]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/futex.c
[CVE-2009-0029] System call wrappers part 31
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
117 * Split the global futex_lock into every hash list lock.
118 */
119struct futex_hash_bucket {
ec92d082
PP
120 spinlock_t lock;
121 struct plist_head chain;
1da177e4
LT
122};
123
124static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
1da177e4
LT
126/*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
129static struct futex_hash_bucket *hash_futex(union futex_key *key)
130{
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135}
136
137/*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
140static inline int match_futex(union futex_key *key1, union futex_key *key2)
141{
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145}
146
38d47c1b
PZ
147/*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
152static void get_futex_key_refs(union futex_key *key)
153{
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165}
166
167/*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
171static void drop_futex_key_refs(union futex_key *key)
172{
90621c40
DH
173 if (!key->both.ptr) {
174 /* If we're here then we tried to put a key we failed to get */
175 WARN_ON_ONCE(1);
38d47c1b 176 return;
90621c40 177 }
38d47c1b
PZ
178
179 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
180 case FUT_OFF_INODE:
181 iput(key->shared.inode);
182 break;
183 case FUT_OFF_MMSHARED:
184 mmdrop(key->private.mm);
185 break;
186 }
187}
188
34f01cc1
ED
189/**
190 * get_futex_key - Get parameters which are the keys for a futex.
191 * @uaddr: virtual address of the futex
192 * @shared: NULL for a PROCESS_PRIVATE futex,
193 * &current->mm->mmap_sem for a PROCESS_SHARED futex
194 * @key: address where result is stored.
195 *
196 * Returns a negative error code or 0
197 * The key words are stored in *key on success.
1da177e4 198 *
f3a43f3f 199 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
200 * offset_within_page). For private mappings, it's (uaddr, current->mm).
201 * We can usually work out the index without swapping in the page.
202 *
34f01cc1
ED
203 * fshared is NULL for PROCESS_PRIVATE futexes
204 * For other futexes, it points to &current->mm->mmap_sem and
205 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 206 */
c2f9f201 207static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 208{
e2970f2f 209 unsigned long address = (unsigned long)uaddr;
1da177e4 210 struct mm_struct *mm = current->mm;
1da177e4
LT
211 struct page *page;
212 int err;
213
214 /*
215 * The futex address must be "naturally" aligned.
216 */
e2970f2f 217 key->both.offset = address % PAGE_SIZE;
34f01cc1 218 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 219 return -EINVAL;
e2970f2f 220 address -= key->both.offset;
1da177e4 221
34f01cc1
ED
222 /*
223 * PROCESS_PRIVATE futexes are fast.
224 * As the mm cannot disappear under us and the 'key' only needs
225 * virtual address, we dont even have to find the underlying vma.
226 * Note : We do have to check 'uaddr' is a valid user address,
227 * but access_ok() should be faster than find_vma()
228 */
229 if (!fshared) {
230 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
231 return -EFAULT;
232 key->private.mm = mm;
233 key->private.address = address;
42569c39 234 get_futex_key_refs(key);
34f01cc1
ED
235 return 0;
236 }
1da177e4 237
38d47c1b 238again:
734b05b1 239 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
240 if (err < 0)
241 return err;
242
243 lock_page(page);
244 if (!page->mapping) {
245 unlock_page(page);
246 put_page(page);
247 goto again;
248 }
1da177e4
LT
249
250 /*
251 * Private mappings are handled in a simple way.
252 *
253 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
254 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 255 * the object not the particular process.
1da177e4 256 */
38d47c1b
PZ
257 if (PageAnon(page)) {
258 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 259 key->private.mm = mm;
e2970f2f 260 key->private.address = address;
38d47c1b
PZ
261 } else {
262 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
263 key->shared.inode = page->mapping->host;
264 key->shared.pgoff = page->index;
1da177e4
LT
265 }
266
38d47c1b 267 get_futex_key_refs(key);
1da177e4 268
38d47c1b
PZ
269 unlock_page(page);
270 put_page(page);
271 return 0;
1da177e4
LT
272}
273
38d47c1b 274static inline
c2f9f201 275void put_futex_key(int fshared, union futex_key *key)
1da177e4 276{
38d47c1b 277 drop_futex_key_refs(key);
1da177e4
LT
278}
279
36cf3b5c
TG
280static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
281{
282 u32 curval;
283
284 pagefault_disable();
285 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
286 pagefault_enable();
287
288 return curval;
289}
290
291static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
292{
293 int ret;
294
a866374a 295 pagefault_disable();
e2970f2f 296 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 297 pagefault_enable();
1da177e4
LT
298
299 return ret ? -EFAULT : 0;
300}
301
c87e2837 302/*
34f01cc1 303 * Fault handling.
c87e2837 304 */
c2f9f201 305static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
306{
307 struct vm_area_struct * vma;
308 struct mm_struct *mm = current->mm;
34f01cc1 309 int ret = -EFAULT;
c87e2837 310
34f01cc1
ED
311 if (attempt > 2)
312 return ret;
c87e2837 313
61270708 314 down_read(&mm->mmap_sem);
34f01cc1
ED
315 vma = find_vma(mm, address);
316 if (vma && address >= vma->vm_start &&
317 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
318 int fault;
319 fault = handle_mm_fault(mm, vma, address, 1);
320 if (unlikely((fault & VM_FAULT_ERROR))) {
321#if 0
322 /* XXX: let's do this when we verify it is OK */
323 if (ret & VM_FAULT_OOM)
324 ret = -ENOMEM;
325#endif
326 } else {
34f01cc1 327 ret = 0;
83c54070
NP
328 if (fault & VM_FAULT_MAJOR)
329 current->maj_flt++;
330 else
331 current->min_flt++;
34f01cc1 332 }
c87e2837 333 }
61270708 334 up_read(&mm->mmap_sem);
34f01cc1 335 return ret;
c87e2837
IM
336}
337
338/*
339 * PI code:
340 */
341static int refill_pi_state_cache(void)
342{
343 struct futex_pi_state *pi_state;
344
345 if (likely(current->pi_state_cache))
346 return 0;
347
4668edc3 348 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
349
350 if (!pi_state)
351 return -ENOMEM;
352
c87e2837
IM
353 INIT_LIST_HEAD(&pi_state->list);
354 /* pi_mutex gets initialized later */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
38d47c1b 357 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
358
359 current->pi_state_cache = pi_state;
360
361 return 0;
362}
363
364static struct futex_pi_state * alloc_pi_state(void)
365{
366 struct futex_pi_state *pi_state = current->pi_state_cache;
367
368 WARN_ON(!pi_state);
369 current->pi_state_cache = NULL;
370
371 return pi_state;
372}
373
374static void free_pi_state(struct futex_pi_state *pi_state)
375{
376 if (!atomic_dec_and_test(&pi_state->refcount))
377 return;
378
379 /*
380 * If pi_state->owner is NULL, the owner is most probably dying
381 * and has cleaned up the pi_state already
382 */
383 if (pi_state->owner) {
384 spin_lock_irq(&pi_state->owner->pi_lock);
385 list_del_init(&pi_state->list);
386 spin_unlock_irq(&pi_state->owner->pi_lock);
387
388 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
389 }
390
391 if (current->pi_state_cache)
392 kfree(pi_state);
393 else {
394 /*
395 * pi_state->list is already empty.
396 * clear pi_state->owner.
397 * refcount is at 0 - put it back to 1.
398 */
399 pi_state->owner = NULL;
400 atomic_set(&pi_state->refcount, 1);
401 current->pi_state_cache = pi_state;
402 }
403}
404
405/*
406 * Look up the task based on what TID userspace gave us.
407 * We dont trust it.
408 */
409static struct task_struct * futex_find_get_task(pid_t pid)
410{
411 struct task_struct *p;
c69e8d9c 412 const struct cred *cred = current_cred(), *pcred;
c87e2837 413
d359b549 414 rcu_read_lock();
228ebcbe 415 p = find_task_by_vpid(pid);
c69e8d9c 416 if (!p) {
a06381fe 417 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
418 } else {
419 pcred = __task_cred(p);
420 if (cred->euid != pcred->euid &&
421 cred->euid != pcred->uid)
422 p = ERR_PTR(-ESRCH);
423 else
424 get_task_struct(p);
425 }
a06381fe 426
d359b549 427 rcu_read_unlock();
c87e2837
IM
428
429 return p;
430}
431
432/*
433 * This task is holding PI mutexes at exit time => bad.
434 * Kernel cleans up PI-state, but userspace is likely hosed.
435 * (Robust-futex cleanup is separate and might save the day for userspace.)
436 */
437void exit_pi_state_list(struct task_struct *curr)
438{
c87e2837
IM
439 struct list_head *next, *head = &curr->pi_state_list;
440 struct futex_pi_state *pi_state;
627371d7 441 struct futex_hash_bucket *hb;
38d47c1b 442 union futex_key key = FUTEX_KEY_INIT;
c87e2837 443
a0c1e907
TG
444 if (!futex_cmpxchg_enabled)
445 return;
c87e2837
IM
446 /*
447 * We are a ZOMBIE and nobody can enqueue itself on
448 * pi_state_list anymore, but we have to be careful
627371d7 449 * versus waiters unqueueing themselves:
c87e2837
IM
450 */
451 spin_lock_irq(&curr->pi_lock);
452 while (!list_empty(head)) {
453
454 next = head->next;
455 pi_state = list_entry(next, struct futex_pi_state, list);
456 key = pi_state->key;
627371d7 457 hb = hash_futex(&key);
c87e2837
IM
458 spin_unlock_irq(&curr->pi_lock);
459
c87e2837
IM
460 spin_lock(&hb->lock);
461
462 spin_lock_irq(&curr->pi_lock);
627371d7
IM
463 /*
464 * We dropped the pi-lock, so re-check whether this
465 * task still owns the PI-state:
466 */
c87e2837
IM
467 if (head->next != next) {
468 spin_unlock(&hb->lock);
469 continue;
470 }
471
c87e2837 472 WARN_ON(pi_state->owner != curr);
627371d7
IM
473 WARN_ON(list_empty(&pi_state->list));
474 list_del_init(&pi_state->list);
c87e2837
IM
475 pi_state->owner = NULL;
476 spin_unlock_irq(&curr->pi_lock);
477
478 rt_mutex_unlock(&pi_state->pi_mutex);
479
480 spin_unlock(&hb->lock);
481
482 spin_lock_irq(&curr->pi_lock);
483 }
484 spin_unlock_irq(&curr->pi_lock);
485}
486
487static int
d0aa7a70
PP
488lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
489 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
490{
491 struct futex_pi_state *pi_state = NULL;
492 struct futex_q *this, *next;
ec92d082 493 struct plist_head *head;
c87e2837 494 struct task_struct *p;
778e9a9c 495 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
496
497 head = &hb->chain;
498
ec92d082 499 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 500 if (match_futex(&this->key, key)) {
c87e2837
IM
501 /*
502 * Another waiter already exists - bump up
503 * the refcount and return its pi_state:
504 */
505 pi_state = this->pi_state;
06a9ec29
TG
506 /*
507 * Userspace might have messed up non PI and PI futexes
508 */
509 if (unlikely(!pi_state))
510 return -EINVAL;
511
627371d7 512 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
513 WARN_ON(pid && pi_state->owner &&
514 pi_state->owner->pid != pid);
627371d7 515
c87e2837 516 atomic_inc(&pi_state->refcount);
d0aa7a70 517 *ps = pi_state;
c87e2837
IM
518
519 return 0;
520 }
521 }
522
523 /*
e3f2ddea 524 * We are the first waiter - try to look up the real owner and attach
778e9a9c 525 * the new pi_state to it, but bail out when TID = 0
c87e2837 526 */
778e9a9c 527 if (!pid)
e3f2ddea 528 return -ESRCH;
c87e2837 529 p = futex_find_get_task(pid);
778e9a9c
AK
530 if (IS_ERR(p))
531 return PTR_ERR(p);
532
533 /*
534 * We need to look at the task state flags to figure out,
535 * whether the task is exiting. To protect against the do_exit
536 * change of the task flags, we do this protected by
537 * p->pi_lock:
538 */
539 spin_lock_irq(&p->pi_lock);
540 if (unlikely(p->flags & PF_EXITING)) {
541 /*
542 * The task is on the way out. When PF_EXITPIDONE is
543 * set, we know that the task has finished the
544 * cleanup:
545 */
546 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
547
548 spin_unlock_irq(&p->pi_lock);
549 put_task_struct(p);
550 return ret;
551 }
c87e2837
IM
552
553 pi_state = alloc_pi_state();
554
555 /*
556 * Initialize the pi_mutex in locked state and make 'p'
557 * the owner of it:
558 */
559 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
560
561 /* Store the key for possible exit cleanups: */
d0aa7a70 562 pi_state->key = *key;
c87e2837 563
627371d7 564 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
565 list_add(&pi_state->list, &p->pi_state_list);
566 pi_state->owner = p;
567 spin_unlock_irq(&p->pi_lock);
568
569 put_task_struct(p);
570
d0aa7a70 571 *ps = pi_state;
c87e2837
IM
572
573 return 0;
574}
575
1da177e4
LT
576/*
577 * The hash bucket lock must be held when this is called.
578 * Afterwards, the futex_q must not be accessed.
579 */
580static void wake_futex(struct futex_q *q)
581{
ec92d082 582 plist_del(&q->list, &q->list.plist);
1da177e4
LT
583 /*
584 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 585 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 586 */
73500ac5 587 wake_up(&q->waiter);
1da177e4
LT
588 /*
589 * The waiting task can free the futex_q as soon as this is written,
590 * without taking any locks. This must come last.
8e31108b
AM
591 *
592 * A memory barrier is required here to prevent the following store
593 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
594 * at the end of wake_up_all() does not prevent this store from
595 * moving.
1da177e4 596 */
ccdea2f8 597 smp_wmb();
1da177e4
LT
598 q->lock_ptr = NULL;
599}
600
c87e2837
IM
601static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
602{
603 struct task_struct *new_owner;
604 struct futex_pi_state *pi_state = this->pi_state;
605 u32 curval, newval;
606
607 if (!pi_state)
608 return -EINVAL;
609
21778867 610 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
611 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
612
613 /*
614 * This happens when we have stolen the lock and the original
615 * pending owner did not enqueue itself back on the rt_mutex.
616 * Thats not a tragedy. We know that way, that a lock waiter
617 * is on the fly. We make the futex_q waiter the pending owner.
618 */
619 if (!new_owner)
620 new_owner = this->task;
621
622 /*
623 * We pass it to the next owner. (The WAITERS bit is always
624 * kept enabled while there is PI state around. We must also
625 * preserve the owner died bit.)
626 */
e3f2ddea 627 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
628 int ret = 0;
629
b488893a 630 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 631
36cf3b5c 632 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 633
e3f2ddea 634 if (curval == -EFAULT)
778e9a9c 635 ret = -EFAULT;
cde898fa 636 else if (curval != uval)
778e9a9c
AK
637 ret = -EINVAL;
638 if (ret) {
639 spin_unlock(&pi_state->pi_mutex.wait_lock);
640 return ret;
641 }
e3f2ddea 642 }
c87e2837 643
627371d7
IM
644 spin_lock_irq(&pi_state->owner->pi_lock);
645 WARN_ON(list_empty(&pi_state->list));
646 list_del_init(&pi_state->list);
647 spin_unlock_irq(&pi_state->owner->pi_lock);
648
649 spin_lock_irq(&new_owner->pi_lock);
650 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
651 list_add(&pi_state->list, &new_owner->pi_state_list);
652 pi_state->owner = new_owner;
627371d7
IM
653 spin_unlock_irq(&new_owner->pi_lock);
654
21778867 655 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
656 rt_mutex_unlock(&pi_state->pi_mutex);
657
658 return 0;
659}
660
661static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
662{
663 u32 oldval;
664
665 /*
666 * There is no waiter, so we unlock the futex. The owner died
667 * bit has not to be preserved here. We are the owner:
668 */
36cf3b5c 669 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
670
671 if (oldval == -EFAULT)
672 return oldval;
673 if (oldval != uval)
674 return -EAGAIN;
675
676 return 0;
677}
678
8b8f319f
IM
679/*
680 * Express the locking dependencies for lockdep:
681 */
682static inline void
683double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
684{
685 if (hb1 <= hb2) {
686 spin_lock(&hb1->lock);
687 if (hb1 < hb2)
688 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
689 } else { /* hb1 > hb2 */
690 spin_lock(&hb2->lock);
691 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
692 }
693}
694
1da177e4
LT
695/*
696 * Wake up all waiters hashed on the physical page that is mapped
697 * to this virtual address:
698 */
c2f9f201 699static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 700{
e2970f2f 701 struct futex_hash_bucket *hb;
1da177e4 702 struct futex_q *this, *next;
ec92d082 703 struct plist_head *head;
38d47c1b 704 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
705 int ret;
706
cd689985
TG
707 if (!bitset)
708 return -EINVAL;
709
34f01cc1 710 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
711 if (unlikely(ret != 0))
712 goto out;
713
e2970f2f
IM
714 hb = hash_futex(&key);
715 spin_lock(&hb->lock);
716 head = &hb->chain;
1da177e4 717
ec92d082 718 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 719 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
720 if (this->pi_state) {
721 ret = -EINVAL;
722 break;
723 }
cd689985
TG
724
725 /* Check if one of the bits is set in both bitsets */
726 if (!(this->bitset & bitset))
727 continue;
728
1da177e4
LT
729 wake_futex(this);
730 if (++ret >= nr_wake)
731 break;
732 }
733 }
734
e2970f2f 735 spin_unlock(&hb->lock);
38d47c1b 736 put_futex_key(fshared, &key);
42d35d48 737out:
1da177e4
LT
738 return ret;
739}
740
4732efbe
JJ
741/*
742 * Wake up all waiters hashed on the physical page that is mapped
743 * to this virtual address:
744 */
e2970f2f 745static int
c2f9f201 746futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 747 int nr_wake, int nr_wake2, int op)
4732efbe 748{
38d47c1b 749 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 750 struct futex_hash_bucket *hb1, *hb2;
ec92d082 751 struct plist_head *head;
4732efbe
JJ
752 struct futex_q *this, *next;
753 int ret, op_ret, attempt = 0;
754
755retryfull:
34f01cc1 756 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
757 if (unlikely(ret != 0))
758 goto out;
34f01cc1 759 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 760 if (unlikely(ret != 0))
42d35d48 761 goto out_put_key1;
4732efbe 762
e2970f2f
IM
763 hb1 = hash_futex(&key1);
764 hb2 = hash_futex(&key2);
4732efbe
JJ
765
766retry:
8b8f319f 767 double_lock_hb(hb1, hb2);
4732efbe 768
e2970f2f 769 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 770 if (unlikely(op_ret < 0)) {
e2970f2f 771 u32 dummy;
4732efbe 772
e2970f2f
IM
773 spin_unlock(&hb1->lock);
774 if (hb1 != hb2)
775 spin_unlock(&hb2->lock);
4732efbe 776
7ee1dd3f 777#ifndef CONFIG_MMU
e2970f2f
IM
778 /*
779 * we don't get EFAULT from MMU faults if we don't have an MMU,
780 * but we might get them from range checking
781 */
7ee1dd3f 782 ret = op_ret;
42d35d48 783 goto out_put_keys;
7ee1dd3f
DH
784#endif
785
796f8d9b
DG
786 if (unlikely(op_ret != -EFAULT)) {
787 ret = op_ret;
42d35d48 788 goto out_put_keys;
796f8d9b
DG
789 }
790
e2970f2f
IM
791 /*
792 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
793 * *(int __user *)uaddr2, but we can't modify it
794 * non-atomically. Therefore, if get_user below is not
795 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
796 * still holding the mmap_sem.
797 */
4732efbe 798 if (attempt++) {
34f01cc1 799 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 800 attempt);
34f01cc1 801 if (ret)
42d35d48 802 goto out_put_keys;
4732efbe
JJ
803 goto retry;
804 }
805
e2970f2f 806 ret = get_user(dummy, uaddr2);
4732efbe
JJ
807 if (ret)
808 return ret;
809
810 goto retryfull;
811 }
812
e2970f2f 813 head = &hb1->chain;
4732efbe 814
ec92d082 815 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
816 if (match_futex (&this->key, &key1)) {
817 wake_futex(this);
818 if (++ret >= nr_wake)
819 break;
820 }
821 }
822
823 if (op_ret > 0) {
e2970f2f 824 head = &hb2->chain;
4732efbe
JJ
825
826 op_ret = 0;
ec92d082 827 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
828 if (match_futex (&this->key, &key2)) {
829 wake_futex(this);
830 if (++op_ret >= nr_wake2)
831 break;
832 }
833 }
834 ret += op_ret;
835 }
836
e2970f2f
IM
837 spin_unlock(&hb1->lock);
838 if (hb1 != hb2)
839 spin_unlock(&hb2->lock);
42d35d48 840out_put_keys:
38d47c1b 841 put_futex_key(fshared, &key2);
42d35d48 842out_put_key1:
38d47c1b 843 put_futex_key(fshared, &key1);
42d35d48 844out:
4732efbe
JJ
845 return ret;
846}
847
1da177e4
LT
848/*
849 * Requeue all waiters hashed on one physical page to another
850 * physical page.
851 */
c2f9f201 852static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 853 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 854{
38d47c1b 855 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 856 struct futex_hash_bucket *hb1, *hb2;
ec92d082 857 struct plist_head *head1;
1da177e4
LT
858 struct futex_q *this, *next;
859 int ret, drop_count = 0;
860
42d35d48 861retry:
34f01cc1 862 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
863 if (unlikely(ret != 0))
864 goto out;
34f01cc1 865 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 866 if (unlikely(ret != 0))
42d35d48 867 goto out_put_key1;
1da177e4 868
e2970f2f
IM
869 hb1 = hash_futex(&key1);
870 hb2 = hash_futex(&key2);
1da177e4 871
8b8f319f 872 double_lock_hb(hb1, hb2);
1da177e4 873
e2970f2f
IM
874 if (likely(cmpval != NULL)) {
875 u32 curval;
1da177e4 876
e2970f2f 877 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
878
879 if (unlikely(ret)) {
e2970f2f
IM
880 spin_unlock(&hb1->lock);
881 if (hb1 != hb2)
882 spin_unlock(&hb2->lock);
1da177e4 883
e2970f2f 884 ret = get_user(curval, uaddr1);
1da177e4
LT
885
886 if (!ret)
887 goto retry;
888
42d35d48 889 goto out_put_keys;
1da177e4 890 }
e2970f2f 891 if (curval != *cmpval) {
1da177e4
LT
892 ret = -EAGAIN;
893 goto out_unlock;
894 }
895 }
896
e2970f2f 897 head1 = &hb1->chain;
ec92d082 898 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
899 if (!match_futex (&this->key, &key1))
900 continue;
901 if (++ret <= nr_wake) {
902 wake_futex(this);
903 } else {
59e0e0ac
SD
904 /*
905 * If key1 and key2 hash to the same bucket, no need to
906 * requeue.
907 */
908 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
909 plist_del(&this->list, &hb1->chain);
910 plist_add(&this->list, &hb2->chain);
59e0e0ac 911 this->lock_ptr = &hb2->lock;
ec92d082
PP
912#ifdef CONFIG_DEBUG_PI_LIST
913 this->list.plist.lock = &hb2->lock;
914#endif
778e9a9c 915 }
1da177e4 916 this->key = key2;
9adef58b 917 get_futex_key_refs(&key2);
1da177e4
LT
918 drop_count++;
919
920 if (ret - nr_wake >= nr_requeue)
921 break;
1da177e4
LT
922 }
923 }
924
925out_unlock:
e2970f2f
IM
926 spin_unlock(&hb1->lock);
927 if (hb1 != hb2)
928 spin_unlock(&hb2->lock);
1da177e4 929
9adef58b 930 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 931 while (--drop_count >= 0)
9adef58b 932 drop_futex_key_refs(&key1);
1da177e4 933
42d35d48 934out_put_keys:
38d47c1b 935 put_futex_key(fshared, &key2);
42d35d48 936out_put_key1:
38d47c1b 937 put_futex_key(fshared, &key1);
42d35d48 938out:
1da177e4
LT
939 return ret;
940}
941
942/* The key must be already stored in q->key. */
82af7aca 943static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 944{
e2970f2f 945 struct futex_hash_bucket *hb;
1da177e4 946
73500ac5 947 init_waitqueue_head(&q->waiter);
1da177e4 948
9adef58b 949 get_futex_key_refs(&q->key);
e2970f2f
IM
950 hb = hash_futex(&q->key);
951 q->lock_ptr = &hb->lock;
1da177e4 952
e2970f2f
IM
953 spin_lock(&hb->lock);
954 return hb;
1da177e4
LT
955}
956
82af7aca 957static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 958{
ec92d082
PP
959 int prio;
960
961 /*
962 * The priority used to register this element is
963 * - either the real thread-priority for the real-time threads
964 * (i.e. threads with a priority lower than MAX_RT_PRIO)
965 * - or MAX_RT_PRIO for non-RT threads.
966 * Thus, all RT-threads are woken first in priority order, and
967 * the others are woken last, in FIFO order.
968 */
969 prio = min(current->normal_prio, MAX_RT_PRIO);
970
971 plist_node_init(&q->list, prio);
972#ifdef CONFIG_DEBUG_PI_LIST
973 q->list.plist.lock = &hb->lock;
974#endif
975 plist_add(&q->list, &hb->chain);
c87e2837 976 q->task = current;
e2970f2f 977 spin_unlock(&hb->lock);
1da177e4
LT
978}
979
980static inline void
e2970f2f 981queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 982{
e2970f2f 983 spin_unlock(&hb->lock);
9adef58b 984 drop_futex_key_refs(&q->key);
1da177e4
LT
985}
986
987/*
988 * queue_me and unqueue_me must be called as a pair, each
989 * exactly once. They are called with the hashed spinlock held.
990 */
991
1da177e4
LT
992/* Return 1 if we were still queued (ie. 0 means we were woken) */
993static int unqueue_me(struct futex_q *q)
994{
1da177e4 995 spinlock_t *lock_ptr;
e2970f2f 996 int ret = 0;
1da177e4
LT
997
998 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 999retry:
1da177e4 1000 lock_ptr = q->lock_ptr;
e91467ec 1001 barrier();
c80544dc 1002 if (lock_ptr != NULL) {
1da177e4
LT
1003 spin_lock(lock_ptr);
1004 /*
1005 * q->lock_ptr can change between reading it and
1006 * spin_lock(), causing us to take the wrong lock. This
1007 * corrects the race condition.
1008 *
1009 * Reasoning goes like this: if we have the wrong lock,
1010 * q->lock_ptr must have changed (maybe several times)
1011 * between reading it and the spin_lock(). It can
1012 * change again after the spin_lock() but only if it was
1013 * already changed before the spin_lock(). It cannot,
1014 * however, change back to the original value. Therefore
1015 * we can detect whether we acquired the correct lock.
1016 */
1017 if (unlikely(lock_ptr != q->lock_ptr)) {
1018 spin_unlock(lock_ptr);
1019 goto retry;
1020 }
ec92d082
PP
1021 WARN_ON(plist_node_empty(&q->list));
1022 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1023
1024 BUG_ON(q->pi_state);
1025
1da177e4
LT
1026 spin_unlock(lock_ptr);
1027 ret = 1;
1028 }
1029
9adef58b 1030 drop_futex_key_refs(&q->key);
1da177e4
LT
1031 return ret;
1032}
1033
c87e2837
IM
1034/*
1035 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1036 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1037 * and dropped here.
c87e2837 1038 */
d0aa7a70 1039static void unqueue_me_pi(struct futex_q *q)
c87e2837 1040{
ec92d082
PP
1041 WARN_ON(plist_node_empty(&q->list));
1042 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1043
1044 BUG_ON(!q->pi_state);
1045 free_pi_state(q->pi_state);
1046 q->pi_state = NULL;
1047
d0aa7a70 1048 spin_unlock(q->lock_ptr);
c87e2837 1049
9adef58b 1050 drop_futex_key_refs(&q->key);
c87e2837
IM
1051}
1052
d0aa7a70 1053/*
cdf71a10 1054 * Fixup the pi_state owner with the new owner.
d0aa7a70 1055 *
778e9a9c
AK
1056 * Must be called with hash bucket lock held and mm->sem held for non
1057 * private futexes.
d0aa7a70 1058 */
778e9a9c 1059static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1060 struct task_struct *newowner, int fshared)
d0aa7a70 1061{
cdf71a10 1062 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1063 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1064 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1065 u32 uval, curval, newval;
1b7558e4 1066 int ret, attempt = 0;
d0aa7a70
PP
1067
1068 /* Owner died? */
1b7558e4
TG
1069 if (!pi_state->owner)
1070 newtid |= FUTEX_OWNER_DIED;
1071
1072 /*
1073 * We are here either because we stole the rtmutex from the
1074 * pending owner or we are the pending owner which failed to
1075 * get the rtmutex. We have to replace the pending owner TID
1076 * in the user space variable. This must be atomic as we have
1077 * to preserve the owner died bit here.
1078 *
1079 * Note: We write the user space value _before_ changing the
1080 * pi_state because we can fault here. Imagine swapped out
1081 * pages or a fork, which was running right before we acquired
1082 * mmap_sem, that marked all the anonymous memory readonly for
1083 * cow.
1084 *
1085 * Modifying pi_state _before_ the user space value would
1086 * leave the pi_state in an inconsistent state when we fault
1087 * here, because we need to drop the hash bucket lock to
1088 * handle the fault. This might be observed in the PID check
1089 * in lookup_pi_state.
1090 */
1091retry:
1092 if (get_futex_value_locked(&uval, uaddr))
1093 goto handle_fault;
1094
1095 while (1) {
1096 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1097
1098 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1099
1100 if (curval == -EFAULT)
1101 goto handle_fault;
1102 if (curval == uval)
1103 break;
1104 uval = curval;
1105 }
1106
1107 /*
1108 * We fixed up user space. Now we need to fix the pi_state
1109 * itself.
1110 */
d0aa7a70
PP
1111 if (pi_state->owner != NULL) {
1112 spin_lock_irq(&pi_state->owner->pi_lock);
1113 WARN_ON(list_empty(&pi_state->list));
1114 list_del_init(&pi_state->list);
1115 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1116 }
d0aa7a70 1117
cdf71a10 1118 pi_state->owner = newowner;
d0aa7a70 1119
cdf71a10 1120 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1121 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1122 list_add(&pi_state->list, &newowner->pi_state_list);
1123 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1124 return 0;
d0aa7a70 1125
d0aa7a70 1126 /*
1b7558e4
TG
1127 * To handle the page fault we need to drop the hash bucket
1128 * lock here. That gives the other task (either the pending
1129 * owner itself or the task which stole the rtmutex) the
1130 * chance to try the fixup of the pi_state. So once we are
1131 * back from handling the fault we need to check the pi_state
1132 * after reacquiring the hash bucket lock and before trying to
1133 * do another fixup. When the fixup has been done already we
1134 * simply return.
d0aa7a70 1135 */
1b7558e4
TG
1136handle_fault:
1137 spin_unlock(q->lock_ptr);
778e9a9c 1138
c2f9f201 1139 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1140
1b7558e4 1141 spin_lock(q->lock_ptr);
778e9a9c 1142
1b7558e4
TG
1143 /*
1144 * Check if someone else fixed it for us:
1145 */
1146 if (pi_state->owner != oldowner)
1147 return 0;
1148
1149 if (ret)
1150 return ret;
1151
1152 goto retry;
d0aa7a70
PP
1153}
1154
34f01cc1
ED
1155/*
1156 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1157 * we encode in the 'flags' shared capability
34f01cc1 1158 */
1acdac10
TG
1159#define FLAGS_SHARED 0x01
1160#define FLAGS_CLOCKRT 0x02
34f01cc1 1161
72c1bbf3 1162static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1163
c2f9f201 1164static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1165 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1166{
c87e2837
IM
1167 struct task_struct *curr = current;
1168 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1169 struct futex_hash_bucket *hb;
1da177e4 1170 struct futex_q q;
e2970f2f
IM
1171 u32 uval;
1172 int ret;
bd197234 1173 struct hrtimer_sleeper t;
c19384b5 1174 int rem = 0;
1da177e4 1175
cd689985
TG
1176 if (!bitset)
1177 return -EINVAL;
1178
c87e2837 1179 q.pi_state = NULL;
cd689985 1180 q.bitset = bitset;
42d35d48 1181retry:
38d47c1b 1182 q.key = FUTEX_KEY_INIT;
34f01cc1 1183 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4 1184 if (unlikely(ret != 0))
42d35d48 1185 goto out;
1da177e4 1186
82af7aca 1187 hb = queue_lock(&q);
1da177e4
LT
1188
1189 /*
1190 * Access the page AFTER the futex is queued.
1191 * Order is important:
1192 *
1193 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1194 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1195 *
1196 * The basic logical guarantee of a futex is that it blocks ONLY
1197 * if cond(var) is known to be true at the time of blocking, for
1198 * any cond. If we queued after testing *uaddr, that would open
1199 * a race condition where we could block indefinitely with
1200 * cond(var) false, which would violate the guarantee.
1201 *
1202 * A consequence is that futex_wait() can return zero and absorb
1203 * a wakeup when *uaddr != val on entry to the syscall. This is
1204 * rare, but normal.
1205 *
34f01cc1
ED
1206 * for shared futexes, we hold the mmap semaphore, so the mapping
1207 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1208 */
e2970f2f 1209 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1210
1211 if (unlikely(ret)) {
e2970f2f 1212 queue_unlock(&q, hb);
42d35d48 1213 put_futex_key(fshared, &q.key);
1da177e4 1214
e2970f2f 1215 ret = get_user(uval, uaddr);
1da177e4
LT
1216
1217 if (!ret)
1218 goto retry;
1219 return ret;
1220 }
c87e2837
IM
1221 ret = -EWOULDBLOCK;
1222 if (uval != val)
42d35d48 1223 goto out_unlock_put_key;
1da177e4
LT
1224
1225 /* Only actually queue if *uaddr contained val. */
82af7aca 1226 queue_me(&q, hb);
1da177e4 1227
1da177e4
LT
1228 /*
1229 * There might have been scheduling since the queue_me(), as we
1230 * cannot hold a spinlock across the get_user() in case it
1231 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1232 * queueing ourselves into the futex hash. This code thus has to
1233 * rely on the futex_wake() code removing us from hash when it
1234 * wakes us up.
1235 */
1236
1237 /* add_wait_queue is the barrier after __set_current_state. */
1238 __set_current_state(TASK_INTERRUPTIBLE);
73500ac5 1239 add_wait_queue(&q.waiter, &wait);
1da177e4 1240 /*
ec92d082 1241 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1242 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1243 */
ec92d082 1244 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1245 if (!abs_time)
1246 schedule();
1247 else {
ae4b748e
AV
1248 unsigned long slack;
1249 slack = current->timer_slack_ns;
1250 if (rt_task(current))
1251 slack = 0;
1acdac10
TG
1252 hrtimer_init_on_stack(&t.timer,
1253 clockrt ? CLOCK_REALTIME :
1254 CLOCK_MONOTONIC,
1255 HRTIMER_MODE_ABS);
c19384b5 1256 hrtimer_init_sleeper(&t, current);
ae4b748e 1257 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
c19384b5 1258
cc584b21 1259 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
3588a085
PZ
1260 if (!hrtimer_active(&t.timer))
1261 t.task = NULL;
c19384b5
PP
1262
1263 /*
1264 * the timer could have already expired, in which
1265 * case current would be flagged for rescheduling.
1266 * Don't bother calling schedule.
1267 */
1268 if (likely(t.task))
1269 schedule();
1270
1271 hrtimer_cancel(&t.timer);
72c1bbf3 1272
c19384b5
PP
1273 /* Flag if a timeout occured */
1274 rem = (t.task == NULL);
237fc6e7
TG
1275
1276 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1277 }
72c1bbf3 1278 }
1da177e4
LT
1279 __set_current_state(TASK_RUNNING);
1280
1281 /*
1282 * NOTE: we don't remove ourselves from the waitqueue because
1283 * we are the only user of it.
1284 */
1285
1286 /* If we were woken (and unqueued), we succeeded, whatever. */
1287 if (!unqueue_me(&q))
1288 return 0;
c19384b5 1289 if (rem)
1da177e4 1290 return -ETIMEDOUT;
72c1bbf3 1291
e2970f2f
IM
1292 /*
1293 * We expect signal_pending(current), but another thread may
1294 * have handled it for us already.
1295 */
c19384b5 1296 if (!abs_time)
72c1bbf3
NP
1297 return -ERESTARTSYS;
1298 else {
1299 struct restart_block *restart;
1300 restart = &current_thread_info()->restart_block;
1301 restart->fn = futex_wait_restart;
ce6bd420
SR
1302 restart->futex.uaddr = (u32 *)uaddr;
1303 restart->futex.val = val;
1304 restart->futex.time = abs_time->tv64;
cd689985 1305 restart->futex.bitset = bitset;
ce6bd420
SR
1306 restart->futex.flags = 0;
1307
34f01cc1 1308 if (fshared)
ce6bd420 1309 restart->futex.flags |= FLAGS_SHARED;
1acdac10
TG
1310 if (clockrt)
1311 restart->futex.flags |= FLAGS_CLOCKRT;
72c1bbf3
NP
1312 return -ERESTART_RESTARTBLOCK;
1313 }
1da177e4 1314
42d35d48 1315out_unlock_put_key:
c87e2837 1316 queue_unlock(&q, hb);
38d47c1b 1317 put_futex_key(fshared, &q.key);
42d35d48
DH
1318
1319out:
c87e2837
IM
1320 return ret;
1321}
1322
72c1bbf3
NP
1323
1324static long futex_wait_restart(struct restart_block *restart)
1325{
ce6bd420 1326 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1327 int fshared = 0;
ce6bd420 1328 ktime_t t;
72c1bbf3 1329
ce6bd420 1330 t.tv64 = restart->futex.time;
72c1bbf3 1331 restart->fn = do_no_restart_syscall;
ce6bd420 1332 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1333 fshared = 1;
cd689985 1334 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1335 restart->futex.bitset,
1336 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1337}
1338
1339
c87e2837
IM
1340/*
1341 * Userspace tried a 0 -> TID atomic transition of the futex value
1342 * and failed. The kernel side here does the whole locking operation:
1343 * if there are waiters then it will block, it does PI, etc. (Due to
1344 * races the kernel might see a 0 value of the futex too.)
1345 */
c2f9f201 1346static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1347 int detect, ktime_t *time, int trylock)
c87e2837 1348{
c5780e97 1349 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1350 struct task_struct *curr = current;
1351 struct futex_hash_bucket *hb;
1352 u32 uval, newval, curval;
1353 struct futex_q q;
778e9a9c 1354 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1355
1356 if (refill_pi_state_cache())
1357 return -ENOMEM;
1358
c19384b5 1359 if (time) {
c5780e97 1360 to = &timeout;
237fc6e7
TG
1361 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1362 HRTIMER_MODE_ABS);
c5780e97 1363 hrtimer_init_sleeper(to, current);
cc584b21 1364 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1365 }
1366
c87e2837 1367 q.pi_state = NULL;
42d35d48 1368retry:
38d47c1b 1369 q.key = FUTEX_KEY_INIT;
34f01cc1 1370 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1371 if (unlikely(ret != 0))
42d35d48 1372 goto out;
c87e2837 1373
42d35d48 1374retry_unlocked:
82af7aca 1375 hb = queue_lock(&q);
c87e2837 1376
42d35d48 1377retry_locked:
778e9a9c 1378 ret = lock_taken = 0;
d0aa7a70 1379
c87e2837
IM
1380 /*
1381 * To avoid races, we attempt to take the lock here again
1382 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1383 * the locks. It will most likely not succeed.
1384 */
b488893a 1385 newval = task_pid_vnr(current);
c87e2837 1386
36cf3b5c 1387 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1388
1389 if (unlikely(curval == -EFAULT))
1390 goto uaddr_faulted;
1391
778e9a9c
AK
1392 /*
1393 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1394 * situation and we return success to user space.
1395 */
b488893a 1396 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1397 ret = -EDEADLK;
42d35d48 1398 goto out_unlock_put_key;
c87e2837
IM
1399 }
1400
1401 /*
778e9a9c 1402 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1403 */
1404 if (unlikely(!curval))
42d35d48 1405 goto out_unlock_put_key;
c87e2837
IM
1406
1407 uval = curval;
778e9a9c 1408
d0aa7a70 1409 /*
778e9a9c
AK
1410 * Set the WAITERS flag, so the owner will know it has someone
1411 * to wake at next unlock
d0aa7a70 1412 */
778e9a9c
AK
1413 newval = curval | FUTEX_WAITERS;
1414
1415 /*
1416 * There are two cases, where a futex might have no owner (the
bd197234
TG
1417 * owner TID is 0): OWNER_DIED. We take over the futex in this
1418 * case. We also do an unconditional take over, when the owner
1419 * of the futex died.
778e9a9c
AK
1420 *
1421 * This is safe as we are protected by the hash bucket lock !
1422 */
1423 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1424 /* Keep the OWNER_DIED bit */
b488893a 1425 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1426 ownerdied = 0;
1427 lock_taken = 1;
1428 }
c87e2837 1429
36cf3b5c 1430 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1431
1432 if (unlikely(curval == -EFAULT))
1433 goto uaddr_faulted;
1434 if (unlikely(curval != uval))
1435 goto retry_locked;
1436
778e9a9c 1437 /*
bd197234 1438 * We took the lock due to owner died take over.
778e9a9c 1439 */
bd197234 1440 if (unlikely(lock_taken))
42d35d48 1441 goto out_unlock_put_key;
d0aa7a70 1442
c87e2837
IM
1443 /*
1444 * We dont have the lock. Look up the PI state (or create it if
1445 * we are the first waiter):
1446 */
d0aa7a70 1447 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1448
1449 if (unlikely(ret)) {
778e9a9c 1450 switch (ret) {
c87e2837 1451
778e9a9c
AK
1452 case -EAGAIN:
1453 /*
1454 * Task is exiting and we just wait for the
1455 * exit to complete.
1456 */
1457 queue_unlock(&q, hb);
778e9a9c
AK
1458 cond_resched();
1459 goto retry;
c87e2837 1460
778e9a9c
AK
1461 case -ESRCH:
1462 /*
1463 * No owner found for this futex. Check if the
1464 * OWNER_DIED bit is set to figure out whether
1465 * this is a robust futex or not.
1466 */
1467 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1468 goto uaddr_faulted;
778e9a9c
AK
1469
1470 /*
1471 * We simply start over in case of a robust
1472 * futex. The code above will take the futex
1473 * and return happy.
1474 */
1475 if (curval & FUTEX_OWNER_DIED) {
1476 ownerdied = 1;
c87e2837 1477 goto retry_locked;
778e9a9c
AK
1478 }
1479 default:
42d35d48 1480 goto out_unlock_put_key;
c87e2837 1481 }
c87e2837
IM
1482 }
1483
1484 /*
1485 * Only actually queue now that the atomic ops are done:
1486 */
82af7aca 1487 queue_me(&q, hb);
c87e2837 1488
c87e2837
IM
1489 WARN_ON(!q.pi_state);
1490 /*
1491 * Block on the PI mutex:
1492 */
1493 if (!trylock)
1494 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1495 else {
1496 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1497 /* Fixup the trylock return value: */
1498 ret = ret ? 0 : -EWOULDBLOCK;
1499 }
1500
a99e4e41 1501 spin_lock(q.lock_ptr);
c87e2837 1502
778e9a9c
AK
1503 if (!ret) {
1504 /*
1505 * Got the lock. We might not be the anticipated owner
1506 * if we did a lock-steal - fix up the PI-state in
1507 * that case:
1508 */
1509 if (q.pi_state->owner != curr)
1b7558e4 1510 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1511 } else {
c87e2837
IM
1512 /*
1513 * Catch the rare case, where the lock was released
778e9a9c
AK
1514 * when we were on the way back before we locked the
1515 * hash bucket.
c87e2837 1516 */
cdf71a10
TG
1517 if (q.pi_state->owner == curr) {
1518 /*
1519 * Try to get the rt_mutex now. This might
1520 * fail as some other task acquired the
1521 * rt_mutex after we removed ourself from the
1522 * rt_mutex waiters list.
1523 */
1524 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1525 ret = 0;
1526 else {
1527 /*
1528 * pi_state is incorrect, some other
1529 * task did a lock steal and we
1530 * returned due to timeout or signal
1531 * without taking the rt_mutex. Too
1532 * late. We can access the
1533 * rt_mutex_owner without locking, as
1534 * the other task is now blocked on
1535 * the hash bucket lock. Fix the state
1536 * up.
1537 */
1538 struct task_struct *owner;
1539 int res;
1540
1541 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1542 res = fixup_pi_state_owner(uaddr, &q, owner,
1543 fshared);
cdf71a10 1544
cdf71a10
TG
1545 /* propagate -EFAULT, if the fixup failed */
1546 if (res)
1547 ret = res;
1548 }
778e9a9c
AK
1549 } else {
1550 /*
1551 * Paranoia check. If we did not take the lock
1552 * in the trylock above, then we should not be
1553 * the owner of the rtmutex, neither the real
1554 * nor the pending one:
1555 */
1556 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1557 printk(KERN_ERR "futex_lock_pi: ret = %d "
1558 "pi-mutex: %p pi-state %p\n", ret,
1559 q.pi_state->pi_mutex.owner,
1560 q.pi_state->owner);
c87e2837 1561 }
c87e2837
IM
1562 }
1563
778e9a9c
AK
1564 /* Unqueue and drop the lock */
1565 unqueue_me_pi(&q);
c87e2837 1566
237fc6e7
TG
1567 if (to)
1568 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1569 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1570
42d35d48 1571out_unlock_put_key:
c87e2837
IM
1572 queue_unlock(&q, hb);
1573
42d35d48 1574out_put_key:
38d47c1b 1575 put_futex_key(fshared, &q.key);
42d35d48 1576out:
237fc6e7
TG
1577 if (to)
1578 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1579 return ret;
1580
42d35d48 1581uaddr_faulted:
c87e2837 1582 /*
b5686363
DH
1583 * We have to r/w *(int __user *)uaddr, and we have to modify it
1584 * atomically. Therefore, if we continue to fault after get_user()
1585 * below, we need to handle the fault ourselves, while still holding
1586 * the mmap_sem. This can occur if the uaddr is under contention as
1587 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1588 */
778e9a9c
AK
1589 queue_unlock(&q, hb);
1590
c87e2837 1591 if (attempt++) {
c2f9f201 1592 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1593 if (ret)
42d35d48 1594 goto out_put_key;
778e9a9c 1595 goto retry_unlocked;
c87e2837
IM
1596 }
1597
c87e2837 1598 ret = get_user(uval, uaddr);
b5686363 1599 if (!ret)
c87e2837
IM
1600 goto retry;
1601
237fc6e7
TG
1602 if (to)
1603 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1604 return ret;
1605}
1606
c87e2837
IM
1607/*
1608 * Userspace attempted a TID -> 0 atomic transition, and failed.
1609 * This is the in-kernel slowpath: we look up the PI state (if any),
1610 * and do the rt-mutex unlock.
1611 */
c2f9f201 1612static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1613{
1614 struct futex_hash_bucket *hb;
1615 struct futex_q *this, *next;
1616 u32 uval;
ec92d082 1617 struct plist_head *head;
38d47c1b 1618 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1619 int ret, attempt = 0;
1620
1621retry:
1622 if (get_user(uval, uaddr))
1623 return -EFAULT;
1624 /*
1625 * We release only a lock we actually own:
1626 */
b488893a 1627 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1628 return -EPERM;
c87e2837 1629
34f01cc1 1630 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1631 if (unlikely(ret != 0))
1632 goto out;
1633
1634 hb = hash_futex(&key);
778e9a9c 1635retry_unlocked:
c87e2837
IM
1636 spin_lock(&hb->lock);
1637
c87e2837
IM
1638 /*
1639 * To avoid races, try to do the TID -> 0 atomic transition
1640 * again. If it succeeds then we can return without waking
1641 * anyone else up:
1642 */
36cf3b5c 1643 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1644 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1645
c87e2837
IM
1646
1647 if (unlikely(uval == -EFAULT))
1648 goto pi_faulted;
1649 /*
1650 * Rare case: we managed to release the lock atomically,
1651 * no need to wake anyone else up:
1652 */
b488893a 1653 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1654 goto out_unlock;
1655
1656 /*
1657 * Ok, other tasks may need to be woken up - check waiters
1658 * and do the wakeup if necessary:
1659 */
1660 head = &hb->chain;
1661
ec92d082 1662 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1663 if (!match_futex (&this->key, &key))
1664 continue;
1665 ret = wake_futex_pi(uaddr, uval, this);
1666 /*
1667 * The atomic access to the futex value
1668 * generated a pagefault, so retry the
1669 * user-access and the wakeup:
1670 */
1671 if (ret == -EFAULT)
1672 goto pi_faulted;
1673 goto out_unlock;
1674 }
1675 /*
1676 * No waiters - kernel unlocks the futex:
1677 */
e3f2ddea
IM
1678 if (!(uval & FUTEX_OWNER_DIED)) {
1679 ret = unlock_futex_pi(uaddr, uval);
1680 if (ret == -EFAULT)
1681 goto pi_faulted;
1682 }
c87e2837
IM
1683
1684out_unlock:
1685 spin_unlock(&hb->lock);
38d47c1b 1686 put_futex_key(fshared, &key);
c87e2837 1687
42d35d48 1688out:
c87e2837
IM
1689 return ret;
1690
1691pi_faulted:
1692 /*
b5686363
DH
1693 * We have to r/w *(int __user *)uaddr, and we have to modify it
1694 * atomically. Therefore, if we continue to fault after get_user()
1695 * below, we need to handle the fault ourselves, while still holding
1696 * the mmap_sem. This can occur if the uaddr is under contention as
1697 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1698 */
778e9a9c
AK
1699 spin_unlock(&hb->lock);
1700
c87e2837 1701 if (attempt++) {
c2f9f201 1702 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1703 if (ret)
778e9a9c 1704 goto out;
187226f5 1705 uval = 0;
778e9a9c 1706 goto retry_unlocked;
c87e2837
IM
1707 }
1708
c87e2837 1709 ret = get_user(uval, uaddr);
b5686363 1710 if (!ret)
c87e2837
IM
1711 goto retry;
1712
1da177e4
LT
1713 return ret;
1714}
1715
0771dfef
IM
1716/*
1717 * Support for robust futexes: the kernel cleans up held futexes at
1718 * thread exit time.
1719 *
1720 * Implementation: user-space maintains a per-thread list of locks it
1721 * is holding. Upon do_exit(), the kernel carefully walks this list,
1722 * and marks all locks that are owned by this thread with the
c87e2837 1723 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1724 * always manipulated with the lock held, so the list is private and
1725 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1726 * field, to allow the kernel to clean up if the thread dies after
1727 * acquiring the lock, but just before it could have added itself to
1728 * the list. There can only be one such pending lock.
1729 */
1730
1731/**
1732 * sys_set_robust_list - set the robust-futex list head of a task
1733 * @head: pointer to the list-head
1734 * @len: length of the list-head, as userspace expects
1735 */
836f92ad
HC
1736SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1737 size_t, len)
0771dfef 1738{
a0c1e907
TG
1739 if (!futex_cmpxchg_enabled)
1740 return -ENOSYS;
0771dfef
IM
1741 /*
1742 * The kernel knows only one size for now:
1743 */
1744 if (unlikely(len != sizeof(*head)))
1745 return -EINVAL;
1746
1747 current->robust_list = head;
1748
1749 return 0;
1750}
1751
1752/**
1753 * sys_get_robust_list - get the robust-futex list head of a task
1754 * @pid: pid of the process [zero for current task]
1755 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1756 * @len_ptr: pointer to a length field, the kernel fills in the header size
1757 */
836f92ad
HC
1758SYSCALL_DEFINE3(get_robust_list, int, pid,
1759 struct robust_list_head __user * __user *, head_ptr,
1760 size_t __user *, len_ptr)
0771dfef 1761{
ba46df98 1762 struct robust_list_head __user *head;
0771dfef 1763 unsigned long ret;
c69e8d9c 1764 const struct cred *cred = current_cred(), *pcred;
0771dfef 1765
a0c1e907
TG
1766 if (!futex_cmpxchg_enabled)
1767 return -ENOSYS;
1768
0771dfef
IM
1769 if (!pid)
1770 head = current->robust_list;
1771 else {
1772 struct task_struct *p;
1773
1774 ret = -ESRCH;
aaa2a97e 1775 rcu_read_lock();
228ebcbe 1776 p = find_task_by_vpid(pid);
0771dfef
IM
1777 if (!p)
1778 goto err_unlock;
1779 ret = -EPERM;
c69e8d9c
DH
1780 pcred = __task_cred(p);
1781 if (cred->euid != pcred->euid &&
1782 cred->euid != pcred->uid &&
76aac0e9 1783 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1784 goto err_unlock;
1785 head = p->robust_list;
aaa2a97e 1786 rcu_read_unlock();
0771dfef
IM
1787 }
1788
1789 if (put_user(sizeof(*head), len_ptr))
1790 return -EFAULT;
1791 return put_user(head, head_ptr);
1792
1793err_unlock:
aaa2a97e 1794 rcu_read_unlock();
0771dfef
IM
1795
1796 return ret;
1797}
1798
1799/*
1800 * Process a futex-list entry, check whether it's owned by the
1801 * dying task, and do notification if so:
1802 */
e3f2ddea 1803int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1804{
e3f2ddea 1805 u32 uval, nval, mval;
0771dfef 1806
8f17d3a5
IM
1807retry:
1808 if (get_user(uval, uaddr))
0771dfef
IM
1809 return -1;
1810
b488893a 1811 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1812 /*
1813 * Ok, this dying thread is truly holding a futex
1814 * of interest. Set the OWNER_DIED bit atomically
1815 * via cmpxchg, and if the value had FUTEX_WAITERS
1816 * set, wake up a waiter (if any). (We have to do a
1817 * futex_wake() even if OWNER_DIED is already set -
1818 * to handle the rare but possible case of recursive
1819 * thread-death.) The rest of the cleanup is done in
1820 * userspace.
1821 */
e3f2ddea
IM
1822 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1823 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1824
c87e2837
IM
1825 if (nval == -EFAULT)
1826 return -1;
1827
1828 if (nval != uval)
8f17d3a5 1829 goto retry;
0771dfef 1830
e3f2ddea
IM
1831 /*
1832 * Wake robust non-PI futexes here. The wakeup of
1833 * PI futexes happens in exit_pi_state():
1834 */
36cf3b5c 1835 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1836 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1837 }
1838 return 0;
1839}
1840
e3f2ddea
IM
1841/*
1842 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1843 */
1844static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1845 struct robust_list __user * __user *head,
1846 int *pi)
e3f2ddea
IM
1847{
1848 unsigned long uentry;
1849
ba46df98 1850 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1851 return -EFAULT;
1852
ba46df98 1853 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1854 *pi = uentry & 1;
1855
1856 return 0;
1857}
1858
0771dfef
IM
1859/*
1860 * Walk curr->robust_list (very carefully, it's a userspace list!)
1861 * and mark any locks found there dead, and notify any waiters.
1862 *
1863 * We silently return on any sign of list-walking problem.
1864 */
1865void exit_robust_list(struct task_struct *curr)
1866{
1867 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1868 struct robust_list __user *entry, *next_entry, *pending;
1869 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1870 unsigned long futex_offset;
9f96cb1e 1871 int rc;
0771dfef 1872
a0c1e907
TG
1873 if (!futex_cmpxchg_enabled)
1874 return;
1875
0771dfef
IM
1876 /*
1877 * Fetch the list head (which was registered earlier, via
1878 * sys_set_robust_list()):
1879 */
e3f2ddea 1880 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1881 return;
1882 /*
1883 * Fetch the relative futex offset:
1884 */
1885 if (get_user(futex_offset, &head->futex_offset))
1886 return;
1887 /*
1888 * Fetch any possibly pending lock-add first, and handle it
1889 * if it exists:
1890 */
e3f2ddea 1891 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1892 return;
e3f2ddea 1893
9f96cb1e 1894 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1895 while (entry != &head->list) {
9f96cb1e
MS
1896 /*
1897 * Fetch the next entry in the list before calling
1898 * handle_futex_death:
1899 */
1900 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1901 /*
1902 * A pending lock might already be on the list, so
c87e2837 1903 * don't process it twice:
0771dfef
IM
1904 */
1905 if (entry != pending)
ba46df98 1906 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1907 curr, pi))
0771dfef 1908 return;
9f96cb1e 1909 if (rc)
0771dfef 1910 return;
9f96cb1e
MS
1911 entry = next_entry;
1912 pi = next_pi;
0771dfef
IM
1913 /*
1914 * Avoid excessively long or circular lists:
1915 */
1916 if (!--limit)
1917 break;
1918
1919 cond_resched();
1920 }
9f96cb1e
MS
1921
1922 if (pending)
1923 handle_futex_death((void __user *)pending + futex_offset,
1924 curr, pip);
0771dfef
IM
1925}
1926
c19384b5 1927long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1928 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1929{
1acdac10 1930 int clockrt, ret = -ENOSYS;
34f01cc1 1931 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1932 int fshared = 0;
34f01cc1
ED
1933
1934 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1935 fshared = 1;
1da177e4 1936
1acdac10
TG
1937 clockrt = op & FUTEX_CLOCK_REALTIME;
1938 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1939 return -ENOSYS;
1da177e4 1940
34f01cc1 1941 switch (cmd) {
1da177e4 1942 case FUTEX_WAIT:
cd689985
TG
1943 val3 = FUTEX_BITSET_MATCH_ANY;
1944 case FUTEX_WAIT_BITSET:
1acdac10 1945 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1946 break;
1947 case FUTEX_WAKE:
cd689985
TG
1948 val3 = FUTEX_BITSET_MATCH_ANY;
1949 case FUTEX_WAKE_BITSET:
1950 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1951 break;
1da177e4 1952 case FUTEX_REQUEUE:
34f01cc1 1953 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1954 break;
1955 case FUTEX_CMP_REQUEUE:
34f01cc1 1956 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1957 break;
4732efbe 1958 case FUTEX_WAKE_OP:
34f01cc1 1959 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1960 break;
c87e2837 1961 case FUTEX_LOCK_PI:
a0c1e907
TG
1962 if (futex_cmpxchg_enabled)
1963 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1964 break;
1965 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1966 if (futex_cmpxchg_enabled)
1967 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1968 break;
1969 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1970 if (futex_cmpxchg_enabled)
1971 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1972 break;
1da177e4
LT
1973 default:
1974 ret = -ENOSYS;
1975 }
1976 return ret;
1977}
1978
1979
17da2bd9
HC
1980SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1981 struct timespec __user *, utime, u32 __user *, uaddr2,
1982 u32, val3)
1da177e4 1983{
c19384b5
PP
1984 struct timespec ts;
1985 ktime_t t, *tp = NULL;
e2970f2f 1986 u32 val2 = 0;
34f01cc1 1987 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1988
cd689985
TG
1989 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1990 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1991 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1992 return -EFAULT;
c19384b5 1993 if (!timespec_valid(&ts))
9741ef96 1994 return -EINVAL;
c19384b5
PP
1995
1996 t = timespec_to_ktime(ts);
34f01cc1 1997 if (cmd == FUTEX_WAIT)
5a7780e7 1998 t = ktime_add_safe(ktime_get(), t);
c19384b5 1999 tp = &t;
1da177e4
LT
2000 }
2001 /*
34f01cc1 2002 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2003 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2004 */
f54f0986
AS
2005 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2006 cmd == FUTEX_WAKE_OP)
e2970f2f 2007 val2 = (u32) (unsigned long) utime;
1da177e4 2008
c19384b5 2009 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2010}
2011
f6d107fb 2012static int __init futex_init(void)
1da177e4 2013{
a0c1e907 2014 u32 curval;
3e4ab747 2015 int i;
95362fa9 2016
a0c1e907
TG
2017 /*
2018 * This will fail and we want it. Some arch implementations do
2019 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2020 * functionality. We want to know that before we call in any
2021 * of the complex code paths. Also we want to prevent
2022 * registration of robust lists in that case. NULL is
2023 * guaranteed to fault and we get -EFAULT on functional
2024 * implementation, the non functional ones will return
2025 * -ENOSYS.
2026 */
2027 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2028 if (curval == -EFAULT)
2029 futex_cmpxchg_enabled = 1;
2030
3e4ab747
TG
2031 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2032 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2033 spin_lock_init(&futex_queues[i].lock);
2034 }
2035
1da177e4
LT
2036 return 0;
2037}
f6d107fb 2038__initcall(futex_init);