WL
498 /*
499 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
500 * effectively the same as calling hrtimer_set_expires().
501 */
502 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
503
504 return timeout;
505}
506
8019ad13
PZ
507/*
508 * Generate a machine wide unique identifier for this inode.
509 *
510 * This relies on u64 not wrapping in the life-time of the machine; which with
511 * 1ns resolution means almost 585 years.
512 *
513 * This further relies on the fact that a well formed program will not unmap
514 * the file while it has a (shared) futex waiting on it. This mapping will have
515 * a file reference which pins the mount and inode.
516 *
517 * If for some reason an inode gets evicted and read back in again, it will get
518 * a new sequence number and will _NOT_ match, even though it is the exact same
519 * file.
520 *
521 * It is important that match_futex() will never have a false-positive, esp.
522 * for PI futexes that can mess up the state. The above argues that false-negatives
523 * are only possible for malformed programs.
524 */
525static u64 get_inode_sequence_number(struct inode *inode)
526{
527 static atomic64_t i_seq;
528 u64 old;
529
530 /* Does the inode already have a sequence number? */
531 old = atomic64_read(&inode->i_sequence);
532 if (likely(old))
533 return old;
534
535 for (;;) {
536 u64 new = atomic64_add_return(1, &i_seq);
537 if (WARN_ON_ONCE(!new))
538 continue;
539
540 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
541 if (old)
542 return old;
543 return new;
544 }
545}
546
34f01cc1 547/**
d96ee56c
DH
548 * get_futex_key() - Get parameters which are the keys for a futex
549 * @uaddr: virtual address of the futex
550 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
551 * @key: address where result is stored.
96d4f267
LT
552 * @rw: mapping needs to be read/write (values: FUTEX_READ,
553 * FUTEX_WRITE)
34f01cc1 554 *
6c23cbbd
RD
555 * Return: a negative error code or 0
556 *
7b4ff1ad 557 * The key words are stored in @key on success.
1da177e4 558 *
8019ad13
PZ
559 * For shared mappings (when @fshared), the key is:
560 * ( inode->i_sequence, page->index, offset_within_page )
561 * [ also see get_inode_sequence_number() ]
562 *
563 * For private mappings (or when !@fshared), the key is:
564 * ( current->mm, address, 0 )
565 *
566 * This allows (cross process, where applicable) identification of the futex
567 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 568 *
b2d0994b 569 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 570 */
64d1304a 571static int
96d4f267 572get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 573{
e2970f2f 574 unsigned long address = (unsigned long)uaddr;
1da177e4 575 struct mm_struct *mm = current->mm;
077fa7ae 576 struct page *page, *tail;
14d27abd 577 struct address_space *mapping;
9ea71503 578 int err, ro = 0;
1da177e4
LT
579
580 /*
581 * The futex address must be "naturally" aligned.
582 */
e2970f2f 583 key->both.offset = address % PAGE_SIZE;
34f01cc1 584 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 585 return -EINVAL;
e2970f2f 586 address -= key->both.offset;
1da177e4 587
96d4f267 588 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
589 return -EFAULT;
590
ab51fbab
DB
591 if (unlikely(should_fail_futex(fshared)))
592 return -EFAULT;
593
34f01cc1
ED
594 /*
595 * PROCESS_PRIVATE futexes are fast.
596 * As the mm cannot disappear under us and the 'key' only needs
597 * virtual address, we dont even have to find the underlying vma.
598 * Note : We do have to check 'uaddr' is a valid user address,
599 * but access_ok() should be faster than find_vma()
600 */
601 if (!fshared) {
34f01cc1
ED
602 key->private.mm = mm;
603 key->private.address = address;
8ad7b378 604 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
605 return 0;
606 }
1da177e4 607
38d47c1b 608again:
ab51fbab
DB
609 /* Ignore any VERIFY_READ mapping (futex common case) */
610 if (unlikely(should_fail_futex(fshared)))
611 return -EFAULT;
612
73b0140b 613 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
614 /*
615 * If write access is not required (eg. FUTEX_WAIT), try
616 * and get read-only access.
617 */
96d4f267 618 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
619 err = get_user_pages_fast(address, 1, 0, &page);
620 ro = 1;
621 }
38d47c1b
PZ
622 if (err < 0)
623 return err;
9ea71503
SB
624 else
625 err = 0;
38d47c1b 626
65d8fc77
MG
627 /*
628 * The treatment of mapping from this point on is critical. The page
629 * lock protects many things but in this context the page lock
630 * stabilizes mapping, prevents inode freeing in the shared
631 * file-backed region case and guards against movement to swap cache.
632 *
633 * Strictly speaking the page lock is not needed in all cases being
634 * considered here and page lock forces unnecessarily serialization
635 * From this point on, mapping will be re-verified if necessary and
636 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
637 *
638 * Mapping checks require the head page for any compound page so the
639 * head page and mapping is looked up now. For anonymous pages, it
640 * does not matter if the page splits in the future as the key is
641 * based on the address. For filesystem-backed pages, the tail is
642 * required as the index of the page determines the key. For
643 * base pages, there is no tail page and tail == page.
65d8fc77 644 */
077fa7ae 645 tail = page;
65d8fc77
MG
646 page = compound_head(page);
647 mapping = READ_ONCE(page->mapping);
648
e6780f72 649 /*
14d27abd 650 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
651 * page; but it might be the ZERO_PAGE or in the gate area or
652 * in a special mapping (all cases which we are happy to fail);
653 * or it may have been a good file page when get_user_pages_fast
654 * found it, but truncated or holepunched or subjected to
655 * invalidate_complete_page2 before we got the page lock (also
656 * cases which we are happy to fail). And we hold a reference,
657 * so refcount care in invalidate_complete_page's remove_mapping
658 * prevents drop_caches from setting mapping to NULL beneath us.
659 *
660 * The case we do have to guard against is when memory pressure made
661 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 662 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 663 */
65d8fc77
MG
664 if (unlikely(!mapping)) {
665 int shmem_swizzled;
666
667 /*
668 * Page lock is required to identify which special case above
669 * applies. If this is really a shmem page then the page lock
670 * will prevent unexpected transitions.
671 */
672 lock_page(page);
673 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
674 unlock_page(page);
675 put_page(page);
65d8fc77 676
e6780f72
HD
677 if (shmem_swizzled)
678 goto again;
65d8fc77 679
e6780f72 680 return -EFAULT;
38d47c1b 681 }
1da177e4
LT
682
683 /*
684 * Private mappings are handled in a simple way.
685 *
65d8fc77
MG
686 * If the futex key is stored on an anonymous page, then the associated
687 * object is the mm which is implicitly pinned by the calling process.
688 *
1da177e4
LT
689 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
690 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 691 * the object not the particular process.
1da177e4 692 */
14d27abd 693 if (PageAnon(page)) {
9ea71503
SB
694 /*
695 * A RO anonymous page will never change and thus doesn't make
696 * sense for futex operations.
697 */
ab51fbab 698 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
699 err = -EFAULT;
700 goto out;
701 }
702
38d47c1b 703 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 704 key->private.mm = mm;
e2970f2f 705 key->private.address = address;
65d8fc77 706
38d47c1b 707 } else {
65d8fc77
MG
708 struct inode *inode;
709
710 /*
711 * The associated futex object in this case is the inode and
712 * the page->mapping must be traversed. Ordinarily this should
713 * be stabilised under page lock but it's not strictly
714 * necessary in this case as we just want to pin the inode, not
715 * update the radix tree or anything like that.
716 *
717 * The RCU read lock is taken as the inode is finally freed
718 * under RCU. If the mapping still matches expectations then the
719 * mapping->host can be safely accessed as being a valid inode.
720 */
721 rcu_read_lock();
722
723 if (READ_ONCE(page->mapping) != mapping) {
724 rcu_read_unlock();
725 put_page(page);
726
727 goto again;
728 }
729
730 inode = READ_ONCE(mapping->host);
731 if (!inode) {
732 rcu_read_unlock();
733 put_page(page);
734
735 goto again;
736 }
737
38d47c1b 738 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 739 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 740 key->shared.pgoff = basepage_index(tail);
65d8fc77 741 rcu_read_unlock();
1da177e4
LT
742 }
743
8019ad13
PZ
744 get_futex_key_refs(key); /* implies smp_mb(); (B) */
745
9ea71503 746out:
14d27abd 747 put_page(page);
9ea71503 748 return err;
1da177e4
LT
749}
750
ae791a2d 751static inline void put_futex_key(union futex_key *key)
1da177e4 752{
38d47c1b 753 drop_futex_key_refs(key);
1da177e4
LT
754}
755
d96ee56c
DH
756/**
757 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
758 * @uaddr: pointer to faulting user space address
759 *
760 * Slow path to fixup the fault we just took in the atomic write
761 * access to @uaddr.
762 *
fb62db2b 763 * We have no generic implementation of a non-destructive write to the
d0725992
TG
764 * user address. We know that we faulted in the atomic pagefault
765 * disabled section so we can as well avoid the #PF overhead by
766 * calling get_user_pages() right away.
767 */
768static int fault_in_user_writeable(u32 __user *uaddr)
769{
722d0172
AK
770 struct mm_struct *mm = current->mm;
771 int ret;
772
773 down_read(&mm->mmap_sem);
2efaca92 774 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 775 FAULT_FLAG_WRITE, NULL);
722d0172
AK
776 up_read(&mm->mmap_sem);
777
d0725992
TG
778 return ret < 0 ? ret : 0;
779}
780
4b1c486b
DH
781/**
782 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
783 * @hb: the hash bucket the futex_q's reside in
784 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
785 *
786 * Must be called with the hb lock held.
787 */
788static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
789 union futex_key *key)
790{
791 struct futex_q *this;
792
793 plist_for_each_entry(this, &hb->chain, list) {
794 if (match_futex(&this->key, key))
795 return this;
796 }
797 return NULL;
798}
799
37a9d912
ML
800static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
801 u32 uval, u32 newval)
36cf3b5c 802{
37a9d912 803 int ret;
36cf3b5c
TG
804
805 pagefault_disable();
37a9d912 806 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
807 pagefault_enable();
808
37a9d912 809 return ret;
36cf3b5c
TG
810}
811
812static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
813{
814 int ret;
815
a866374a 816 pagefault_disable();
bd28b145 817 ret = __get_user(*dest, from);
a866374a 818 pagefault_enable();
1da177e4
LT
819
820 return ret ? -EFAULT : 0;
821}
822
c87e2837
IM
823
824/*
825 * PI code:
826 */
827static int refill_pi_state_cache(void)
828{
829 struct futex_pi_state *pi_state;
830
831 if (likely(current->pi_state_cache))
832 return 0;
833
4668edc3 834 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
835
836 if (!pi_state)
837 return -ENOMEM;
838
c87e2837
IM
839 INIT_LIST_HEAD(&pi_state->list);
840 /* pi_mutex gets initialized later */
841 pi_state->owner = NULL;
49262de2 842 refcount_set(&pi_state->refcount, 1);
38d47c1b 843 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
844
845 current->pi_state_cache = pi_state;
846
847 return 0;
848}
849
bf92cf3a 850static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
851{
852 struct futex_pi_state *pi_state = current->pi_state_cache;
853
854 WARN_ON(!pi_state);
855 current->pi_state_cache = NULL;
856
857 return pi_state;
858}
859
bf92cf3a
PZ
860static void get_pi_state(struct futex_pi_state *pi_state)
861{
49262de2 862 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
863}
864
30a6b803 865/*
29e9ee5d
TG
866 * Drops a reference to the pi_state object and frees or caches it
867 * when the last reference is gone.
30a6b803 868 */
29e9ee5d 869static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 870{
30a6b803
BS
871 if (!pi_state)
872 return;
873
49262de2 874 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
875 return;
876
877 /*
878 * If pi_state->owner is NULL, the owner is most probably dying
879 * and has cleaned up the pi_state already
880 */
881 if (pi_state->owner) {
c74aef2d 882 struct task_struct *owner;
c87e2837 883
c74aef2d
PZ
884 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
885 owner = pi_state->owner;
886 if (owner) {
887 raw_spin_lock(&owner->pi_lock);
888 list_del_init(&pi_state->list);
889 raw_spin_unlock(&owner->pi_lock);
890 }
891 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
892 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
893 }
894
c74aef2d 895 if (current->pi_state_cache) {
c87e2837 896 kfree(pi_state);
c74aef2d 897 } else {
c87e2837
IM
898 /*
899 * pi_state->list is already empty.
900 * clear pi_state->owner.
901 * refcount is at 0 - put it back to 1.
902 */
903 pi_state->owner = NULL;
49262de2 904 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
905 current->pi_state_cache = pi_state;
906 }
907}
908
bc2eecd7
NP
909#ifdef CONFIG_FUTEX_PI
910
c87e2837
IM
911/*
912 * This task is holding PI mutexes at exit time => bad.
913 * Kernel cleans up PI-state, but userspace is likely hosed.
914 * (Robust-futex cleanup is separate and might save the day for userspace.)
915 */
ba31c1a4 916static void exit_pi_state_list(struct task_struct *curr)
c87e2837 917{
c87e2837
IM
918 struct list_head *next, *head = &curr->pi_state_list;
919 struct futex_pi_state *pi_state;
627371d7 920 struct futex_hash_bucket *hb;
38d47c1b 921 union futex_key key = FUTEX_KEY_INIT;
c87e2837 922
a0c1e907
TG
923 if (!futex_cmpxchg_enabled)
924 return;
c87e2837
IM
925 /*
926 * We are a ZOMBIE and nobody can enqueue itself on
927 * pi_state_list anymore, but we have to be careful
627371d7 928 * versus waiters unqueueing themselves:
c87e2837 929 */
1d615482 930 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 931 while (!list_empty(head)) {
c87e2837
IM
932 next = head->next;
933 pi_state = list_entry(next, struct futex_pi_state, list);
934 key = pi_state->key;
627371d7 935 hb = hash_futex(&key);
153fbd12
PZ
936
937 /*
938 * We can race against put_pi_state() removing itself from the
939 * list (a waiter going away). put_pi_state() will first
940 * decrement the reference count and then modify the list, so
941 * its possible to see the list entry but fail this reference
942 * acquire.
943 *
944 * In that case; drop the locks to let put_pi_state() make
945 * progress and retry the loop.
946 */
49262de2 947 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
948 raw_spin_unlock_irq(&curr->pi_lock);
949 cpu_relax();
950 raw_spin_lock_irq(&curr->pi_lock);
951 continue;
952 }
1d615482 953 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 954
c87e2837 955 spin_lock(&hb->lock);
c74aef2d
PZ
956 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
957 raw_spin_lock(&curr->pi_lock);
627371d7
IM
958 /*
959 * We dropped the pi-lock, so re-check whether this
960 * task still owns the PI-state:
961 */
c87e2837 962 if (head->next != next) {
153fbd12 963 /* retain curr->pi_lock for the loop invariant */
c74aef2d 964 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 965 spin_unlock(&hb->lock);
153fbd12 966 put_pi_state(pi_state);
c87e2837
IM
967 continue;
968 }
969
c87e2837 970 WARN_ON(pi_state->owner != curr);
627371d7
IM
971 WARN_ON(list_empty(&pi_state->list));
972 list_del_init(&pi_state->list);
c87e2837 973 pi_state->owner = NULL;
c87e2837 974
153fbd12 975 raw_spin_unlock(&curr->pi_lock);
c74aef2d 976 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
977 spin_unlock(&hb->lock);
978
16ffa12d
PZ
979 rt_mutex_futex_unlock(&pi_state->pi_mutex);
980 put_pi_state(pi_state);
981
1d615482 982 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 983 }
1d615482 984 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 985}
ba31c1a4
TG
986#else
987static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
988#endif
989
54a21788
TG
990/*
991 * We need to check the following states:
992 *
993 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
994 *
995 * [1] NULL | --- | --- | 0 | 0/1 | Valid
996 * [2] NULL | --- | --- | >0 | 0/1 | Valid
997 *
998 * [3] Found | NULL | -- | Any | 0/1 | Invalid
999 *
1000 * [4] Found | Found | NULL | 0 | 1 | Valid
1001 * [5] Found | Found | NULL | >0 | 1 | Invalid
1002 *
1003 * [6] Found | Found | task | 0 | 1 | Valid
1004 *
1005 * [7] Found | Found | NULL | Any | 0 | Invalid
1006 *
1007 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
1008 * [9] Found | Found | task | 0 | 0 | Invalid
1009 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
1010 *
1011 * [1] Indicates that the kernel can acquire the futex atomically. We
1012 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1013 *
1014 * [2] Valid, if TID does not belong to a kernel thread. If no matching
1015 * thread is found then it indicates that the owner TID has died.
1016 *
1017 * [3] Invalid. The waiter is queued on a non PI futex
1018 *
1019 * [4] Valid state after exit_robust_list(), which sets the user space
1020 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1021 *
1022 * [5] The user space value got manipulated between exit_robust_list()
1023 * and exit_pi_state_list()
1024 *
1025 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1026 * the pi_state but cannot access the user space value.
1027 *
1028 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1029 *
1030 * [8] Owner and user space value match
1031 *
1032 * [9] There is no transient state which sets the user space TID to 0
1033 * except exit_robust_list(), but this is indicated by the
1034 * FUTEX_OWNER_DIED bit. See [4]
1035 *
1036 * [10] There is no transient state which leaves owner and user space
1037 * TID out of sync.
734009e9
PZ
1038 *
1039 *
1040 * Serialization and lifetime rules:
1041 *
1042 * hb->lock:
1043 *
1044 * hb -> futex_q, relation
1045 * futex_q -> pi_state, relation
1046 *
1047 * (cannot be raw because hb can contain arbitrary amount
1048 * of futex_q's)
1049 *
1050 * pi_mutex->wait_lock:
1051 *
1052 * {uval, pi_state}
1053 *
1054 * (and pi_mutex 'obviously')
1055 *
1056 * p->pi_lock:
1057 *
1058 * p->pi_state_list -> pi_state->list, relation
1059 *
1060 * pi_state->refcount:
1061 *
1062 * pi_state lifetime
1063 *
1064 *
1065 * Lock order:
1066 *
1067 * hb->lock
1068 * pi_mutex->wait_lock
1069 * p->pi_lock
1070 *
54a21788 1071 */
e60cbc5c
TG
1072
1073/*
1074 * Validate that the existing waiter has a pi_state and sanity check
1075 * the pi_state against the user space value. If correct, attach to
1076 * it.
1077 */
734009e9
PZ
1078static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1079 struct futex_pi_state *pi_state,
e60cbc5c 1080 struct futex_pi_state **ps)
c87e2837 1081{
778e9a9c 1082 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1083 u32 uval2;
1084 int ret;
c87e2837 1085
e60cbc5c
TG
1086 /*
1087 * Userspace might have messed up non-PI and PI futexes [3]
1088 */
1089 if (unlikely(!pi_state))
1090 return -EINVAL;
06a9ec29 1091
734009e9
PZ
1092 /*
1093 * We get here with hb->lock held, and having found a
1094 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1095 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1096 * which in turn means that futex_lock_pi() still has a reference on
1097 * our pi_state.
16ffa12d
PZ
1098 *
1099 * The waiter holding a reference on @pi_state also protects against
1100 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1101 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1102 * free pi_state before we can take a reference ourselves.
734009e9 1103 */
49262de2 1104 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1105
734009e9
PZ
1106 /*
1107 * Now that we have a pi_state, we can acquire wait_lock
1108 * and do the state validation.
1109 */
1110 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1111
1112 /*
1113 * Since {uval, pi_state} is serialized by wait_lock, and our current
1114 * uval was read without holding it, it can have changed. Verify it
1115 * still is what we expect it to be, otherwise retry the entire
1116 * operation.
1117 */
1118 if (get_futex_value_locked(&uval2, uaddr))
1119 goto out_efault;
1120
1121 if (uval != uval2)
1122 goto out_eagain;
1123
e60cbc5c
TG
1124 /*
1125 * Handle the owner died case:
1126 */
1127 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1128 /*
e60cbc5c
TG
1129 * exit_pi_state_list sets owner to NULL and wakes the
1130 * topmost waiter. The task which acquires the
1131 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1132 */
e60cbc5c 1133 if (!pi_state->owner) {
59647b6a 1134 /*
e60cbc5c
TG
1135 * No pi state owner, but the user space TID
1136 * is not 0. Inconsistent state. [5]
59647b6a 1137 */
e60cbc5c 1138 if (pid)
734009e9 1139 goto out_einval;
bd1dbcc6 1140 /*
e60cbc5c 1141 * Take a ref on the state and return success. [4]
866293ee 1142 */
734009e9 1143 goto out_attach;
c87e2837 1144 }
bd1dbcc6
TG
1145
1146 /*
e60cbc5c
TG
1147 * If TID is 0, then either the dying owner has not
1148 * yet executed exit_pi_state_list() or some waiter
1149 * acquired the rtmutex in the pi state, but did not
1150 * yet fixup the TID in user space.
1151 *
1152 * Take a ref on the state and return success. [6]
1153 */
1154 if (!pid)
734009e9 1155 goto out_attach;
e60cbc5c
TG
1156 } else {
1157 /*
1158 * If the owner died bit is not set, then the pi_state
1159 * must have an owner. [7]
bd1dbcc6 1160 */
e60cbc5c 1161 if (!pi_state->owner)
734009e9 1162 goto out_einval;
c87e2837
IM
1163 }
1164
e60cbc5c
TG
1165 /*
1166 * Bail out if user space manipulated the futex value. If pi
1167 * state exists then the owner TID must be the same as the
1168 * user space TID. [9/10]
1169 */
1170 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1171 goto out_einval;
1172
1173out_attach:
bf92cf3a 1174 get_pi_state(pi_state);
734009e9 1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1176 *ps = pi_state;
1177 return 0;
734009e9
PZ
1178
1179out_einval:
1180 ret = -EINVAL;
1181 goto out_error;
1182
1183out_eagain:
1184 ret = -EAGAIN;
1185 goto out_error;
1186
1187out_efault:
1188 ret = -EFAULT;
1189 goto out_error;
1190
1191out_error:
1192 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1193 return ret;
e60cbc5c
TG
1194}
1195
3ef240ea
TG
1196/**
1197 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1198 * @ret: owner's current futex lock status
3ef240ea
TG
1199 * @exiting: Pointer to the exiting task
1200 *
1201 * Caller must hold a refcount on @exiting.
1202 */
1203static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1204{
1205 if (ret != -EBUSY) {
1206 WARN_ON_ONCE(exiting);
1207 return;
1208 }
1209
1210 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1211 return;
1212
1213 mutex_lock(&exiting->futex_exit_mutex);
1214 /*
1215 * No point in doing state checking here. If the waiter got here
1216 * while the task was in exec()->exec_futex_release() then it can
1217 * have any FUTEX_STATE_* value when the waiter has acquired the
1218 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1219 * already. Highly unlikely and not a problem. Just one more round
1220 * through the futex maze.
1221 */
1222 mutex_unlock(&exiting->futex_exit_mutex);
1223
1224 put_task_struct(exiting);
1225}
1226
da791a66
TG
1227static int handle_exit_race(u32 __user *uaddr, u32 uval,
1228 struct task_struct *tsk)
1229{
1230 u32 uval2;
1231
1232 /*
ac31c7ff
TG
1233 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1234 * caller that the alleged owner is busy.
da791a66 1235 */
3d4775df 1236 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1237 return -EBUSY;
da791a66
TG
1238
1239 /*
1240 * Reread the user space value to handle the following situation:
1241 *
1242 * CPU0 CPU1
1243 *
1244 * sys_exit() sys_futex()
1245 * do_exit() futex_lock_pi()
1246 * futex_lock_pi_atomic()
1247 * exit_signals(tsk) No waiters:
1248 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1249 * mm_release(tsk) Set waiter bit
1250 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1251 * Set owner died attach_to_pi_owner() {
1252 * *uaddr = 0xC0000000; tsk = get_task(PID);
1253 * } if (!tsk->flags & PF_EXITING) {
1254 * ... attach();
3d4775df
TG
1255 * tsk->futex_state = } else {
1256 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1257 * FUTEX_STATE_DEAD)
da791a66
TG
1258 * return -EAGAIN;
1259 * return -ESRCH; <--- FAIL
1260 * }
1261 *
1262 * Returning ESRCH unconditionally is wrong here because the
1263 * user space value has been changed by the exiting task.
1264 *
1265 * The same logic applies to the case where the exiting task is
1266 * already gone.
1267 */
1268 if (get_futex_value_locked(&uval2, uaddr))
1269 return -EFAULT;
1270
1271 /* If the user space value has changed, try again. */
1272 if (uval2 != uval)
1273 return -EAGAIN;
1274
1275 /*
1276 * The exiting task did not have a robust list, the robust list was
1277 * corrupted or the user space value in *uaddr is simply bogus.
1278 * Give up and tell user space.
1279 */
1280 return -ESRCH;
1281}
1282
04e1b2e5
TG
1283/*
1284 * Lookup the task for the TID provided from user space and attach to
1285 * it after doing proper sanity checks.
1286 */
da791a66 1287static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1288 struct futex_pi_state **ps,
1289 struct task_struct **exiting)
e60cbc5c 1290{
e60cbc5c 1291 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1292 struct futex_pi_state *pi_state;
1293 struct task_struct *p;
e60cbc5c 1294
c87e2837 1295 /*
e3f2ddea 1296 * We are the first waiter - try to look up the real owner and attach
54a21788 1297 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1298 *
1299 * The !pid check is paranoid. None of the call sites should end up
1300 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1301 */
778e9a9c 1302 if (!pid)
da791a66 1303 return -EAGAIN;
2ee08260 1304 p = find_get_task_by_vpid(pid);
7a0ea09a 1305 if (!p)
da791a66 1306 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1307
a2129464 1308 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1309 put_task_struct(p);
1310 return -EPERM;
1311 }
1312
778e9a9c 1313 /*
3d4775df
TG
1314 * We need to look at the task state to figure out, whether the
1315 * task is exiting. To protect against the change of the task state
1316 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1317 */
1d615482 1318 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1319 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1320 /*
3d4775df
TG
1321 * The task is on the way out. When the futex state is
1322 * FUTEX_STATE_DEAD, we know that the task has finished
1323 * the cleanup:
778e9a9c 1324 */
da791a66 1325 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1326
1d615482 1327 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1328 /*
1329 * If the owner task is between FUTEX_STATE_EXITING and
1330 * FUTEX_STATE_DEAD then store the task pointer and keep
1331 * the reference on the task struct. The calling code will
1332 * drop all locks, wait for the task to reach
1333 * FUTEX_STATE_DEAD and then drop the refcount. This is
1334 * required to prevent a live lock when the current task
1335 * preempted the exiting task between the two states.
1336 */
1337 if (ret == -EBUSY)
1338 *exiting = p;
1339 else
1340 put_task_struct(p);
778e9a9c
AK
1341 return ret;
1342 }
c87e2837 1343
54a21788
TG
1344 /*
1345 * No existing pi state. First waiter. [2]
734009e9
PZ
1346 *
1347 * This creates pi_state, we have hb->lock held, this means nothing can
1348 * observe this state, wait_lock is irrelevant.
54a21788 1349 */
c87e2837
IM
1350 pi_state = alloc_pi_state();
1351
1352 /*
04e1b2e5 1353 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1354 * the owner of it:
1355 */
1356 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1357
1358 /* Store the key for possible exit cleanups: */
d0aa7a70 1359 pi_state->key = *key;
c87e2837 1360
627371d7 1361 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1362 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1363 /*
1364 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1365 * because there is no concurrency as the object is not published yet.
1366 */
c87e2837 1367 pi_state->owner = p;
1d615482 1368 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1369
1370 put_task_struct(p);
1371
d0aa7a70 1372 *ps = pi_state;
c87e2837
IM
1373
1374 return 0;
1375}
1376
734009e9
PZ
1377static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1378 struct futex_hash_bucket *hb,
3ef240ea
TG
1379 union futex_key *key, struct futex_pi_state **ps,
1380 struct task_struct **exiting)
04e1b2e5 1381{
499f5aca 1382 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1383
1384 /*
1385 * If there is a waiter on that futex, validate it and
1386 * attach to the pi_state when the validation succeeds.
1387 */
499f5aca 1388 if (top_waiter)
734009e9 1389 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1390
1391 /*
1392 * We are the first waiter - try to look up the owner based on
1393 * @uval and attach to it.
1394 */
3ef240ea 1395 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1396}
1397
af54d6a1
TG
1398static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1399{
6b4f4bc9 1400 int err;
af54d6a1
TG
1401 u32 uninitialized_var(curval);
1402
ab51fbab
DB
1403 if (unlikely(should_fail_futex(true)))
1404 return -EFAULT;
1405
6b4f4bc9
WD
1406 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1407 if (unlikely(err))
1408 return err;
af54d6a1 1409
734009e9 1410 /* If user space value changed, let the caller retry */
af54d6a1
TG
1411 return curval != uval ? -EAGAIN : 0;
1412}
1413
1a52084d 1414/**
d96ee56c 1415 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1416 * @uaddr: the pi futex user address
1417 * @hb: the pi futex hash bucket
1418 * @key: the futex key associated with uaddr and hb
1419 * @ps: the pi_state pointer where we store the result of the
1420 * lookup
1421 * @task: the task to perform the atomic lock work for. This will
1422 * be "current" except in the case of requeue pi.
3ef240ea
TG
1423 * @exiting: Pointer to store the task pointer of the owner task
1424 * which is in the middle of exiting
bab5bc9e 1425 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1426 *
6c23cbbd 1427 * Return:
7b4ff1ad
MCC
1428 * - 0 - ready to wait;
1429 * - 1 - acquired the lock;
1430 * - <0 - error
1a52084d
DH
1431 *
1432 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1433 *
1434 * @exiting is only set when the return value is -EBUSY. If so, this holds
1435 * a refcount on the exiting task on return and the caller needs to drop it
1436 * after waiting for the exit to complete.
1a52084d
DH
1437 */
1438static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1439 union futex_key *key,
1440 struct futex_pi_state **ps,
3ef240ea
TG
1441 struct task_struct *task,
1442 struct task_struct **exiting,
1443 int set_waiters)
1a52084d 1444{
af54d6a1 1445 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1446 struct futex_q *top_waiter;
af54d6a1 1447 int ret;
1a52084d
DH
1448
1449 /*
af54d6a1
TG
1450 * Read the user space value first so we can validate a few
1451 * things before proceeding further.
1a52084d 1452 */
af54d6a1 1453 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1454 return -EFAULT;
1455
ab51fbab
DB
1456 if (unlikely(should_fail_futex(true)))
1457 return -EFAULT;
1458
1a52084d
DH
1459 /*
1460 * Detect deadlocks.
1461 */
af54d6a1 1462 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1463 return -EDEADLK;
1464
ab51fbab
DB
1465 if ((unlikely(should_fail_futex(true))))
1466 return -EDEADLK;
1467
1a52084d 1468 /*
af54d6a1
TG
1469 * Lookup existing state first. If it exists, try to attach to
1470 * its pi_state.
1a52084d 1471 */
499f5aca
PZ
1472 top_waiter = futex_top_waiter(hb, key);
1473 if (top_waiter)
734009e9 1474 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1475
1476 /*
af54d6a1
TG
1477 * No waiter and user TID is 0. We are here because the
1478 * waiters or the owner died bit is set or called from
1479 * requeue_cmp_pi or for whatever reason something took the
1480 * syscall.
1a52084d 1481 */
af54d6a1 1482 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1483 /*
af54d6a1
TG
1484 * We take over the futex. No other waiters and the user space
1485 * TID is 0. We preserve the owner died bit.
59fa6245 1486 */
af54d6a1
TG
1487 newval = uval & FUTEX_OWNER_DIED;
1488 newval |= vpid;
1a52084d 1489
af54d6a1
TG
1490 /* The futex requeue_pi code can enforce the waiters bit */
1491 if (set_waiters)
1492 newval |= FUTEX_WAITERS;
1493
1494 ret = lock_pi_update_atomic(uaddr, uval, newval);
1495 /* If the take over worked, return 1 */
1496 return ret < 0 ? ret : 1;
1497 }
1a52084d
DH
1498
1499 /*
af54d6a1
TG
1500 * First waiter. Set the waiters bit before attaching ourself to
1501 * the owner. If owner tries to unlock, it will be forced into
1502 * the kernel and blocked on hb->lock.
1a52084d 1503 */
af54d6a1
TG
1504 newval = uval | FUTEX_WAITERS;
1505 ret = lock_pi_update_atomic(uaddr, uval, newval);
1506 if (ret)
1507 return ret;
1a52084d 1508 /*
af54d6a1
TG
1509 * If the update of the user space value succeeded, we try to
1510 * attach to the owner. If that fails, no harm done, we only
1511 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1512 */
3ef240ea 1513 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1514}
1515
2e12978a
LJ
1516/**
1517 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1518 * @q: The futex_q to unqueue
1519 *
1520 * The q->lock_ptr must not be NULL and must be held by the caller.
1521 */
1522static void __unqueue_futex(struct futex_q *q)
1523{
1524 struct futex_hash_bucket *hb;
1525
4de1a293 1526 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1527 return;
4de1a293 1528 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1529
1530 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1531 plist_del(&q->list, &hb->chain);
11d4616b 1532 hb_waiters_dec(hb);
2e12978a
LJ
1533}
1534
1da177e4
LT
1535/*
1536 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1537 * Afterwards, the futex_q must not be accessed. Callers
1538 * must ensure to later call wake_up_q() for the actual
1539 * wakeups to occur.
1da177e4 1540 */
1d0dcb3a 1541static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1542{
f1a11e05
TG
1543 struct task_struct *p = q->task;
1544
aa10990e
DH
1545 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1546 return;
1547
b061c38b 1548 get_task_struct(p);
2e12978a 1549 __unqueue_futex(q);
1da177e4 1550 /*
38fcd06e
DHV
1551 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1552 * is written, without taking any locks. This is possible in the event
1553 * of a spurious wakeup, for example. A memory barrier is required here
1554 * to prevent the following store to lock_ptr from getting ahead of the
1555 * plist_del in __unqueue_futex().
1da177e4 1556 */
1b367ece 1557 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1558
1559 /*
1560 * Queue the task for later wakeup for after we've released
75145904 1561 * the hb->lock.
b061c38b 1562 */
07879c6a 1563 wake_q_add_safe(wake_q, p);
1da177e4
LT
1564}
1565
16ffa12d
PZ
1566/*
1567 * Caller must hold a reference on @pi_state.
1568 */
1569static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1570{
7cfdaf38 1571 u32 uninitialized_var(curval), newval;
16ffa12d 1572 struct task_struct *new_owner;
aa2bfe55 1573 bool postunlock = false;
194a6b5b 1574 DEFINE_WAKE_Q(wake_q);
13fbca4c 1575 int ret = 0;
c87e2837 1576
c87e2837 1577 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1578 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1579 /*
bebe5b51 1580 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1581 *
1582 * When this happens, give up our locks and try again, giving
1583 * the futex_lock_pi() instance time to complete, either by
1584 * waiting on the rtmutex or removing itself from the futex
1585 * queue.
1586 */
1587 ret = -EAGAIN;
1588 goto out_unlock;
73d786bd 1589 }
c87e2837
IM
1590
1591 /*
16ffa12d
PZ
1592 * We pass it to the next owner. The WAITERS bit is always kept
1593 * enabled while there is PI state around. We cleanup the owner
1594 * died bit, because we are the owner.
c87e2837 1595 */
13fbca4c 1596 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1597
ab51fbab
DB
1598 if (unlikely(should_fail_futex(true)))
1599 ret = -EFAULT;
1600
6b4f4bc9
WD
1601 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1602 if (!ret && (curval != uval)) {
89e9e66b
SAS
1603 /*
1604 * If a unconditional UNLOCK_PI operation (user space did not
1605 * try the TID->0 transition) raced with a waiter setting the
1606 * FUTEX_WAITERS flag between get_user() and locking the hash
1607 * bucket lock, retry the operation.
1608 */
1609 if ((FUTEX_TID_MASK & curval) == uval)
1610 ret = -EAGAIN;
1611 else
1612 ret = -EINVAL;
1613 }
734009e9 1614
16ffa12d
PZ
1615 if (ret)
1616 goto out_unlock;
c87e2837 1617
94ffac5d
PZ
1618 /*
1619 * This is a point of no return; once we modify the uval there is no
1620 * going back and subsequent operations must not fail.
1621 */
1622
b4abf910 1623 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1624 WARN_ON(list_empty(&pi_state->list));
1625 list_del_init(&pi_state->list);
b4abf910 1626 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1627
b4abf910 1628 raw_spin_lock(&new_owner->pi_lock);
627371d7 1629 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1630 list_add(&pi_state->list, &new_owner->pi_state_list);
1631 pi_state->owner = new_owner;
b4abf910 1632 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1633
aa2bfe55 1634 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1635
16ffa12d 1636out_unlock:
5293c2ef 1637 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1638
aa2bfe55
PZ
1639 if (postunlock)
1640 rt_mutex_postunlock(&wake_q);
c87e2837 1641
16ffa12d 1642 return ret;
c87e2837
IM
1643}
1644
8b8f319f
IM
1645/*
1646 * Express the locking dependencies for lockdep:
1647 */
1648static inline void
1649double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1650{
1651 if (hb1 <= hb2) {
1652 spin_lock(&hb1->lock);
1653 if (hb1 < hb2)
1654 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1655 } else { /* hb1 > hb2 */
1656 spin_lock(&hb2->lock);
1657 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1658 }
1659}
1660
5eb3dc62
DH
1661static inline void
1662double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1663{
f061d351 1664 spin_unlock(&hb1->lock);
88f502fe
IM
1665 if (hb1 != hb2)
1666 spin_unlock(&hb2->lock);
5eb3dc62
DH
1667}
1668
1da177e4 1669/*
b2d0994b 1670 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1671 */
b41277dc
DH
1672static int
1673futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1674{
e2970f2f 1675 struct futex_hash_bucket *hb;
1da177e4 1676 struct futex_q *this, *next;
38d47c1b 1677 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1678 int ret;
194a6b5b 1679 DEFINE_WAKE_Q(wake_q);
1da177e4 1680
cd689985
TG
1681 if (!bitset)
1682 return -EINVAL;
1683
96d4f267 1684 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1685 if (unlikely(ret != 0))
1686 goto out;
1687
e2970f2f 1688 hb = hash_futex(&key);
b0c29f79
DB
1689
1690 /* Make sure we really have tasks to wakeup */
1691 if (!hb_waiters_pending(hb))
1692 goto out_put_key;
1693
e2970f2f 1694 spin_lock(&hb->lock);
1da177e4 1695
0d00c7b2 1696 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1697 if (match_futex (&this->key, &key)) {
52400ba9 1698 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1699 ret = -EINVAL;
1700 break;
1701 }
cd689985
TG
1702
1703 /* Check if one of the bits is set in both bitsets */
1704 if (!(this->bitset & bitset))
1705 continue;
1706
1d0dcb3a 1707 mark_wake_futex(&wake_q, this);
1da177e4
LT
1708 if (++ret >= nr_wake)
1709 break;
1710 }
1711 }
1712
e2970f2f 1713 spin_unlock(&hb->lock);
1d0dcb3a 1714 wake_up_q(&wake_q);
b0c29f79 1715out_put_key:
ae791a2d 1716 put_futex_key(&key);
42d35d48 1717out:
1da177e4
LT
1718 return ret;
1719}
1720
30d6e0a4
JS
1721static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1722{
1723 unsigned int op = (encoded_op & 0x70000000) >> 28;
1724 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1725 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1726 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1727 int oldval, ret;
1728
1729 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1730 if (oparg < 0 || oparg > 31) {
1731 char comm[sizeof(current->comm)];
1732 /*
1733 * kill this print and return -EINVAL when userspace
1734 * is sane again
1735 */
1736 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1737 get_task_comm(comm, current), oparg);
1738 oparg &= 31;
1739 }
30d6e0a4
JS
1740 oparg = 1 << oparg;
1741 }
1742
96d4f267 1743 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1744 return -EFAULT;
1745
1746 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1747 if (ret)
1748 return ret;
1749
1750 switch (cmp) {
1751 case FUTEX_OP_CMP_EQ:
1752 return oldval == cmparg;
1753 case FUTEX_OP_CMP_NE:
1754 return oldval != cmparg;
1755 case FUTEX_OP_CMP_LT:
1756 return oldval < cmparg;
1757 case FUTEX_OP_CMP_GE:
1758 return oldval >= cmparg;
1759 case FUTEX_OP_CMP_LE:
1760 return oldval <= cmparg;
1761 case FUTEX_OP_CMP_GT:
1762 return oldval > cmparg;
1763 default:
1764 return -ENOSYS;
1765 }
1766}
1767
4732efbe
JJ
1768/*
1769 * Wake up all waiters hashed on the physical page that is mapped
1770 * to this virtual address:
1771 */
e2970f2f 1772static int
b41277dc 1773futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1774 int nr_wake, int nr_wake2, int op)
4732efbe 1775{
38d47c1b 1776 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1777 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1778 struct futex_q *this, *next;
e4dc5b7a 1779 int ret, op_ret;
194a6b5b 1780 DEFINE_WAKE_Q(wake_q);
4732efbe 1781
e4dc5b7a 1782retry:
96d4f267 1783 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1784 if (unlikely(ret != 0))
1785 goto out;
96d4f267 1786 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1787 if (unlikely(ret != 0))
42d35d48 1788 goto out_put_key1;
4732efbe 1789
e2970f2f
IM
1790 hb1 = hash_futex(&key1);
1791 hb2 = hash_futex(&key2);
4732efbe 1792
e4dc5b7a 1793retry_private:
eaaea803 1794 double_lock_hb(hb1, hb2);
e2970f2f 1795 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1796 if (unlikely(op_ret < 0)) {
5eb3dc62 1797 double_unlock_hb(hb1, hb2);
4732efbe 1798
6b4f4bc9
WD
1799 if (!IS_ENABLED(CONFIG_MMU) ||
1800 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1801 /*
1802 * we don't get EFAULT from MMU faults if we don't have
1803 * an MMU, but we might get them from range checking
1804 */
796f8d9b 1805 ret = op_ret;
42d35d48 1806 goto out_put_keys;
796f8d9b
DG
1807 }
1808
6b4f4bc9
WD
1809 if (op_ret == -EFAULT) {
1810 ret = fault_in_user_writeable(uaddr2);
1811 if (ret)
1812 goto out_put_keys;
1813 }
4732efbe 1814
6b4f4bc9
WD
1815 if (!(flags & FLAGS_SHARED)) {
1816 cond_resched();
e4dc5b7a 1817 goto retry_private;
6b4f4bc9 1818 }
e4dc5b7a 1819
ae791a2d
TG
1820 put_futex_key(&key2);
1821 put_futex_key(&key1);
6b4f4bc9 1822 cond_resched();
e4dc5b7a 1823 goto retry;
4732efbe
JJ
1824 }
1825
0d00c7b2 1826 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1827 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1828 if (this->pi_state || this->rt_waiter) {
1829 ret = -EINVAL;
1830 goto out_unlock;
1831 }
1d0dcb3a 1832 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1833 if (++ret >= nr_wake)
1834 break;
1835 }
1836 }
1837
1838 if (op_ret > 0) {
4732efbe 1839 op_ret = 0;
0d00c7b2 1840 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1841 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1842 if (this->pi_state || this->rt_waiter) {
1843 ret = -EINVAL;
1844 goto out_unlock;
1845 }
1d0dcb3a 1846 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1847 if (++op_ret >= nr_wake2)
1848 break;
1849 }
1850 }
1851 ret += op_ret;
1852 }
1853
aa10990e 1854out_unlock:
5eb3dc62 1855 double_unlock_hb(hb1, hb2);
1d0dcb3a 1856 wake_up_q(&wake_q);
42d35d48 1857out_put_keys:
ae791a2d 1858 put_futex_key(&key2);
42d35d48 1859out_put_key1:
ae791a2d 1860 put_futex_key(&key1);
42d35d48 1861out:
4732efbe
JJ
1862 return ret;
1863}
1864
9121e478
DH
1865/**
1866 * requeue_futex() - Requeue a futex_q from one hb to another
1867 * @q: the futex_q to requeue
1868 * @hb1: the source hash_bucket
1869 * @hb2: the target hash_bucket
1870 * @key2: the new key for the requeued futex_q
1871 */
1872static inline
1873void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1874 struct futex_hash_bucket *hb2, union futex_key *key2)
1875{
1876
1877 /*
1878 * If key1 and key2 hash to the same bucket, no need to
1879 * requeue.
1880 */
1881 if (likely(&hb1->chain != &hb2->chain)) {
1882 plist_del(&q->list, &hb1->chain);
11d4616b 1883 hb_waiters_dec(hb1);
11d4616b 1884 hb_waiters_inc(hb2);
fe1bce9e 1885 plist_add(&q->list, &hb2->chain);
9121e478 1886 q->lock_ptr = &hb2->lock;
9121e478
DH
1887 }
1888 get_futex_key_refs(key2);
1889 q->key = *key2;
1890}
1891
52400ba9
DH
1892/**
1893 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1894 * @q: the futex_q
1895 * @key: the key of the requeue target futex
1896 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1897 *
1898 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1899 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1900 * to the requeue target futex so the waiter can detect the wakeup on the right
1901 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1902 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1903 * to protect access to the pi_state to fixup the owner later. Must be called
1904 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1905 */
1906static inline
beda2c7e
DH
1907void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1908 struct futex_hash_bucket *hb)
52400ba9 1909{
52400ba9
DH
1910 get_futex_key_refs(key);
1911 q->key = *key;
1912
2e12978a 1913 __unqueue_futex(q);
52400ba9
DH
1914
1915 WARN_ON(!q->rt_waiter);
1916 q->rt_waiter = NULL;
1917
beda2c7e 1918 q->lock_ptr = &hb->lock;
beda2c7e 1919
f1a11e05 1920 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1921}
1922
1923/**
1924 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1925 * @pifutex: the user address of the to futex
1926 * @hb1: the from futex hash bucket, must be locked by the caller
1927 * @hb2: the to futex hash bucket, must be locked by the caller
1928 * @key1: the from futex key
1929 * @key2: the to futex key
1930 * @ps: address to store the pi_state pointer
3ef240ea
TG
1931 * @exiting: Pointer to store the task pointer of the owner task
1932 * which is in the middle of exiting
bab5bc9e 1933 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1934 *
1935 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1936 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1937 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1938 * hb1 and hb2 must be held by the caller.
52400ba9 1939 *
3ef240ea
TG
1940 * @exiting is only set when the return value is -EBUSY. If so, this holds
1941 * a refcount on the exiting task on return and the caller needs to drop it
1942 * after waiting for the exit to complete.
1943 *
6c23cbbd 1944 * Return:
7b4ff1ad
MCC
1945 * - 0 - failed to acquire the lock atomically;
1946 * - >0 - acquired the lock, return value is vpid of the top_waiter
1947 * - <0 - error
52400ba9 1948 */
3ef240ea
TG
1949static int
1950futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1951 struct futex_hash_bucket *hb2, union futex_key *key1,
1952 union futex_key *key2, struct futex_pi_state **ps,
1953 struct task_struct **exiting, int set_waiters)
52400ba9 1954{
bab5bc9e 1955 struct futex_q *top_waiter = NULL;
52400ba9 1956 u32 curval;
866293ee 1957 int ret, vpid;
52400ba9
DH
1958
1959 if (get_futex_value_locked(&curval, pifutex))
1960 return -EFAULT;
1961
ab51fbab
DB
1962 if (unlikely(should_fail_futex(true)))
1963 return -EFAULT;
1964
bab5bc9e
DH
1965 /*
1966 * Find the top_waiter and determine if there are additional waiters.
1967 * If the caller intends to requeue more than 1 waiter to pifutex,
1968 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1969 * as we have means to handle the possible fault. If not, don't set
1970 * the bit unecessarily as it will force the subsequent unlock to enter
1971 * the kernel.
1972 */
52400ba9
DH
1973 top_waiter = futex_top_waiter(hb1, key1);
1974
1975 /* There are no waiters, nothing for us to do. */
1976 if (!top_waiter)
1977 return 0;
1978
84bc4af5
DH
1979 /* Ensure we requeue to the expected futex. */
1980 if (!match_futex(top_waiter->requeue_pi_key, key2))
1981 return -EINVAL;
1982
52400ba9 1983 /*
bab5bc9e
DH
1984 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1985 * the contended case or if set_waiters is 1. The pi_state is returned
1986 * in ps in contended cases.
52400ba9 1987 */
866293ee 1988 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1989 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1990 exiting, set_waiters);
866293ee 1991 if (ret == 1) {
beda2c7e 1992 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1993 return vpid;
1994 }
52400ba9
DH
1995 return ret;
1996}
1997
1998/**
1999 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 2000 * @uaddr1: source futex user address
b41277dc 2001 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
2002 * @uaddr2: target futex user address
2003 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
2004 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2005 * @cmpval: @uaddr1 expected value (or %NULL)
2006 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 2007 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
2008 *
2009 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2010 * uaddr2 atomically on behalf of the top waiter.
2011 *
6c23cbbd 2012 * Return:
7b4ff1ad
MCC
2013 * - >=0 - on success, the number of tasks requeued or woken;
2014 * - <0 - on error
1da177e4 2015 */
b41277dc
DH
2016static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2017 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2018 u32 *cmpval, int requeue_pi)
1da177e4 2019{
38d47c1b 2020 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
2021 int drop_count = 0, task_count = 0, ret;
2022 struct futex_pi_state *pi_state = NULL;
e2970f2f 2023 struct futex_hash_bucket *hb1, *hb2;
1da177e4 2024 struct futex_q *this, *next;
194a6b5b 2025 DEFINE_WAKE_Q(wake_q);
52400ba9 2026
fbe0e839
LJ
2027 if (nr_wake < 0 || nr_requeue < 0)
2028 return -EINVAL;
2029
bc2eecd7
NP
2030 /*
2031 * When PI not supported: return -ENOSYS if requeue_pi is true,
2032 * consequently the compiler knows requeue_pi is always false past
2033 * this point which will optimize away all the conditional code
2034 * further down.
2035 */
2036 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2037 return -ENOSYS;
2038
52400ba9 2039 if (requeue_pi) {
e9c243a5
TG
2040 /*
2041 * Requeue PI only works on two distinct uaddrs. This
2042 * check is only valid for private futexes. See below.
2043 */
2044 if (uaddr1 == uaddr2)
2045 return -EINVAL;
2046
52400ba9
DH
2047 /*
2048 * requeue_pi requires a pi_state, try to allocate it now
2049 * without any locks in case it fails.
2050 */
2051 if (refill_pi_state_cache())
2052 return -ENOMEM;
2053 /*
2054 * requeue_pi must wake as many tasks as it can, up to nr_wake
2055 * + nr_requeue, since it acquires the rt_mutex prior to
2056 * returning to userspace, so as to not leave the rt_mutex with
2057 * waiters and no owner. However, second and third wake-ups
2058 * cannot be predicted as they involve race conditions with the
2059 * first wake and a fault while looking up the pi_state. Both
2060 * pthread_cond_signal() and pthread_cond_broadcast() should
2061 * use nr_wake=1.
2062 */
2063 if (nr_wake != 1)
2064 return -EINVAL;
2065 }
1da177e4 2066
42d35d48 2067retry:
96d4f267 2068 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
2069 if (unlikely(ret != 0))
2070 goto out;
9ea71503 2071 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 2072 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 2073 if (unlikely(ret != 0))
42d35d48 2074 goto out_put_key1;
1da177e4 2075
e9c243a5
TG
2076 /*
2077 * The check above which compares uaddrs is not sufficient for
2078 * shared futexes. We need to compare the keys:
2079 */
2080 if (requeue_pi && match_futex(&key1, &key2)) {
2081 ret = -EINVAL;
2082 goto out_put_keys;
2083 }
2084
e2970f2f
IM
2085 hb1 = hash_futex(&key1);
2086 hb2 = hash_futex(&key2);
1da177e4 2087
e4dc5b7a 2088retry_private:
69cd9eba 2089 hb_waiters_inc(hb2);
8b8f319f 2090 double_lock_hb(hb1, hb2);
1da177e4 2091
e2970f2f
IM
2092 if (likely(cmpval != NULL)) {
2093 u32 curval;
1da177e4 2094
e2970f2f 2095 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2096
2097 if (unlikely(ret)) {
5eb3dc62 2098 double_unlock_hb(hb1, hb2);
69cd9eba 2099 hb_waiters_dec(hb2);
1da177e4 2100
e2970f2f 2101 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2102 if (ret)
2103 goto out_put_keys;
1da177e4 2104
b41277dc 2105 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2106 goto retry_private;
1da177e4 2107
ae791a2d
TG
2108 put_futex_key(&key2);
2109 put_futex_key(&key1);
e4dc5b7a 2110 goto retry;
1da177e4 2111 }
e2970f2f 2112 if (curval != *cmpval) {
1da177e4
LT
2113 ret = -EAGAIN;
2114 goto out_unlock;
2115 }
2116 }
2117
52400ba9 2118 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2119 struct task_struct *exiting = NULL;
2120
bab5bc9e
DH
2121 /*
2122 * Attempt to acquire uaddr2 and wake the top waiter. If we
2123 * intend to requeue waiters, force setting the FUTEX_WAITERS
2124 * bit. We force this here where we are able to easily handle
2125 * faults rather in the requeue loop below.
2126 */
52400ba9 2127 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2128 &key2, &pi_state,
2129 &exiting, nr_requeue);
52400ba9
DH
2130
2131 /*
2132 * At this point the top_waiter has either taken uaddr2 or is
2133 * waiting on it. If the former, then the pi_state will not
2134 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2135 * reference to it. If the lock was taken, ret contains the
2136 * vpid of the top waiter task.
ecb38b78
TG
2137 * If the lock was not taken, we have pi_state and an initial
2138 * refcount on it. In case of an error we have nothing.
52400ba9 2139 */
866293ee 2140 if (ret > 0) {
52400ba9 2141 WARN_ON(pi_state);
89061d3d 2142 drop_count++;
52400ba9 2143 task_count++;
866293ee 2144 /*
ecb38b78
TG
2145 * If we acquired the lock, then the user space value
2146 * of uaddr2 should be vpid. It cannot be changed by
2147 * the top waiter as it is blocked on hb2 lock if it
2148 * tries to do so. If something fiddled with it behind
2149 * our back the pi state lookup might unearth it. So
2150 * we rather use the known value than rereading and
2151 * handing potential crap to lookup_pi_state.
2152 *
2153 * If that call succeeds then we have pi_state and an
2154 * initial refcount on it.
866293ee 2155 */
3ef240ea
TG
2156 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2157 &pi_state, &exiting);
52400ba9
DH
2158 }
2159
2160 switch (ret) {
2161 case 0:
ecb38b78 2162 /* We hold a reference on the pi state. */
52400ba9 2163 break;
4959f2de
TG
2164
2165 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2166 case -EFAULT:
2167 double_unlock_hb(hb1, hb2);
69cd9eba 2168 hb_waiters_dec(hb2);
ae791a2d
TG
2169 put_futex_key(&key2);
2170 put_futex_key(&key1);
d0725992 2171 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2172 if (!ret)
2173 goto retry;
2174 goto out;
ac31c7ff 2175 case -EBUSY:
52400ba9 2176 case -EAGAIN:
af54d6a1
TG
2177 /*
2178 * Two reasons for this:
ac31c7ff 2179 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2180 * exit to complete.
ac31c7ff 2181 * - EAGAIN: The user space value changed.
af54d6a1 2182 */
52400ba9 2183 double_unlock_hb(hb1, hb2);
69cd9eba 2184 hb_waiters_dec(hb2);
ae791a2d
TG
2185 put_futex_key(&key2);
2186 put_futex_key(&key1);
3ef240ea
TG
2187 /*
2188 * Handle the case where the owner is in the middle of
2189 * exiting. Wait for the exit to complete otherwise
2190 * this task might loop forever, aka. live lock.
2191 */
2192 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2193 cond_resched();
2194 goto retry;
2195 default:
2196 goto out_unlock;
2197 }
2198 }
2199
0d00c7b2 2200 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2201 if (task_count - nr_wake >= nr_requeue)
2202 break;
2203
2204 if (!match_futex(&this->key, &key1))
1da177e4 2205 continue;
52400ba9 2206
392741e0
DH
2207 /*
2208 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2209 * be paired with each other and no other futex ops.
aa10990e
DH
2210 *
2211 * We should never be requeueing a futex_q with a pi_state,
2212 * which is awaiting a futex_unlock_pi().
392741e0
DH
2213 */
2214 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2215 (!requeue_pi && this->rt_waiter) ||
2216 this->pi_state) {
392741e0
DH
2217 ret = -EINVAL;
2218 break;
2219 }
52400ba9
DH
2220
2221 /*
2222 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2223 * lock, we already woke the top_waiter. If not, it will be
2224 * woken by futex_unlock_pi().
2225 */
2226 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2227 mark_wake_futex(&wake_q, this);
52400ba9
DH
2228 continue;
2229 }
1da177e4 2230
84bc4af5
DH
2231 /* Ensure we requeue to the expected futex for requeue_pi. */
2232 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2233 ret = -EINVAL;
2234 break;
2235 }
2236
52400ba9
DH
2237 /*
2238 * Requeue nr_requeue waiters and possibly one more in the case
2239 * of requeue_pi if we couldn't acquire the lock atomically.
2240 */
2241 if (requeue_pi) {
ecb38b78
TG
2242 /*
2243 * Prepare the waiter to take the rt_mutex. Take a
2244 * refcount on the pi_state and store the pointer in
2245 * the futex_q object of the waiter.
2246 */
bf92cf3a 2247 get_pi_state(pi_state);
52400ba9
DH
2248 this->pi_state = pi_state;
2249 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2250 this->rt_waiter,
c051b21f 2251 this->task);
52400ba9 2252 if (ret == 1) {
ecb38b78
TG
2253 /*
2254 * We got the lock. We do neither drop the
2255 * refcount on pi_state nor clear
2256 * this->pi_state because the waiter needs the
2257 * pi_state for cleaning up the user space
2258 * value. It will drop the refcount after
2259 * doing so.
2260 */
beda2c7e 2261 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2262 drop_count++;
52400ba9
DH
2263 continue;
2264 } else if (ret) {
ecb38b78
TG
2265 /*
2266 * rt_mutex_start_proxy_lock() detected a
2267 * potential deadlock when we tried to queue
2268 * that waiter. Drop the pi_state reference
2269 * which we took above and remove the pointer
2270 * to the state from the waiters futex_q
2271 * object.
2272 */
52400ba9 2273 this->pi_state = NULL;
29e9ee5d 2274 put_pi_state(pi_state);
885c2cb7
TG
2275 /*
2276 * We stop queueing more waiters and let user
2277 * space deal with the mess.
2278 */
2279 break;
52400ba9 2280 }
1da177e4 2281 }
52400ba9
DH
2282 requeue_futex(this, hb1, hb2, &key2);
2283 drop_count++;
1da177e4
LT
2284 }
2285
ecb38b78
TG
2286 /*
2287 * We took an extra initial reference to the pi_state either
2288 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2289 * need to drop it here again.
2290 */
29e9ee5d 2291 put_pi_state(pi_state);
885c2cb7
TG
2292
2293out_unlock:
5eb3dc62 2294 double_unlock_hb(hb1, hb2);
1d0dcb3a 2295 wake_up_q(&wake_q);
69cd9eba 2296 hb_waiters_dec(hb2);
1da177e4 2297
cd84a42f
DH
2298 /*
2299 * drop_futex_key_refs() must be called outside the spinlocks. During
2300 * the requeue we moved futex_q's from the hash bucket at key1 to the
2301 * one at key2 and updated their key pointer. We no longer need to
2302 * hold the references to key1.
2303 */
1da177e4 2304 while (--drop_count >= 0)
9adef58b 2305 drop_futex_key_refs(&key1);
1da177e4 2306
42d35d48 2307out_put_keys:
ae791a2d 2308 put_futex_key(&key2);
42d35d48 2309out_put_key1:
ae791a2d 2310 put_futex_key(&key1);
42d35d48 2311out:
52400ba9 2312 return ret ? ret : task_count;
1da177e4
LT
2313}
2314
2315/* The key must be already stored in q->key. */
82af7aca 2316static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2317 __acquires(&hb->lock)
1da177e4 2318{
e2970f2f 2319 struct futex_hash_bucket *hb;
1da177e4 2320
e2970f2f 2321 hb = hash_futex(&q->key);
11d4616b
LT
2322
2323 /*
2324 * Increment the counter before taking the lock so that
2325 * a potential waker won't miss a to-be-slept task that is
2326 * waiting for the spinlock. This is safe as all queue_lock()
2327 * users end up calling queue_me(). Similarly, for housekeeping,
2328 * decrement the counter at queue_unlock() when some error has
2329 * occurred and we don't end up adding the task to the list.
2330 */
6f568ebe 2331 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2332
e2970f2f 2333 q->lock_ptr = &hb->lock;
1da177e4 2334
6f568ebe 2335 spin_lock(&hb->lock);
e2970f2f 2336 return hb;
1da177e4
LT
2337}
2338
d40d65c8 2339static inline void
0d00c7b2 2340queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2341 __releases(&hb->lock)
d40d65c8
DH
2342{
2343 spin_unlock(&hb->lock);
11d4616b 2344 hb_waiters_dec(hb);
d40d65c8
DH
2345}
2346
cfafcd11 2347static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2348{
ec92d082
PP
2349 int prio;
2350
2351 /*
2352 * The priority used to register this element is
2353 * - either the real thread-priority for the real-time threads
2354 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2355 * - or MAX_RT_PRIO for non-RT threads.
2356 * Thus, all RT-threads are woken first in priority order, and
2357 * the others are woken last, in FIFO order.
2358 */
2359 prio = min(current->normal_prio, MAX_RT_PRIO);
2360
2361 plist_node_init(&q->list, prio);
ec92d082 2362 plist_add(&q->list, &hb->chain);
c87e2837 2363 q->task = current;
cfafcd11
PZ
2364}
2365
2366/**
2367 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2368 * @q: The futex_q to enqueue
2369 * @hb: The destination hash bucket
2370 *
2371 * The hb->lock must be held by the caller, and is released here. A call to
2372 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2373 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2374 * or nothing if the unqueue is done as part of the wake process and the unqueue
2375 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2376 * an example).
2377 */
2378static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2379 __releases(&hb->lock)
2380{
2381 __queue_me(q, hb);
e2970f2f 2382 spin_unlock(&hb->lock);
1da177e4
LT
2383}
2384
d40d65c8
DH
2385/**
2386 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2387 * @q: The futex_q to unqueue
2388 *
2389 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2390 * be paired with exactly one earlier call to queue_me().
2391 *
6c23cbbd 2392 * Return:
7b4ff1ad
MCC
2393 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2394 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2395 */
1da177e4
LT
2396static int unqueue_me(struct futex_q *q)
2397{
1da177e4 2398 spinlock_t *lock_ptr;
e2970f2f 2399 int ret = 0;
1da177e4
LT
2400
2401 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2402retry:
29b75eb2
JZ
2403 /*
2404 * q->lock_ptr can change between this read and the following spin_lock.
2405 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2406 * optimizing lock_ptr out of the logic below.
2407 */
2408 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2409 if (lock_ptr != NULL) {
1da177e4
LT
2410 spin_lock(lock_ptr);
2411 /*
2412 * q->lock_ptr can change between reading it and
2413 * spin_lock(), causing us to take the wrong lock. This
2414 * corrects the race condition.
2415 *
2416 * Reasoning goes like this: if we have the wrong lock,
2417 * q->lock_ptr must have changed (maybe several times)
2418 * between reading it and the spin_lock(). It can
2419 * change again after the spin_lock() but only if it was
2420 * already changed before the spin_lock(). It cannot,
2421 * however, change back to the original value. Therefore
2422 * we can detect whether we acquired the correct lock.
2423 */
2424 if (unlikely(lock_ptr != q->lock_ptr)) {
2425 spin_unlock(lock_ptr);
2426 goto retry;
2427 }
2e12978a 2428 __unqueue_futex(q);
c87e2837
IM
2429
2430 BUG_ON(q->pi_state);
2431
1da177e4
LT
2432 spin_unlock(lock_ptr);
2433 ret = 1;
2434 }
2435
9adef58b 2436 drop_futex_key_refs(&q->key);
1da177e4
LT
2437 return ret;
2438}
2439
c87e2837
IM
2440/*
2441 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2442 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2443 * and dropped here.
c87e2837 2444 */
d0aa7a70 2445static void unqueue_me_pi(struct futex_q *q)
15e408cd 2446 __releases(q->lock_ptr)
c87e2837 2447{
2e12978a 2448 __unqueue_futex(q);
c87e2837
IM
2449
2450 BUG_ON(!q->pi_state);
29e9ee5d 2451 put_pi_state(q->pi_state);
c87e2837
IM
2452 q->pi_state = NULL;
2453
d0aa7a70 2454 spin_unlock(q->lock_ptr);
c87e2837
IM
2455}
2456
778e9a9c 2457static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2458 struct task_struct *argowner)
d0aa7a70 2459{
d0aa7a70 2460 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2461 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2462 struct task_struct *oldowner, *newowner;
2463 u32 newtid;
6b4f4bc9 2464 int ret, err = 0;
d0aa7a70 2465
c1e2f0ea
PZ
2466 lockdep_assert_held(q->lock_ptr);
2467
734009e9
PZ
2468 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470 oldowner = pi_state->owner;
1b7558e4
TG
2471
2472 /*
c1e2f0ea 2473 * We are here because either:
16ffa12d 2474 *
c1e2f0ea
PZ
2475 * - we stole the lock and pi_state->owner needs updating to reflect
2476 * that (@argowner == current),
2477 *
2478 * or:
2479 *
2480 * - someone stole our lock and we need to fix things to point to the
2481 * new owner (@argowner == NULL).
2482 *
2483 * Either way, we have to replace the TID in the user space variable.
8161239a 2484 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2485 *
b2d0994b
DH
2486 * Note: We write the user space value _before_ changing the pi_state
2487 * because we can fault here. Imagine swapped out pages or a fork
2488 * that marked all the anonymous memory readonly for cow.
1b7558e4 2489 *
734009e9
PZ
2490 * Modifying pi_state _before_ the user space value would leave the
2491 * pi_state in an inconsistent state when we fault here, because we
2492 * need to drop the locks to handle the fault. This might be observed
2493 * in the PID check in lookup_pi_state.
1b7558e4
TG
2494 */
2495retry:
c1e2f0ea
PZ
2496 if (!argowner) {
2497 if (oldowner != current) {
2498 /*
2499 * We raced against a concurrent self; things are
2500 * already fixed up. Nothing to do.
2501 */
2502 ret = 0;
2503 goto out_unlock;
2504 }
2505
2506 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2507 /* We got the lock after all, nothing to fix. */
2508 ret = 0;
2509 goto out_unlock;
2510 }
2511
2512 /*
2513 * Since we just failed the trylock; there must be an owner.
2514 */
2515 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2516 BUG_ON(!newowner);
2517 } else {
2518 WARN_ON_ONCE(argowner != current);
2519 if (oldowner == current) {
2520 /*
2521 * We raced against a concurrent self; things are
2522 * already fixed up. Nothing to do.
2523 */
2524 ret = 0;
2525 goto out_unlock;
2526 }
2527 newowner = argowner;
2528 }
2529
2530 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2531 /* Owner died? */
2532 if (!pi_state->owner)
2533 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2534
6b4f4bc9
WD
2535 err = get_futex_value_locked(&uval, uaddr);
2536 if (err)
2537 goto handle_err;
1b7558e4 2538
16ffa12d 2539 for (;;) {
1b7558e4
TG
2540 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2541
6b4f4bc9
WD
2542 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2543 if (err)
2544 goto handle_err;
2545
1b7558e4
TG
2546 if (curval == uval)
2547 break;
2548 uval = curval;
2549 }
2550
2551 /*
2552 * We fixed up user space. Now we need to fix the pi_state
2553 * itself.
2554 */
d0aa7a70 2555 if (pi_state->owner != NULL) {
734009e9 2556 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2557 WARN_ON(list_empty(&pi_state->list));
2558 list_del_init(&pi_state->list);
734009e9 2559 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2560 }
d0aa7a70 2561
cdf71a10 2562 pi_state->owner = newowner;
d0aa7a70 2563
734009e9 2564 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2565 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2566 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2567 raw_spin_unlock(&newowner->pi_lock);
2568 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2569
1b7558e4 2570 return 0;
d0aa7a70 2571
d0aa7a70 2572 /*
6b4f4bc9
WD
2573 * In order to reschedule or handle a page fault, we need to drop the
2574 * locks here. In the case of a fault, this gives the other task
2575 * (either the highest priority waiter itself or the task which stole
2576 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2577 * are back from handling the fault we need to check the pi_state after
2578 * reacquiring the locks and before trying to do another fixup. When
2579 * the fixup has been done already we simply return.
734009e9
PZ
2580 *
2581 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2582 * drop hb->lock since the caller owns the hb -> futex_q relation.
2583 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2584 */
6b4f4bc9 2585handle_err:
734009e9 2586 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2587 spin_unlock(q->lock_ptr);
778e9a9c 2588
6b4f4bc9
WD
2589 switch (err) {
2590 case -EFAULT:
2591 ret = fault_in_user_writeable(uaddr);
2592 break;
2593
2594 case -EAGAIN:
2595 cond_resched();
2596 ret = 0;
2597 break;
2598
2599 default:
2600 WARN_ON_ONCE(1);
2601 ret = err;
2602 break;
2603 }
778e9a9c 2604
1b7558e4 2605 spin_lock(q->lock_ptr);
734009e9 2606 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2607
1b7558e4
TG
2608 /*
2609 * Check if someone else fixed it for us:
2610 */
734009e9
PZ
2611 if (pi_state->owner != oldowner) {
2612 ret = 0;
2613 goto out_unlock;
2614 }
1b7558e4
TG
2615
2616 if (ret)
734009e9 2617 goto out_unlock;
1b7558e4
TG
2618
2619 goto retry;
734009e9
PZ
2620
2621out_unlock:
2622 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2623 return ret;
d0aa7a70
PP
2624}
2625
72c1bbf3 2626static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2627
dd973998
DH
2628/**
2629 * fixup_owner() - Post lock pi_state and corner case management
2630 * @uaddr: user address of the futex
dd973998
DH
2631 * @q: futex_q (contains pi_state and access to the rt_mutex)
2632 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2633 *
2634 * After attempting to lock an rt_mutex, this function is called to cleanup
2635 * the pi_state owner as well as handle race conditions that may allow us to
2636 * acquire the lock. Must be called with the hb lock held.
2637 *
6c23cbbd 2638 * Return:
7b4ff1ad
MCC
2639 * - 1 - success, lock taken;
2640 * - 0 - success, lock not taken;
2641 * - <0 - on error (-EFAULT)
dd973998 2642 */
ae791a2d 2643static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2644{
dd973998
DH
2645 int ret = 0;
2646
2647 if (locked) {
2648 /*
2649 * Got the lock. We might not be the anticipated owner if we
2650 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2651 *
c1e2f0ea
PZ
2652 * Speculative pi_state->owner read (we don't hold wait_lock);
2653 * since we own the lock pi_state->owner == current is the
2654 * stable state, anything else needs more attention.
dd973998
DH
2655 */
2656 if (q->pi_state->owner != current)
ae791a2d 2657 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2658 goto out;
2659 }
2660
c1e2f0ea
PZ
2661 /*
2662 * If we didn't get the lock; check if anybody stole it from us. In
2663 * that case, we need to fix up the uval to point to them instead of
2664 * us, otherwise bad things happen. [10]
2665 *
2666 * Another speculative read; pi_state->owner == current is unstable
2667 * but needs our attention.
2668 */
2669 if (q->pi_state->owner == current) {
2670 ret = fixup_pi_state_owner(uaddr, q, NULL);
2671 goto out;
2672 }
2673
dd973998
DH
2674 /*
2675 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2676 * the owner of the rt_mutex.
dd973998 2677 */
73d786bd 2678 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2679 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2680 "pi-state %p\n", ret,
2681 q->pi_state->pi_mutex.owner,
2682 q->pi_state->owner);
73d786bd 2683 }
dd973998
DH
2684
2685out:
2686 return ret ? ret : locked;
2687}
2688
ca5f9524
DH
2689/**
2690 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2691 * @hb: the futex hash bucket, must be locked by the caller
2692 * @q: the futex_q to queue up on
2693 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2694 */
2695static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2696 struct hrtimer_sleeper *timeout)
ca5f9524 2697{
9beba3c5
DH
2698 /*
2699 * The task state is guaranteed to be set before another task can
b92b8b35 2700 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2701 * queue_me() calls spin_unlock() upon completion, both serializing
2702 * access to the hash list and forcing another memory barrier.
2703 */
f1a11e05 2704 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2705 queue_me(q, hb);
ca5f9524
DH
2706
2707 /* Arm the timer */
2e4b0d3f 2708 if (timeout)
9dd8813e 2709 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2710
2711 /*
0729e196
DH
2712 * If we have been removed from the hash list, then another task
2713 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2714 */
2715 if (likely(!plist_node_empty(&q->list))) {
2716 /*
2717 * If the timer has already expired, current will already be
2718 * flagged for rescheduling. Only call schedule if there
2719 * is no timeout, or if it has yet to expire.
2720 */
2721 if (!timeout || timeout->task)
88c8004f 2722 freezable_schedule();
ca5f9524
DH
2723 }
2724 __set_current_state(TASK_RUNNING);
2725}
2726
f801073f
DH
2727/**
2728 * futex_wait_setup() - Prepare to wait on a futex
2729 * @uaddr: the futex userspace address
2730 * @val: the expected value
b41277dc 2731 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2732 * @q: the associated futex_q
2733 * @hb: storage for hash_bucket pointer to be returned to caller
2734 *
2735 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2736 * compare it with the expected value. Handle atomic faults internally.
2737 * Return with the hb lock held and a q.key reference on success, and unlocked
2738 * with no q.key reference on failure.
2739 *
6c23cbbd 2740 * Return:
7b4ff1ad
MCC
2741 * - 0 - uaddr contains val and hb has been locked;
2742 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2743 */
b41277dc 2744static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2745 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2746{
e2970f2f
IM
2747 u32 uval;
2748 int ret;
1da177e4 2749
1da177e4 2750 /*
b2d0994b 2751 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2752 * Order is important:
2753 *
2754 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2755 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2756 *
2757 * The basic logical guarantee of a futex is that it blocks ONLY
2758 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2759 * any cond. If we locked the hash-bucket after testing *uaddr, that
2760 * would open a race condition where we could block indefinitely with
1da177e4
LT
2761 * cond(var) false, which would violate the guarantee.
2762 *
8fe8f545
ML
2763 * On the other hand, we insert q and release the hash-bucket only
2764 * after testing *uaddr. This guarantees that futex_wait() will NOT
2765 * absorb a wakeup if *uaddr does not match the desired values
2766 * while the syscall executes.
1da177e4 2767 */
f801073f 2768retry:
96d4f267 2769 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2770 if (unlikely(ret != 0))
a5a2a0c7 2771 return ret;
f801073f
DH
2772
2773retry_private:
2774 *hb = queue_lock(q);
2775
e2970f2f 2776 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2777
f801073f 2778 if (ret) {
0d00c7b2 2779 queue_unlock(*hb);
1da177e4 2780
e2970f2f 2781 ret = get_user(uval, uaddr);
e4dc5b7a 2782 if (ret)
f801073f 2783 goto out;
1da177e4 2784
b41277dc 2785 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2786 goto retry_private;
2787
ae791a2d 2788 put_futex_key(&q->key);
e4dc5b7a 2789 goto retry;
1da177e4 2790 }
ca5f9524 2791
f801073f 2792 if (uval != val) {
0d00c7b2 2793 queue_unlock(*hb);
f801073f 2794 ret = -EWOULDBLOCK;
2fff78c7 2795 }
1da177e4 2796
f801073f
DH
2797out:
2798 if (ret)
ae791a2d 2799 put_futex_key(&q->key);
f801073f
DH
2800 return ret;
2801}
2802
b41277dc
DH
2803static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2804 ktime_t *abs_time, u32 bitset)
f801073f 2805{
5ca584d9 2806 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2807 struct restart_block *restart;
2808 struct futex_hash_bucket *hb;
5bdb05f9 2809 struct futex_q q = futex_q_init;
f801073f
DH
2810 int ret;
2811
2812 if (!bitset)
2813 return -EINVAL;
f801073f
DH
2814 q.bitset = bitset;
2815
5ca584d9
WL
2816 to = futex_setup_timer(abs_time, &timeout, flags,
2817 current->timer_slack_ns);
d58e6576 2818retry:
7ada876a
DH
2819 /*
2820 * Prepare to wait on uaddr. On success, holds hb lock and increments
2821 * q.key refs.
2822 */
b41277dc 2823 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2824 if (ret)
2825 goto out;
2826
ca5f9524 2827 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2828 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2829
2830 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2831 ret = 0;
7ada876a 2832 /* unqueue_me() drops q.key ref */
1da177e4 2833 if (!unqueue_me(&q))
7ada876a 2834 goto out;
2fff78c7 2835 ret = -ETIMEDOUT;
ca5f9524 2836 if (to && !to->task)
7ada876a 2837 goto out;
72c1bbf3 2838
e2970f2f 2839 /*
d58e6576
TG
2840 * We expect signal_pending(current), but we might be the
2841 * victim of a spurious wakeup as well.
e2970f2f 2842 */
7ada876a 2843 if (!signal_pending(current))
d58e6576 2844 goto retry;
d58e6576 2845
2fff78c7 2846 ret = -ERESTARTSYS;
c19384b5 2847 if (!abs_time)
7ada876a 2848 goto out;
1da177e4 2849
f56141e3 2850 restart = &current->restart_block;
2fff78c7 2851 restart->fn = futex_wait_restart;
a3c74c52 2852 restart->futex.uaddr = uaddr;
2fff78c7 2853 restart->futex.val = val;
2456e855 2854 restart->futex.time = *abs_time;
2fff78c7 2855 restart->futex.bitset = bitset;
0cd9c649 2856 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2857
2fff78c7
PZ
2858 ret = -ERESTART_RESTARTBLOCK;
2859
42d35d48 2860out:
ca5f9524
DH
2861 if (to) {
2862 hrtimer_cancel(&to->timer);
2863 destroy_hrtimer_on_stack(&to->timer);
2864 }
c87e2837
IM
2865 return ret;
2866}
2867
72c1bbf3
NP
2868
2869static long futex_wait_restart(struct restart_block *restart)
2870{
a3c74c52 2871 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2872 ktime_t t, *tp = NULL;
72c1bbf3 2873
a72188d8 2874 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2875 t = restart->futex.time;
a72188d8
DH
2876 tp = &t;
2877 }
72c1bbf3 2878 restart->fn = do_no_restart_syscall;
b41277dc
DH
2879
2880 return (long)futex_wait(uaddr, restart->futex.flags,
2881 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2882}
2883
2884
c87e2837
IM
2885/*
2886 * Userspace tried a 0 -> TID atomic transition of the futex value
2887 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2888 * if there are waiters then it will block as a consequence of relying
2889 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2890 * a 0 value of the futex too.).
2891 *
2892 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2893 */
996636dd 2894static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2895 ktime_t *time, int trylock)
c87e2837 2896{
5ca584d9 2897 struct hrtimer_sleeper timeout, *to;
16ffa12d 2898 struct futex_pi_state *pi_state = NULL;
3ef240ea 2899 struct task_struct *exiting = NULL;
cfafcd11 2900 struct rt_mutex_waiter rt_waiter;
c87e2837 2901 struct futex_hash_bucket *hb;
5bdb05f9 2902 struct futex_q q = futex_q_init;
dd973998 2903 int res, ret;
c87e2837 2904
bc2eecd7
NP
2905 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2906 return -ENOSYS;
2907
c87e2837
IM
2908 if (refill_pi_state_cache())
2909 return -ENOMEM;
2910
5ca584d9 2911 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2912
42d35d48 2913retry:
96d4f267 2914 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2915 if (unlikely(ret != 0))
42d35d48 2916 goto out;
c87e2837 2917
e4dc5b7a 2918retry_private:
82af7aca 2919 hb = queue_lock(&q);
c87e2837 2920
3ef240ea
TG
2921 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2922 &exiting, 0);
c87e2837 2923 if (unlikely(ret)) {
767f509c
DB
2924 /*
2925 * Atomic work succeeded and we got the lock,
2926 * or failed. Either way, we do _not_ block.
2927 */
778e9a9c 2928 switch (ret) {
1a52084d
DH
2929 case 1:
2930 /* We got the lock. */
2931 ret = 0;
2932 goto out_unlock_put_key;
2933 case -EFAULT:
2934 goto uaddr_faulted;
ac31c7ff 2935 case -EBUSY:
778e9a9c
AK
2936 case -EAGAIN:
2937 /*
af54d6a1 2938 * Two reasons for this:
ac31c7ff 2939 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2940 * exit to complete.
ac31c7ff 2941 * - EAGAIN: The user space value changed.
778e9a9c 2942 */
0d00c7b2 2943 queue_unlock(hb);
ae791a2d 2944 put_futex_key(&q.key);
3ef240ea
TG
2945 /*
2946 * Handle the case where the owner is in the middle of
2947 * exiting. Wait for the exit to complete otherwise
2948 * this task might loop forever, aka. live lock.
2949 */
2950 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2951 cond_resched();
2952 goto retry;
778e9a9c 2953 default:
42d35d48 2954 goto out_unlock_put_key;
c87e2837 2955 }
c87e2837
IM
2956 }
2957
cfafcd11
PZ
2958 WARN_ON(!q.pi_state);
2959
c87e2837
IM
2960 /*
2961 * Only actually queue now that the atomic ops are done:
2962 */
cfafcd11 2963 __queue_me(&q, hb);
c87e2837 2964
cfafcd11 2965 if (trylock) {
5293c2ef 2966 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2967 /* Fixup the trylock return value: */
2968 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2969 goto no_block;
c87e2837
IM
2970 }
2971
56222b21
PZ
2972 rt_mutex_init_waiter(&rt_waiter);
2973
cfafcd11 2974 /*
56222b21
PZ
2975 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2976 * hold it while doing rt_mutex_start_proxy(), because then it will
2977 * include hb->lock in the blocking chain, even through we'll not in
2978 * fact hold it while blocking. This will lead it to report -EDEADLK
2979 * and BUG when futex_unlock_pi() interleaves with this.
2980 *
2981 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2982 * latter before calling __rt_mutex_start_proxy_lock(). This
2983 * interleaves with futex_unlock_pi() -- which does a similar lock
2984 * handoff -- such that the latter can observe the futex_q::pi_state
2985 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2986 */
56222b21
PZ
2987 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2988 spin_unlock(q.lock_ptr);
1a1fb985
TG
2989 /*
2990 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2991 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2992 * it sees the futex_q::pi_state.
2993 */
56222b21
PZ
2994 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2995 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2996
cfafcd11
PZ
2997 if (ret) {
2998 if (ret == 1)
2999 ret = 0;
1a1fb985 3000 goto cleanup;
cfafcd11
PZ
3001 }
3002
cfafcd11 3003 if (unlikely(to))
9dd8813e 3004 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
3005
3006 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3007
1a1fb985 3008cleanup:
a99e4e41 3009 spin_lock(q.lock_ptr);
cfafcd11 3010 /*
1a1fb985 3011 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 3012 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
3013 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3014 * lists consistent.
56222b21
PZ
3015 *
3016 * In particular; it is important that futex_unlock_pi() can not
3017 * observe this inconsistency.
cfafcd11
PZ
3018 */
3019 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3020 ret = 0;
3021
3022no_block:
dd973998
DH
3023 /*
3024 * Fixup the pi_state owner and possibly acquire the lock if we
3025 * haven't already.
3026 */
ae791a2d 3027 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
3028 /*
3029 * If fixup_owner() returned an error, proprogate that. If it acquired
3030 * the lock, clear our -ETIMEDOUT or -EINTR.
3031 */
3032 if (res)
3033 ret = (res < 0) ? res : 0;
c87e2837 3034
e8f6386c 3035 /*
dd973998
DH
3036 * If fixup_owner() faulted and was unable to handle the fault, unlock
3037 * it and return the fault to userspace.
e8f6386c 3038 */
16ffa12d
PZ
3039 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3040 pi_state = q.pi_state;
3041 get_pi_state(pi_state);
3042 }
e8f6386c 3043
778e9a9c
AK
3044 /* Unqueue and drop the lock */
3045 unqueue_me_pi(&q);
c87e2837 3046
16ffa12d
PZ
3047 if (pi_state) {
3048 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3049 put_pi_state(pi_state);
3050 }
3051
5ecb01cf 3052 goto out_put_key;
c87e2837 3053
42d35d48 3054out_unlock_put_key:
0d00c7b2 3055 queue_unlock(hb);
c87e2837 3056
42d35d48 3057out_put_key:
ae791a2d 3058 put_futex_key(&q.key);
42d35d48 3059out:
97181f9b
TG
3060 if (to) {
3061 hrtimer_cancel(&to->timer);
237fc6e7 3062 destroy_hrtimer_on_stack(&to->timer);
97181f9b 3063 }
dd973998 3064 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 3065
42d35d48 3066uaddr_faulted:
0d00c7b2 3067 queue_unlock(hb);
778e9a9c 3068
d0725992 3069 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
3070 if (ret)
3071 goto out_put_key;
c87e2837 3072
b41277dc 3073 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
3074 goto retry_private;
3075
ae791a2d 3076 put_futex_key(&q.key);
e4dc5b7a 3077 goto retry;
c87e2837
IM
3078}
3079
c87e2837
IM
3080/*
3081 * Userspace attempted a TID -> 0 atomic transition, and failed.
3082 * This is the in-kernel slowpath: we look up the PI state (if any),
3083 * and do the rt-mutex unlock.
3084 */
b41277dc 3085static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 3086{
ccf9e6a8 3087 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 3088 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 3089 struct futex_hash_bucket *hb;
499f5aca 3090 struct futex_q *top_waiter;
e4dc5b7a 3091 int ret;
c87e2837 3092
bc2eecd7
NP
3093 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3094 return -ENOSYS;
3095
c87e2837
IM
3096retry:
3097 if (get_user(uval, uaddr))
3098 return -EFAULT;
3099 /*
3100 * We release only a lock we actually own:
3101 */
c0c9ed15 3102 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 3103 return -EPERM;
c87e2837 3104
96d4f267 3105 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
3106 if (ret)
3107 return ret;
c87e2837
IM
3108
3109 hb = hash_futex(&key);
3110 spin_lock(&hb->lock);
3111
c87e2837 3112 /*
ccf9e6a8
TG
3113 * Check waiters first. We do not trust user space values at
3114 * all and we at least want to know if user space fiddled
3115 * with the futex value instead of blindly unlocking.
c87e2837 3116 */
499f5aca
PZ
3117 top_waiter = futex_top_waiter(hb, &key);
3118 if (top_waiter) {
16ffa12d
PZ
3119 struct futex_pi_state *pi_state = top_waiter->pi_state;
3120
3121 ret = -EINVAL;
3122 if (!pi_state)
3123 goto out_unlock;
3124
3125 /*
3126 * If current does not own the pi_state then the futex is
3127 * inconsistent and user space fiddled with the futex value.
3128 */
3129 if (pi_state->owner != current)
3130 goto out_unlock;
3131
bebe5b51 3132 get_pi_state(pi_state);
802ab58d 3133 /*
bebe5b51
PZ
3134 * By taking wait_lock while still holding hb->lock, we ensure
3135 * there is no point where we hold neither; and therefore
3136 * wake_futex_pi() must observe a state consistent with what we
3137 * observed.
1a1fb985
TG
3138 *
3139 * In particular; this forces __rt_mutex_start_proxy() to
3140 * complete such that we're guaranteed to observe the
3141 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3142 */
bebe5b51 3143 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3144 spin_unlock(&hb->lock);
3145
c74aef2d 3146 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3147 ret = wake_futex_pi(uaddr, uval, pi_state);
3148
3149 put_pi_state(pi_state);
3150
3151 /*
3152 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3153 */
3154 if (!ret)
3155 goto out_putkey;
c87e2837 3156 /*
ccf9e6a8
TG
3157 * The atomic access to the futex value generated a
3158 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3159 */
3160 if (ret == -EFAULT)
3161 goto pi_faulted;
89e9e66b
SAS
3162 /*
3163 * A unconditional UNLOCK_PI op raced against a waiter
3164 * setting the FUTEX_WAITERS bit. Try again.
3165 */
6b4f4bc9
WD
3166 if (ret == -EAGAIN)
3167 goto pi_retry;
802ab58d
SAS
3168 /*
3169 * wake_futex_pi has detected invalid state. Tell user
3170 * space.
3171 */
16ffa12d 3172 goto out_putkey;
c87e2837 3173 }
ccf9e6a8 3174
c87e2837 3175 /*
ccf9e6a8
TG
3176 * We have no kernel internal state, i.e. no waiters in the
3177 * kernel. Waiters which are about to queue themselves are stuck
3178 * on hb->lock. So we can safely ignore them. We do neither
3179 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3180 * owner.
c87e2837 3181 */
6b4f4bc9 3182 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3183 spin_unlock(&hb->lock);
6b4f4bc9
WD
3184 switch (ret) {
3185 case -EFAULT:
3186 goto pi_faulted;
3187
3188 case -EAGAIN:
3189 goto pi_retry;
3190
3191 default:
3192 WARN_ON_ONCE(1);
3193 goto out_putkey;
3194 }
16ffa12d 3195 }
c87e2837 3196
ccf9e6a8
TG
3197 /*
3198 * If uval has changed, let user space handle it.
3199 */
3200 ret = (curval == uval) ? 0 : -EAGAIN;
3201
c87e2837
IM
3202out_unlock:
3203 spin_unlock(&hb->lock);
802ab58d 3204out_putkey:
ae791a2d 3205 put_futex_key(&key);
c87e2837
IM
3206 return ret;
3207
6b4f4bc9
WD
3208pi_retry:
3209 put_futex_key(&key);
3210 cond_resched();
3211 goto retry;
3212
c87e2837 3213pi_faulted:
ae791a2d 3214 put_futex_key(&key);
c87e2837 3215
d0725992 3216 ret = fault_in_user_writeable(uaddr);
b5686363 3217 if (!ret)
c87e2837
IM
3218 goto retry;
3219
1da177e4
LT
3220 return ret;
3221}
3222
52400ba9
DH
3223/**
3224 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3225 * @hb: the hash_bucket futex_q was original enqueued on
3226 * @q: the futex_q woken while waiting to be requeued
3227 * @key2: the futex_key of the requeue target futex
3228 * @timeout: the timeout associated with the wait (NULL if none)
3229 *
3230 * Detect if the task was woken on the initial futex as opposed to the requeue
3231 * target futex. If so, determine if it was a timeout or a signal that caused
3232 * the wakeup and return the appropriate error code to the caller. Must be
3233 * called with the hb lock held.
3234 *
6c23cbbd 3235 * Return:
7b4ff1ad
MCC
3236 * - 0 = no early wakeup detected;
3237 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3238 */
3239static inline
3240int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3241 struct futex_q *q, union futex_key *key2,
3242 struct hrtimer_sleeper *timeout)
3243{
3244 int ret = 0;
3245
3246 /*
3247 * With the hb lock held, we avoid races while we process the wakeup.
3248 * We only need to hold hb (and not hb2) to ensure atomicity as the
3249 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3250 * It can't be requeued from uaddr2 to something else since we don't
3251 * support a PI aware source futex for requeue.
3252 */
3253 if (!match_futex(&q->key, key2)) {
3254 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3255 /*
3256 * We were woken prior to requeue by a timeout or a signal.
3257 * Unqueue the futex_q and determine which it was.
3258 */
2e12978a 3259 plist_del(&q->list, &hb->chain);
11d4616b 3260 hb_waiters_dec(hb);
52400ba9 3261
d58e6576 3262 /* Handle spurious wakeups gracefully */
11df6ddd 3263 ret = -EWOULDBLOCK;
52400ba9
DH
3264 if (timeout && !timeout->task)
3265 ret = -ETIMEDOUT;
d58e6576 3266 else if (signal_pending(current))
1c840c14 3267 ret = -ERESTARTNOINTR;
52400ba9
DH
3268 }
3269 return ret;
3270}
3271
3272/**
3273 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3274 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3275 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3276 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3277 * @val: the expected value of uaddr
3278 * @abs_time: absolute timeout
56ec1607 3279 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3280 * @uaddr2: the pi futex we will take prior to returning to user-space
3281 *
3282 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3283 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3284 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3285 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3286 * without one, the pi logic would not know which task to boost/deboost, if
3287 * there was a need to.
52400ba9
DH
3288 *
3289 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3290 * via the following--
52400ba9 3291 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3292 * 2) wakeup on uaddr2 after a requeue
3293 * 3) signal
3294 * 4) timeout
52400ba9 3295 *
cc6db4e6 3296 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3297 *
3298 * If 2, we may then block on trying to take the rt_mutex and return via:
3299 * 5) successful lock
3300 * 6) signal
3301 * 7) timeout
3302 * 8) other lock acquisition failure
3303 *
cc6db4e6 3304 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3305 *
3306 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3307 *
6c23cbbd 3308 * Return:
7b4ff1ad
MCC
3309 * - 0 - On success;
3310 * - <0 - On error
52400ba9 3311 */
b41277dc 3312static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3313 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3314 u32 __user *uaddr2)
52400ba9 3315{
5ca584d9 3316 struct hrtimer_sleeper timeout, *to;
16ffa12d 3317 struct futex_pi_state *pi_state = NULL;
52400ba9 3318 struct rt_mutex_waiter rt_waiter;
52400ba9 3319 struct futex_hash_bucket *hb;
5bdb05f9
DH
3320 union futex_key key2 = FUTEX_KEY_INIT;
3321 struct futex_q q = futex_q_init;
52400ba9 3322 int res, ret;
52400ba9 3323
bc2eecd7
NP
3324 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3325 return -ENOSYS;
3326
6f7b0a2a
DH
3327 if (uaddr == uaddr2)
3328 return -EINVAL;
3329
52400ba9
DH
3330 if (!bitset)
3331 return -EINVAL;
3332
5ca584d9
WL
3333 to = futex_setup_timer(abs_time, &timeout, flags,
3334 current->timer_slack_ns);
52400ba9
DH
3335
3336 /*
3337 * The waiter is allocated on our stack, manipulated by the requeue
3338 * code while we sleep on uaddr.
3339 */
50809358 3340 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3341
96d4f267 3342 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3343 if (unlikely(ret != 0))
3344 goto out;
3345
84bc4af5
DH
3346 q.bitset = bitset;
3347 q.rt_waiter = &rt_waiter;
3348 q.requeue_pi_key = &key2;
3349
7ada876a
DH
3350 /*
3351 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3352 * count.
3353 */
b41277dc 3354 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3355 if (ret)
3356 goto out_key2;
52400ba9 3357
e9c243a5
TG
3358 /*
3359 * The check above which compares uaddrs is not sufficient for
3360 * shared futexes. We need to compare the keys:
3361 */
3362 if (match_futex(&q.key, &key2)) {
13c42c2f 3363 queue_unlock(hb);
e9c243a5
TG
3364 ret = -EINVAL;
3365 goto out_put_keys;
3366 }
3367
52400ba9 3368 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3369 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3370
3371 spin_lock(&hb->lock);
3372 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3373 spin_unlock(&hb->lock);
3374 if (ret)
3375 goto out_put_keys;
3376
3377 /*
3378 * In order for us to be here, we know our q.key == key2, and since
3379 * we took the hb->lock above, we also know that futex_requeue() has
3380 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3381 * race with the atomic proxy lock acquisition by the requeue code. The
3382 * futex_requeue dropped our key1 reference and incremented our key2
3383 * reference count.
52400ba9
DH
3384 */
3385
3386 /* Check if the requeue code acquired the second futex for us. */
3387 if (!q.rt_waiter) {
3388 /*
3389 * Got the lock. We might not be the anticipated owner if we
3390 * did a lock-steal - fix up the PI-state in that case.
3391 */
3392 if (q.pi_state && (q.pi_state->owner != current)) {
3393 spin_lock(q.lock_ptr);
ae791a2d 3394 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3395 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3396 pi_state = q.pi_state;
3397 get_pi_state(pi_state);
3398 }
fb75a428
TG
3399 /*
3400 * Drop the reference to the pi state which
3401 * the requeue_pi() code acquired for us.
3402 */
29e9ee5d 3403 put_pi_state(q.pi_state);
52400ba9
DH
3404 spin_unlock(q.lock_ptr);
3405 }
3406 } else {
c236c8e9
PZ
3407 struct rt_mutex *pi_mutex;
3408
52400ba9
DH
3409 /*
3410 * We have been woken up by futex_unlock_pi(), a timeout, or a
3411 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3412 * the pi_state.
3413 */
f27071cb 3414 WARN_ON(!q.pi_state);
52400ba9 3415 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3416 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3417
3418 spin_lock(q.lock_ptr);
38d589f2
PZ
3419 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3420 ret = 0;
3421
3422 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3423 /*
3424 * Fixup the pi_state owner and possibly acquire the lock if we
3425 * haven't already.
3426 */
ae791a2d 3427 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3428 /*
3429 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3430 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3431 */
3432 if (res)
3433 ret = (res < 0) ? res : 0;
3434
c236c8e9
PZ
3435 /*
3436 * If fixup_pi_state_owner() faulted and was unable to handle
3437 * the fault, unlock the rt_mutex and return the fault to
3438 * userspace.
3439 */
16ffa12d
PZ
3440 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3441 pi_state = q.pi_state;
3442 get_pi_state(pi_state);
3443 }
c236c8e9 3444
52400ba9
DH
3445 /* Unqueue and drop the lock. */
3446 unqueue_me_pi(&q);
3447 }
3448
16ffa12d
PZ
3449 if (pi_state) {
3450 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3451 put_pi_state(pi_state);
3452 }
3453
c236c8e9 3454 if (ret == -EINTR) {
52400ba9 3455 /*
cc6db4e6
DH
3456 * We've already been requeued, but cannot restart by calling
3457 * futex_lock_pi() directly. We could restart this syscall, but
3458 * it would detect that the user space "val" changed and return
3459 * -EWOULDBLOCK. Save the overhead of the restart and return
3460 * -EWOULDBLOCK directly.
52400ba9 3461 */
2070887f 3462 ret = -EWOULDBLOCK;
52400ba9
DH
3463 }
3464
3465out_put_keys:
ae791a2d 3466 put_futex_key(&q.key);
c8b15a70 3467out_key2:
ae791a2d 3468 put_futex_key(&key2);
52400ba9
DH
3469
3470out:
3471 if (to) {
3472 hrtimer_cancel(&to->timer);
3473 destroy_hrtimer_on_stack(&to->timer);
3474 }
3475 return ret;
3476}
3477
0771dfef
IM
3478/*
3479 * Support for robust futexes: the kernel cleans up held futexes at
3480 * thread exit time.
3481 *
3482 * Implementation: user-space maintains a per-thread list of locks it
3483 * is holding. Upon do_exit(), the kernel carefully walks this list,
3484 * and marks all locks that are owned by this thread with the
c87e2837 3485 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3486 * always manipulated with the lock held, so the list is private and
3487 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3488 * field, to allow the kernel to clean up if the thread dies after
3489 * acquiring the lock, but just before it could have added itself to
3490 * the list. There can only be one such pending lock.
3491 */
3492
3493/**
d96ee56c
DH
3494 * sys_set_robust_list() - Set the robust-futex list head of a task
3495 * @head: pointer to the list-head
3496 * @len: length of the list-head, as userspace expects
0771dfef 3497 */
836f92ad
HC
3498SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3499 size_t, len)
0771dfef 3500{
a0c1e907
TG
3501 if (!futex_cmpxchg_enabled)
3502 return -ENOSYS;
0771dfef
IM
3503 /*
3504 * The kernel knows only one size for now:
3505 */
3506 if (unlikely(len != sizeof(*head)))
3507 return -EINVAL;
3508
3509 current->robust_list = head;
3510
3511 return 0;
3512}
3513
3514/**
d96ee56c
DH
3515 * sys_get_robust_list() - Get the robust-futex list head of a task
3516 * @pid: pid of the process [zero for current task]
3517 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3518 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3519 */
836f92ad
HC
3520SYSCALL_DEFINE3(get_robust_list, int, pid,
3521 struct robust_list_head __user * __user *, head_ptr,
3522 size_t __user *, len_ptr)
0771dfef 3523{
ba46df98 3524 struct robust_list_head __user *head;
0771dfef 3525 unsigned long ret;
bdbb776f 3526 struct task_struct *p;
0771dfef 3527
a0c1e907
TG
3528 if (!futex_cmpxchg_enabled)
3529 return -ENOSYS;
3530
bdbb776f
KC
3531 rcu_read_lock();
3532
3533 ret = -ESRCH;
0771dfef 3534 if (!pid)
bdbb776f 3535 p = current;
0771dfef 3536 else {
228ebcbe 3537 p = find_task_by_vpid(pid);
0771dfef
IM
3538 if (!p)
3539 goto err_unlock;
0771dfef
IM
3540 }
3541
bdbb776f 3542 ret = -EPERM;
caaee623 3543 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3544 goto err_unlock;
3545
3546 head = p->robust_list;
3547 rcu_read_unlock();
3548
0771dfef
IM
3549 if (put_user(sizeof(*head), len_ptr))
3550 return -EFAULT;
3551 return put_user(head, head_ptr);
3552
3553err_unlock:
aaa2a97e 3554 rcu_read_unlock();
0771dfef
IM
3555
3556 return ret;
3557}
3558
ca16d5be
YT
3559/* Constants for the pending_op argument of handle_futex_death */
3560#define HANDLE_DEATH_PENDING true
3561#define HANDLE_DEATH_LIST false
3562
0771dfef
IM
3563/*
3564 * Process a futex-list entry, check whether it's owned by the
3565 * dying task, and do notification if so:
3566 */
ca16d5be
YT
3567static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3568 bool pi, bool pending_op)
0771dfef 3569{
7cfdaf38 3570 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3571 int err;
0771dfef 3572
5a07168d
CJ
3573 /* Futex address must be 32bit aligned */
3574 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3575 return -1;
3576
8f17d3a5
IM
3577retry:
3578 if (get_user(uval, uaddr))
0771dfef
IM
3579 return -1;
3580
ca16d5be
YT
3581 /*
3582 * Special case for regular (non PI) futexes. The unlock path in
3583 * user space has two race scenarios:
3584 *
3585 * 1. The unlock path releases the user space futex value and
3586 * before it can execute the futex() syscall to wake up
3587 * waiters it is killed.
3588 *
3589 * 2. A woken up waiter is killed before it can acquire the
3590 * futex in user space.
3591 *
3592 * In both cases the TID validation below prevents a wakeup of
3593 * potential waiters which can cause these waiters to block
3594 * forever.
3595 *
3596 * In both cases the following conditions are met:
3597 *
3598 * 1) task->robust_list->list_op_pending != NULL
3599 * @pending_op == true
3600 * 2) User space futex value == 0
3601 * 3) Regular futex: @pi == false
3602 *
3603 * If these conditions are met, it is safe to attempt waking up a
3604 * potential waiter without touching the user space futex value and
3605 * trying to set the OWNER_DIED bit. The user space futex value is
3606 * uncontended and the rest of the user space mutex state is
3607 * consistent, so a woken waiter will just take over the
3608 * uncontended futex. Setting the OWNER_DIED bit would create
3609 * inconsistent state and malfunction of the user space owner died
3610 * handling.
3611 */
3612 if (pending_op && !pi && !uval) {
3613 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3614 return 0;
3615 }
3616
6b4f4bc9
WD
3617 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3618 return 0;
3619
3620 /*
3621 * Ok, this dying thread is truly holding a futex
3622 * of interest. Set the OWNER_DIED bit atomically
3623 * via cmpxchg, and if the value had FUTEX_WAITERS
3624 * set, wake up a waiter (if any). (We have to do a
3625 * futex_wake() even if OWNER_DIED is already set -
3626 * to handle the rare but possible case of recursive
3627 * thread-death.) The rest of the cleanup is done in
3628 * userspace.
3629 */
3630 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3631
3632 /*
3633 * We are not holding a lock here, but we want to have
3634 * the pagefault_disable/enable() protection because
3635 * we want to handle the fault gracefully. If the
3636 * access fails we try to fault in the futex with R/W
3637 * verification via get_user_pages. get_user() above
3638 * does not guarantee R/W access. If that fails we
3639 * give up and leave the futex locked.
3640 */
3641 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3642 switch (err) {
3643 case -EFAULT:
6e0aa9f8
TG
3644 if (fault_in_user_writeable(uaddr))
3645 return -1;
3646 goto retry;
6b4f4bc9
WD
3647
3648 case -EAGAIN:
3649 cond_resched();
8f17d3a5 3650 goto retry;
0771dfef 3651
6b4f4bc9
WD
3652 default:
3653 WARN_ON_ONCE(1);
3654 return err;
3655 }
0771dfef 3656 }
6b4f4bc9
WD
3657
3658 if (nval != uval)
3659 goto retry;
3660
3661 /*
3662 * Wake robust non-PI futexes here. The wakeup of
3663 * PI futexes happens in exit_pi_state():
3664 */
3665 if (!pi && (uval & FUTEX_WAITERS))
3666 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3667
0771dfef
IM
3668 return 0;
3669}
3670
e3f2ddea
IM
3671/*
3672 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3673 */
3674static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3675 struct robust_list __user * __user *head,
1dcc41bb 3676 unsigned int *pi)
e3f2ddea
IM
3677{
3678 unsigned long uentry;
3679
ba46df98 3680 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3681 return -EFAULT;
3682
ba46df98 3683 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3684 *pi = uentry & 1;
3685
3686 return 0;
3687}
3688
0771dfef
IM
3689/*
3690 * Walk curr->robust_list (very carefully, it's a userspace list!)
3691 * and mark any locks found there dead, and notify any waiters.
3692 *
3693 * We silently return on any sign of list-walking problem.
3694 */
ba31c1a4 3695static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3696{
3697 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3698 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3699 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3700 unsigned int uninitialized_var(next_pi);
0771dfef 3701 unsigned long futex_offset;
9f96cb1e 3702 int rc;
0771dfef 3703
a0c1e907
TG
3704 if (!futex_cmpxchg_enabled)
3705 return;
3706
0771dfef
IM
3707 /*
3708 * Fetch the list head (which was registered earlier, via
3709 * sys_set_robust_list()):
3710 */
e3f2ddea 3711 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3712 return;
3713 /*
3714 * Fetch the relative futex offset:
3715 */
3716 if (get_user(futex_offset, &head->futex_offset))
3717 return;
3718 /*
3719 * Fetch any possibly pending lock-add first, and handle it
3720 * if it exists:
3721 */
e3f2ddea 3722 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3723 return;
e3f2ddea 3724
9f96cb1e 3725 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3726 while (entry != &head->list) {
9f96cb1e
MS
3727 /*
3728 * Fetch the next entry in the list before calling
3729 * handle_futex_death:
3730 */
3731 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3732 /*
3733 * A pending lock might already be on the list, so
c87e2837 3734 * don't process it twice:
0771dfef 3735 */
ca16d5be 3736 if (entry != pending) {
ba46df98 3737 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3738 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3739 return;
ca16d5be 3740 }
9f96cb1e 3741 if (rc)
0771dfef 3742 return;
9f96cb1e
MS
3743 entry = next_entry;
3744 pi = next_pi;
0771dfef
IM
3745 /*
3746 * Avoid excessively long or circular lists:
3747 */
3748 if (!--limit)
3749 break;
3750
3751 cond_resched();
3752 }
9f96cb1e 3753
ca16d5be 3754 if (pending) {
9f96cb1e 3755 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3756 curr, pip, HANDLE_DEATH_PENDING);
3757 }
0771dfef
IM
3758}
3759
af8cbda2 3760static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3761{
3762 if (unlikely(tsk->robust_list)) {
3763 exit_robust_list(tsk);
3764 tsk->robust_list = NULL;
3765 }
3766
3767#ifdef CONFIG_COMPAT
3768 if (unlikely(tsk->compat_robust_list)) {
3769 compat_exit_robust_list(tsk);
3770 tsk->compat_robust_list = NULL;
3771 }
3772#endif
3773
3774 if (unlikely(!list_empty(&tsk->pi_state_list)))
3775 exit_pi_state_list(tsk);
3776}
3777
18f69438
TG
3778/**
3779 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3780 * @tsk: task to set the state on
3781 *
3782 * Set the futex exit state of the task lockless. The futex waiter code
3783 * observes that state when a task is exiting and loops until the task has
3784 * actually finished the futex cleanup. The worst case for this is that the
3785 * waiter runs through the wait loop until the state becomes visible.
3786 *
3787 * This is called from the recursive fault handling path in do_exit().
3788 *
3789 * This is best effort. Either the futex exit code has run already or
3790 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3791 * take it over. If not, the problem is pushed back to user space. If the
3792 * futex exit code did not run yet, then an already queued waiter might
3793 * block forever, but there is nothing which can be done about that.
3794 */
3795void futex_exit_recursive(struct task_struct *tsk)
3796{
3f186d97
TG
3797 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3798 if (tsk->futex_state == FUTEX_STATE_EXITING)
3799 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3800 tsk->futex_state = FUTEX_STATE_DEAD;
3801}
3802
af8cbda2 3803static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3804{
3f186d97
TG
3805 /*
3806 * Prevent various race issues against a concurrent incoming waiter
3807 * including live locks by forcing the waiter to block on
3808 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3809 * attach_to_pi_owner().
3810 */
3811 mutex_lock(&tsk->futex_exit_mutex);
3812
18f69438 3813 /*
4a8e991b
TG
3814 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3815 *
3816 * This ensures that all subsequent checks of tsk->futex_state in
3817 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3818 * tsk->pi_lock held.
3819 *
3820 * It guarantees also that a pi_state which was queued right before
3821 * the state change under tsk->pi_lock by a concurrent waiter must
3822 * be observed in exit_pi_state_list().
18f69438
TG
3823 */
3824 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3825 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3826 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3827}
18f69438 3828
af8cbda2
TG
3829static void futex_cleanup_end(struct task_struct *tsk, int state)
3830{
3831 /*
3832 * Lockless store. The only side effect is that an observer might
3833 * take another loop until it becomes visible.
3834 */
3835 tsk->futex_state = state;
3f186d97
TG
3836 /*
3837 * Drop the exit protection. This unblocks waiters which observed
3838 * FUTEX_STATE_EXITING to reevaluate the state.
3839 */
3840 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3841}
18f69438 3842
af8cbda2
TG
3843void futex_exec_release(struct task_struct *tsk)
3844{
3845 /*
3846 * The state handling is done for consistency, but in the case of
3847 * exec() there is no way to prevent futher damage as the PID stays
3848 * the same. But for the unlikely and arguably buggy case that a
3849 * futex is held on exec(), this provides at least as much state
3850 * consistency protection which is possible.
3851 */
3852 futex_cleanup_begin(tsk);
3853 futex_cleanup(tsk);
3854 /*
3855 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3856 * exec a new binary.
3857 */
3858 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3859}
3860
3861void futex_exit_release(struct task_struct *tsk)
3862{
3863 futex_cleanup_begin(tsk);
3864 futex_cleanup(tsk);
3865 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3866}
3867
c19384b5 3868long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3869 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3870{
81b40539 3871 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3872 unsigned int flags = 0;
34f01cc1
ED
3873
3874 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3875 flags |= FLAGS_SHARED;
1da177e4 3876
b41277dc
DH
3877 if (op & FUTEX_CLOCK_REALTIME) {
3878 flags |= FLAGS_CLOCKRT;
337f1304
DH
3879 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3880 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3881 return -ENOSYS;
3882 }
1da177e4 3883
59263b51
TG
3884 switch (cmd) {
3885 case FUTEX_LOCK_PI:
3886 case FUTEX_UNLOCK_PI:
3887 case FUTEX_TRYLOCK_PI:
3888 case FUTEX_WAIT_REQUEUE_PI:
3889 case FUTEX_CMP_REQUEUE_PI:
3890 if (!futex_cmpxchg_enabled)
3891 return -ENOSYS;
3892 }
3893
34f01cc1 3894 switch (cmd) {
1da177e4 3895 case FUTEX_WAIT:
cd689985 3896 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3897 /* fall through */
cd689985 3898 case FUTEX_WAIT_BITSET:
81b40539 3899 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3900 case FUTEX_WAKE:
cd689985 3901 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3902 /* fall through */
cd689985 3903 case FUTEX_WAKE_BITSET:
81b40539 3904 return futex_wake(uaddr, flags, val, val3);
1da177e4 3905 case FUTEX_REQUEUE:
81b40539 3906 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3907 case FUTEX_CMP_REQUEUE:
81b40539 3908 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3909 case FUTEX_WAKE_OP:
81b40539 3910 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3911 case FUTEX_LOCK_PI:
996636dd 3912 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3913 case FUTEX_UNLOCK_PI:
81b40539 3914 return futex_unlock_pi(uaddr, flags);
c87e2837 3915 case FUTEX_TRYLOCK_PI:
996636dd 3916 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3917 case FUTEX_WAIT_REQUEUE_PI:
3918 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3919 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3920 uaddr2);
52400ba9 3921 case FUTEX_CMP_REQUEUE_PI:
81b40539 3922 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3923 }
81b40539 3924 return -ENOSYS;
1da177e4
LT
3925}
3926
3927
17da2bd9 3928SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3929 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3930 u32, val3)
1da177e4 3931{
bec2f7cb 3932 struct timespec64 ts;
c19384b5 3933 ktime_t t, *tp = NULL;
e2970f2f 3934 u32 val2 = 0;
34f01cc1 3935 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3936
cd689985 3937 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3938 cmd == FUTEX_WAIT_BITSET ||
3939 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3940 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3941 return -EFAULT;
bec2f7cb 3942 if (get_timespec64(&ts, utime))
1da177e4 3943 return -EFAULT;
bec2f7cb 3944 if (!timespec64_valid(&ts))
9741ef96 3945 return -EINVAL;
c19384b5 3946
bec2f7cb 3947 t = timespec64_to_ktime(ts);
34f01cc1 3948 if (cmd == FUTEX_WAIT)
5a7780e7 3949 t = ktime_add_safe(ktime_get(), t);
c19384b5 3950 tp = &t;
1da177e4
LT
3951 }
3952 /*
52400ba9 3953 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3954 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3955 */
f54f0986 3956 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3957 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3958 val2 = (u32) (unsigned long) utime;
1da177e4 3959
c19384b5 3960 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3961}
3962
04e7712f
AB
3963#ifdef CONFIG_COMPAT
3964/*
3965 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3966 */
3967static inline int
3968compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3969 compat_uptr_t __user *head, unsigned int *pi)
3970{
3971 if (get_user(*uentry, head))
3972 return -EFAULT;
3973
3974 *entry = compat_ptr((*uentry) & ~1);
3975 *pi = (unsigned int)(*uentry) & 1;
3976
3977 return 0;
3978}
3979
3980static void __user *futex_uaddr(struct robust_list __user *entry,
3981 compat_long_t futex_offset)
3982{
3983 compat_uptr_t base = ptr_to_compat(entry);
3984 void __user *uaddr = compat_ptr(base + futex_offset);
3985
3986 return uaddr;
3987}
3988
3989/*
3990 * Walk curr->robust_list (very carefully, it's a userspace list!)
3991 * and mark any locks found there dead, and notify any waiters.
3992 *
3993 * We silently return on any sign of list-walking problem.
3994 */
ba31c1a4 3995static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3996{
3997 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3998 struct robust_list __user *entry, *next_entry, *pending;
3999 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4000 unsigned int uninitialized_var(next_pi);
4001 compat_uptr_t uentry, next_uentry, upending;
4002 compat_long_t futex_offset;
4003 int rc;
4004
4005 if (!futex_cmpxchg_enabled)
4006 return;
4007
4008 /*
4009 * Fetch the list head (which was registered earlier, via
4010 * sys_set_robust_list()):
4011 */
4012 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4013 return;
4014 /*
4015 * Fetch the relative futex offset:
4016 */
4017 if (get_user(futex_offset, &head->futex_offset))
4018 return;
4019 /*
4020 * Fetch any possibly pending lock-add first, and handle it
4021 * if it exists:
4022 */
4023 if (compat_fetch_robust_entry(&upending, &pending,
4024 &head->list_op_pending, &pip))
4025 return;
4026
4027 next_entry = NULL; /* avoid warning with gcc */
4028 while (entry != (struct robust_list __user *) &head->list) {
4029 /*
4030 * Fetch the next entry in the list before calling
4031 * handle_futex_death:
4032 */
4033 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4034 (compat_uptr_t __user *)&entry->next, &next_pi);
4035 /*
4036 * A pending lock might already be on the list, so
4037 * dont process it twice:
4038 */
4039 if (entry != pending) {
4040 void __user *uaddr = futex_uaddr(entry, futex_offset);
4041
ca16d5be
YT
4042 if (handle_futex_death(uaddr, curr, pi,
4043 HANDLE_DEATH_LIST))
04e7712f
AB
4044 return;
4045 }
4046 if (rc)
4047 return;
4048 uentry = next_uentry;
4049 entry = next_entry;
4050 pi = next_pi;
4051 /*
4052 * Avoid excessively long or circular lists:
4053 */
4054 if (!--limit)
4055 break;
4056
4057 cond_resched();
4058 }
4059 if (pending) {
4060 void __user *uaddr = futex_uaddr(pending, futex_offset);
4061
ca16d5be 4062 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
4063 }
4064}
4065
4066COMPAT_SYSCALL_DEFINE2(set_robust_list,
4067 struct compat_robust_list_head __user *, head,
4068 compat_size_t, len)
4069{
4070 if (!futex_cmpxchg_enabled)
4071 return -ENOSYS;
4072
4073 if (unlikely(len != sizeof(*head)))
4074 return -EINVAL;
4075
4076 current->compat_robust_list = head;
4077
4078 return 0;
4079}
4080
4081COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4082 compat_uptr_t __user *, head_ptr,
4083 compat_size_t __user *, len_ptr)
4084{
4085 struct compat_robust_list_head __user *head;
4086 unsigned long ret;
4087 struct task_struct *p;
4088
4089 if (!futex_cmpxchg_enabled)
4090 return -ENOSYS;
4091
4092 rcu_read_lock();
4093
4094 ret = -ESRCH;
4095 if (!pid)
4096 p = current;
4097 else {
4098 p = find_task_by_vpid(pid);
4099 if (!p)
4100 goto err_unlock;
4101 }
4102
4103 ret = -EPERM;
4104 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4105 goto err_unlock;
4106
4107 head = p->compat_robust_list;
4108 rcu_read_unlock();
4109
4110 if (put_user(sizeof(*head), len_ptr))
4111 return -EFAULT;
4112 return put_user(ptr_to_compat(head), head_ptr);
4113
4114err_unlock:
4115 rcu_read_unlock();
4116
4117 return ret;
4118}
bec2f7cb 4119#endif /* CONFIG_COMPAT */
04e7712f 4120
bec2f7cb 4121#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 4122SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
4123 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4124 u32, val3)
4125{
bec2f7cb 4126 struct timespec64 ts;
04e7712f
AB
4127 ktime_t t, *tp = NULL;
4128 int val2 = 0;
4129 int cmd = op & FUTEX_CMD_MASK;
4130
4131 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4132 cmd == FUTEX_WAIT_BITSET ||
4133 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 4134 if (get_old_timespec32(&ts, utime))
04e7712f 4135 return -EFAULT;
bec2f7cb 4136 if (!timespec64_valid(&ts))
04e7712f
AB
4137 return -EINVAL;
4138
bec2f7cb 4139 t = timespec64_to_ktime(ts);
04e7712f
AB
4140 if (cmd == FUTEX_WAIT)
4141 t = ktime_add_safe(ktime_get(), t);
4142 tp = &t;
4143 }
4144 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4145 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4146 val2 = (int) (unsigned long) utime;
4147
4148 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4149}
bec2f7cb 4150#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 4151
03b8c7b6 4152static void __init futex_detect_cmpxchg(void)
1da177e4 4153{
03b8c7b6 4154#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 4155 u32 curval;
03b8c7b6
HC
4156
4157 /*
4158 * This will fail and we want it. Some arch implementations do
4159 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4160 * functionality. We want to know that before we call in any
4161 * of the complex code paths. Also we want to prevent
4162 * registration of robust lists in that case. NULL is
4163 * guaranteed to fault and we get -EFAULT on functional
4164 * implementation, the non-functional ones will return
4165 * -ENOSYS.
4166 */
4167 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4168 futex_cmpxchg_enabled = 1;
4169#endif
4170}
4171
4172static int __init futex_init(void)
4173{
63b1a816 4174 unsigned int futex_shift;
a52b89eb
DB
4175 unsigned long i;
4176
4177#if CONFIG_BASE_SMALL
4178 futex_hashsize = 16;
4179#else
4180 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4181#endif
4182
4183 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4184 futex_hashsize, 0,
4185 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4186 &futex_shift, NULL,
4187 futex_hashsize, futex_hashsize);
4188 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4189
4190 futex_detect_cmpxchg();
a0c1e907 4191
a52b89eb 4192 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4193 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4194 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4195 spin_lock_init(&futex_queues[i].lock);
4196 }
4197
1da177e4
LT
4198 return 0;
4199}
25f71d1c 4200core_initcall(futex_init);