]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/futex.c
futex: Fix small (and harmless looking) inconsistencies
[mirror_ubuntu-eoan-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
1da177e4
LT
249};
250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
34f01cc1 491 * The key words are stored in *key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
38d47c1b 695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 696 key->shared.inode = inode;
077fa7ae 697 key->shared.pgoff = basepage_index(tail);
65d8fc77 698 rcu_read_unlock();
1da177e4
LT
699 }
700
9ea71503 701out:
14d27abd 702 put_page(page);
9ea71503 703 return err;
1da177e4
LT
704}
705
ae791a2d 706static inline void put_futex_key(union futex_key *key)
1da177e4 707{
38d47c1b 708 drop_futex_key_refs(key);
1da177e4
LT
709}
710
d96ee56c
DH
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
fb62db2b 718 * We have no generic implementation of a non-destructive write to the
d0725992
TG
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
722d0172
AK
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
2efaca92 729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 730 FAULT_FLAG_WRITE, NULL);
722d0172
AK
731 up_read(&mm->mmap_sem);
732
d0725992
TG
733 return ret < 0 ? ret : 0;
734}
735
4b1c486b
DH
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
37a9d912
ML
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
36cf3b5c 757{
37a9d912 758 int ret;
36cf3b5c
TG
759
760 pagefault_disable();
37a9d912 761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
762 pagefault_enable();
763
37a9d912 764 return ret;
36cf3b5c
TG
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
768{
769 int ret;
770
a866374a 771 pagefault_disable();
bd28b145 772 ret = __get_user(*dest, from);
a866374a 773 pagefault_enable();
1da177e4
LT
774
775 return ret ? -EFAULT : 0;
776}
777
c87e2837
IM
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
4668edc3 789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
790
791 if (!pi_state)
792 return -ENOMEM;
793
c87e2837
IM
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
38d47c1b 798 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
bf92cf3a 805static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
bf92cf3a
PZ
815static void get_pi_state(struct futex_pi_state *pi_state)
816{
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818}
819
30a6b803 820/*
29e9ee5d
TG
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
30a6b803
BS
824 * Must be called with the hb lock held.
825 */
29e9ee5d 826static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 827{
30a6b803
BS
828 if (!pi_state)
829 return;
830
c87e2837
IM
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
1d615482 839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 840 list_del_init(&pi_state->list);
1d615482 841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858}
859
860/*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
bf92cf3a 864static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
865{
866 struct task_struct *p;
867
d359b549 868 rcu_read_lock();
228ebcbe 869 p = find_task_by_vpid(pid);
7a0ea09a
MH
870 if (p)
871 get_task_struct(p);
a06381fe 872
d359b549 873 rcu_read_unlock();
c87e2837
IM
874
875 return p;
876}
877
878/*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883void exit_pi_state_list(struct task_struct *curr)
884{
c87e2837
IM
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
627371d7 887 struct futex_hash_bucket *hb;
38d47c1b 888 union futex_key key = FUTEX_KEY_INIT;
c87e2837 889
a0c1e907
TG
890 if (!futex_cmpxchg_enabled)
891 return;
c87e2837
IM
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
627371d7 895 * versus waiters unqueueing themselves:
c87e2837 896 */
1d615482 897 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
627371d7 903 hb = hash_futex(&key);
1d615482 904 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 905
c87e2837
IM
906 spin_lock(&hb->lock);
907
1d615482 908 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
c87e2837
IM
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
c87e2837 918 WARN_ON(pi_state->owner != curr);
627371d7
IM
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
c87e2837 921 pi_state->owner = NULL;
1d615482 922 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 923
16ffa12d 924 get_pi_state(pi_state);
c87e2837
IM
925 spin_unlock(&hb->lock);
926
16ffa12d
PZ
927 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928 put_pi_state(pi_state);
929
1d615482 930 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 931 }
1d615482 932 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
933}
934
54a21788
TG
935/*
936 * We need to check the following states:
937 *
938 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
939 *
940 * [1] NULL | --- | --- | 0 | 0/1 | Valid
941 * [2] NULL | --- | --- | >0 | 0/1 | Valid
942 *
943 * [3] Found | NULL | -- | Any | 0/1 | Invalid
944 *
945 * [4] Found | Found | NULL | 0 | 1 | Valid
946 * [5] Found | Found | NULL | >0 | 1 | Invalid
947 *
948 * [6] Found | Found | task | 0 | 1 | Valid
949 *
950 * [7] Found | Found | NULL | Any | 0 | Invalid
951 *
952 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
953 * [9] Found | Found | task | 0 | 0 | Invalid
954 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
955 *
956 * [1] Indicates that the kernel can acquire the futex atomically. We
957 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958 *
959 * [2] Valid, if TID does not belong to a kernel thread. If no matching
960 * thread is found then it indicates that the owner TID has died.
961 *
962 * [3] Invalid. The waiter is queued on a non PI futex
963 *
964 * [4] Valid state after exit_robust_list(), which sets the user space
965 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966 *
967 * [5] The user space value got manipulated between exit_robust_list()
968 * and exit_pi_state_list()
969 *
970 * [6] Valid state after exit_pi_state_list() which sets the new owner in
971 * the pi_state but cannot access the user space value.
972 *
973 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974 *
975 * [8] Owner and user space value match
976 *
977 * [9] There is no transient state which sets the user space TID to 0
978 * except exit_robust_list(), but this is indicated by the
979 * FUTEX_OWNER_DIED bit. See [4]
980 *
981 * [10] There is no transient state which leaves owner and user space
982 * TID out of sync.
734009e9
PZ
983 *
984 *
985 * Serialization and lifetime rules:
986 *
987 * hb->lock:
988 *
989 * hb -> futex_q, relation
990 * futex_q -> pi_state, relation
991 *
992 * (cannot be raw because hb can contain arbitrary amount
993 * of futex_q's)
994 *
995 * pi_mutex->wait_lock:
996 *
997 * {uval, pi_state}
998 *
999 * (and pi_mutex 'obviously')
1000 *
1001 * p->pi_lock:
1002 *
1003 * p->pi_state_list -> pi_state->list, relation
1004 *
1005 * pi_state->refcount:
1006 *
1007 * pi_state lifetime
1008 *
1009 *
1010 * Lock order:
1011 *
1012 * hb->lock
1013 * pi_mutex->wait_lock
1014 * p->pi_lock
1015 *
54a21788 1016 */
e60cbc5c
TG
1017
1018/*
1019 * Validate that the existing waiter has a pi_state and sanity check
1020 * the pi_state against the user space value. If correct, attach to
1021 * it.
1022 */
734009e9
PZ
1023static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024 struct futex_pi_state *pi_state,
e60cbc5c 1025 struct futex_pi_state **ps)
c87e2837 1026{
778e9a9c 1027 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1028 u32 uval2;
1029 int ret;
c87e2837 1030
e60cbc5c
TG
1031 /*
1032 * Userspace might have messed up non-PI and PI futexes [3]
1033 */
1034 if (unlikely(!pi_state))
1035 return -EINVAL;
06a9ec29 1036
734009e9
PZ
1037 /*
1038 * We get here with hb->lock held, and having found a
1039 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1040 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1041 * which in turn means that futex_lock_pi() still has a reference on
1042 * our pi_state.
16ffa12d
PZ
1043 *
1044 * The waiter holding a reference on @pi_state also protects against
1045 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1046 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1047 * free pi_state before we can take a reference ourselves.
734009e9 1048 */
e60cbc5c 1049 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1050
734009e9
PZ
1051 /*
1052 * Now that we have a pi_state, we can acquire wait_lock
1053 * and do the state validation.
1054 */
1055 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1056
1057 /*
1058 * Since {uval, pi_state} is serialized by wait_lock, and our current
1059 * uval was read without holding it, it can have changed. Verify it
1060 * still is what we expect it to be, otherwise retry the entire
1061 * operation.
1062 */
1063 if (get_futex_value_locked(&uval2, uaddr))
1064 goto out_efault;
1065
1066 if (uval != uval2)
1067 goto out_eagain;
1068
e60cbc5c
TG
1069 /*
1070 * Handle the owner died case:
1071 */
1072 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1073 /*
e60cbc5c
TG
1074 * exit_pi_state_list sets owner to NULL and wakes the
1075 * topmost waiter. The task which acquires the
1076 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1077 */
e60cbc5c 1078 if (!pi_state->owner) {
59647b6a 1079 /*
e60cbc5c
TG
1080 * No pi state owner, but the user space TID
1081 * is not 0. Inconsistent state. [5]
59647b6a 1082 */
e60cbc5c 1083 if (pid)
734009e9 1084 goto out_einval;
bd1dbcc6 1085 /*
e60cbc5c 1086 * Take a ref on the state and return success. [4]
866293ee 1087 */
734009e9 1088 goto out_attach;
c87e2837 1089 }
bd1dbcc6
TG
1090
1091 /*
e60cbc5c
TG
1092 * If TID is 0, then either the dying owner has not
1093 * yet executed exit_pi_state_list() or some waiter
1094 * acquired the rtmutex in the pi state, but did not
1095 * yet fixup the TID in user space.
1096 *
1097 * Take a ref on the state and return success. [6]
1098 */
1099 if (!pid)
734009e9 1100 goto out_attach;
e60cbc5c
TG
1101 } else {
1102 /*
1103 * If the owner died bit is not set, then the pi_state
1104 * must have an owner. [7]
bd1dbcc6 1105 */
e60cbc5c 1106 if (!pi_state->owner)
734009e9 1107 goto out_einval;
c87e2837
IM
1108 }
1109
e60cbc5c
TG
1110 /*
1111 * Bail out if user space manipulated the futex value. If pi
1112 * state exists then the owner TID must be the same as the
1113 * user space TID. [9/10]
1114 */
1115 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1116 goto out_einval;
1117
1118out_attach:
bf92cf3a 1119 get_pi_state(pi_state);
734009e9 1120 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1121 *ps = pi_state;
1122 return 0;
734009e9
PZ
1123
1124out_einval:
1125 ret = -EINVAL;
1126 goto out_error;
1127
1128out_eagain:
1129 ret = -EAGAIN;
1130 goto out_error;
1131
1132out_efault:
1133 ret = -EFAULT;
1134 goto out_error;
1135
1136out_error:
1137 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1138 return ret;
e60cbc5c
TG
1139}
1140
04e1b2e5
TG
1141/*
1142 * Lookup the task for the TID provided from user space and attach to
1143 * it after doing proper sanity checks.
1144 */
1145static int attach_to_pi_owner(u32 uval, union futex_key *key,
1146 struct futex_pi_state **ps)
e60cbc5c 1147{
e60cbc5c 1148 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1149 struct futex_pi_state *pi_state;
1150 struct task_struct *p;
e60cbc5c 1151
c87e2837 1152 /*
e3f2ddea 1153 * We are the first waiter - try to look up the real owner and attach
54a21788 1154 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1155 */
778e9a9c 1156 if (!pid)
e3f2ddea 1157 return -ESRCH;
c87e2837 1158 p = futex_find_get_task(pid);
7a0ea09a
MH
1159 if (!p)
1160 return -ESRCH;
778e9a9c 1161
a2129464 1162 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1163 put_task_struct(p);
1164 return -EPERM;
1165 }
1166
778e9a9c
AK
1167 /*
1168 * We need to look at the task state flags to figure out,
1169 * whether the task is exiting. To protect against the do_exit
1170 * change of the task flags, we do this protected by
1171 * p->pi_lock:
1172 */
1d615482 1173 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1174 if (unlikely(p->flags & PF_EXITING)) {
1175 /*
1176 * The task is on the way out. When PF_EXITPIDONE is
1177 * set, we know that the task has finished the
1178 * cleanup:
1179 */
1180 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1181
1d615482 1182 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1183 put_task_struct(p);
1184 return ret;
1185 }
c87e2837 1186
54a21788
TG
1187 /*
1188 * No existing pi state. First waiter. [2]
734009e9
PZ
1189 *
1190 * This creates pi_state, we have hb->lock held, this means nothing can
1191 * observe this state, wait_lock is irrelevant.
54a21788 1192 */
c87e2837
IM
1193 pi_state = alloc_pi_state();
1194
1195 /*
04e1b2e5 1196 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1197 * the owner of it:
1198 */
1199 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1200
1201 /* Store the key for possible exit cleanups: */
d0aa7a70 1202 pi_state->key = *key;
c87e2837 1203
627371d7 1204 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1205 list_add(&pi_state->list, &p->pi_state_list);
1206 pi_state->owner = p;
1d615482 1207 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1208
1209 put_task_struct(p);
1210
d0aa7a70 1211 *ps = pi_state;
c87e2837
IM
1212
1213 return 0;
1214}
1215
734009e9
PZ
1216static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1217 struct futex_hash_bucket *hb,
04e1b2e5
TG
1218 union futex_key *key, struct futex_pi_state **ps)
1219{
499f5aca 1220 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1221
1222 /*
1223 * If there is a waiter on that futex, validate it and
1224 * attach to the pi_state when the validation succeeds.
1225 */
499f5aca 1226 if (top_waiter)
734009e9 1227 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1228
1229 /*
1230 * We are the first waiter - try to look up the owner based on
1231 * @uval and attach to it.
1232 */
1233 return attach_to_pi_owner(uval, key, ps);
1234}
1235
af54d6a1
TG
1236static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1237{
1238 u32 uninitialized_var(curval);
1239
ab51fbab
DB
1240 if (unlikely(should_fail_futex(true)))
1241 return -EFAULT;
1242
af54d6a1
TG
1243 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1244 return -EFAULT;
1245
734009e9 1246 /* If user space value changed, let the caller retry */
af54d6a1
TG
1247 return curval != uval ? -EAGAIN : 0;
1248}
1249
1a52084d 1250/**
d96ee56c 1251 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1252 * @uaddr: the pi futex user address
1253 * @hb: the pi futex hash bucket
1254 * @key: the futex key associated with uaddr and hb
1255 * @ps: the pi_state pointer where we store the result of the
1256 * lookup
1257 * @task: the task to perform the atomic lock work for. This will
1258 * be "current" except in the case of requeue pi.
1259 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1260 *
6c23cbbd
RD
1261 * Return:
1262 * 0 - ready to wait;
1263 * 1 - acquired the lock;
1a52084d
DH
1264 * <0 - error
1265 *
1266 * The hb->lock and futex_key refs shall be held by the caller.
1267 */
1268static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1269 union futex_key *key,
1270 struct futex_pi_state **ps,
bab5bc9e 1271 struct task_struct *task, int set_waiters)
1a52084d 1272{
af54d6a1 1273 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1274 struct futex_q *top_waiter;
af54d6a1 1275 int ret;
1a52084d
DH
1276
1277 /*
af54d6a1
TG
1278 * Read the user space value first so we can validate a few
1279 * things before proceeding further.
1a52084d 1280 */
af54d6a1 1281 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1282 return -EFAULT;
1283
ab51fbab
DB
1284 if (unlikely(should_fail_futex(true)))
1285 return -EFAULT;
1286
1a52084d
DH
1287 /*
1288 * Detect deadlocks.
1289 */
af54d6a1 1290 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1291 return -EDEADLK;
1292
ab51fbab
DB
1293 if ((unlikely(should_fail_futex(true))))
1294 return -EDEADLK;
1295
1a52084d 1296 /*
af54d6a1
TG
1297 * Lookup existing state first. If it exists, try to attach to
1298 * its pi_state.
1a52084d 1299 */
499f5aca
PZ
1300 top_waiter = futex_top_waiter(hb, key);
1301 if (top_waiter)
734009e9 1302 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1303
1304 /*
af54d6a1
TG
1305 * No waiter and user TID is 0. We are here because the
1306 * waiters or the owner died bit is set or called from
1307 * requeue_cmp_pi or for whatever reason something took the
1308 * syscall.
1a52084d 1309 */
af54d6a1 1310 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1311 /*
af54d6a1
TG
1312 * We take over the futex. No other waiters and the user space
1313 * TID is 0. We preserve the owner died bit.
59fa6245 1314 */
af54d6a1
TG
1315 newval = uval & FUTEX_OWNER_DIED;
1316 newval |= vpid;
1a52084d 1317
af54d6a1
TG
1318 /* The futex requeue_pi code can enforce the waiters bit */
1319 if (set_waiters)
1320 newval |= FUTEX_WAITERS;
1321
1322 ret = lock_pi_update_atomic(uaddr, uval, newval);
1323 /* If the take over worked, return 1 */
1324 return ret < 0 ? ret : 1;
1325 }
1a52084d
DH
1326
1327 /*
af54d6a1
TG
1328 * First waiter. Set the waiters bit before attaching ourself to
1329 * the owner. If owner tries to unlock, it will be forced into
1330 * the kernel and blocked on hb->lock.
1a52084d 1331 */
af54d6a1
TG
1332 newval = uval | FUTEX_WAITERS;
1333 ret = lock_pi_update_atomic(uaddr, uval, newval);
1334 if (ret)
1335 return ret;
1a52084d 1336 /*
af54d6a1
TG
1337 * If the update of the user space value succeeded, we try to
1338 * attach to the owner. If that fails, no harm done, we only
1339 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1340 */
af54d6a1 1341 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1342}
1343
2e12978a
LJ
1344/**
1345 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1346 * @q: The futex_q to unqueue
1347 *
1348 * The q->lock_ptr must not be NULL and must be held by the caller.
1349 */
1350static void __unqueue_futex(struct futex_q *q)
1351{
1352 struct futex_hash_bucket *hb;
1353
29096202
SR
1354 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1355 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1356 return;
1357
1358 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1359 plist_del(&q->list, &hb->chain);
11d4616b 1360 hb_waiters_dec(hb);
2e12978a
LJ
1361}
1362
1da177e4
LT
1363/*
1364 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1365 * Afterwards, the futex_q must not be accessed. Callers
1366 * must ensure to later call wake_up_q() for the actual
1367 * wakeups to occur.
1da177e4 1368 */
1d0dcb3a 1369static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1370{
f1a11e05
TG
1371 struct task_struct *p = q->task;
1372
aa10990e
DH
1373 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1374 return;
1375
1da177e4 1376 /*
1d0dcb3a
DB
1377 * Queue the task for later wakeup for after we've released
1378 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1379 */
1d0dcb3a 1380 wake_q_add(wake_q, p);
2e12978a 1381 __unqueue_futex(q);
1da177e4 1382 /*
f1a11e05
TG
1383 * The waiting task can free the futex_q as soon as
1384 * q->lock_ptr = NULL is written, without taking any locks. A
1385 * memory barrier is required here to prevent the following
1386 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1387 */
1b367ece 1388 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1389}
1390
16ffa12d
PZ
1391/*
1392 * Caller must hold a reference on @pi_state.
1393 */
1394static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1395{
7cfdaf38 1396 u32 uninitialized_var(curval), newval;
16ffa12d 1397 struct task_struct *new_owner;
aa2bfe55 1398 bool postunlock = false;
194a6b5b 1399 DEFINE_WAKE_Q(wake_q);
13fbca4c 1400 int ret = 0;
c87e2837 1401
c87e2837 1402 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1403 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1404 /*
bebe5b51 1405 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1406 *
1407 * When this happens, give up our locks and try again, giving
1408 * the futex_lock_pi() instance time to complete, either by
1409 * waiting on the rtmutex or removing itself from the futex
1410 * queue.
1411 */
1412 ret = -EAGAIN;
1413 goto out_unlock;
73d786bd 1414 }
c87e2837
IM
1415
1416 /*
16ffa12d
PZ
1417 * We pass it to the next owner. The WAITERS bit is always kept
1418 * enabled while there is PI state around. We cleanup the owner
1419 * died bit, because we are the owner.
c87e2837 1420 */
13fbca4c 1421 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1422
ab51fbab
DB
1423 if (unlikely(should_fail_futex(true)))
1424 ret = -EFAULT;
1425
89e9e66b 1426 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1427 ret = -EFAULT;
734009e9 1428
89e9e66b
SAS
1429 } else if (curval != uval) {
1430 /*
1431 * If a unconditional UNLOCK_PI operation (user space did not
1432 * try the TID->0 transition) raced with a waiter setting the
1433 * FUTEX_WAITERS flag between get_user() and locking the hash
1434 * bucket lock, retry the operation.
1435 */
1436 if ((FUTEX_TID_MASK & curval) == uval)
1437 ret = -EAGAIN;
1438 else
1439 ret = -EINVAL;
1440 }
734009e9 1441
16ffa12d
PZ
1442 if (ret)
1443 goto out_unlock;
c87e2837 1444
94ffac5d
PZ
1445 /*
1446 * This is a point of no return; once we modify the uval there is no
1447 * going back and subsequent operations must not fail.
1448 */
1449
b4abf910 1450 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1451 WARN_ON(list_empty(&pi_state->list));
1452 list_del_init(&pi_state->list);
b4abf910 1453 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1454
b4abf910 1455 raw_spin_lock(&new_owner->pi_lock);
627371d7 1456 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1457 list_add(&pi_state->list, &new_owner->pi_state_list);
1458 pi_state->owner = new_owner;
b4abf910 1459 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1460
aa2bfe55 1461 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1462
16ffa12d 1463out_unlock:
5293c2ef 1464 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1465
aa2bfe55
PZ
1466 if (postunlock)
1467 rt_mutex_postunlock(&wake_q);
c87e2837 1468
16ffa12d 1469 return ret;
c87e2837
IM
1470}
1471
8b8f319f
IM
1472/*
1473 * Express the locking dependencies for lockdep:
1474 */
1475static inline void
1476double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1477{
1478 if (hb1 <= hb2) {
1479 spin_lock(&hb1->lock);
1480 if (hb1 < hb2)
1481 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1482 } else { /* hb1 > hb2 */
1483 spin_lock(&hb2->lock);
1484 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1485 }
1486}
1487
5eb3dc62
DH
1488static inline void
1489double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1490{
f061d351 1491 spin_unlock(&hb1->lock);
88f502fe
IM
1492 if (hb1 != hb2)
1493 spin_unlock(&hb2->lock);
5eb3dc62
DH
1494}
1495
1da177e4 1496/*
b2d0994b 1497 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1498 */
b41277dc
DH
1499static int
1500futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1501{
e2970f2f 1502 struct futex_hash_bucket *hb;
1da177e4 1503 struct futex_q *this, *next;
38d47c1b 1504 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1505 int ret;
194a6b5b 1506 DEFINE_WAKE_Q(wake_q);
1da177e4 1507
cd689985
TG
1508 if (!bitset)
1509 return -EINVAL;
1510
9ea71503 1511 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1512 if (unlikely(ret != 0))
1513 goto out;
1514
e2970f2f 1515 hb = hash_futex(&key);
b0c29f79
DB
1516
1517 /* Make sure we really have tasks to wakeup */
1518 if (!hb_waiters_pending(hb))
1519 goto out_put_key;
1520
e2970f2f 1521 spin_lock(&hb->lock);
1da177e4 1522
0d00c7b2 1523 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1524 if (match_futex (&this->key, &key)) {
52400ba9 1525 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1526 ret = -EINVAL;
1527 break;
1528 }
cd689985
TG
1529
1530 /* Check if one of the bits is set in both bitsets */
1531 if (!(this->bitset & bitset))
1532 continue;
1533
1d0dcb3a 1534 mark_wake_futex(&wake_q, this);
1da177e4
LT
1535 if (++ret >= nr_wake)
1536 break;
1537 }
1538 }
1539
e2970f2f 1540 spin_unlock(&hb->lock);
1d0dcb3a 1541 wake_up_q(&wake_q);
b0c29f79 1542out_put_key:
ae791a2d 1543 put_futex_key(&key);
42d35d48 1544out:
1da177e4
LT
1545 return ret;
1546}
1547
4732efbe
JJ
1548/*
1549 * Wake up all waiters hashed on the physical page that is mapped
1550 * to this virtual address:
1551 */
e2970f2f 1552static int
b41277dc 1553futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1554 int nr_wake, int nr_wake2, int op)
4732efbe 1555{
38d47c1b 1556 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1557 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1558 struct futex_q *this, *next;
e4dc5b7a 1559 int ret, op_ret;
194a6b5b 1560 DEFINE_WAKE_Q(wake_q);
4732efbe 1561
e4dc5b7a 1562retry:
9ea71503 1563 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1564 if (unlikely(ret != 0))
1565 goto out;
9ea71503 1566 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1567 if (unlikely(ret != 0))
42d35d48 1568 goto out_put_key1;
4732efbe 1569
e2970f2f
IM
1570 hb1 = hash_futex(&key1);
1571 hb2 = hash_futex(&key2);
4732efbe 1572
e4dc5b7a 1573retry_private:
eaaea803 1574 double_lock_hb(hb1, hb2);
e2970f2f 1575 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1576 if (unlikely(op_ret < 0)) {
4732efbe 1577
5eb3dc62 1578 double_unlock_hb(hb1, hb2);
4732efbe 1579
7ee1dd3f 1580#ifndef CONFIG_MMU
e2970f2f
IM
1581 /*
1582 * we don't get EFAULT from MMU faults if we don't have an MMU,
1583 * but we might get them from range checking
1584 */
7ee1dd3f 1585 ret = op_ret;
42d35d48 1586 goto out_put_keys;
7ee1dd3f
DH
1587#endif
1588
796f8d9b
DG
1589 if (unlikely(op_ret != -EFAULT)) {
1590 ret = op_ret;
42d35d48 1591 goto out_put_keys;
796f8d9b
DG
1592 }
1593
d0725992 1594 ret = fault_in_user_writeable(uaddr2);
4732efbe 1595 if (ret)
de87fcc1 1596 goto out_put_keys;
4732efbe 1597
b41277dc 1598 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1599 goto retry_private;
1600
ae791a2d
TG
1601 put_futex_key(&key2);
1602 put_futex_key(&key1);
e4dc5b7a 1603 goto retry;
4732efbe
JJ
1604 }
1605
0d00c7b2 1606 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1607 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1608 if (this->pi_state || this->rt_waiter) {
1609 ret = -EINVAL;
1610 goto out_unlock;
1611 }
1d0dcb3a 1612 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1613 if (++ret >= nr_wake)
1614 break;
1615 }
1616 }
1617
1618 if (op_ret > 0) {
4732efbe 1619 op_ret = 0;
0d00c7b2 1620 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1621 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1622 if (this->pi_state || this->rt_waiter) {
1623 ret = -EINVAL;
1624 goto out_unlock;
1625 }
1d0dcb3a 1626 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1627 if (++op_ret >= nr_wake2)
1628 break;
1629 }
1630 }
1631 ret += op_ret;
1632 }
1633
aa10990e 1634out_unlock:
5eb3dc62 1635 double_unlock_hb(hb1, hb2);
1d0dcb3a 1636 wake_up_q(&wake_q);
42d35d48 1637out_put_keys:
ae791a2d 1638 put_futex_key(&key2);
42d35d48 1639out_put_key1:
ae791a2d 1640 put_futex_key(&key1);
42d35d48 1641out:
4732efbe
JJ
1642 return ret;
1643}
1644
9121e478
DH
1645/**
1646 * requeue_futex() - Requeue a futex_q from one hb to another
1647 * @q: the futex_q to requeue
1648 * @hb1: the source hash_bucket
1649 * @hb2: the target hash_bucket
1650 * @key2: the new key for the requeued futex_q
1651 */
1652static inline
1653void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1654 struct futex_hash_bucket *hb2, union futex_key *key2)
1655{
1656
1657 /*
1658 * If key1 and key2 hash to the same bucket, no need to
1659 * requeue.
1660 */
1661 if (likely(&hb1->chain != &hb2->chain)) {
1662 plist_del(&q->list, &hb1->chain);
11d4616b 1663 hb_waiters_dec(hb1);
11d4616b 1664 hb_waiters_inc(hb2);
fe1bce9e 1665 plist_add(&q->list, &hb2->chain);
9121e478 1666 q->lock_ptr = &hb2->lock;
9121e478
DH
1667 }
1668 get_futex_key_refs(key2);
1669 q->key = *key2;
1670}
1671
52400ba9
DH
1672/**
1673 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1674 * @q: the futex_q
1675 * @key: the key of the requeue target futex
1676 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1677 *
1678 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1679 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1680 * to the requeue target futex so the waiter can detect the wakeup on the right
1681 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1682 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1683 * to protect access to the pi_state to fixup the owner later. Must be called
1684 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1685 */
1686static inline
beda2c7e
DH
1687void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1688 struct futex_hash_bucket *hb)
52400ba9 1689{
52400ba9
DH
1690 get_futex_key_refs(key);
1691 q->key = *key;
1692
2e12978a 1693 __unqueue_futex(q);
52400ba9
DH
1694
1695 WARN_ON(!q->rt_waiter);
1696 q->rt_waiter = NULL;
1697
beda2c7e 1698 q->lock_ptr = &hb->lock;
beda2c7e 1699
f1a11e05 1700 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1701}
1702
1703/**
1704 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1705 * @pifutex: the user address of the to futex
1706 * @hb1: the from futex hash bucket, must be locked by the caller
1707 * @hb2: the to futex hash bucket, must be locked by the caller
1708 * @key1: the from futex key
1709 * @key2: the to futex key
1710 * @ps: address to store the pi_state pointer
1711 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1712 *
1713 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1714 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1715 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1716 * hb1 and hb2 must be held by the caller.
52400ba9 1717 *
6c23cbbd
RD
1718 * Return:
1719 * 0 - failed to acquire the lock atomically;
866293ee 1720 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1721 * <0 - error
1722 */
1723static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1724 struct futex_hash_bucket *hb1,
1725 struct futex_hash_bucket *hb2,
1726 union futex_key *key1, union futex_key *key2,
bab5bc9e 1727 struct futex_pi_state **ps, int set_waiters)
52400ba9 1728{
bab5bc9e 1729 struct futex_q *top_waiter = NULL;
52400ba9 1730 u32 curval;
866293ee 1731 int ret, vpid;
52400ba9
DH
1732
1733 if (get_futex_value_locked(&curval, pifutex))
1734 return -EFAULT;
1735
ab51fbab
DB
1736 if (unlikely(should_fail_futex(true)))
1737 return -EFAULT;
1738
bab5bc9e
DH
1739 /*
1740 * Find the top_waiter and determine if there are additional waiters.
1741 * If the caller intends to requeue more than 1 waiter to pifutex,
1742 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1743 * as we have means to handle the possible fault. If not, don't set
1744 * the bit unecessarily as it will force the subsequent unlock to enter
1745 * the kernel.
1746 */
52400ba9
DH
1747 top_waiter = futex_top_waiter(hb1, key1);
1748
1749 /* There are no waiters, nothing for us to do. */
1750 if (!top_waiter)
1751 return 0;
1752
84bc4af5
DH
1753 /* Ensure we requeue to the expected futex. */
1754 if (!match_futex(top_waiter->requeue_pi_key, key2))
1755 return -EINVAL;
1756
52400ba9 1757 /*
bab5bc9e
DH
1758 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1759 * the contended case or if set_waiters is 1. The pi_state is returned
1760 * in ps in contended cases.
52400ba9 1761 */
866293ee 1762 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1763 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1764 set_waiters);
866293ee 1765 if (ret == 1) {
beda2c7e 1766 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1767 return vpid;
1768 }
52400ba9
DH
1769 return ret;
1770}
1771
1772/**
1773 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1774 * @uaddr1: source futex user address
b41277dc 1775 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1776 * @uaddr2: target futex user address
1777 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1778 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1779 * @cmpval: @uaddr1 expected value (or %NULL)
1780 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1781 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1782 *
1783 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1784 * uaddr2 atomically on behalf of the top waiter.
1785 *
6c23cbbd
RD
1786 * Return:
1787 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1788 * <0 - on error
1da177e4 1789 */
b41277dc
DH
1790static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1791 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1792 u32 *cmpval, int requeue_pi)
1da177e4 1793{
38d47c1b 1794 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1795 int drop_count = 0, task_count = 0, ret;
1796 struct futex_pi_state *pi_state = NULL;
e2970f2f 1797 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1798 struct futex_q *this, *next;
194a6b5b 1799 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1800
1801 if (requeue_pi) {
e9c243a5
TG
1802 /*
1803 * Requeue PI only works on two distinct uaddrs. This
1804 * check is only valid for private futexes. See below.
1805 */
1806 if (uaddr1 == uaddr2)
1807 return -EINVAL;
1808
52400ba9
DH
1809 /*
1810 * requeue_pi requires a pi_state, try to allocate it now
1811 * without any locks in case it fails.
1812 */
1813 if (refill_pi_state_cache())
1814 return -ENOMEM;
1815 /*
1816 * requeue_pi must wake as many tasks as it can, up to nr_wake
1817 * + nr_requeue, since it acquires the rt_mutex prior to
1818 * returning to userspace, so as to not leave the rt_mutex with
1819 * waiters and no owner. However, second and third wake-ups
1820 * cannot be predicted as they involve race conditions with the
1821 * first wake and a fault while looking up the pi_state. Both
1822 * pthread_cond_signal() and pthread_cond_broadcast() should
1823 * use nr_wake=1.
1824 */
1825 if (nr_wake != 1)
1826 return -EINVAL;
1827 }
1da177e4 1828
42d35d48 1829retry:
9ea71503 1830 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1831 if (unlikely(ret != 0))
1832 goto out;
9ea71503
SB
1833 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1834 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1835 if (unlikely(ret != 0))
42d35d48 1836 goto out_put_key1;
1da177e4 1837
e9c243a5
TG
1838 /*
1839 * The check above which compares uaddrs is not sufficient for
1840 * shared futexes. We need to compare the keys:
1841 */
1842 if (requeue_pi && match_futex(&key1, &key2)) {
1843 ret = -EINVAL;
1844 goto out_put_keys;
1845 }
1846
e2970f2f
IM
1847 hb1 = hash_futex(&key1);
1848 hb2 = hash_futex(&key2);
1da177e4 1849
e4dc5b7a 1850retry_private:
69cd9eba 1851 hb_waiters_inc(hb2);
8b8f319f 1852 double_lock_hb(hb1, hb2);
1da177e4 1853
e2970f2f
IM
1854 if (likely(cmpval != NULL)) {
1855 u32 curval;
1da177e4 1856
e2970f2f 1857 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1858
1859 if (unlikely(ret)) {
5eb3dc62 1860 double_unlock_hb(hb1, hb2);
69cd9eba 1861 hb_waiters_dec(hb2);
1da177e4 1862
e2970f2f 1863 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1864 if (ret)
1865 goto out_put_keys;
1da177e4 1866
b41277dc 1867 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1868 goto retry_private;
1da177e4 1869
ae791a2d
TG
1870 put_futex_key(&key2);
1871 put_futex_key(&key1);
e4dc5b7a 1872 goto retry;
1da177e4 1873 }
e2970f2f 1874 if (curval != *cmpval) {
1da177e4
LT
1875 ret = -EAGAIN;
1876 goto out_unlock;
1877 }
1878 }
1879
52400ba9 1880 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1881 /*
1882 * Attempt to acquire uaddr2 and wake the top waiter. If we
1883 * intend to requeue waiters, force setting the FUTEX_WAITERS
1884 * bit. We force this here where we are able to easily handle
1885 * faults rather in the requeue loop below.
1886 */
52400ba9 1887 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1888 &key2, &pi_state, nr_requeue);
52400ba9
DH
1889
1890 /*
1891 * At this point the top_waiter has either taken uaddr2 or is
1892 * waiting on it. If the former, then the pi_state will not
1893 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1894 * reference to it. If the lock was taken, ret contains the
1895 * vpid of the top waiter task.
ecb38b78
TG
1896 * If the lock was not taken, we have pi_state and an initial
1897 * refcount on it. In case of an error we have nothing.
52400ba9 1898 */
866293ee 1899 if (ret > 0) {
52400ba9 1900 WARN_ON(pi_state);
89061d3d 1901 drop_count++;
52400ba9 1902 task_count++;
866293ee 1903 /*
ecb38b78
TG
1904 * If we acquired the lock, then the user space value
1905 * of uaddr2 should be vpid. It cannot be changed by
1906 * the top waiter as it is blocked on hb2 lock if it
1907 * tries to do so. If something fiddled with it behind
1908 * our back the pi state lookup might unearth it. So
1909 * we rather use the known value than rereading and
1910 * handing potential crap to lookup_pi_state.
1911 *
1912 * If that call succeeds then we have pi_state and an
1913 * initial refcount on it.
866293ee 1914 */
734009e9 1915 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1916 }
1917
1918 switch (ret) {
1919 case 0:
ecb38b78 1920 /* We hold a reference on the pi state. */
52400ba9 1921 break;
4959f2de
TG
1922
1923 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1924 case -EFAULT:
1925 double_unlock_hb(hb1, hb2);
69cd9eba 1926 hb_waiters_dec(hb2);
ae791a2d
TG
1927 put_futex_key(&key2);
1928 put_futex_key(&key1);
d0725992 1929 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1930 if (!ret)
1931 goto retry;
1932 goto out;
1933 case -EAGAIN:
af54d6a1
TG
1934 /*
1935 * Two reasons for this:
1936 * - Owner is exiting and we just wait for the
1937 * exit to complete.
1938 * - The user space value changed.
1939 */
52400ba9 1940 double_unlock_hb(hb1, hb2);
69cd9eba 1941 hb_waiters_dec(hb2);
ae791a2d
TG
1942 put_futex_key(&key2);
1943 put_futex_key(&key1);
52400ba9
DH
1944 cond_resched();
1945 goto retry;
1946 default:
1947 goto out_unlock;
1948 }
1949 }
1950
0d00c7b2 1951 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1952 if (task_count - nr_wake >= nr_requeue)
1953 break;
1954
1955 if (!match_futex(&this->key, &key1))
1da177e4 1956 continue;
52400ba9 1957
392741e0
DH
1958 /*
1959 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1960 * be paired with each other and no other futex ops.
aa10990e
DH
1961 *
1962 * We should never be requeueing a futex_q with a pi_state,
1963 * which is awaiting a futex_unlock_pi().
392741e0
DH
1964 */
1965 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1966 (!requeue_pi && this->rt_waiter) ||
1967 this->pi_state) {
392741e0
DH
1968 ret = -EINVAL;
1969 break;
1970 }
52400ba9
DH
1971
1972 /*
1973 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1974 * lock, we already woke the top_waiter. If not, it will be
1975 * woken by futex_unlock_pi().
1976 */
1977 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1978 mark_wake_futex(&wake_q, this);
52400ba9
DH
1979 continue;
1980 }
1da177e4 1981
84bc4af5
DH
1982 /* Ensure we requeue to the expected futex for requeue_pi. */
1983 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1984 ret = -EINVAL;
1985 break;
1986 }
1987
52400ba9
DH
1988 /*
1989 * Requeue nr_requeue waiters and possibly one more in the case
1990 * of requeue_pi if we couldn't acquire the lock atomically.
1991 */
1992 if (requeue_pi) {
ecb38b78
TG
1993 /*
1994 * Prepare the waiter to take the rt_mutex. Take a
1995 * refcount on the pi_state and store the pointer in
1996 * the futex_q object of the waiter.
1997 */
bf92cf3a 1998 get_pi_state(pi_state);
52400ba9
DH
1999 this->pi_state = pi_state;
2000 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2001 this->rt_waiter,
c051b21f 2002 this->task);
52400ba9 2003 if (ret == 1) {
ecb38b78
TG
2004 /*
2005 * We got the lock. We do neither drop the
2006 * refcount on pi_state nor clear
2007 * this->pi_state because the waiter needs the
2008 * pi_state for cleaning up the user space
2009 * value. It will drop the refcount after
2010 * doing so.
2011 */
beda2c7e 2012 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2013 drop_count++;
52400ba9
DH
2014 continue;
2015 } else if (ret) {
ecb38b78
TG
2016 /*
2017 * rt_mutex_start_proxy_lock() detected a
2018 * potential deadlock when we tried to queue
2019 * that waiter. Drop the pi_state reference
2020 * which we took above and remove the pointer
2021 * to the state from the waiters futex_q
2022 * object.
2023 */
52400ba9 2024 this->pi_state = NULL;
29e9ee5d 2025 put_pi_state(pi_state);
885c2cb7
TG
2026 /*
2027 * We stop queueing more waiters and let user
2028 * space deal with the mess.
2029 */
2030 break;
52400ba9 2031 }
1da177e4 2032 }
52400ba9
DH
2033 requeue_futex(this, hb1, hb2, &key2);
2034 drop_count++;
1da177e4
LT
2035 }
2036
ecb38b78
TG
2037 /*
2038 * We took an extra initial reference to the pi_state either
2039 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2040 * need to drop it here again.
2041 */
29e9ee5d 2042 put_pi_state(pi_state);
885c2cb7
TG
2043
2044out_unlock:
5eb3dc62 2045 double_unlock_hb(hb1, hb2);
1d0dcb3a 2046 wake_up_q(&wake_q);
69cd9eba 2047 hb_waiters_dec(hb2);
1da177e4 2048
cd84a42f
DH
2049 /*
2050 * drop_futex_key_refs() must be called outside the spinlocks. During
2051 * the requeue we moved futex_q's from the hash bucket at key1 to the
2052 * one at key2 and updated their key pointer. We no longer need to
2053 * hold the references to key1.
2054 */
1da177e4 2055 while (--drop_count >= 0)
9adef58b 2056 drop_futex_key_refs(&key1);
1da177e4 2057
42d35d48 2058out_put_keys:
ae791a2d 2059 put_futex_key(&key2);
42d35d48 2060out_put_key1:
ae791a2d 2061 put_futex_key(&key1);
42d35d48 2062out:
52400ba9 2063 return ret ? ret : task_count;
1da177e4
LT
2064}
2065
2066/* The key must be already stored in q->key. */
82af7aca 2067static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2068 __acquires(&hb->lock)
1da177e4 2069{
e2970f2f 2070 struct futex_hash_bucket *hb;
1da177e4 2071
e2970f2f 2072 hb = hash_futex(&q->key);
11d4616b
LT
2073
2074 /*
2075 * Increment the counter before taking the lock so that
2076 * a potential waker won't miss a to-be-slept task that is
2077 * waiting for the spinlock. This is safe as all queue_lock()
2078 * users end up calling queue_me(). Similarly, for housekeeping,
2079 * decrement the counter at queue_unlock() when some error has
2080 * occurred and we don't end up adding the task to the list.
2081 */
2082 hb_waiters_inc(hb);
2083
e2970f2f 2084 q->lock_ptr = &hb->lock;
1da177e4 2085
8ad7b378 2086 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2087 return hb;
1da177e4
LT
2088}
2089
d40d65c8 2090static inline void
0d00c7b2 2091queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2092 __releases(&hb->lock)
d40d65c8
DH
2093{
2094 spin_unlock(&hb->lock);
11d4616b 2095 hb_waiters_dec(hb);
d40d65c8
DH
2096}
2097
cfafcd11 2098static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2099{
ec92d082
PP
2100 int prio;
2101
2102 /*
2103 * The priority used to register this element is
2104 * - either the real thread-priority for the real-time threads
2105 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2106 * - or MAX_RT_PRIO for non-RT threads.
2107 * Thus, all RT-threads are woken first in priority order, and
2108 * the others are woken last, in FIFO order.
2109 */
2110 prio = min(current->normal_prio, MAX_RT_PRIO);
2111
2112 plist_node_init(&q->list, prio);
ec92d082 2113 plist_add(&q->list, &hb->chain);
c87e2837 2114 q->task = current;
cfafcd11
PZ
2115}
2116
2117/**
2118 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2119 * @q: The futex_q to enqueue
2120 * @hb: The destination hash bucket
2121 *
2122 * The hb->lock must be held by the caller, and is released here. A call to
2123 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2124 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2125 * or nothing if the unqueue is done as part of the wake process and the unqueue
2126 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2127 * an example).
2128 */
2129static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2130 __releases(&hb->lock)
2131{
2132 __queue_me(q, hb);
e2970f2f 2133 spin_unlock(&hb->lock);
1da177e4
LT
2134}
2135
d40d65c8
DH
2136/**
2137 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2138 * @q: The futex_q to unqueue
2139 *
2140 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2141 * be paired with exactly one earlier call to queue_me().
2142 *
6c23cbbd
RD
2143 * Return:
2144 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2145 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2146 */
1da177e4
LT
2147static int unqueue_me(struct futex_q *q)
2148{
1da177e4 2149 spinlock_t *lock_ptr;
e2970f2f 2150 int ret = 0;
1da177e4
LT
2151
2152 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2153retry:
29b75eb2
JZ
2154 /*
2155 * q->lock_ptr can change between this read and the following spin_lock.
2156 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2157 * optimizing lock_ptr out of the logic below.
2158 */
2159 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2160 if (lock_ptr != NULL) {
1da177e4
LT
2161 spin_lock(lock_ptr);
2162 /*
2163 * q->lock_ptr can change between reading it and
2164 * spin_lock(), causing us to take the wrong lock. This
2165 * corrects the race condition.
2166 *
2167 * Reasoning goes like this: if we have the wrong lock,
2168 * q->lock_ptr must have changed (maybe several times)
2169 * between reading it and the spin_lock(). It can
2170 * change again after the spin_lock() but only if it was
2171 * already changed before the spin_lock(). It cannot,
2172 * however, change back to the original value. Therefore
2173 * we can detect whether we acquired the correct lock.
2174 */
2175 if (unlikely(lock_ptr != q->lock_ptr)) {
2176 spin_unlock(lock_ptr);
2177 goto retry;
2178 }
2e12978a 2179 __unqueue_futex(q);
c87e2837
IM
2180
2181 BUG_ON(q->pi_state);
2182
1da177e4
LT
2183 spin_unlock(lock_ptr);
2184 ret = 1;
2185 }
2186
9adef58b 2187 drop_futex_key_refs(&q->key);
1da177e4
LT
2188 return ret;
2189}
2190
c87e2837
IM
2191/*
2192 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2193 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2194 * and dropped here.
c87e2837 2195 */
d0aa7a70 2196static void unqueue_me_pi(struct futex_q *q)
15e408cd 2197 __releases(q->lock_ptr)
c87e2837 2198{
2e12978a 2199 __unqueue_futex(q);
c87e2837
IM
2200
2201 BUG_ON(!q->pi_state);
29e9ee5d 2202 put_pi_state(q->pi_state);
c87e2837
IM
2203 q->pi_state = NULL;
2204
d0aa7a70 2205 spin_unlock(q->lock_ptr);
c87e2837
IM
2206}
2207
d0aa7a70 2208/*
cdf71a10 2209 * Fixup the pi_state owner with the new owner.
d0aa7a70 2210 *
778e9a9c
AK
2211 * Must be called with hash bucket lock held and mm->sem held for non
2212 * private futexes.
d0aa7a70 2213 */
778e9a9c 2214static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2215 struct task_struct *newowner)
d0aa7a70 2216{
cdf71a10 2217 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2218 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2219 u32 uval, uninitialized_var(curval), newval;
734009e9 2220 struct task_struct *oldowner;
e4dc5b7a 2221 int ret;
d0aa7a70 2222
734009e9
PZ
2223 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2224
2225 oldowner = pi_state->owner;
d0aa7a70 2226 /* Owner died? */
1b7558e4
TG
2227 if (!pi_state->owner)
2228 newtid |= FUTEX_OWNER_DIED;
2229
2230 /*
2231 * We are here either because we stole the rtmutex from the
8161239a 2232 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2233 * waiter but have failed to get the rtmutex the first time.
2234 *
8161239a
LJ
2235 * We have to replace the newowner TID in the user space variable.
2236 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2237 *
b2d0994b
DH
2238 * Note: We write the user space value _before_ changing the pi_state
2239 * because we can fault here. Imagine swapped out pages or a fork
2240 * that marked all the anonymous memory readonly for cow.
1b7558e4 2241 *
734009e9
PZ
2242 * Modifying pi_state _before_ the user space value would leave the
2243 * pi_state in an inconsistent state when we fault here, because we
2244 * need to drop the locks to handle the fault. This might be observed
2245 * in the PID check in lookup_pi_state.
1b7558e4
TG
2246 */
2247retry:
2248 if (get_futex_value_locked(&uval, uaddr))
2249 goto handle_fault;
2250
16ffa12d 2251 for (;;) {
1b7558e4
TG
2252 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2253
37a9d912 2254 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2255 goto handle_fault;
2256 if (curval == uval)
2257 break;
2258 uval = curval;
2259 }
2260
2261 /*
2262 * We fixed up user space. Now we need to fix the pi_state
2263 * itself.
2264 */
d0aa7a70 2265 if (pi_state->owner != NULL) {
734009e9 2266 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2267 WARN_ON(list_empty(&pi_state->list));
2268 list_del_init(&pi_state->list);
734009e9 2269 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2270 }
d0aa7a70 2271
cdf71a10 2272 pi_state->owner = newowner;
d0aa7a70 2273
734009e9 2274 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2275 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2276 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2277 raw_spin_unlock(&newowner->pi_lock);
2278 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2279
1b7558e4 2280 return 0;
d0aa7a70 2281
d0aa7a70 2282 /*
734009e9
PZ
2283 * To handle the page fault we need to drop the locks here. That gives
2284 * the other task (either the highest priority waiter itself or the
2285 * task which stole the rtmutex) the chance to try the fixup of the
2286 * pi_state. So once we are back from handling the fault we need to
2287 * check the pi_state after reacquiring the locks and before trying to
2288 * do another fixup. When the fixup has been done already we simply
2289 * return.
2290 *
2291 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2292 * drop hb->lock since the caller owns the hb -> futex_q relation.
2293 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2294 */
1b7558e4 2295handle_fault:
734009e9 2296 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2297 spin_unlock(q->lock_ptr);
778e9a9c 2298
d0725992 2299 ret = fault_in_user_writeable(uaddr);
778e9a9c 2300
1b7558e4 2301 spin_lock(q->lock_ptr);
734009e9 2302 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2303
1b7558e4
TG
2304 /*
2305 * Check if someone else fixed it for us:
2306 */
734009e9
PZ
2307 if (pi_state->owner != oldowner) {
2308 ret = 0;
2309 goto out_unlock;
2310 }
1b7558e4
TG
2311
2312 if (ret)
734009e9 2313 goto out_unlock;
1b7558e4
TG
2314
2315 goto retry;
734009e9
PZ
2316
2317out_unlock:
2318 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2319 return ret;
d0aa7a70
PP
2320}
2321
72c1bbf3 2322static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2323
dd973998
DH
2324/**
2325 * fixup_owner() - Post lock pi_state and corner case management
2326 * @uaddr: user address of the futex
dd973998
DH
2327 * @q: futex_q (contains pi_state and access to the rt_mutex)
2328 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2329 *
2330 * After attempting to lock an rt_mutex, this function is called to cleanup
2331 * the pi_state owner as well as handle race conditions that may allow us to
2332 * acquire the lock. Must be called with the hb lock held.
2333 *
6c23cbbd
RD
2334 * Return:
2335 * 1 - success, lock taken;
2336 * 0 - success, lock not taken;
dd973998
DH
2337 * <0 - on error (-EFAULT)
2338 */
ae791a2d 2339static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2340{
dd973998
DH
2341 int ret = 0;
2342
2343 if (locked) {
2344 /*
2345 * Got the lock. We might not be the anticipated owner if we
2346 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2347 *
2348 * We can safely read pi_state->owner without holding wait_lock
2349 * because we now own the rt_mutex, only the owner will attempt
2350 * to change it.
dd973998
DH
2351 */
2352 if (q->pi_state->owner != current)
ae791a2d 2353 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2354 goto out;
2355 }
2356
dd973998
DH
2357 /*
2358 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2359 * the owner of the rt_mutex.
dd973998 2360 */
73d786bd 2361 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2362 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2363 "pi-state %p\n", ret,
2364 q->pi_state->pi_mutex.owner,
2365 q->pi_state->owner);
73d786bd 2366 }
dd973998
DH
2367
2368out:
2369 return ret ? ret : locked;
2370}
2371
ca5f9524
DH
2372/**
2373 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2374 * @hb: the futex hash bucket, must be locked by the caller
2375 * @q: the futex_q to queue up on
2376 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2377 */
2378static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2379 struct hrtimer_sleeper *timeout)
ca5f9524 2380{
9beba3c5
DH
2381 /*
2382 * The task state is guaranteed to be set before another task can
b92b8b35 2383 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2384 * queue_me() calls spin_unlock() upon completion, both serializing
2385 * access to the hash list and forcing another memory barrier.
2386 */
f1a11e05 2387 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2388 queue_me(q, hb);
ca5f9524
DH
2389
2390 /* Arm the timer */
2e4b0d3f 2391 if (timeout)
ca5f9524 2392 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2393
2394 /*
0729e196
DH
2395 * If we have been removed from the hash list, then another task
2396 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2397 */
2398 if (likely(!plist_node_empty(&q->list))) {
2399 /*
2400 * If the timer has already expired, current will already be
2401 * flagged for rescheduling. Only call schedule if there
2402 * is no timeout, or if it has yet to expire.
2403 */
2404 if (!timeout || timeout->task)
88c8004f 2405 freezable_schedule();
ca5f9524
DH
2406 }
2407 __set_current_state(TASK_RUNNING);
2408}
2409
f801073f
DH
2410/**
2411 * futex_wait_setup() - Prepare to wait on a futex
2412 * @uaddr: the futex userspace address
2413 * @val: the expected value
b41277dc 2414 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2415 * @q: the associated futex_q
2416 * @hb: storage for hash_bucket pointer to be returned to caller
2417 *
2418 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2419 * compare it with the expected value. Handle atomic faults internally.
2420 * Return with the hb lock held and a q.key reference on success, and unlocked
2421 * with no q.key reference on failure.
2422 *
6c23cbbd
RD
2423 * Return:
2424 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2425 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2426 */
b41277dc 2427static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2428 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2429{
e2970f2f
IM
2430 u32 uval;
2431 int ret;
1da177e4 2432
1da177e4 2433 /*
b2d0994b 2434 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2435 * Order is important:
2436 *
2437 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2438 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2439 *
2440 * The basic logical guarantee of a futex is that it blocks ONLY
2441 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2442 * any cond. If we locked the hash-bucket after testing *uaddr, that
2443 * would open a race condition where we could block indefinitely with
1da177e4
LT
2444 * cond(var) false, which would violate the guarantee.
2445 *
8fe8f545
ML
2446 * On the other hand, we insert q and release the hash-bucket only
2447 * after testing *uaddr. This guarantees that futex_wait() will NOT
2448 * absorb a wakeup if *uaddr does not match the desired values
2449 * while the syscall executes.
1da177e4 2450 */
f801073f 2451retry:
9ea71503 2452 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2453 if (unlikely(ret != 0))
a5a2a0c7 2454 return ret;
f801073f
DH
2455
2456retry_private:
2457 *hb = queue_lock(q);
2458
e2970f2f 2459 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2460
f801073f 2461 if (ret) {
0d00c7b2 2462 queue_unlock(*hb);
1da177e4 2463
e2970f2f 2464 ret = get_user(uval, uaddr);
e4dc5b7a 2465 if (ret)
f801073f 2466 goto out;
1da177e4 2467
b41277dc 2468 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2469 goto retry_private;
2470
ae791a2d 2471 put_futex_key(&q->key);
e4dc5b7a 2472 goto retry;
1da177e4 2473 }
ca5f9524 2474
f801073f 2475 if (uval != val) {
0d00c7b2 2476 queue_unlock(*hb);
f801073f 2477 ret = -EWOULDBLOCK;
2fff78c7 2478 }
1da177e4 2479
f801073f
DH
2480out:
2481 if (ret)
ae791a2d 2482 put_futex_key(&q->key);
f801073f
DH
2483 return ret;
2484}
2485
b41277dc
DH
2486static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2487 ktime_t *abs_time, u32 bitset)
f801073f
DH
2488{
2489 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2490 struct restart_block *restart;
2491 struct futex_hash_bucket *hb;
5bdb05f9 2492 struct futex_q q = futex_q_init;
f801073f
DH
2493 int ret;
2494
2495 if (!bitset)
2496 return -EINVAL;
f801073f
DH
2497 q.bitset = bitset;
2498
2499 if (abs_time) {
2500 to = &timeout;
2501
b41277dc
DH
2502 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2503 CLOCK_REALTIME : CLOCK_MONOTONIC,
2504 HRTIMER_MODE_ABS);
f801073f
DH
2505 hrtimer_init_sleeper(to, current);
2506 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2507 current->timer_slack_ns);
2508 }
2509
d58e6576 2510retry:
7ada876a
DH
2511 /*
2512 * Prepare to wait on uaddr. On success, holds hb lock and increments
2513 * q.key refs.
2514 */
b41277dc 2515 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2516 if (ret)
2517 goto out;
2518
ca5f9524 2519 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2520 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2521
2522 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2523 ret = 0;
7ada876a 2524 /* unqueue_me() drops q.key ref */
1da177e4 2525 if (!unqueue_me(&q))
7ada876a 2526 goto out;
2fff78c7 2527 ret = -ETIMEDOUT;
ca5f9524 2528 if (to && !to->task)
7ada876a 2529 goto out;
72c1bbf3 2530
e2970f2f 2531 /*
d58e6576
TG
2532 * We expect signal_pending(current), but we might be the
2533 * victim of a spurious wakeup as well.
e2970f2f 2534 */
7ada876a 2535 if (!signal_pending(current))
d58e6576 2536 goto retry;
d58e6576 2537
2fff78c7 2538 ret = -ERESTARTSYS;
c19384b5 2539 if (!abs_time)
7ada876a 2540 goto out;
1da177e4 2541
f56141e3 2542 restart = &current->restart_block;
2fff78c7 2543 restart->fn = futex_wait_restart;
a3c74c52 2544 restart->futex.uaddr = uaddr;
2fff78c7 2545 restart->futex.val = val;
2456e855 2546 restart->futex.time = *abs_time;
2fff78c7 2547 restart->futex.bitset = bitset;
0cd9c649 2548 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2549
2fff78c7
PZ
2550 ret = -ERESTART_RESTARTBLOCK;
2551
42d35d48 2552out:
ca5f9524
DH
2553 if (to) {
2554 hrtimer_cancel(&to->timer);
2555 destroy_hrtimer_on_stack(&to->timer);
2556 }
c87e2837
IM
2557 return ret;
2558}
2559
72c1bbf3
NP
2560
2561static long futex_wait_restart(struct restart_block *restart)
2562{
a3c74c52 2563 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2564 ktime_t t, *tp = NULL;
72c1bbf3 2565
a72188d8 2566 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2567 t = restart->futex.time;
a72188d8
DH
2568 tp = &t;
2569 }
72c1bbf3 2570 restart->fn = do_no_restart_syscall;
b41277dc
DH
2571
2572 return (long)futex_wait(uaddr, restart->futex.flags,
2573 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2574}
2575
2576
c87e2837
IM
2577/*
2578 * Userspace tried a 0 -> TID atomic transition of the futex value
2579 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2580 * if there are waiters then it will block as a consequence of relying
2581 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2582 * a 0 value of the futex too.).
2583 *
2584 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2585 */
996636dd 2586static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2587 ktime_t *time, int trylock)
c87e2837 2588{
c5780e97 2589 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2590 struct futex_pi_state *pi_state = NULL;
cfafcd11 2591 struct rt_mutex_waiter rt_waiter;
c87e2837 2592 struct futex_hash_bucket *hb;
5bdb05f9 2593 struct futex_q q = futex_q_init;
dd973998 2594 int res, ret;
c87e2837
IM
2595
2596 if (refill_pi_state_cache())
2597 return -ENOMEM;
2598
c19384b5 2599 if (time) {
c5780e97 2600 to = &timeout;
237fc6e7
TG
2601 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2602 HRTIMER_MODE_ABS);
c5780e97 2603 hrtimer_init_sleeper(to, current);
cc584b21 2604 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2605 }
2606
42d35d48 2607retry:
9ea71503 2608 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2609 if (unlikely(ret != 0))
42d35d48 2610 goto out;
c87e2837 2611
e4dc5b7a 2612retry_private:
82af7aca 2613 hb = queue_lock(&q);
c87e2837 2614
bab5bc9e 2615 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2616 if (unlikely(ret)) {
767f509c
DB
2617 /*
2618 * Atomic work succeeded and we got the lock,
2619 * or failed. Either way, we do _not_ block.
2620 */
778e9a9c 2621 switch (ret) {
1a52084d
DH
2622 case 1:
2623 /* We got the lock. */
2624 ret = 0;
2625 goto out_unlock_put_key;
2626 case -EFAULT:
2627 goto uaddr_faulted;
778e9a9c
AK
2628 case -EAGAIN:
2629 /*
af54d6a1
TG
2630 * Two reasons for this:
2631 * - Task is exiting and we just wait for the
2632 * exit to complete.
2633 * - The user space value changed.
778e9a9c 2634 */
0d00c7b2 2635 queue_unlock(hb);
ae791a2d 2636 put_futex_key(&q.key);
778e9a9c
AK
2637 cond_resched();
2638 goto retry;
778e9a9c 2639 default:
42d35d48 2640 goto out_unlock_put_key;
c87e2837 2641 }
c87e2837
IM
2642 }
2643
cfafcd11
PZ
2644 WARN_ON(!q.pi_state);
2645
c87e2837
IM
2646 /*
2647 * Only actually queue now that the atomic ops are done:
2648 */
cfafcd11 2649 __queue_me(&q, hb);
c87e2837 2650
cfafcd11 2651 if (trylock) {
5293c2ef 2652 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2653 /* Fixup the trylock return value: */
2654 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2655 goto no_block;
c87e2837
IM
2656 }
2657
56222b21
PZ
2658 rt_mutex_init_waiter(&rt_waiter);
2659
cfafcd11 2660 /*
56222b21
PZ
2661 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2662 * hold it while doing rt_mutex_start_proxy(), because then it will
2663 * include hb->lock in the blocking chain, even through we'll not in
2664 * fact hold it while blocking. This will lead it to report -EDEADLK
2665 * and BUG when futex_unlock_pi() interleaves with this.
2666 *
2667 * Therefore acquire wait_lock while holding hb->lock, but drop the
2668 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2669 * serializes against futex_unlock_pi() as that does the exact same
2670 * lock handoff sequence.
cfafcd11 2671 */
56222b21
PZ
2672 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2673 spin_unlock(q.lock_ptr);
2674 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2675 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2676
cfafcd11
PZ
2677 if (ret) {
2678 if (ret == 1)
2679 ret = 0;
2680
56222b21 2681 spin_lock(q.lock_ptr);
cfafcd11
PZ
2682 goto no_block;
2683 }
2684
cfafcd11
PZ
2685
2686 if (unlikely(to))
2687 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2688
2689 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2690
a99e4e41 2691 spin_lock(q.lock_ptr);
cfafcd11
PZ
2692 /*
2693 * If we failed to acquire the lock (signal/timeout), we must
2694 * first acquire the hb->lock before removing the lock from the
2695 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2696 * wait lists consistent.
56222b21
PZ
2697 *
2698 * In particular; it is important that futex_unlock_pi() can not
2699 * observe this inconsistency.
cfafcd11
PZ
2700 */
2701 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2702 ret = 0;
2703
2704no_block:
dd973998
DH
2705 /*
2706 * Fixup the pi_state owner and possibly acquire the lock if we
2707 * haven't already.
2708 */
ae791a2d 2709 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2710 /*
2711 * If fixup_owner() returned an error, proprogate that. If it acquired
2712 * the lock, clear our -ETIMEDOUT or -EINTR.
2713 */
2714 if (res)
2715 ret = (res < 0) ? res : 0;
c87e2837 2716
e8f6386c 2717 /*
dd973998
DH
2718 * If fixup_owner() faulted and was unable to handle the fault, unlock
2719 * it and return the fault to userspace.
e8f6386c 2720 */
16ffa12d
PZ
2721 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2722 pi_state = q.pi_state;
2723 get_pi_state(pi_state);
2724 }
e8f6386c 2725
778e9a9c
AK
2726 /* Unqueue and drop the lock */
2727 unqueue_me_pi(&q);
c87e2837 2728
16ffa12d
PZ
2729 if (pi_state) {
2730 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2731 put_pi_state(pi_state);
2732 }
2733
5ecb01cf 2734 goto out_put_key;
c87e2837 2735
42d35d48 2736out_unlock_put_key:
0d00c7b2 2737 queue_unlock(hb);
c87e2837 2738
42d35d48 2739out_put_key:
ae791a2d 2740 put_futex_key(&q.key);
42d35d48 2741out:
97181f9b
TG
2742 if (to) {
2743 hrtimer_cancel(&to->timer);
237fc6e7 2744 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2745 }
dd973998 2746 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2747
42d35d48 2748uaddr_faulted:
0d00c7b2 2749 queue_unlock(hb);
778e9a9c 2750
d0725992 2751 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2752 if (ret)
2753 goto out_put_key;
c87e2837 2754
b41277dc 2755 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2756 goto retry_private;
2757
ae791a2d 2758 put_futex_key(&q.key);
e4dc5b7a 2759 goto retry;
c87e2837
IM
2760}
2761
c87e2837
IM
2762/*
2763 * Userspace attempted a TID -> 0 atomic transition, and failed.
2764 * This is the in-kernel slowpath: we look up the PI state (if any),
2765 * and do the rt-mutex unlock.
2766 */
b41277dc 2767static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2768{
ccf9e6a8 2769 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2770 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2771 struct futex_hash_bucket *hb;
499f5aca 2772 struct futex_q *top_waiter;
e4dc5b7a 2773 int ret;
c87e2837
IM
2774
2775retry:
2776 if (get_user(uval, uaddr))
2777 return -EFAULT;
2778 /*
2779 * We release only a lock we actually own:
2780 */
c0c9ed15 2781 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2782 return -EPERM;
c87e2837 2783
9ea71503 2784 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2785 if (ret)
2786 return ret;
c87e2837
IM
2787
2788 hb = hash_futex(&key);
2789 spin_lock(&hb->lock);
2790
c87e2837 2791 /*
ccf9e6a8
TG
2792 * Check waiters first. We do not trust user space values at
2793 * all and we at least want to know if user space fiddled
2794 * with the futex value instead of blindly unlocking.
c87e2837 2795 */
499f5aca
PZ
2796 top_waiter = futex_top_waiter(hb, &key);
2797 if (top_waiter) {
16ffa12d
PZ
2798 struct futex_pi_state *pi_state = top_waiter->pi_state;
2799
2800 ret = -EINVAL;
2801 if (!pi_state)
2802 goto out_unlock;
2803
2804 /*
2805 * If current does not own the pi_state then the futex is
2806 * inconsistent and user space fiddled with the futex value.
2807 */
2808 if (pi_state->owner != current)
2809 goto out_unlock;
2810
bebe5b51 2811 get_pi_state(pi_state);
802ab58d 2812 /*
bebe5b51
PZ
2813 * By taking wait_lock while still holding hb->lock, we ensure
2814 * there is no point where we hold neither; and therefore
2815 * wake_futex_pi() must observe a state consistent with what we
2816 * observed.
16ffa12d 2817 */
bebe5b51 2818 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2819 spin_unlock(&hb->lock);
2820
2821 ret = wake_futex_pi(uaddr, uval, pi_state);
2822
2823 put_pi_state(pi_state);
2824
2825 /*
2826 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2827 */
2828 if (!ret)
2829 goto out_putkey;
c87e2837 2830 /*
ccf9e6a8
TG
2831 * The atomic access to the futex value generated a
2832 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2833 */
2834 if (ret == -EFAULT)
2835 goto pi_faulted;
89e9e66b
SAS
2836 /*
2837 * A unconditional UNLOCK_PI op raced against a waiter
2838 * setting the FUTEX_WAITERS bit. Try again.
2839 */
2840 if (ret == -EAGAIN) {
89e9e66b
SAS
2841 put_futex_key(&key);
2842 goto retry;
2843 }
802ab58d
SAS
2844 /*
2845 * wake_futex_pi has detected invalid state. Tell user
2846 * space.
2847 */
16ffa12d 2848 goto out_putkey;
c87e2837 2849 }
ccf9e6a8 2850
c87e2837 2851 /*
ccf9e6a8
TG
2852 * We have no kernel internal state, i.e. no waiters in the
2853 * kernel. Waiters which are about to queue themselves are stuck
2854 * on hb->lock. So we can safely ignore them. We do neither
2855 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2856 * owner.
c87e2837 2857 */
16ffa12d
PZ
2858 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2859 spin_unlock(&hb->lock);
13fbca4c 2860 goto pi_faulted;
16ffa12d 2861 }
c87e2837 2862
ccf9e6a8
TG
2863 /*
2864 * If uval has changed, let user space handle it.
2865 */
2866 ret = (curval == uval) ? 0 : -EAGAIN;
2867
c87e2837
IM
2868out_unlock:
2869 spin_unlock(&hb->lock);
802ab58d 2870out_putkey:
ae791a2d 2871 put_futex_key(&key);
c87e2837
IM
2872 return ret;
2873
2874pi_faulted:
ae791a2d 2875 put_futex_key(&key);
c87e2837 2876
d0725992 2877 ret = fault_in_user_writeable(uaddr);
b5686363 2878 if (!ret)
c87e2837
IM
2879 goto retry;
2880
1da177e4
LT
2881 return ret;
2882}
2883
52400ba9
DH
2884/**
2885 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2886 * @hb: the hash_bucket futex_q was original enqueued on
2887 * @q: the futex_q woken while waiting to be requeued
2888 * @key2: the futex_key of the requeue target futex
2889 * @timeout: the timeout associated with the wait (NULL if none)
2890 *
2891 * Detect if the task was woken on the initial futex as opposed to the requeue
2892 * target futex. If so, determine if it was a timeout or a signal that caused
2893 * the wakeup and return the appropriate error code to the caller. Must be
2894 * called with the hb lock held.
2895 *
6c23cbbd
RD
2896 * Return:
2897 * 0 = no early wakeup detected;
2898 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2899 */
2900static inline
2901int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2902 struct futex_q *q, union futex_key *key2,
2903 struct hrtimer_sleeper *timeout)
2904{
2905 int ret = 0;
2906
2907 /*
2908 * With the hb lock held, we avoid races while we process the wakeup.
2909 * We only need to hold hb (and not hb2) to ensure atomicity as the
2910 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2911 * It can't be requeued from uaddr2 to something else since we don't
2912 * support a PI aware source futex for requeue.
2913 */
2914 if (!match_futex(&q->key, key2)) {
2915 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2916 /*
2917 * We were woken prior to requeue by a timeout or a signal.
2918 * Unqueue the futex_q and determine which it was.
2919 */
2e12978a 2920 plist_del(&q->list, &hb->chain);
11d4616b 2921 hb_waiters_dec(hb);
52400ba9 2922
d58e6576 2923 /* Handle spurious wakeups gracefully */
11df6ddd 2924 ret = -EWOULDBLOCK;
52400ba9
DH
2925 if (timeout && !timeout->task)
2926 ret = -ETIMEDOUT;
d58e6576 2927 else if (signal_pending(current))
1c840c14 2928 ret = -ERESTARTNOINTR;
52400ba9
DH
2929 }
2930 return ret;
2931}
2932
2933/**
2934 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2935 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2936 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2937 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2938 * @val: the expected value of uaddr
2939 * @abs_time: absolute timeout
56ec1607 2940 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2941 * @uaddr2: the pi futex we will take prior to returning to user-space
2942 *
2943 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2944 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2945 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2946 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2947 * without one, the pi logic would not know which task to boost/deboost, if
2948 * there was a need to.
52400ba9
DH
2949 *
2950 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2951 * via the following--
52400ba9 2952 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2953 * 2) wakeup on uaddr2 after a requeue
2954 * 3) signal
2955 * 4) timeout
52400ba9 2956 *
cc6db4e6 2957 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2958 *
2959 * If 2, we may then block on trying to take the rt_mutex and return via:
2960 * 5) successful lock
2961 * 6) signal
2962 * 7) timeout
2963 * 8) other lock acquisition failure
2964 *
cc6db4e6 2965 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2966 *
2967 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2968 *
6c23cbbd
RD
2969 * Return:
2970 * 0 - On success;
52400ba9
DH
2971 * <0 - On error
2972 */
b41277dc 2973static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2974 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2975 u32 __user *uaddr2)
52400ba9
DH
2976{
2977 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2978 struct futex_pi_state *pi_state = NULL;
52400ba9 2979 struct rt_mutex_waiter rt_waiter;
52400ba9 2980 struct futex_hash_bucket *hb;
5bdb05f9
DH
2981 union futex_key key2 = FUTEX_KEY_INIT;
2982 struct futex_q q = futex_q_init;
52400ba9 2983 int res, ret;
52400ba9 2984
6f7b0a2a
DH
2985 if (uaddr == uaddr2)
2986 return -EINVAL;
2987
52400ba9
DH
2988 if (!bitset)
2989 return -EINVAL;
2990
2991 if (abs_time) {
2992 to = &timeout;
b41277dc
DH
2993 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2994 CLOCK_REALTIME : CLOCK_MONOTONIC,
2995 HRTIMER_MODE_ABS);
52400ba9
DH
2996 hrtimer_init_sleeper(to, current);
2997 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2998 current->timer_slack_ns);
2999 }
3000
3001 /*
3002 * The waiter is allocated on our stack, manipulated by the requeue
3003 * code while we sleep on uaddr.
3004 */
50809358 3005 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3006
9ea71503 3007 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3008 if (unlikely(ret != 0))
3009 goto out;
3010
84bc4af5
DH
3011 q.bitset = bitset;
3012 q.rt_waiter = &rt_waiter;
3013 q.requeue_pi_key = &key2;
3014
7ada876a
DH
3015 /*
3016 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3017 * count.
3018 */
b41277dc 3019 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3020 if (ret)
3021 goto out_key2;
52400ba9 3022
e9c243a5
TG
3023 /*
3024 * The check above which compares uaddrs is not sufficient for
3025 * shared futexes. We need to compare the keys:
3026 */
3027 if (match_futex(&q.key, &key2)) {
13c42c2f 3028 queue_unlock(hb);
e9c243a5
TG
3029 ret = -EINVAL;
3030 goto out_put_keys;
3031 }
3032
52400ba9 3033 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3034 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3035
3036 spin_lock(&hb->lock);
3037 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3038 spin_unlock(&hb->lock);
3039 if (ret)
3040 goto out_put_keys;
3041
3042 /*
3043 * In order for us to be here, we know our q.key == key2, and since
3044 * we took the hb->lock above, we also know that futex_requeue() has
3045 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3046 * race with the atomic proxy lock acquisition by the requeue code. The
3047 * futex_requeue dropped our key1 reference and incremented our key2
3048 * reference count.
52400ba9
DH
3049 */
3050
3051 /* Check if the requeue code acquired the second futex for us. */
3052 if (!q.rt_waiter) {
3053 /*
3054 * Got the lock. We might not be the anticipated owner if we
3055 * did a lock-steal - fix up the PI-state in that case.
3056 */
3057 if (q.pi_state && (q.pi_state->owner != current)) {
3058 spin_lock(q.lock_ptr);
ae791a2d 3059 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3060 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3061 pi_state = q.pi_state;
3062 get_pi_state(pi_state);
3063 }
fb75a428
TG
3064 /*
3065 * Drop the reference to the pi state which
3066 * the requeue_pi() code acquired for us.
3067 */
29e9ee5d 3068 put_pi_state(q.pi_state);
52400ba9
DH
3069 spin_unlock(q.lock_ptr);
3070 }
3071 } else {
c236c8e9
PZ
3072 struct rt_mutex *pi_mutex;
3073
52400ba9
DH
3074 /*
3075 * We have been woken up by futex_unlock_pi(), a timeout, or a
3076 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3077 * the pi_state.
3078 */
f27071cb 3079 WARN_ON(!q.pi_state);
52400ba9 3080 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3081 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3082
3083 spin_lock(q.lock_ptr);
38d589f2
PZ
3084 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3085 ret = 0;
3086
3087 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3088 /*
3089 * Fixup the pi_state owner and possibly acquire the lock if we
3090 * haven't already.
3091 */
ae791a2d 3092 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3093 /*
3094 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3095 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3096 */
3097 if (res)
3098 ret = (res < 0) ? res : 0;
3099
c236c8e9
PZ
3100 /*
3101 * If fixup_pi_state_owner() faulted and was unable to handle
3102 * the fault, unlock the rt_mutex and return the fault to
3103 * userspace.
3104 */
16ffa12d
PZ
3105 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3106 pi_state = q.pi_state;
3107 get_pi_state(pi_state);
3108 }
c236c8e9 3109
52400ba9
DH
3110 /* Unqueue and drop the lock. */
3111 unqueue_me_pi(&q);
3112 }
3113
16ffa12d
PZ
3114 if (pi_state) {
3115 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3116 put_pi_state(pi_state);
3117 }
3118
c236c8e9 3119 if (ret == -EINTR) {
52400ba9 3120 /*
cc6db4e6
DH
3121 * We've already been requeued, but cannot restart by calling
3122 * futex_lock_pi() directly. We could restart this syscall, but
3123 * it would detect that the user space "val" changed and return
3124 * -EWOULDBLOCK. Save the overhead of the restart and return
3125 * -EWOULDBLOCK directly.
52400ba9 3126 */
2070887f 3127 ret = -EWOULDBLOCK;
52400ba9
DH
3128 }
3129
3130out_put_keys:
ae791a2d 3131 put_futex_key(&q.key);
c8b15a70 3132out_key2:
ae791a2d 3133 put_futex_key(&key2);
52400ba9
DH
3134
3135out:
3136 if (to) {
3137 hrtimer_cancel(&to->timer);
3138 destroy_hrtimer_on_stack(&to->timer);
3139 }
3140 return ret;
3141}
3142
0771dfef
IM
3143/*
3144 * Support for robust futexes: the kernel cleans up held futexes at
3145 * thread exit time.
3146 *
3147 * Implementation: user-space maintains a per-thread list of locks it
3148 * is holding. Upon do_exit(), the kernel carefully walks this list,
3149 * and marks all locks that are owned by this thread with the
c87e2837 3150 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3151 * always manipulated with the lock held, so the list is private and
3152 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3153 * field, to allow the kernel to clean up if the thread dies after
3154 * acquiring the lock, but just before it could have added itself to
3155 * the list. There can only be one such pending lock.
3156 */
3157
3158/**
d96ee56c
DH
3159 * sys_set_robust_list() - Set the robust-futex list head of a task
3160 * @head: pointer to the list-head
3161 * @len: length of the list-head, as userspace expects
0771dfef 3162 */
836f92ad
HC
3163SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3164 size_t, len)
0771dfef 3165{
a0c1e907
TG
3166 if (!futex_cmpxchg_enabled)
3167 return -ENOSYS;
0771dfef
IM
3168 /*
3169 * The kernel knows only one size for now:
3170 */
3171 if (unlikely(len != sizeof(*head)))
3172 return -EINVAL;
3173
3174 current->robust_list = head;
3175
3176 return 0;
3177}
3178
3179/**
d96ee56c
DH
3180 * sys_get_robust_list() - Get the robust-futex list head of a task
3181 * @pid: pid of the process [zero for current task]
3182 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3183 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3184 */
836f92ad
HC
3185SYSCALL_DEFINE3(get_robust_list, int, pid,
3186 struct robust_list_head __user * __user *, head_ptr,
3187 size_t __user *, len_ptr)
0771dfef 3188{
ba46df98 3189 struct robust_list_head __user *head;
0771dfef 3190 unsigned long ret;
bdbb776f 3191 struct task_struct *p;
0771dfef 3192
a0c1e907
TG
3193 if (!futex_cmpxchg_enabled)
3194 return -ENOSYS;
3195
bdbb776f
KC
3196 rcu_read_lock();
3197
3198 ret = -ESRCH;
0771dfef 3199 if (!pid)
bdbb776f 3200 p = current;
0771dfef 3201 else {
228ebcbe 3202 p = find_task_by_vpid(pid);
0771dfef
IM
3203 if (!p)
3204 goto err_unlock;
0771dfef
IM
3205 }
3206
bdbb776f 3207 ret = -EPERM;
caaee623 3208 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3209 goto err_unlock;
3210
3211 head = p->robust_list;
3212 rcu_read_unlock();
3213
0771dfef
IM
3214 if (put_user(sizeof(*head), len_ptr))
3215 return -EFAULT;
3216 return put_user(head, head_ptr);
3217
3218err_unlock:
aaa2a97e 3219 rcu_read_unlock();
0771dfef
IM
3220
3221 return ret;
3222}
3223
3224/*
3225 * Process a futex-list entry, check whether it's owned by the
3226 * dying task, and do notification if so:
3227 */
e3f2ddea 3228int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3229{
7cfdaf38 3230 u32 uval, uninitialized_var(nval), mval;
0771dfef 3231
8f17d3a5
IM
3232retry:
3233 if (get_user(uval, uaddr))
0771dfef
IM
3234 return -1;
3235
b488893a 3236 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3237 /*
3238 * Ok, this dying thread is truly holding a futex
3239 * of interest. Set the OWNER_DIED bit atomically
3240 * via cmpxchg, and if the value had FUTEX_WAITERS
3241 * set, wake up a waiter (if any). (We have to do a
3242 * futex_wake() even if OWNER_DIED is already set -
3243 * to handle the rare but possible case of recursive
3244 * thread-death.) The rest of the cleanup is done in
3245 * userspace.
3246 */
e3f2ddea 3247 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3248 /*
3249 * We are not holding a lock here, but we want to have
3250 * the pagefault_disable/enable() protection because
3251 * we want to handle the fault gracefully. If the
3252 * access fails we try to fault in the futex with R/W
3253 * verification via get_user_pages. get_user() above
3254 * does not guarantee R/W access. If that fails we
3255 * give up and leave the futex locked.
3256 */
3257 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3258 if (fault_in_user_writeable(uaddr))
3259 return -1;
3260 goto retry;
3261 }
c87e2837 3262 if (nval != uval)
8f17d3a5 3263 goto retry;
0771dfef 3264
e3f2ddea
IM
3265 /*
3266 * Wake robust non-PI futexes here. The wakeup of
3267 * PI futexes happens in exit_pi_state():
3268 */
36cf3b5c 3269 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3270 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3271 }
3272 return 0;
3273}
3274
e3f2ddea
IM
3275/*
3276 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3277 */
3278static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3279 struct robust_list __user * __user *head,
1dcc41bb 3280 unsigned int *pi)
e3f2ddea
IM
3281{
3282 unsigned long uentry;
3283
ba46df98 3284 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3285 return -EFAULT;
3286
ba46df98 3287 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3288 *pi = uentry & 1;
3289
3290 return 0;
3291}
3292
0771dfef
IM
3293/*
3294 * Walk curr->robust_list (very carefully, it's a userspace list!)
3295 * and mark any locks found there dead, and notify any waiters.
3296 *
3297 * We silently return on any sign of list-walking problem.
3298 */
3299void exit_robust_list(struct task_struct *curr)
3300{
3301 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3302 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3303 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3304 unsigned int uninitialized_var(next_pi);
0771dfef 3305 unsigned long futex_offset;
9f96cb1e 3306 int rc;
0771dfef 3307
a0c1e907
TG
3308 if (!futex_cmpxchg_enabled)
3309 return;
3310
0771dfef
IM
3311 /*
3312 * Fetch the list head (which was registered earlier, via
3313 * sys_set_robust_list()):
3314 */
e3f2ddea 3315 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3316 return;
3317 /*
3318 * Fetch the relative futex offset:
3319 */
3320 if (get_user(futex_offset, &head->futex_offset))
3321 return;
3322 /*
3323 * Fetch any possibly pending lock-add first, and handle it
3324 * if it exists:
3325 */
e3f2ddea 3326 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3327 return;
e3f2ddea 3328
9f96cb1e 3329 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3330 while (entry != &head->list) {
9f96cb1e
MS
3331 /*
3332 * Fetch the next entry in the list before calling
3333 * handle_futex_death:
3334 */
3335 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3336 /*
3337 * A pending lock might already be on the list, so
c87e2837 3338 * don't process it twice:
0771dfef
IM
3339 */
3340 if (entry != pending)
ba46df98 3341 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3342 curr, pi))
0771dfef 3343 return;
9f96cb1e 3344 if (rc)
0771dfef 3345 return;
9f96cb1e
MS
3346 entry = next_entry;
3347 pi = next_pi;
0771dfef
IM
3348 /*
3349 * Avoid excessively long or circular lists:
3350 */
3351 if (!--limit)
3352 break;
3353
3354 cond_resched();
3355 }
9f96cb1e
MS
3356
3357 if (pending)
3358 handle_futex_death((void __user *)pending + futex_offset,
3359 curr, pip);
0771dfef
IM
3360}
3361
c19384b5 3362long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3363 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3364{
81b40539 3365 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3366 unsigned int flags = 0;
34f01cc1
ED
3367
3368 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3369 flags |= FLAGS_SHARED;
1da177e4 3370
b41277dc
DH
3371 if (op & FUTEX_CLOCK_REALTIME) {
3372 flags |= FLAGS_CLOCKRT;
337f1304
DH
3373 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3374 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3375 return -ENOSYS;
3376 }
1da177e4 3377
59263b51
TG
3378 switch (cmd) {
3379 case FUTEX_LOCK_PI:
3380 case FUTEX_UNLOCK_PI:
3381 case FUTEX_TRYLOCK_PI:
3382 case FUTEX_WAIT_REQUEUE_PI:
3383 case FUTEX_CMP_REQUEUE_PI:
3384 if (!futex_cmpxchg_enabled)
3385 return -ENOSYS;
3386 }
3387
34f01cc1 3388 switch (cmd) {
1da177e4 3389 case FUTEX_WAIT:
cd689985
TG
3390 val3 = FUTEX_BITSET_MATCH_ANY;
3391 case FUTEX_WAIT_BITSET:
81b40539 3392 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3393 case FUTEX_WAKE:
cd689985
TG
3394 val3 = FUTEX_BITSET_MATCH_ANY;
3395 case FUTEX_WAKE_BITSET:
81b40539 3396 return futex_wake(uaddr, flags, val, val3);
1da177e4 3397 case FUTEX_REQUEUE:
81b40539 3398 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3399 case FUTEX_CMP_REQUEUE:
81b40539 3400 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3401 case FUTEX_WAKE_OP:
81b40539 3402 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3403 case FUTEX_LOCK_PI:
996636dd 3404 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3405 case FUTEX_UNLOCK_PI:
81b40539 3406 return futex_unlock_pi(uaddr, flags);
c87e2837 3407 case FUTEX_TRYLOCK_PI:
996636dd 3408 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3409 case FUTEX_WAIT_REQUEUE_PI:
3410 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3411 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3412 uaddr2);
52400ba9 3413 case FUTEX_CMP_REQUEUE_PI:
81b40539 3414 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3415 }
81b40539 3416 return -ENOSYS;
1da177e4
LT
3417}
3418
3419
17da2bd9
HC
3420SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3421 struct timespec __user *, utime, u32 __user *, uaddr2,
3422 u32, val3)
1da177e4 3423{
c19384b5
PP
3424 struct timespec ts;
3425 ktime_t t, *tp = NULL;
e2970f2f 3426 u32 val2 = 0;
34f01cc1 3427 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3428
cd689985 3429 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3430 cmd == FUTEX_WAIT_BITSET ||
3431 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3432 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3433 return -EFAULT;
c19384b5 3434 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3435 return -EFAULT;
c19384b5 3436 if (!timespec_valid(&ts))
9741ef96 3437 return -EINVAL;
c19384b5
PP
3438
3439 t = timespec_to_ktime(ts);
34f01cc1 3440 if (cmd == FUTEX_WAIT)
5a7780e7 3441 t = ktime_add_safe(ktime_get(), t);
c19384b5 3442 tp = &t;
1da177e4
LT
3443 }
3444 /*
52400ba9 3445 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3446 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3447 */
f54f0986 3448 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3449 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3450 val2 = (u32) (unsigned long) utime;
1da177e4 3451
c19384b5 3452 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3453}
3454
03b8c7b6 3455static void __init futex_detect_cmpxchg(void)
1da177e4 3456{
03b8c7b6 3457#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3458 u32 curval;
03b8c7b6
HC
3459
3460 /*
3461 * This will fail and we want it. Some arch implementations do
3462 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3463 * functionality. We want to know that before we call in any
3464 * of the complex code paths. Also we want to prevent
3465 * registration of robust lists in that case. NULL is
3466 * guaranteed to fault and we get -EFAULT on functional
3467 * implementation, the non-functional ones will return
3468 * -ENOSYS.
3469 */
3470 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3471 futex_cmpxchg_enabled = 1;
3472#endif
3473}
3474
3475static int __init futex_init(void)
3476{
63b1a816 3477 unsigned int futex_shift;
a52b89eb
DB
3478 unsigned long i;
3479
3480#if CONFIG_BASE_SMALL
3481 futex_hashsize = 16;
3482#else
3483 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3484#endif
3485
3486 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3487 futex_hashsize, 0,
3488 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3489 &futex_shift, NULL,
3490 futex_hashsize, futex_hashsize);
3491 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3492
3493 futex_detect_cmpxchg();
a0c1e907 3494
a52b89eb 3495 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3496 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3497 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3498 spin_lock_init(&futex_queues[i].lock);
3499 }
3500
1da177e4
LT
3501 return 0;
3502}
25f71d1c 3503core_initcall(futex_init);