]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
kernel/futex: Make futex_wait_requeue_pi() only call fixup_owner()
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
13d60f4b 38#include <linux/hugetlb.h>
88c8004f 39#include <linux/freezer.h>
57c8a661 40#include <linux/memblock.h>
ab51fbab 41#include <linux/fault-inject.h>
c2f7d08c 42#include <linux/time_namespace.h>
b488893a 43
4732efbe 44#include <asm/futex.h>
1da177e4 45
1696a8be 46#include "locking/rtmutex_common.h"
c87e2837 47
99b60ce6 48/*
d7e8af1a
DB
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
99b60ce6
TG
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
99b60ce6
TG
60 *
61 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
99b60ce6 65 *
b0c29f79
DB
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 91 *
b0c29f79
DB
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
99b60ce6
TG
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
b0c29f79 100 *
d7e8af1a 101 * waiters++; (a)
8ad7b378
DB
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
99b60ce6 112 * if (uval == val)
b0c29f79 113 * queue();
99b60ce6 114 * unlock(hash_bucket(futex));
b0c29f79
DB
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
d7e8af1a
DB
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 119 *
d7e8af1a
DB
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 122 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
d7e8af1a
DB
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
146 */
147
04e7712f
AB
148#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149#define futex_cmpxchg_enabled 1
150#else
151static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 152#endif
a0c1e907 153
b41277dc
DH
154/*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
784bdf3b
TG
158#ifdef CONFIG_MMU
159# define FLAGS_SHARED 0x01
160#else
161/*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165# define FLAGS_SHARED 0x00
166#endif
b41277dc
DH
167#define FLAGS_CLOCKRT 0x02
168#define FLAGS_HAS_TIMEOUT 0x04
169
c87e2837
IM
170/*
171 * Priority Inheritance state:
172 */
173struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
49262de2 186 refcount_t refcount;
c87e2837
IM
187
188 union futex_key key;
3859a271 189} __randomize_layout;
c87e2837 190
d8d88fbb
DH
191/**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 193 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
ac6424b9 202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 207 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
212 */
213struct futex_q {
ec92d082 214 struct plist_node list;
1da177e4 215
d8d88fbb 216 struct task_struct *task;
1da177e4 217 spinlock_t *lock_ptr;
1da177e4 218 union futex_key key;
c87e2837 219 struct futex_pi_state *pi_state;
52400ba9 220 struct rt_mutex_waiter *rt_waiter;
84bc4af5 221 union futex_key *requeue_pi_key;
cd689985 222 u32 bitset;
3859a271 223} __randomize_layout;
1da177e4 224
5bdb05f9
DH
225static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229};
230
1da177e4 231/*
b2d0994b
DH
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
1da177e4
LT
235 */
236struct futex_hash_bucket {
11d4616b 237 atomic_t waiters;
ec92d082
PP
238 spinlock_t lock;
239 struct plist_head chain;
a52b89eb 240} ____cacheline_aligned_in_smp;
1da177e4 241
ac742d37
RV
242/*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250} __futex_data __read_mostly __aligned(2*sizeof(long));
251#define futex_queues (__futex_data.queues)
252#define futex_hashsize (__futex_data.hashsize)
a52b89eb 253
1da177e4 254
ab51fbab
DB
255/*
256 * Fault injections for futexes.
257 */
258#ifdef CONFIG_FAIL_FUTEX
259
260static struct {
261 struct fault_attr attr;
262
621a5f7a 263 bool ignore_private;
ab51fbab
DB
264} fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 266 .ignore_private = false,
ab51fbab
DB
267};
268
269static int __init setup_fail_futex(char *str)
270{
271 return setup_fault_attr(&fail_futex.attr, str);
272}
273__setup("fail_futex=", setup_fail_futex);
274
5d285a7f 275static bool should_fail_futex(bool fshared)
ab51fbab
DB
276{
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281}
282
283#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285static int __init fail_futex_debugfs(void)
286{
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
0365aeba
GKH
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
ab51fbab
DB
297 return 0;
298}
299
300late_initcall(fail_futex_debugfs);
301
302#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304#else
305static inline bool should_fail_futex(bool fshared)
306{
307 return false;
308}
309#endif /* CONFIG_FAIL_FUTEX */
310
ba31c1a4
TG
311#ifdef CONFIG_COMPAT
312static void compat_exit_robust_list(struct task_struct *curr);
ba31c1a4
TG
313#endif
314
11d4616b
LT
315/*
316 * Reflects a new waiter being added to the waitqueue.
317 */
318static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
319{
320#ifdef CONFIG_SMP
11d4616b 321 atomic_inc(&hb->waiters);
b0c29f79 322 /*
11d4616b 323 * Full barrier (A), see the ordering comment above.
b0c29f79 324 */
4e857c58 325 smp_mb__after_atomic();
11d4616b
LT
326#endif
327}
328
329/*
330 * Reflects a waiter being removed from the waitqueue by wakeup
331 * paths.
332 */
333static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
334{
335#ifdef CONFIG_SMP
336 atomic_dec(&hb->waiters);
337#endif
338}
b0c29f79 339
11d4616b
LT
340static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
341{
342#ifdef CONFIG_SMP
4b39f99c
PZ
343 /*
344 * Full barrier (B), see the ordering comment above.
345 */
346 smp_mb();
11d4616b 347 return atomic_read(&hb->waiters);
b0c29f79 348#else
11d4616b 349 return 1;
b0c29f79
DB
350#endif
351}
352
e8b61b3f
TG
353/**
354 * hash_futex - Return the hash bucket in the global hash
355 * @key: Pointer to the futex key for which the hash is calculated
356 *
357 * We hash on the keys returned from get_futex_key (see below) and return the
358 * corresponding hash bucket in the global hash.
1da177e4
LT
359 */
360static struct futex_hash_bucket *hash_futex(union futex_key *key)
361{
8d677436 362 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 363 key->both.offset);
8d677436 364
a52b89eb 365 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
366}
367
e8b61b3f
TG
368
369/**
370 * match_futex - Check whether two futex keys are equal
371 * @key1: Pointer to key1
372 * @key2: Pointer to key2
373 *
1da177e4
LT
374 * Return 1 if two futex_keys are equal, 0 otherwise.
375 */
376static inline int match_futex(union futex_key *key1, union futex_key *key2)
377{
2bc87203
DH
378 return (key1 && key2
379 && key1->both.word == key2->both.word
1da177e4
LT
380 && key1->both.ptr == key2->both.ptr
381 && key1->both.offset == key2->both.offset);
382}
383
96d4f267
LT
384enum futex_access {
385 FUTEX_READ,
386 FUTEX_WRITE
387};
388
5ca584d9
WL
389/**
390 * futex_setup_timer - set up the sleeping hrtimer.
391 * @time: ptr to the given timeout value
392 * @timeout: the hrtimer_sleeper structure to be set up
393 * @flags: futex flags
394 * @range_ns: optional range in ns
395 *
396 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
397 * value given
398 */
399static inline struct hrtimer_sleeper *
400futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
401 int flags, u64 range_ns)
402{
403 if (!time)
404 return NULL;
405
dbc1625f
SAS
406 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
407 CLOCK_REALTIME : CLOCK_MONOTONIC,
408 HRTIMER_MODE_ABS);
5ca584d9
WL
409 /*
410 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
411 * effectively the same as calling hrtimer_set_expires().
412 */
413 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
414
415 return timeout;
416}
417
8019ad13
PZ
418/*
419 * Generate a machine wide unique identifier for this inode.
420 *
421 * This relies on u64 not wrapping in the life-time of the machine; which with
422 * 1ns resolution means almost 585 years.
423 *
424 * This further relies on the fact that a well formed program will not unmap
425 * the file while it has a (shared) futex waiting on it. This mapping will have
426 * a file reference which pins the mount and inode.
427 *
428 * If for some reason an inode gets evicted and read back in again, it will get
429 * a new sequence number and will _NOT_ match, even though it is the exact same
430 * file.
431 *
432 * It is important that match_futex() will never have a false-positive, esp.
433 * for PI futexes that can mess up the state. The above argues that false-negatives
434 * are only possible for malformed programs.
435 */
436static u64 get_inode_sequence_number(struct inode *inode)
437{
438 static atomic64_t i_seq;
439 u64 old;
440
441 /* Does the inode already have a sequence number? */
442 old = atomic64_read(&inode->i_sequence);
443 if (likely(old))
444 return old;
445
446 for (;;) {
447 u64 new = atomic64_add_return(1, &i_seq);
448 if (WARN_ON_ONCE(!new))
449 continue;
450
451 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
452 if (old)
453 return old;
454 return new;
455 }
456}
457
34f01cc1 458/**
d96ee56c
DH
459 * get_futex_key() - Get parameters which are the keys for a futex
460 * @uaddr: virtual address of the futex
92613085 461 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 462 * @key: address where result is stored.
96d4f267
LT
463 * @rw: mapping needs to be read/write (values: FUTEX_READ,
464 * FUTEX_WRITE)
34f01cc1 465 *
6c23cbbd
RD
466 * Return: a negative error code or 0
467 *
7b4ff1ad 468 * The key words are stored in @key on success.
1da177e4 469 *
8019ad13 470 * For shared mappings (when @fshared), the key is:
03c109d6 471 *
8019ad13 472 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 473 *
8019ad13
PZ
474 * [ also see get_inode_sequence_number() ]
475 *
476 * For private mappings (or when !@fshared), the key is:
03c109d6 477 *
8019ad13
PZ
478 * ( current->mm, address, 0 )
479 *
480 * This allows (cross process, where applicable) identification of the futex
481 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 482 *
b2d0994b 483 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 484 */
92613085
AA
485static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
486 enum futex_access rw)
1da177e4 487{
e2970f2f 488 unsigned long address = (unsigned long)uaddr;
1da177e4 489 struct mm_struct *mm = current->mm;
077fa7ae 490 struct page *page, *tail;
14d27abd 491 struct address_space *mapping;
9ea71503 492 int err, ro = 0;
1da177e4
LT
493
494 /*
495 * The futex address must be "naturally" aligned.
496 */
e2970f2f 497 key->both.offset = address % PAGE_SIZE;
34f01cc1 498 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 499 return -EINVAL;
e2970f2f 500 address -= key->both.offset;
1da177e4 501
96d4f267 502 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
503 return -EFAULT;
504
ab51fbab
DB
505 if (unlikely(should_fail_futex(fshared)))
506 return -EFAULT;
507
34f01cc1
ED
508 /*
509 * PROCESS_PRIVATE futexes are fast.
510 * As the mm cannot disappear under us and the 'key' only needs
511 * virtual address, we dont even have to find the underlying vma.
512 * Note : We do have to check 'uaddr' is a valid user address,
513 * but access_ok() should be faster than find_vma()
514 */
515 if (!fshared) {
34f01cc1
ED
516 key->private.mm = mm;
517 key->private.address = address;
518 return 0;
519 }
1da177e4 520
38d47c1b 521again:
ab51fbab 522 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 523 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
524 return -EFAULT;
525
73b0140b 526 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
527 /*
528 * If write access is not required (eg. FUTEX_WAIT), try
529 * and get read-only access.
530 */
96d4f267 531 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
532 err = get_user_pages_fast(address, 1, 0, &page);
533 ro = 1;
534 }
38d47c1b
PZ
535 if (err < 0)
536 return err;
9ea71503
SB
537 else
538 err = 0;
38d47c1b 539
65d8fc77
MG
540 /*
541 * The treatment of mapping from this point on is critical. The page
542 * lock protects many things but in this context the page lock
543 * stabilizes mapping, prevents inode freeing in the shared
544 * file-backed region case and guards against movement to swap cache.
545 *
546 * Strictly speaking the page lock is not needed in all cases being
547 * considered here and page lock forces unnecessarily serialization
548 * From this point on, mapping will be re-verified if necessary and
549 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
550 *
551 * Mapping checks require the head page for any compound page so the
552 * head page and mapping is looked up now. For anonymous pages, it
553 * does not matter if the page splits in the future as the key is
554 * based on the address. For filesystem-backed pages, the tail is
555 * required as the index of the page determines the key. For
556 * base pages, there is no tail page and tail == page.
65d8fc77 557 */
077fa7ae 558 tail = page;
65d8fc77
MG
559 page = compound_head(page);
560 mapping = READ_ONCE(page->mapping);
561
e6780f72 562 /*
14d27abd 563 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
564 * page; but it might be the ZERO_PAGE or in the gate area or
565 * in a special mapping (all cases which we are happy to fail);
566 * or it may have been a good file page when get_user_pages_fast
567 * found it, but truncated or holepunched or subjected to
568 * invalidate_complete_page2 before we got the page lock (also
569 * cases which we are happy to fail). And we hold a reference,
570 * so refcount care in invalidate_complete_page's remove_mapping
571 * prevents drop_caches from setting mapping to NULL beneath us.
572 *
573 * The case we do have to guard against is when memory pressure made
574 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 575 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 576 */
65d8fc77
MG
577 if (unlikely(!mapping)) {
578 int shmem_swizzled;
579
580 /*
581 * Page lock is required to identify which special case above
582 * applies. If this is really a shmem page then the page lock
583 * will prevent unexpected transitions.
584 */
585 lock_page(page);
586 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
587 unlock_page(page);
588 put_page(page);
65d8fc77 589
e6780f72
HD
590 if (shmem_swizzled)
591 goto again;
65d8fc77 592
e6780f72 593 return -EFAULT;
38d47c1b 594 }
1da177e4
LT
595
596 /*
597 * Private mappings are handled in a simple way.
598 *
65d8fc77
MG
599 * If the futex key is stored on an anonymous page, then the associated
600 * object is the mm which is implicitly pinned by the calling process.
601 *
1da177e4
LT
602 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
603 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 604 * the object not the particular process.
1da177e4 605 */
14d27abd 606 if (PageAnon(page)) {
9ea71503
SB
607 /*
608 * A RO anonymous page will never change and thus doesn't make
609 * sense for futex operations.
610 */
92613085 611 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
612 err = -EFAULT;
613 goto out;
614 }
615
38d47c1b 616 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 617 key->private.mm = mm;
e2970f2f 618 key->private.address = address;
65d8fc77 619
38d47c1b 620 } else {
65d8fc77
MG
621 struct inode *inode;
622
623 /*
624 * The associated futex object in this case is the inode and
625 * the page->mapping must be traversed. Ordinarily this should
626 * be stabilised under page lock but it's not strictly
627 * necessary in this case as we just want to pin the inode, not
628 * update the radix tree or anything like that.
629 *
630 * The RCU read lock is taken as the inode is finally freed
631 * under RCU. If the mapping still matches expectations then the
632 * mapping->host can be safely accessed as being a valid inode.
633 */
634 rcu_read_lock();
635
636 if (READ_ONCE(page->mapping) != mapping) {
637 rcu_read_unlock();
638 put_page(page);
639
640 goto again;
641 }
642
643 inode = READ_ONCE(mapping->host);
644 if (!inode) {
645 rcu_read_unlock();
646 put_page(page);
647
648 goto again;
649 }
650
38d47c1b 651 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 652 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 653 key->shared.pgoff = basepage_index(tail);
65d8fc77 654 rcu_read_unlock();
1da177e4
LT
655 }
656
9ea71503 657out:
14d27abd 658 put_page(page);
9ea71503 659 return err;
1da177e4
LT
660}
661
d96ee56c
DH
662/**
663 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
664 * @uaddr: pointer to faulting user space address
665 *
666 * Slow path to fixup the fault we just took in the atomic write
667 * access to @uaddr.
668 *
fb62db2b 669 * We have no generic implementation of a non-destructive write to the
d0725992
TG
670 * user address. We know that we faulted in the atomic pagefault
671 * disabled section so we can as well avoid the #PF overhead by
672 * calling get_user_pages() right away.
673 */
674static int fault_in_user_writeable(u32 __user *uaddr)
675{
722d0172
AK
676 struct mm_struct *mm = current->mm;
677 int ret;
678
d8ed45c5 679 mmap_read_lock(mm);
64019a2e 680 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 681 FAULT_FLAG_WRITE, NULL);
d8ed45c5 682 mmap_read_unlock(mm);
722d0172 683
d0725992
TG
684 return ret < 0 ? ret : 0;
685}
686
4b1c486b
DH
687/**
688 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
689 * @hb: the hash bucket the futex_q's reside in
690 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
691 *
692 * Must be called with the hb lock held.
693 */
694static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
695 union futex_key *key)
696{
697 struct futex_q *this;
698
699 plist_for_each_entry(this, &hb->chain, list) {
700 if (match_futex(&this->key, key))
701 return this;
702 }
703 return NULL;
704}
705
37a9d912
ML
706static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
707 u32 uval, u32 newval)
36cf3b5c 708{
37a9d912 709 int ret;
36cf3b5c
TG
710
711 pagefault_disable();
37a9d912 712 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
713 pagefault_enable();
714
37a9d912 715 return ret;
36cf3b5c
TG
716}
717
718static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
719{
720 int ret;
721
a866374a 722 pagefault_disable();
bd28b145 723 ret = __get_user(*dest, from);
a866374a 724 pagefault_enable();
1da177e4
LT
725
726 return ret ? -EFAULT : 0;
727}
728
c87e2837
IM
729
730/*
731 * PI code:
732 */
733static int refill_pi_state_cache(void)
734{
735 struct futex_pi_state *pi_state;
736
737 if (likely(current->pi_state_cache))
738 return 0;
739
4668edc3 740 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
741
742 if (!pi_state)
743 return -ENOMEM;
744
c87e2837
IM
745 INIT_LIST_HEAD(&pi_state->list);
746 /* pi_mutex gets initialized later */
747 pi_state->owner = NULL;
49262de2 748 refcount_set(&pi_state->refcount, 1);
38d47c1b 749 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
750
751 current->pi_state_cache = pi_state;
752
753 return 0;
754}
755
bf92cf3a 756static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
757{
758 struct futex_pi_state *pi_state = current->pi_state_cache;
759
760 WARN_ON(!pi_state);
761 current->pi_state_cache = NULL;
762
763 return pi_state;
764}
765
c5cade20
TG
766static void pi_state_update_owner(struct futex_pi_state *pi_state,
767 struct task_struct *new_owner)
768{
769 struct task_struct *old_owner = pi_state->owner;
770
771 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
772
773 if (old_owner) {
774 raw_spin_lock(&old_owner->pi_lock);
775 WARN_ON(list_empty(&pi_state->list));
776 list_del_init(&pi_state->list);
777 raw_spin_unlock(&old_owner->pi_lock);
778 }
779
780 if (new_owner) {
781 raw_spin_lock(&new_owner->pi_lock);
782 WARN_ON(!list_empty(&pi_state->list));
783 list_add(&pi_state->list, &new_owner->pi_state_list);
784 pi_state->owner = new_owner;
785 raw_spin_unlock(&new_owner->pi_lock);
786 }
787}
788
bf92cf3a
PZ
789static void get_pi_state(struct futex_pi_state *pi_state)
790{
49262de2 791 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
792}
793
30a6b803 794/*
29e9ee5d
TG
795 * Drops a reference to the pi_state object and frees or caches it
796 * when the last reference is gone.
30a6b803 797 */
29e9ee5d 798static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 799{
30a6b803
BS
800 if (!pi_state)
801 return;
802
49262de2 803 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
804 return;
805
806 /*
807 * If pi_state->owner is NULL, the owner is most probably dying
808 * and has cleaned up the pi_state already
809 */
810 if (pi_state->owner) {
1e106aa3 811 unsigned long flags;
c87e2837 812
1e106aa3 813 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
6ccc84f9 814 pi_state_update_owner(pi_state, NULL);
2156ac19 815 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
1e106aa3 816 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
c87e2837
IM
817 }
818
c74aef2d 819 if (current->pi_state_cache) {
c87e2837 820 kfree(pi_state);
c74aef2d 821 } else {
c87e2837
IM
822 /*
823 * pi_state->list is already empty.
824 * clear pi_state->owner.
825 * refcount is at 0 - put it back to 1.
826 */
827 pi_state->owner = NULL;
49262de2 828 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
829 current->pi_state_cache = pi_state;
830 }
831}
832
bc2eecd7
NP
833#ifdef CONFIG_FUTEX_PI
834
c87e2837
IM
835/*
836 * This task is holding PI mutexes at exit time => bad.
837 * Kernel cleans up PI-state, but userspace is likely hosed.
838 * (Robust-futex cleanup is separate and might save the day for userspace.)
839 */
ba31c1a4 840static void exit_pi_state_list(struct task_struct *curr)
c87e2837 841{
c87e2837
IM
842 struct list_head *next, *head = &curr->pi_state_list;
843 struct futex_pi_state *pi_state;
627371d7 844 struct futex_hash_bucket *hb;
38d47c1b 845 union futex_key key = FUTEX_KEY_INIT;
c87e2837 846
a0c1e907
TG
847 if (!futex_cmpxchg_enabled)
848 return;
c87e2837
IM
849 /*
850 * We are a ZOMBIE and nobody can enqueue itself on
851 * pi_state_list anymore, but we have to be careful
627371d7 852 * versus waiters unqueueing themselves:
c87e2837 853 */
1d615482 854 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 855 while (!list_empty(head)) {
c87e2837
IM
856 next = head->next;
857 pi_state = list_entry(next, struct futex_pi_state, list);
858 key = pi_state->key;
627371d7 859 hb = hash_futex(&key);
153fbd12
PZ
860
861 /*
862 * We can race against put_pi_state() removing itself from the
863 * list (a waiter going away). put_pi_state() will first
864 * decrement the reference count and then modify the list, so
865 * its possible to see the list entry but fail this reference
866 * acquire.
867 *
868 * In that case; drop the locks to let put_pi_state() make
869 * progress and retry the loop.
870 */
49262de2 871 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
872 raw_spin_unlock_irq(&curr->pi_lock);
873 cpu_relax();
874 raw_spin_lock_irq(&curr->pi_lock);
875 continue;
876 }
1d615482 877 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 878
c87e2837 879 spin_lock(&hb->lock);
c74aef2d
PZ
880 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
881 raw_spin_lock(&curr->pi_lock);
627371d7
IM
882 /*
883 * We dropped the pi-lock, so re-check whether this
884 * task still owns the PI-state:
885 */
c87e2837 886 if (head->next != next) {
153fbd12 887 /* retain curr->pi_lock for the loop invariant */
c74aef2d 888 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 889 spin_unlock(&hb->lock);
153fbd12 890 put_pi_state(pi_state);
c87e2837
IM
891 continue;
892 }
893
c87e2837 894 WARN_ON(pi_state->owner != curr);
627371d7
IM
895 WARN_ON(list_empty(&pi_state->list));
896 list_del_init(&pi_state->list);
c87e2837 897 pi_state->owner = NULL;
c87e2837 898
153fbd12 899 raw_spin_unlock(&curr->pi_lock);
c74aef2d 900 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
901 spin_unlock(&hb->lock);
902
16ffa12d
PZ
903 rt_mutex_futex_unlock(&pi_state->pi_mutex);
904 put_pi_state(pi_state);
905
1d615482 906 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 907 }
1d615482 908 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 909}
ba31c1a4
TG
910#else
911static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
912#endif
913
54a21788
TG
914/*
915 * We need to check the following states:
916 *
917 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
918 *
919 * [1] NULL | --- | --- | 0 | 0/1 | Valid
920 * [2] NULL | --- | --- | >0 | 0/1 | Valid
921 *
922 * [3] Found | NULL | -- | Any | 0/1 | Invalid
923 *
924 * [4] Found | Found | NULL | 0 | 1 | Valid
925 * [5] Found | Found | NULL | >0 | 1 | Invalid
926 *
927 * [6] Found | Found | task | 0 | 1 | Valid
928 *
929 * [7] Found | Found | NULL | Any | 0 | Invalid
930 *
931 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
932 * [9] Found | Found | task | 0 | 0 | Invalid
933 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
934 *
935 * [1] Indicates that the kernel can acquire the futex atomically. We
7b7b8a2c 936 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
54a21788
TG
937 *
938 * [2] Valid, if TID does not belong to a kernel thread. If no matching
939 * thread is found then it indicates that the owner TID has died.
940 *
941 * [3] Invalid. The waiter is queued on a non PI futex
942 *
943 * [4] Valid state after exit_robust_list(), which sets the user space
944 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
945 *
946 * [5] The user space value got manipulated between exit_robust_list()
947 * and exit_pi_state_list()
948 *
949 * [6] Valid state after exit_pi_state_list() which sets the new owner in
950 * the pi_state but cannot access the user space value.
951 *
952 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
953 *
954 * [8] Owner and user space value match
955 *
956 * [9] There is no transient state which sets the user space TID to 0
957 * except exit_robust_list(), but this is indicated by the
958 * FUTEX_OWNER_DIED bit. See [4]
959 *
960 * [10] There is no transient state which leaves owner and user space
34b1a1ce
TG
961 * TID out of sync. Except one error case where the kernel is denied
962 * write access to the user address, see fixup_pi_state_owner().
734009e9
PZ
963 *
964 *
965 * Serialization and lifetime rules:
966 *
967 * hb->lock:
968 *
969 * hb -> futex_q, relation
970 * futex_q -> pi_state, relation
971 *
972 * (cannot be raw because hb can contain arbitrary amount
973 * of futex_q's)
974 *
975 * pi_mutex->wait_lock:
976 *
977 * {uval, pi_state}
978 *
979 * (and pi_mutex 'obviously')
980 *
981 * p->pi_lock:
982 *
983 * p->pi_state_list -> pi_state->list, relation
984 *
985 * pi_state->refcount:
986 *
987 * pi_state lifetime
988 *
989 *
990 * Lock order:
991 *
992 * hb->lock
993 * pi_mutex->wait_lock
994 * p->pi_lock
995 *
54a21788 996 */
e60cbc5c
TG
997
998/*
999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
734009e9
PZ
1003static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004 struct futex_pi_state *pi_state,
e60cbc5c 1005 struct futex_pi_state **ps)
c87e2837 1006{
778e9a9c 1007 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1008 u32 uval2;
1009 int ret;
c87e2837 1010
e60cbc5c
TG
1011 /*
1012 * Userspace might have messed up non-PI and PI futexes [3]
1013 */
1014 if (unlikely(!pi_state))
1015 return -EINVAL;
06a9ec29 1016
734009e9
PZ
1017 /*
1018 * We get here with hb->lock held, and having found a
1019 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021 * which in turn means that futex_lock_pi() still has a reference on
1022 * our pi_state.
16ffa12d
PZ
1023 *
1024 * The waiter holding a reference on @pi_state also protects against
1025 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027 * free pi_state before we can take a reference ourselves.
734009e9 1028 */
49262de2 1029 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1030
734009e9
PZ
1031 /*
1032 * Now that we have a pi_state, we can acquire wait_lock
1033 * and do the state validation.
1034 */
1035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037 /*
1038 * Since {uval, pi_state} is serialized by wait_lock, and our current
1039 * uval was read without holding it, it can have changed. Verify it
1040 * still is what we expect it to be, otherwise retry the entire
1041 * operation.
1042 */
1043 if (get_futex_value_locked(&uval2, uaddr))
1044 goto out_efault;
1045
1046 if (uval != uval2)
1047 goto out_eagain;
1048
e60cbc5c
TG
1049 /*
1050 * Handle the owner died case:
1051 */
1052 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1053 /*
e60cbc5c
TG
1054 * exit_pi_state_list sets owner to NULL and wakes the
1055 * topmost waiter. The task which acquires the
1056 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1057 */
e60cbc5c 1058 if (!pi_state->owner) {
59647b6a 1059 /*
e60cbc5c
TG
1060 * No pi state owner, but the user space TID
1061 * is not 0. Inconsistent state. [5]
59647b6a 1062 */
e60cbc5c 1063 if (pid)
734009e9 1064 goto out_einval;
bd1dbcc6 1065 /*
e60cbc5c 1066 * Take a ref on the state and return success. [4]
866293ee 1067 */
734009e9 1068 goto out_attach;
c87e2837 1069 }
bd1dbcc6
TG
1070
1071 /*
e60cbc5c
TG
1072 * If TID is 0, then either the dying owner has not
1073 * yet executed exit_pi_state_list() or some waiter
1074 * acquired the rtmutex in the pi state, but did not
1075 * yet fixup the TID in user space.
1076 *
1077 * Take a ref on the state and return success. [6]
1078 */
1079 if (!pid)
734009e9 1080 goto out_attach;
e60cbc5c
TG
1081 } else {
1082 /*
1083 * If the owner died bit is not set, then the pi_state
1084 * must have an owner. [7]
bd1dbcc6 1085 */
e60cbc5c 1086 if (!pi_state->owner)
734009e9 1087 goto out_einval;
c87e2837
IM
1088 }
1089
e60cbc5c
TG
1090 /*
1091 * Bail out if user space manipulated the futex value. If pi
1092 * state exists then the owner TID must be the same as the
1093 * user space TID. [9/10]
1094 */
1095 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1096 goto out_einval;
1097
1098out_attach:
bf92cf3a 1099 get_pi_state(pi_state);
734009e9 1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1101 *ps = pi_state;
1102 return 0;
734009e9
PZ
1103
1104out_einval:
1105 ret = -EINVAL;
1106 goto out_error;
1107
1108out_eagain:
1109 ret = -EAGAIN;
1110 goto out_error;
1111
1112out_efault:
1113 ret = -EFAULT;
1114 goto out_error;
1115
1116out_error:
1117 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118 return ret;
e60cbc5c
TG
1119}
1120
3ef240ea
TG
1121/**
1122 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1123 * @ret: owner's current futex lock status
3ef240ea
TG
1124 * @exiting: Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129{
1130 if (ret != -EBUSY) {
1131 WARN_ON_ONCE(exiting);
1132 return;
1133 }
1134
1135 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136 return;
1137
1138 mutex_lock(&exiting->futex_exit_mutex);
1139 /*
1140 * No point in doing state checking here. If the waiter got here
1141 * while the task was in exec()->exec_futex_release() then it can
1142 * have any FUTEX_STATE_* value when the waiter has acquired the
1143 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144 * already. Highly unlikely and not a problem. Just one more round
1145 * through the futex maze.
1146 */
1147 mutex_unlock(&exiting->futex_exit_mutex);
1148
1149 put_task_struct(exiting);
1150}
1151
da791a66
TG
1152static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153 struct task_struct *tsk)
1154{
1155 u32 uval2;
1156
1157 /*
ac31c7ff
TG
1158 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159 * caller that the alleged owner is busy.
da791a66 1160 */
3d4775df 1161 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1162 return -EBUSY;
da791a66
TG
1163
1164 /*
1165 * Reread the user space value to handle the following situation:
1166 *
1167 * CPU0 CPU1
1168 *
1169 * sys_exit() sys_futex()
1170 * do_exit() futex_lock_pi()
1171 * futex_lock_pi_atomic()
1172 * exit_signals(tsk) No waiters:
1173 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1174 * mm_release(tsk) Set waiter bit
1175 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1176 * Set owner died attach_to_pi_owner() {
1177 * *uaddr = 0xC0000000; tsk = get_task(PID);
1178 * } if (!tsk->flags & PF_EXITING) {
1179 * ... attach();
3d4775df
TG
1180 * tsk->futex_state = } else {
1181 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1182 * FUTEX_STATE_DEAD)
da791a66
TG
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206}
1207
04e1b2e5
TG
1208/*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
da791a66 1212static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1213 struct futex_pi_state **ps,
1214 struct task_struct **exiting)
e60cbc5c 1215{
e60cbc5c 1216 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1217 struct futex_pi_state *pi_state;
1218 struct task_struct *p;
e60cbc5c 1219
c87e2837 1220 /*
e3f2ddea 1221 * We are the first waiter - try to look up the real owner and attach
54a21788 1222 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1223 *
1224 * The !pid check is paranoid. None of the call sites should end up
1225 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1226 */
778e9a9c 1227 if (!pid)
da791a66 1228 return -EAGAIN;
2ee08260 1229 p = find_get_task_by_vpid(pid);
7a0ea09a 1230 if (!p)
da791a66 1231 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1232
a2129464 1233 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1234 put_task_struct(p);
1235 return -EPERM;
1236 }
1237
778e9a9c 1238 /*
3d4775df
TG
1239 * We need to look at the task state to figure out, whether the
1240 * task is exiting. To protect against the change of the task state
1241 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1242 */
1d615482 1243 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1244 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1245 /*
3d4775df
TG
1246 * The task is on the way out. When the futex state is
1247 * FUTEX_STATE_DEAD, we know that the task has finished
1248 * the cleanup:
778e9a9c 1249 */
da791a66 1250 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1251
1d615482 1252 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1253 /*
1254 * If the owner task is between FUTEX_STATE_EXITING and
1255 * FUTEX_STATE_DEAD then store the task pointer and keep
1256 * the reference on the task struct. The calling code will
1257 * drop all locks, wait for the task to reach
1258 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259 * required to prevent a live lock when the current task
1260 * preempted the exiting task between the two states.
1261 */
1262 if (ret == -EBUSY)
1263 *exiting = p;
1264 else
1265 put_task_struct(p);
778e9a9c
AK
1266 return ret;
1267 }
c87e2837 1268
54a21788
TG
1269 /*
1270 * No existing pi state. First waiter. [2]
734009e9
PZ
1271 *
1272 * This creates pi_state, we have hb->lock held, this means nothing can
1273 * observe this state, wait_lock is irrelevant.
54a21788 1274 */
c87e2837
IM
1275 pi_state = alloc_pi_state();
1276
1277 /*
04e1b2e5 1278 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1279 * the owner of it:
1280 */
1281 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283 /* Store the key for possible exit cleanups: */
d0aa7a70 1284 pi_state->key = *key;
c87e2837 1285
627371d7 1286 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1287 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1288 /*
1289 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290 * because there is no concurrency as the object is not published yet.
1291 */
c87e2837 1292 pi_state->owner = p;
1d615482 1293 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1294
1295 put_task_struct(p);
1296
d0aa7a70 1297 *ps = pi_state;
c87e2837
IM
1298
1299 return 0;
1300}
1301
734009e9
PZ
1302static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303 struct futex_hash_bucket *hb,
3ef240ea
TG
1304 union futex_key *key, struct futex_pi_state **ps,
1305 struct task_struct **exiting)
04e1b2e5 1306{
499f5aca 1307 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1308
1309 /*
1310 * If there is a waiter on that futex, validate it and
1311 * attach to the pi_state when the validation succeeds.
1312 */
499f5aca 1313 if (top_waiter)
734009e9 1314 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1315
1316 /*
1317 * We are the first waiter - try to look up the owner based on
1318 * @uval and attach to it.
1319 */
3ef240ea 1320 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1321}
1322
af54d6a1
TG
1323static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324{
6b4f4bc9 1325 int err;
3f649ab7 1326 u32 curval;
af54d6a1 1327
ab51fbab
DB
1328 if (unlikely(should_fail_futex(true)))
1329 return -EFAULT;
1330
6b4f4bc9
WD
1331 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332 if (unlikely(err))
1333 return err;
af54d6a1 1334
734009e9 1335 /* If user space value changed, let the caller retry */
af54d6a1
TG
1336 return curval != uval ? -EAGAIN : 0;
1337}
1338
1a52084d 1339/**
d96ee56c 1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
3ef240ea
TG
1348 * @exiting: Pointer to store the task pointer of the owner task
1349 * which is in the middle of exiting
bab5bc9e 1350 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1351 *
6c23cbbd 1352 * Return:
7b4ff1ad
MCC
1353 * - 0 - ready to wait;
1354 * - 1 - acquired the lock;
1355 * - <0 - error
1a52084d
DH
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1358 *
1359 * @exiting is only set when the return value is -EBUSY. If so, this holds
1360 * a refcount on the exiting task on return and the caller needs to drop it
1361 * after waiting for the exit to complete.
1a52084d
DH
1362 */
1363static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364 union futex_key *key,
1365 struct futex_pi_state **ps,
3ef240ea
TG
1366 struct task_struct *task,
1367 struct task_struct **exiting,
1368 int set_waiters)
1a52084d 1369{
af54d6a1 1370 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1371 struct futex_q *top_waiter;
af54d6a1 1372 int ret;
1a52084d
DH
1373
1374 /*
af54d6a1
TG
1375 * Read the user space value first so we can validate a few
1376 * things before proceeding further.
1a52084d 1377 */
af54d6a1 1378 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1379 return -EFAULT;
1380
ab51fbab
DB
1381 if (unlikely(should_fail_futex(true)))
1382 return -EFAULT;
1383
1a52084d
DH
1384 /*
1385 * Detect deadlocks.
1386 */
af54d6a1 1387 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1388 return -EDEADLK;
1389
ab51fbab
DB
1390 if ((unlikely(should_fail_futex(true))))
1391 return -EDEADLK;
1392
1a52084d 1393 /*
af54d6a1
TG
1394 * Lookup existing state first. If it exists, try to attach to
1395 * its pi_state.
1a52084d 1396 */
499f5aca
PZ
1397 top_waiter = futex_top_waiter(hb, key);
1398 if (top_waiter)
734009e9 1399 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1400
1401 /*
af54d6a1
TG
1402 * No waiter and user TID is 0. We are here because the
1403 * waiters or the owner died bit is set or called from
1404 * requeue_cmp_pi or for whatever reason something took the
1405 * syscall.
1a52084d 1406 */
af54d6a1 1407 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1408 /*
af54d6a1
TG
1409 * We take over the futex. No other waiters and the user space
1410 * TID is 0. We preserve the owner died bit.
59fa6245 1411 */
af54d6a1
TG
1412 newval = uval & FUTEX_OWNER_DIED;
1413 newval |= vpid;
1a52084d 1414
af54d6a1
TG
1415 /* The futex requeue_pi code can enforce the waiters bit */
1416 if (set_waiters)
1417 newval |= FUTEX_WAITERS;
1418
1419 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420 /* If the take over worked, return 1 */
1421 return ret < 0 ? ret : 1;
1422 }
1a52084d
DH
1423
1424 /*
af54d6a1
TG
1425 * First waiter. Set the waiters bit before attaching ourself to
1426 * the owner. If owner tries to unlock, it will be forced into
1427 * the kernel and blocked on hb->lock.
1a52084d 1428 */
af54d6a1
TG
1429 newval = uval | FUTEX_WAITERS;
1430 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 if (ret)
1432 return ret;
1a52084d 1433 /*
af54d6a1
TG
1434 * If the update of the user space value succeeded, we try to
1435 * attach to the owner. If that fails, no harm done, we only
1436 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1437 */
3ef240ea 1438 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1439}
1440
2e12978a
LJ
1441/**
1442 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443 * @q: The futex_q to unqueue
1444 *
1445 * The q->lock_ptr must not be NULL and must be held by the caller.
1446 */
1447static void __unqueue_futex(struct futex_q *q)
1448{
1449 struct futex_hash_bucket *hb;
1450
4de1a293 1451 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1452 return;
4de1a293 1453 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1454
1455 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456 plist_del(&q->list, &hb->chain);
11d4616b 1457 hb_waiters_dec(hb);
2e12978a
LJ
1458}
1459
1da177e4
LT
1460/*
1461 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1462 * Afterwards, the futex_q must not be accessed. Callers
1463 * must ensure to later call wake_up_q() for the actual
1464 * wakeups to occur.
1da177e4 1465 */
1d0dcb3a 1466static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1467{
f1a11e05
TG
1468 struct task_struct *p = q->task;
1469
aa10990e
DH
1470 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471 return;
1472
b061c38b 1473 get_task_struct(p);
2e12978a 1474 __unqueue_futex(q);
1da177e4 1475 /*
38fcd06e
DHV
1476 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477 * is written, without taking any locks. This is possible in the event
1478 * of a spurious wakeup, for example. A memory barrier is required here
1479 * to prevent the following store to lock_ptr from getting ahead of the
1480 * plist_del in __unqueue_futex().
1da177e4 1481 */
1b367ece 1482 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1483
1484 /*
1485 * Queue the task for later wakeup for after we've released
75145904 1486 * the hb->lock.
b061c38b 1487 */
07879c6a 1488 wake_q_add_safe(wake_q, p);
1da177e4
LT
1489}
1490
16ffa12d
PZ
1491/*
1492 * Caller must hold a reference on @pi_state.
1493 */
1494static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1495{
3f649ab7 1496 u32 curval, newval;
9a4b99fc 1497 struct rt_mutex_waiter *top_waiter;
16ffa12d 1498 struct task_struct *new_owner;
aa2bfe55 1499 bool postunlock = false;
194a6b5b 1500 DEFINE_WAKE_Q(wake_q);
13fbca4c 1501 int ret = 0;
c87e2837 1502
9a4b99fc
DB
1503 top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504 if (WARN_ON_ONCE(!top_waiter)) {
16ffa12d 1505 /*
bebe5b51 1506 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1507 *
1508 * When this happens, give up our locks and try again, giving
1509 * the futex_lock_pi() instance time to complete, either by
1510 * waiting on the rtmutex or removing itself from the futex
1511 * queue.
1512 */
1513 ret = -EAGAIN;
1514 goto out_unlock;
73d786bd 1515 }
c87e2837 1516
9a4b99fc
DB
1517 new_owner = top_waiter->task;
1518
c87e2837 1519 /*
16ffa12d
PZ
1520 * We pass it to the next owner. The WAITERS bit is always kept
1521 * enabled while there is PI state around. We cleanup the owner
1522 * died bit, because we are the owner.
c87e2837 1523 */
13fbca4c 1524 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1525
921c7ebd 1526 if (unlikely(should_fail_futex(true))) {
ab51fbab 1527 ret = -EFAULT;
921c7ebd
MN
1528 goto out_unlock;
1529 }
ab51fbab 1530
6b4f4bc9
WD
1531 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532 if (!ret && (curval != uval)) {
89e9e66b
SAS
1533 /*
1534 * If a unconditional UNLOCK_PI operation (user space did not
1535 * try the TID->0 transition) raced with a waiter setting the
1536 * FUTEX_WAITERS flag between get_user() and locking the hash
1537 * bucket lock, retry the operation.
1538 */
1539 if ((FUTEX_TID_MASK & curval) == uval)
1540 ret = -EAGAIN;
1541 else
1542 ret = -EINVAL;
1543 }
734009e9 1544
c5cade20
TG
1545 if (!ret) {
1546 /*
1547 * This is a point of no return; once we modified the uval
1548 * there is no going back and subsequent operations must
1549 * not fail.
1550 */
1551 pi_state_update_owner(pi_state, new_owner);
1552 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553 }
5293c2ef 1554
16ffa12d 1555out_unlock:
5293c2ef 1556 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1557
aa2bfe55
PZ
1558 if (postunlock)
1559 rt_mutex_postunlock(&wake_q);
c87e2837 1560
16ffa12d 1561 return ret;
c87e2837
IM
1562}
1563
8b8f319f
IM
1564/*
1565 * Express the locking dependencies for lockdep:
1566 */
1567static inline void
1568double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569{
1570 if (hb1 <= hb2) {
1571 spin_lock(&hb1->lock);
1572 if (hb1 < hb2)
1573 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574 } else { /* hb1 > hb2 */
1575 spin_lock(&hb2->lock);
1576 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577 }
1578}
1579
5eb3dc62
DH
1580static inline void
1581double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582{
f061d351 1583 spin_unlock(&hb1->lock);
88f502fe
IM
1584 if (hb1 != hb2)
1585 spin_unlock(&hb2->lock);
5eb3dc62
DH
1586}
1587
1da177e4 1588/*
b2d0994b 1589 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1590 */
b41277dc
DH
1591static int
1592futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1593{
e2970f2f 1594 struct futex_hash_bucket *hb;
1da177e4 1595 struct futex_q *this, *next;
38d47c1b 1596 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1597 int ret;
194a6b5b 1598 DEFINE_WAKE_Q(wake_q);
1da177e4 1599
cd689985
TG
1600 if (!bitset)
1601 return -EINVAL;
1602
96d4f267 1603 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1604 if (unlikely(ret != 0))
d7c5ed73 1605 return ret;
1da177e4 1606
e2970f2f 1607 hb = hash_futex(&key);
b0c29f79
DB
1608
1609 /* Make sure we really have tasks to wakeup */
1610 if (!hb_waiters_pending(hb))
d7c5ed73 1611 return ret;
b0c29f79 1612
e2970f2f 1613 spin_lock(&hb->lock);
1da177e4 1614
0d00c7b2 1615 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1616 if (match_futex (&this->key, &key)) {
52400ba9 1617 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1618 ret = -EINVAL;
1619 break;
1620 }
cd689985
TG
1621
1622 /* Check if one of the bits is set in both bitsets */
1623 if (!(this->bitset & bitset))
1624 continue;
1625
1d0dcb3a 1626 mark_wake_futex(&wake_q, this);
1da177e4
LT
1627 if (++ret >= nr_wake)
1628 break;
1629 }
1630 }
1631
e2970f2f 1632 spin_unlock(&hb->lock);
1d0dcb3a 1633 wake_up_q(&wake_q);
1da177e4
LT
1634 return ret;
1635}
1636
30d6e0a4
JS
1637static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638{
1639 unsigned int op = (encoded_op & 0x70000000) >> 28;
1640 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1641 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1643 int oldval, ret;
1644
1645 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1646 if (oparg < 0 || oparg > 31) {
1647 char comm[sizeof(current->comm)];
1648 /*
1649 * kill this print and return -EINVAL when userspace
1650 * is sane again
1651 */
1652 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653 get_task_comm(comm, current), oparg);
1654 oparg &= 31;
1655 }
30d6e0a4
JS
1656 oparg = 1 << oparg;
1657 }
1658
a08971e9 1659 pagefault_disable();
30d6e0a4 1660 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1661 pagefault_enable();
30d6e0a4
JS
1662 if (ret)
1663 return ret;
1664
1665 switch (cmp) {
1666 case FUTEX_OP_CMP_EQ:
1667 return oldval == cmparg;
1668 case FUTEX_OP_CMP_NE:
1669 return oldval != cmparg;
1670 case FUTEX_OP_CMP_LT:
1671 return oldval < cmparg;
1672 case FUTEX_OP_CMP_GE:
1673 return oldval >= cmparg;
1674 case FUTEX_OP_CMP_LE:
1675 return oldval <= cmparg;
1676 case FUTEX_OP_CMP_GT:
1677 return oldval > cmparg;
1678 default:
1679 return -ENOSYS;
1680 }
1681}
1682
4732efbe
JJ
1683/*
1684 * Wake up all waiters hashed on the physical page that is mapped
1685 * to this virtual address:
1686 */
e2970f2f 1687static int
b41277dc 1688futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1689 int nr_wake, int nr_wake2, int op)
4732efbe 1690{
38d47c1b 1691 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1692 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1693 struct futex_q *this, *next;
e4dc5b7a 1694 int ret, op_ret;
194a6b5b 1695 DEFINE_WAKE_Q(wake_q);
4732efbe 1696
e4dc5b7a 1697retry:
96d4f267 1698 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1699 if (unlikely(ret != 0))
d7c5ed73 1700 return ret;
96d4f267 1701 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1702 if (unlikely(ret != 0))
d7c5ed73 1703 return ret;
4732efbe 1704
e2970f2f
IM
1705 hb1 = hash_futex(&key1);
1706 hb2 = hash_futex(&key2);
4732efbe 1707
e4dc5b7a 1708retry_private:
eaaea803 1709 double_lock_hb(hb1, hb2);
e2970f2f 1710 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1711 if (unlikely(op_ret < 0)) {
5eb3dc62 1712 double_unlock_hb(hb1, hb2);
4732efbe 1713
6b4f4bc9
WD
1714 if (!IS_ENABLED(CONFIG_MMU) ||
1715 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716 /*
1717 * we don't get EFAULT from MMU faults if we don't have
1718 * an MMU, but we might get them from range checking
1719 */
796f8d9b 1720 ret = op_ret;
d7c5ed73 1721 return ret;
796f8d9b
DG
1722 }
1723
6b4f4bc9
WD
1724 if (op_ret == -EFAULT) {
1725 ret = fault_in_user_writeable(uaddr2);
1726 if (ret)
d7c5ed73 1727 return ret;
6b4f4bc9 1728 }
4732efbe 1729
6b4f4bc9
WD
1730 if (!(flags & FLAGS_SHARED)) {
1731 cond_resched();
e4dc5b7a 1732 goto retry_private;
6b4f4bc9 1733 }
e4dc5b7a 1734
6b4f4bc9 1735 cond_resched();
e4dc5b7a 1736 goto retry;
4732efbe
JJ
1737 }
1738
0d00c7b2 1739 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1740 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1741 if (this->pi_state || this->rt_waiter) {
1742 ret = -EINVAL;
1743 goto out_unlock;
1744 }
1d0dcb3a 1745 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1746 if (++ret >= nr_wake)
1747 break;
1748 }
1749 }
1750
1751 if (op_ret > 0) {
4732efbe 1752 op_ret = 0;
0d00c7b2 1753 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1754 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1755 if (this->pi_state || this->rt_waiter) {
1756 ret = -EINVAL;
1757 goto out_unlock;
1758 }
1d0dcb3a 1759 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1760 if (++op_ret >= nr_wake2)
1761 break;
1762 }
1763 }
1764 ret += op_ret;
1765 }
1766
aa10990e 1767out_unlock:
5eb3dc62 1768 double_unlock_hb(hb1, hb2);
1d0dcb3a 1769 wake_up_q(&wake_q);
4732efbe
JJ
1770 return ret;
1771}
1772
9121e478
DH
1773/**
1774 * requeue_futex() - Requeue a futex_q from one hb to another
1775 * @q: the futex_q to requeue
1776 * @hb1: the source hash_bucket
1777 * @hb2: the target hash_bucket
1778 * @key2: the new key for the requeued futex_q
1779 */
1780static inline
1781void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1782 struct futex_hash_bucket *hb2, union futex_key *key2)
1783{
1784
1785 /*
1786 * If key1 and key2 hash to the same bucket, no need to
1787 * requeue.
1788 */
1789 if (likely(&hb1->chain != &hb2->chain)) {
1790 plist_del(&q->list, &hb1->chain);
11d4616b 1791 hb_waiters_dec(hb1);
11d4616b 1792 hb_waiters_inc(hb2);
fe1bce9e 1793 plist_add(&q->list, &hb2->chain);
9121e478 1794 q->lock_ptr = &hb2->lock;
9121e478 1795 }
9121e478
DH
1796 q->key = *key2;
1797}
1798
52400ba9
DH
1799/**
1800 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1801 * @q: the futex_q
1802 * @key: the key of the requeue target futex
1803 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1804 *
1805 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1807 * to the requeue target futex so the waiter can detect the wakeup on the right
1808 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1809 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1810 * to protect access to the pi_state to fixup the owner later. Must be called
1811 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1812 */
1813static inline
beda2c7e
DH
1814void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815 struct futex_hash_bucket *hb)
52400ba9 1816{
52400ba9
DH
1817 q->key = *key;
1818
2e12978a 1819 __unqueue_futex(q);
52400ba9
DH
1820
1821 WARN_ON(!q->rt_waiter);
1822 q->rt_waiter = NULL;
1823
beda2c7e 1824 q->lock_ptr = &hb->lock;
beda2c7e 1825
f1a11e05 1826 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1827}
1828
1829/**
1830 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1831 * @pifutex: the user address of the to futex
1832 * @hb1: the from futex hash bucket, must be locked by the caller
1833 * @hb2: the to futex hash bucket, must be locked by the caller
1834 * @key1: the from futex key
1835 * @key2: the to futex key
1836 * @ps: address to store the pi_state pointer
3ef240ea
TG
1837 * @exiting: Pointer to store the task pointer of the owner task
1838 * which is in the middle of exiting
bab5bc9e 1839 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1840 *
1841 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1842 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1843 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1844 * hb1 and hb2 must be held by the caller.
52400ba9 1845 *
3ef240ea
TG
1846 * @exiting is only set when the return value is -EBUSY. If so, this holds
1847 * a refcount on the exiting task on return and the caller needs to drop it
1848 * after waiting for the exit to complete.
1849 *
6c23cbbd 1850 * Return:
7b4ff1ad
MCC
1851 * - 0 - failed to acquire the lock atomically;
1852 * - >0 - acquired the lock, return value is vpid of the top_waiter
1853 * - <0 - error
52400ba9 1854 */
3ef240ea
TG
1855static int
1856futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1857 struct futex_hash_bucket *hb2, union futex_key *key1,
1858 union futex_key *key2, struct futex_pi_state **ps,
1859 struct task_struct **exiting, int set_waiters)
52400ba9 1860{
bab5bc9e 1861 struct futex_q *top_waiter = NULL;
52400ba9 1862 u32 curval;
866293ee 1863 int ret, vpid;
52400ba9
DH
1864
1865 if (get_futex_value_locked(&curval, pifutex))
1866 return -EFAULT;
1867
ab51fbab
DB
1868 if (unlikely(should_fail_futex(true)))
1869 return -EFAULT;
1870
bab5bc9e
DH
1871 /*
1872 * Find the top_waiter and determine if there are additional waiters.
1873 * If the caller intends to requeue more than 1 waiter to pifutex,
1874 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1875 * as we have means to handle the possible fault. If not, don't set
1876 * the bit unecessarily as it will force the subsequent unlock to enter
1877 * the kernel.
1878 */
52400ba9
DH
1879 top_waiter = futex_top_waiter(hb1, key1);
1880
1881 /* There are no waiters, nothing for us to do. */
1882 if (!top_waiter)
1883 return 0;
1884
84bc4af5
DH
1885 /* Ensure we requeue to the expected futex. */
1886 if (!match_futex(top_waiter->requeue_pi_key, key2))
1887 return -EINVAL;
1888
52400ba9 1889 /*
bab5bc9e
DH
1890 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1891 * the contended case or if set_waiters is 1. The pi_state is returned
1892 * in ps in contended cases.
52400ba9 1893 */
866293ee 1894 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1895 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1896 exiting, set_waiters);
866293ee 1897 if (ret == 1) {
beda2c7e 1898 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1899 return vpid;
1900 }
52400ba9
DH
1901 return ret;
1902}
1903
1904/**
1905 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1906 * @uaddr1: source futex user address
b41277dc 1907 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1908 * @uaddr2: target futex user address
1909 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1910 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1911 * @cmpval: @uaddr1 expected value (or %NULL)
1912 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1913 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1914 *
1915 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1916 * uaddr2 atomically on behalf of the top waiter.
1917 *
6c23cbbd 1918 * Return:
7b4ff1ad
MCC
1919 * - >=0 - on success, the number of tasks requeued or woken;
1920 * - <0 - on error
1da177e4 1921 */
b41277dc
DH
1922static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1923 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1924 u32 *cmpval, int requeue_pi)
1da177e4 1925{
38d47c1b 1926 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1927 int task_count = 0, ret;
52400ba9 1928 struct futex_pi_state *pi_state = NULL;
e2970f2f 1929 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1930 struct futex_q *this, *next;
194a6b5b 1931 DEFINE_WAKE_Q(wake_q);
52400ba9 1932
fbe0e839
LJ
1933 if (nr_wake < 0 || nr_requeue < 0)
1934 return -EINVAL;
1935
bc2eecd7
NP
1936 /*
1937 * When PI not supported: return -ENOSYS if requeue_pi is true,
1938 * consequently the compiler knows requeue_pi is always false past
1939 * this point which will optimize away all the conditional code
1940 * further down.
1941 */
1942 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1943 return -ENOSYS;
1944
52400ba9 1945 if (requeue_pi) {
e9c243a5
TG
1946 /*
1947 * Requeue PI only works on two distinct uaddrs. This
1948 * check is only valid for private futexes. See below.
1949 */
1950 if (uaddr1 == uaddr2)
1951 return -EINVAL;
1952
52400ba9
DH
1953 /*
1954 * requeue_pi requires a pi_state, try to allocate it now
1955 * without any locks in case it fails.
1956 */
1957 if (refill_pi_state_cache())
1958 return -ENOMEM;
1959 /*
1960 * requeue_pi must wake as many tasks as it can, up to nr_wake
1961 * + nr_requeue, since it acquires the rt_mutex prior to
1962 * returning to userspace, so as to not leave the rt_mutex with
1963 * waiters and no owner. However, second and third wake-ups
1964 * cannot be predicted as they involve race conditions with the
1965 * first wake and a fault while looking up the pi_state. Both
1966 * pthread_cond_signal() and pthread_cond_broadcast() should
1967 * use nr_wake=1.
1968 */
1969 if (nr_wake != 1)
1970 return -EINVAL;
1971 }
1da177e4 1972
42d35d48 1973retry:
96d4f267 1974 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1975 if (unlikely(ret != 0))
d7c5ed73 1976 return ret;
9ea71503 1977 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1978 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1979 if (unlikely(ret != 0))
d7c5ed73 1980 return ret;
1da177e4 1981
e9c243a5
TG
1982 /*
1983 * The check above which compares uaddrs is not sufficient for
1984 * shared futexes. We need to compare the keys:
1985 */
d7c5ed73
AA
1986 if (requeue_pi && match_futex(&key1, &key2))
1987 return -EINVAL;
e9c243a5 1988
e2970f2f
IM
1989 hb1 = hash_futex(&key1);
1990 hb2 = hash_futex(&key2);
1da177e4 1991
e4dc5b7a 1992retry_private:
69cd9eba 1993 hb_waiters_inc(hb2);
8b8f319f 1994 double_lock_hb(hb1, hb2);
1da177e4 1995
e2970f2f
IM
1996 if (likely(cmpval != NULL)) {
1997 u32 curval;
1da177e4 1998
e2970f2f 1999 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2000
2001 if (unlikely(ret)) {
5eb3dc62 2002 double_unlock_hb(hb1, hb2);
69cd9eba 2003 hb_waiters_dec(hb2);
1da177e4 2004
e2970f2f 2005 ret = get_user(curval, uaddr1);
e4dc5b7a 2006 if (ret)
d7c5ed73 2007 return ret;
1da177e4 2008
b41277dc 2009 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2010 goto retry_private;
1da177e4 2011
e4dc5b7a 2012 goto retry;
1da177e4 2013 }
e2970f2f 2014 if (curval != *cmpval) {
1da177e4
LT
2015 ret = -EAGAIN;
2016 goto out_unlock;
2017 }
2018 }
2019
52400ba9 2020 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2021 struct task_struct *exiting = NULL;
2022
bab5bc9e
DH
2023 /*
2024 * Attempt to acquire uaddr2 and wake the top waiter. If we
2025 * intend to requeue waiters, force setting the FUTEX_WAITERS
2026 * bit. We force this here where we are able to easily handle
2027 * faults rather in the requeue loop below.
2028 */
52400ba9 2029 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2030 &key2, &pi_state,
2031 &exiting, nr_requeue);
52400ba9
DH
2032
2033 /*
2034 * At this point the top_waiter has either taken uaddr2 or is
2035 * waiting on it. If the former, then the pi_state will not
2036 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2037 * reference to it. If the lock was taken, ret contains the
2038 * vpid of the top waiter task.
ecb38b78
TG
2039 * If the lock was not taken, we have pi_state and an initial
2040 * refcount on it. In case of an error we have nothing.
52400ba9 2041 */
866293ee 2042 if (ret > 0) {
52400ba9
DH
2043 WARN_ON(pi_state);
2044 task_count++;
866293ee 2045 /*
ecb38b78
TG
2046 * If we acquired the lock, then the user space value
2047 * of uaddr2 should be vpid. It cannot be changed by
2048 * the top waiter as it is blocked on hb2 lock if it
2049 * tries to do so. If something fiddled with it behind
2050 * our back the pi state lookup might unearth it. So
2051 * we rather use the known value than rereading and
2052 * handing potential crap to lookup_pi_state.
2053 *
2054 * If that call succeeds then we have pi_state and an
2055 * initial refcount on it.
866293ee 2056 */
3ef240ea
TG
2057 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2058 &pi_state, &exiting);
52400ba9
DH
2059 }
2060
2061 switch (ret) {
2062 case 0:
ecb38b78 2063 /* We hold a reference on the pi state. */
52400ba9 2064 break;
4959f2de
TG
2065
2066 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2067 case -EFAULT:
2068 double_unlock_hb(hb1, hb2);
69cd9eba 2069 hb_waiters_dec(hb2);
d0725992 2070 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2071 if (!ret)
2072 goto retry;
d7c5ed73 2073 return ret;
ac31c7ff 2074 case -EBUSY:
52400ba9 2075 case -EAGAIN:
af54d6a1
TG
2076 /*
2077 * Two reasons for this:
ac31c7ff 2078 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2079 * exit to complete.
ac31c7ff 2080 * - EAGAIN: The user space value changed.
af54d6a1 2081 */
52400ba9 2082 double_unlock_hb(hb1, hb2);
69cd9eba 2083 hb_waiters_dec(hb2);
3ef240ea
TG
2084 /*
2085 * Handle the case where the owner is in the middle of
2086 * exiting. Wait for the exit to complete otherwise
2087 * this task might loop forever, aka. live lock.
2088 */
2089 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2090 cond_resched();
2091 goto retry;
2092 default:
2093 goto out_unlock;
2094 }
2095 }
2096
0d00c7b2 2097 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2098 if (task_count - nr_wake >= nr_requeue)
2099 break;
2100
2101 if (!match_futex(&this->key, &key1))
1da177e4 2102 continue;
52400ba9 2103
392741e0
DH
2104 /*
2105 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2106 * be paired with each other and no other futex ops.
aa10990e
DH
2107 *
2108 * We should never be requeueing a futex_q with a pi_state,
2109 * which is awaiting a futex_unlock_pi().
392741e0
DH
2110 */
2111 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2112 (!requeue_pi && this->rt_waiter) ||
2113 this->pi_state) {
392741e0
DH
2114 ret = -EINVAL;
2115 break;
2116 }
52400ba9
DH
2117
2118 /*
2119 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2120 * lock, we already woke the top_waiter. If not, it will be
2121 * woken by futex_unlock_pi().
2122 */
2123 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2124 mark_wake_futex(&wake_q, this);
52400ba9
DH
2125 continue;
2126 }
1da177e4 2127
84bc4af5
DH
2128 /* Ensure we requeue to the expected futex for requeue_pi. */
2129 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2130 ret = -EINVAL;
2131 break;
2132 }
2133
52400ba9
DH
2134 /*
2135 * Requeue nr_requeue waiters and possibly one more in the case
2136 * of requeue_pi if we couldn't acquire the lock atomically.
2137 */
2138 if (requeue_pi) {
ecb38b78
TG
2139 /*
2140 * Prepare the waiter to take the rt_mutex. Take a
2141 * refcount on the pi_state and store the pointer in
2142 * the futex_q object of the waiter.
2143 */
bf92cf3a 2144 get_pi_state(pi_state);
52400ba9
DH
2145 this->pi_state = pi_state;
2146 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2147 this->rt_waiter,
c051b21f 2148 this->task);
52400ba9 2149 if (ret == 1) {
ecb38b78
TG
2150 /*
2151 * We got the lock. We do neither drop the
2152 * refcount on pi_state nor clear
2153 * this->pi_state because the waiter needs the
2154 * pi_state for cleaning up the user space
2155 * value. It will drop the refcount after
2156 * doing so.
2157 */
beda2c7e 2158 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2159 continue;
2160 } else if (ret) {
ecb38b78
TG
2161 /*
2162 * rt_mutex_start_proxy_lock() detected a
2163 * potential deadlock when we tried to queue
2164 * that waiter. Drop the pi_state reference
2165 * which we took above and remove the pointer
2166 * to the state from the waiters futex_q
2167 * object.
2168 */
52400ba9 2169 this->pi_state = NULL;
29e9ee5d 2170 put_pi_state(pi_state);
885c2cb7
TG
2171 /*
2172 * We stop queueing more waiters and let user
2173 * space deal with the mess.
2174 */
2175 break;
52400ba9 2176 }
1da177e4 2177 }
52400ba9 2178 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2179 }
2180
ecb38b78
TG
2181 /*
2182 * We took an extra initial reference to the pi_state either
2183 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2184 * need to drop it here again.
2185 */
29e9ee5d 2186 put_pi_state(pi_state);
885c2cb7
TG
2187
2188out_unlock:
5eb3dc62 2189 double_unlock_hb(hb1, hb2);
1d0dcb3a 2190 wake_up_q(&wake_q);
69cd9eba 2191 hb_waiters_dec(hb2);
52400ba9 2192 return ret ? ret : task_count;
1da177e4
LT
2193}
2194
2195/* The key must be already stored in q->key. */
82af7aca 2196static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2197 __acquires(&hb->lock)
1da177e4 2198{
e2970f2f 2199 struct futex_hash_bucket *hb;
1da177e4 2200
e2970f2f 2201 hb = hash_futex(&q->key);
11d4616b
LT
2202
2203 /*
2204 * Increment the counter before taking the lock so that
2205 * a potential waker won't miss a to-be-slept task that is
2206 * waiting for the spinlock. This is safe as all queue_lock()
2207 * users end up calling queue_me(). Similarly, for housekeeping,
2208 * decrement the counter at queue_unlock() when some error has
2209 * occurred and we don't end up adding the task to the list.
2210 */
6f568ebe 2211 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2212
e2970f2f 2213 q->lock_ptr = &hb->lock;
1da177e4 2214
6f568ebe 2215 spin_lock(&hb->lock);
e2970f2f 2216 return hb;
1da177e4
LT
2217}
2218
d40d65c8 2219static inline void
0d00c7b2 2220queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2221 __releases(&hb->lock)
d40d65c8
DH
2222{
2223 spin_unlock(&hb->lock);
11d4616b 2224 hb_waiters_dec(hb);
d40d65c8
DH
2225}
2226
cfafcd11 2227static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2228{
ec92d082
PP
2229 int prio;
2230
2231 /*
2232 * The priority used to register this element is
2233 * - either the real thread-priority for the real-time threads
2234 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2235 * - or MAX_RT_PRIO for non-RT threads.
2236 * Thus, all RT-threads are woken first in priority order, and
2237 * the others are woken last, in FIFO order.
2238 */
2239 prio = min(current->normal_prio, MAX_RT_PRIO);
2240
2241 plist_node_init(&q->list, prio);
ec92d082 2242 plist_add(&q->list, &hb->chain);
c87e2837 2243 q->task = current;
cfafcd11
PZ
2244}
2245
2246/**
2247 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2248 * @q: The futex_q to enqueue
2249 * @hb: The destination hash bucket
2250 *
2251 * The hb->lock must be held by the caller, and is released here. A call to
2252 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2253 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2254 * or nothing if the unqueue is done as part of the wake process and the unqueue
2255 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2256 * an example).
2257 */
2258static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2259 __releases(&hb->lock)
2260{
2261 __queue_me(q, hb);
e2970f2f 2262 spin_unlock(&hb->lock);
1da177e4
LT
2263}
2264
d40d65c8
DH
2265/**
2266 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2267 * @q: The futex_q to unqueue
2268 *
2269 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2270 * be paired with exactly one earlier call to queue_me().
2271 *
6c23cbbd 2272 * Return:
7b4ff1ad
MCC
2273 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2274 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2275 */
1da177e4
LT
2276static int unqueue_me(struct futex_q *q)
2277{
1da177e4 2278 spinlock_t *lock_ptr;
e2970f2f 2279 int ret = 0;
1da177e4
LT
2280
2281 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2282retry:
29b75eb2
JZ
2283 /*
2284 * q->lock_ptr can change between this read and the following spin_lock.
2285 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2286 * optimizing lock_ptr out of the logic below.
2287 */
2288 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2289 if (lock_ptr != NULL) {
1da177e4
LT
2290 spin_lock(lock_ptr);
2291 /*
2292 * q->lock_ptr can change between reading it and
2293 * spin_lock(), causing us to take the wrong lock. This
2294 * corrects the race condition.
2295 *
2296 * Reasoning goes like this: if we have the wrong lock,
2297 * q->lock_ptr must have changed (maybe several times)
2298 * between reading it and the spin_lock(). It can
2299 * change again after the spin_lock() but only if it was
2300 * already changed before the spin_lock(). It cannot,
2301 * however, change back to the original value. Therefore
2302 * we can detect whether we acquired the correct lock.
2303 */
2304 if (unlikely(lock_ptr != q->lock_ptr)) {
2305 spin_unlock(lock_ptr);
2306 goto retry;
2307 }
2e12978a 2308 __unqueue_futex(q);
c87e2837
IM
2309
2310 BUG_ON(q->pi_state);
2311
1da177e4
LT
2312 spin_unlock(lock_ptr);
2313 ret = 1;
2314 }
2315
1da177e4
LT
2316 return ret;
2317}
2318
c87e2837
IM
2319/*
2320 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2321 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2322 * and dropped here.
c87e2837 2323 */
d0aa7a70 2324static void unqueue_me_pi(struct futex_q *q)
15e408cd 2325 __releases(q->lock_ptr)
c87e2837 2326{
2e12978a 2327 __unqueue_futex(q);
c87e2837
IM
2328
2329 BUG_ON(!q->pi_state);
29e9ee5d 2330 put_pi_state(q->pi_state);
c87e2837
IM
2331 q->pi_state = NULL;
2332
d0aa7a70 2333 spin_unlock(q->lock_ptr);
c87e2837
IM
2334}
2335
f2dac39d
TG
2336static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2337 struct task_struct *argowner)
d0aa7a70 2338{
d0aa7a70 2339 struct futex_pi_state *pi_state = q->pi_state;
c1e2f0ea 2340 struct task_struct *oldowner, *newowner;
f2dac39d
TG
2341 u32 uval, curval, newval, newtid;
2342 int err = 0;
734009e9
PZ
2343
2344 oldowner = pi_state->owner;
1b7558e4
TG
2345
2346 /*
c1e2f0ea 2347 * We are here because either:
16ffa12d 2348 *
c1e2f0ea
PZ
2349 * - we stole the lock and pi_state->owner needs updating to reflect
2350 * that (@argowner == current),
2351 *
2352 * or:
2353 *
2354 * - someone stole our lock and we need to fix things to point to the
2355 * new owner (@argowner == NULL).
2356 *
2357 * Either way, we have to replace the TID in the user space variable.
8161239a 2358 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2359 *
b2d0994b
DH
2360 * Note: We write the user space value _before_ changing the pi_state
2361 * because we can fault here. Imagine swapped out pages or a fork
2362 * that marked all the anonymous memory readonly for cow.
1b7558e4 2363 *
734009e9
PZ
2364 * Modifying pi_state _before_ the user space value would leave the
2365 * pi_state in an inconsistent state when we fault here, because we
2366 * need to drop the locks to handle the fault. This might be observed
2367 * in the PID check in lookup_pi_state.
1b7558e4
TG
2368 */
2369retry:
c1e2f0ea
PZ
2370 if (!argowner) {
2371 if (oldowner != current) {
2372 /*
2373 * We raced against a concurrent self; things are
2374 * already fixed up. Nothing to do.
2375 */
f2dac39d 2376 return 0;
c1e2f0ea
PZ
2377 }
2378
2379 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
12bb3f7f 2380 /* We got the lock. pi_state is correct. Tell caller. */
f2dac39d 2381 return 1;
c1e2f0ea
PZ
2382 }
2383
2384 /*
9f5d1c33
MG
2385 * The trylock just failed, so either there is an owner or
2386 * there is a higher priority waiter than this one.
c1e2f0ea
PZ
2387 */
2388 newowner = rt_mutex_owner(&pi_state->pi_mutex);
9f5d1c33
MG
2389 /*
2390 * If the higher priority waiter has not yet taken over the
2391 * rtmutex then newowner is NULL. We can't return here with
2392 * that state because it's inconsistent vs. the user space
2393 * state. So drop the locks and try again. It's a valid
2394 * situation and not any different from the other retry
2395 * conditions.
2396 */
2397 if (unlikely(!newowner)) {
2398 err = -EAGAIN;
2399 goto handle_err;
2400 }
c1e2f0ea
PZ
2401 } else {
2402 WARN_ON_ONCE(argowner != current);
2403 if (oldowner == current) {
2404 /*
2405 * We raced against a concurrent self; things are
2406 * already fixed up. Nothing to do.
2407 */
f2dac39d 2408 return 1;
c1e2f0ea
PZ
2409 }
2410 newowner = argowner;
2411 }
2412
2413 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2414 /* Owner died? */
2415 if (!pi_state->owner)
2416 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2417
6b4f4bc9
WD
2418 err = get_futex_value_locked(&uval, uaddr);
2419 if (err)
2420 goto handle_err;
1b7558e4 2421
16ffa12d 2422 for (;;) {
1b7558e4
TG
2423 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2424
6b4f4bc9
WD
2425 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2426 if (err)
2427 goto handle_err;
2428
1b7558e4
TG
2429 if (curval == uval)
2430 break;
2431 uval = curval;
2432 }
2433
2434 /*
2435 * We fixed up user space. Now we need to fix the pi_state
2436 * itself.
2437 */
c5cade20 2438 pi_state_update_owner(pi_state, newowner);
d0aa7a70 2439
12bb3f7f 2440 return argowner == current;
d0aa7a70 2441
d0aa7a70 2442 /*
6b4f4bc9
WD
2443 * In order to reschedule or handle a page fault, we need to drop the
2444 * locks here. In the case of a fault, this gives the other task
2445 * (either the highest priority waiter itself or the task which stole
2446 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2447 * are back from handling the fault we need to check the pi_state after
2448 * reacquiring the locks and before trying to do another fixup. When
2449 * the fixup has been done already we simply return.
734009e9
PZ
2450 *
2451 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2452 * drop hb->lock since the caller owns the hb -> futex_q relation.
2453 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2454 */
6b4f4bc9 2455handle_err:
734009e9 2456 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2457 spin_unlock(q->lock_ptr);
778e9a9c 2458
6b4f4bc9
WD
2459 switch (err) {
2460 case -EFAULT:
f2dac39d 2461 err = fault_in_user_writeable(uaddr);
6b4f4bc9
WD
2462 break;
2463
2464 case -EAGAIN:
2465 cond_resched();
f2dac39d 2466 err = 0;
6b4f4bc9
WD
2467 break;
2468
2469 default:
2470 WARN_ON_ONCE(1);
6b4f4bc9
WD
2471 break;
2472 }
778e9a9c 2473
1b7558e4 2474 spin_lock(q->lock_ptr);
734009e9 2475 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2476
1b7558e4
TG
2477 /*
2478 * Check if someone else fixed it for us:
2479 */
f2dac39d
TG
2480 if (pi_state->owner != oldowner)
2481 return argowner == current;
1b7558e4 2482
f2dac39d
TG
2483 /* Retry if err was -EAGAIN or the fault in succeeded */
2484 if (!err)
2485 goto retry;
1b7558e4 2486
34b1a1ce
TG
2487 /*
2488 * fault_in_user_writeable() failed so user state is immutable. At
2489 * best we can make the kernel state consistent but user state will
2490 * be most likely hosed and any subsequent unlock operation will be
2491 * rejected due to PI futex rule [10].
2492 *
2493 * Ensure that the rtmutex owner is also the pi_state owner despite
2494 * the user space value claiming something different. There is no
2495 * point in unlocking the rtmutex if current is the owner as it
2496 * would need to wait until the next waiter has taken the rtmutex
2497 * to guarantee consistent state. Keep it simple. Userspace asked
2498 * for this wreckaged state.
2499 *
2500 * The rtmutex has an owner - either current or some other
2501 * task. See the EAGAIN loop above.
2502 */
2503 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
734009e9 2504
f2dac39d
TG
2505 return err;
2506}
734009e9 2507
f2dac39d
TG
2508static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2509 struct task_struct *argowner)
2510{
2511 struct futex_pi_state *pi_state = q->pi_state;
2512 int ret;
2513
2514 lockdep_assert_held(q->lock_ptr);
2515
2516 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2517 ret = __fixup_pi_state_owner(uaddr, q, argowner);
734009e9
PZ
2518 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2519 return ret;
d0aa7a70
PP
2520}
2521
72c1bbf3 2522static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2523
dd973998
DH
2524/**
2525 * fixup_owner() - Post lock pi_state and corner case management
2526 * @uaddr: user address of the futex
dd973998
DH
2527 * @q: futex_q (contains pi_state and access to the rt_mutex)
2528 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2529 *
2530 * After attempting to lock an rt_mutex, this function is called to cleanup
2531 * the pi_state owner as well as handle race conditions that may allow us to
2532 * acquire the lock. Must be called with the hb lock held.
2533 *
6c23cbbd 2534 * Return:
7b4ff1ad
MCC
2535 * - 1 - success, lock taken;
2536 * - 0 - success, lock not taken;
2537 * - <0 - on error (-EFAULT)
dd973998 2538 */
ae791a2d 2539static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2540{
dd973998
DH
2541 if (locked) {
2542 /*
2543 * Got the lock. We might not be the anticipated owner if we
2544 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2545 *
c1e2f0ea
PZ
2546 * Speculative pi_state->owner read (we don't hold wait_lock);
2547 * since we own the lock pi_state->owner == current is the
2548 * stable state, anything else needs more attention.
dd973998
DH
2549 */
2550 if (q->pi_state->owner != current)
12bb3f7f
TG
2551 return fixup_pi_state_owner(uaddr, q, current);
2552 return 1;
dd973998
DH
2553 }
2554
c1e2f0ea
PZ
2555 /*
2556 * If we didn't get the lock; check if anybody stole it from us. In
2557 * that case, we need to fix up the uval to point to them instead of
2558 * us, otherwise bad things happen. [10]
2559 *
2560 * Another speculative read; pi_state->owner == current is unstable
2561 * but needs our attention.
2562 */
12bb3f7f
TG
2563 if (q->pi_state->owner == current)
2564 return fixup_pi_state_owner(uaddr, q, NULL);
c1e2f0ea 2565
dd973998
DH
2566 /*
2567 * Paranoia check. If we did not take the lock, then we should not be
04b79c55 2568 * the owner of the rt_mutex. Warn and establish consistent state.
dd973998 2569 */
04b79c55
TG
2570 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2571 return fixup_pi_state_owner(uaddr, q, current);
dd973998 2572
12bb3f7f 2573 return 0;
dd973998
DH
2574}
2575
ca5f9524
DH
2576/**
2577 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2578 * @hb: the futex hash bucket, must be locked by the caller
2579 * @q: the futex_q to queue up on
2580 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2581 */
2582static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2583 struct hrtimer_sleeper *timeout)
ca5f9524 2584{
9beba3c5
DH
2585 /*
2586 * The task state is guaranteed to be set before another task can
b92b8b35 2587 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2588 * queue_me() calls spin_unlock() upon completion, both serializing
2589 * access to the hash list and forcing another memory barrier.
2590 */
f1a11e05 2591 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2592 queue_me(q, hb);
ca5f9524
DH
2593
2594 /* Arm the timer */
2e4b0d3f 2595 if (timeout)
9dd8813e 2596 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2597
2598 /*
0729e196
DH
2599 * If we have been removed from the hash list, then another task
2600 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2601 */
2602 if (likely(!plist_node_empty(&q->list))) {
2603 /*
2604 * If the timer has already expired, current will already be
2605 * flagged for rescheduling. Only call schedule if there
2606 * is no timeout, or if it has yet to expire.
2607 */
2608 if (!timeout || timeout->task)
88c8004f 2609 freezable_schedule();
ca5f9524
DH
2610 }
2611 __set_current_state(TASK_RUNNING);
2612}
2613
f801073f
DH
2614/**
2615 * futex_wait_setup() - Prepare to wait on a futex
2616 * @uaddr: the futex userspace address
2617 * @val: the expected value
b41277dc 2618 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2619 * @q: the associated futex_q
2620 * @hb: storage for hash_bucket pointer to be returned to caller
2621 *
2622 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2623 * compare it with the expected value. Handle atomic faults internally.
2624 * Return with the hb lock held and a q.key reference on success, and unlocked
2625 * with no q.key reference on failure.
2626 *
6c23cbbd 2627 * Return:
7b4ff1ad
MCC
2628 * - 0 - uaddr contains val and hb has been locked;
2629 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2630 */
b41277dc 2631static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2632 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2633{
e2970f2f
IM
2634 u32 uval;
2635 int ret;
1da177e4 2636
1da177e4 2637 /*
b2d0994b 2638 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2639 * Order is important:
2640 *
2641 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2642 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2643 *
2644 * The basic logical guarantee of a futex is that it blocks ONLY
2645 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2646 * any cond. If we locked the hash-bucket after testing *uaddr, that
2647 * would open a race condition where we could block indefinitely with
1da177e4
LT
2648 * cond(var) false, which would violate the guarantee.
2649 *
8fe8f545
ML
2650 * On the other hand, we insert q and release the hash-bucket only
2651 * after testing *uaddr. This guarantees that futex_wait() will NOT
2652 * absorb a wakeup if *uaddr does not match the desired values
2653 * while the syscall executes.
1da177e4 2654 */
f801073f 2655retry:
96d4f267 2656 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2657 if (unlikely(ret != 0))
a5a2a0c7 2658 return ret;
f801073f
DH
2659
2660retry_private:
2661 *hb = queue_lock(q);
2662
e2970f2f 2663 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2664
f801073f 2665 if (ret) {
0d00c7b2 2666 queue_unlock(*hb);
1da177e4 2667
e2970f2f 2668 ret = get_user(uval, uaddr);
e4dc5b7a 2669 if (ret)
d7c5ed73 2670 return ret;
1da177e4 2671
b41277dc 2672 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2673 goto retry_private;
2674
e4dc5b7a 2675 goto retry;
1da177e4 2676 }
ca5f9524 2677
f801073f 2678 if (uval != val) {
0d00c7b2 2679 queue_unlock(*hb);
f801073f 2680 ret = -EWOULDBLOCK;
2fff78c7 2681 }
1da177e4 2682
f801073f
DH
2683 return ret;
2684}
2685
b41277dc
DH
2686static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2687 ktime_t *abs_time, u32 bitset)
f801073f 2688{
5ca584d9 2689 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2690 struct restart_block *restart;
2691 struct futex_hash_bucket *hb;
5bdb05f9 2692 struct futex_q q = futex_q_init;
f801073f
DH
2693 int ret;
2694
2695 if (!bitset)
2696 return -EINVAL;
f801073f
DH
2697 q.bitset = bitset;
2698
5ca584d9
WL
2699 to = futex_setup_timer(abs_time, &timeout, flags,
2700 current->timer_slack_ns);
d58e6576 2701retry:
7ada876a
DH
2702 /*
2703 * Prepare to wait on uaddr. On success, holds hb lock and increments
2704 * q.key refs.
2705 */
b41277dc 2706 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2707 if (ret)
2708 goto out;
2709
ca5f9524 2710 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2711 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2712
2713 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2714 ret = 0;
7ada876a 2715 /* unqueue_me() drops q.key ref */
1da177e4 2716 if (!unqueue_me(&q))
7ada876a 2717 goto out;
2fff78c7 2718 ret = -ETIMEDOUT;
ca5f9524 2719 if (to && !to->task)
7ada876a 2720 goto out;
72c1bbf3 2721
e2970f2f 2722 /*
d58e6576
TG
2723 * We expect signal_pending(current), but we might be the
2724 * victim of a spurious wakeup as well.
e2970f2f 2725 */
7ada876a 2726 if (!signal_pending(current))
d58e6576 2727 goto retry;
d58e6576 2728
2fff78c7 2729 ret = -ERESTARTSYS;
c19384b5 2730 if (!abs_time)
7ada876a 2731 goto out;
1da177e4 2732
f56141e3 2733 restart = &current->restart_block;
2fff78c7 2734 restart->fn = futex_wait_restart;
a3c74c52 2735 restart->futex.uaddr = uaddr;
2fff78c7 2736 restart->futex.val = val;
2456e855 2737 restart->futex.time = *abs_time;
2fff78c7 2738 restart->futex.bitset = bitset;
0cd9c649 2739 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2740
2fff78c7
PZ
2741 ret = -ERESTART_RESTARTBLOCK;
2742
42d35d48 2743out:
ca5f9524
DH
2744 if (to) {
2745 hrtimer_cancel(&to->timer);
2746 destroy_hrtimer_on_stack(&to->timer);
2747 }
c87e2837
IM
2748 return ret;
2749}
2750
72c1bbf3
NP
2751
2752static long futex_wait_restart(struct restart_block *restart)
2753{
a3c74c52 2754 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2755 ktime_t t, *tp = NULL;
72c1bbf3 2756
a72188d8 2757 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2758 t = restart->futex.time;
a72188d8
DH
2759 tp = &t;
2760 }
72c1bbf3 2761 restart->fn = do_no_restart_syscall;
b41277dc
DH
2762
2763 return (long)futex_wait(uaddr, restart->futex.flags,
2764 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2765}
2766
2767
c87e2837
IM
2768/*
2769 * Userspace tried a 0 -> TID atomic transition of the futex value
2770 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2771 * if there are waiters then it will block as a consequence of relying
2772 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2773 * a 0 value of the futex too.).
2774 *
2775 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2776 */
996636dd 2777static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2778 ktime_t *time, int trylock)
c87e2837 2779{
5ca584d9 2780 struct hrtimer_sleeper timeout, *to;
3ef240ea 2781 struct task_struct *exiting = NULL;
cfafcd11 2782 struct rt_mutex_waiter rt_waiter;
c87e2837 2783 struct futex_hash_bucket *hb;
5bdb05f9 2784 struct futex_q q = futex_q_init;
dd973998 2785 int res, ret;
c87e2837 2786
bc2eecd7
NP
2787 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2788 return -ENOSYS;
2789
c87e2837
IM
2790 if (refill_pi_state_cache())
2791 return -ENOMEM;
2792
5ca584d9 2793 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2794
42d35d48 2795retry:
96d4f267 2796 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2797 if (unlikely(ret != 0))
42d35d48 2798 goto out;
c87e2837 2799
e4dc5b7a 2800retry_private:
82af7aca 2801 hb = queue_lock(&q);
c87e2837 2802
3ef240ea
TG
2803 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2804 &exiting, 0);
c87e2837 2805 if (unlikely(ret)) {
767f509c
DB
2806 /*
2807 * Atomic work succeeded and we got the lock,
2808 * or failed. Either way, we do _not_ block.
2809 */
778e9a9c 2810 switch (ret) {
1a52084d
DH
2811 case 1:
2812 /* We got the lock. */
2813 ret = 0;
2814 goto out_unlock_put_key;
2815 case -EFAULT:
2816 goto uaddr_faulted;
ac31c7ff 2817 case -EBUSY:
778e9a9c
AK
2818 case -EAGAIN:
2819 /*
af54d6a1 2820 * Two reasons for this:
ac31c7ff 2821 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2822 * exit to complete.
ac31c7ff 2823 * - EAGAIN: The user space value changed.
778e9a9c 2824 */
0d00c7b2 2825 queue_unlock(hb);
3ef240ea
TG
2826 /*
2827 * Handle the case where the owner is in the middle of
2828 * exiting. Wait for the exit to complete otherwise
2829 * this task might loop forever, aka. live lock.
2830 */
2831 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2832 cond_resched();
2833 goto retry;
778e9a9c 2834 default:
42d35d48 2835 goto out_unlock_put_key;
c87e2837 2836 }
c87e2837
IM
2837 }
2838
cfafcd11
PZ
2839 WARN_ON(!q.pi_state);
2840
c87e2837
IM
2841 /*
2842 * Only actually queue now that the atomic ops are done:
2843 */
cfafcd11 2844 __queue_me(&q, hb);
c87e2837 2845
cfafcd11 2846 if (trylock) {
5293c2ef 2847 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2848 /* Fixup the trylock return value: */
2849 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2850 goto no_block;
c87e2837
IM
2851 }
2852
56222b21
PZ
2853 rt_mutex_init_waiter(&rt_waiter);
2854
cfafcd11 2855 /*
56222b21
PZ
2856 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2857 * hold it while doing rt_mutex_start_proxy(), because then it will
2858 * include hb->lock in the blocking chain, even through we'll not in
2859 * fact hold it while blocking. This will lead it to report -EDEADLK
2860 * and BUG when futex_unlock_pi() interleaves with this.
2861 *
2862 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2863 * latter before calling __rt_mutex_start_proxy_lock(). This
2864 * interleaves with futex_unlock_pi() -- which does a similar lock
2865 * handoff -- such that the latter can observe the futex_q::pi_state
2866 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2867 */
56222b21
PZ
2868 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2869 spin_unlock(q.lock_ptr);
1a1fb985
TG
2870 /*
2871 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2872 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2873 * it sees the futex_q::pi_state.
2874 */
56222b21
PZ
2875 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2876 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2877
cfafcd11
PZ
2878 if (ret) {
2879 if (ret == 1)
2880 ret = 0;
1a1fb985 2881 goto cleanup;
cfafcd11
PZ
2882 }
2883
cfafcd11 2884 if (unlikely(to))
9dd8813e 2885 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2886
2887 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2888
1a1fb985 2889cleanup:
a99e4e41 2890 spin_lock(q.lock_ptr);
cfafcd11 2891 /*
1a1fb985 2892 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2893 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2894 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2895 * lists consistent.
56222b21
PZ
2896 *
2897 * In particular; it is important that futex_unlock_pi() can not
2898 * observe this inconsistency.
cfafcd11
PZ
2899 */
2900 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2901 ret = 0;
2902
2903no_block:
dd973998
DH
2904 /*
2905 * Fixup the pi_state owner and possibly acquire the lock if we
2906 * haven't already.
2907 */
ae791a2d 2908 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2909 /*
2910 * If fixup_owner() returned an error, proprogate that. If it acquired
2911 * the lock, clear our -ETIMEDOUT or -EINTR.
2912 */
2913 if (res)
2914 ret = (res < 0) ? res : 0;
c87e2837 2915
778e9a9c
AK
2916 /* Unqueue and drop the lock */
2917 unqueue_me_pi(&q);
9180bd46 2918 goto out;
c87e2837 2919
42d35d48 2920out_unlock_put_key:
0d00c7b2 2921 queue_unlock(hb);
c87e2837 2922
42d35d48 2923out:
97181f9b
TG
2924 if (to) {
2925 hrtimer_cancel(&to->timer);
237fc6e7 2926 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2927 }
dd973998 2928 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2929
42d35d48 2930uaddr_faulted:
0d00c7b2 2931 queue_unlock(hb);
778e9a9c 2932
d0725992 2933 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2934 if (ret)
9180bd46 2935 goto out;
c87e2837 2936
b41277dc 2937 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2938 goto retry_private;
2939
e4dc5b7a 2940 goto retry;
c87e2837
IM
2941}
2942
c87e2837
IM
2943/*
2944 * Userspace attempted a TID -> 0 atomic transition, and failed.
2945 * This is the in-kernel slowpath: we look up the PI state (if any),
2946 * and do the rt-mutex unlock.
2947 */
b41277dc 2948static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2949{
3f649ab7 2950 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2951 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2952 struct futex_hash_bucket *hb;
499f5aca 2953 struct futex_q *top_waiter;
e4dc5b7a 2954 int ret;
c87e2837 2955
bc2eecd7
NP
2956 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2957 return -ENOSYS;
2958
c87e2837
IM
2959retry:
2960 if (get_user(uval, uaddr))
2961 return -EFAULT;
2962 /*
2963 * We release only a lock we actually own:
2964 */
c0c9ed15 2965 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2966 return -EPERM;
c87e2837 2967
96d4f267 2968 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2969 if (ret)
2970 return ret;
c87e2837
IM
2971
2972 hb = hash_futex(&key);
2973 spin_lock(&hb->lock);
2974
c87e2837 2975 /*
ccf9e6a8
TG
2976 * Check waiters first. We do not trust user space values at
2977 * all and we at least want to know if user space fiddled
2978 * with the futex value instead of blindly unlocking.
c87e2837 2979 */
499f5aca
PZ
2980 top_waiter = futex_top_waiter(hb, &key);
2981 if (top_waiter) {
16ffa12d
PZ
2982 struct futex_pi_state *pi_state = top_waiter->pi_state;
2983
2984 ret = -EINVAL;
2985 if (!pi_state)
2986 goto out_unlock;
2987
2988 /*
2989 * If current does not own the pi_state then the futex is
2990 * inconsistent and user space fiddled with the futex value.
2991 */
2992 if (pi_state->owner != current)
2993 goto out_unlock;
2994
bebe5b51 2995 get_pi_state(pi_state);
802ab58d 2996 /*
bebe5b51
PZ
2997 * By taking wait_lock while still holding hb->lock, we ensure
2998 * there is no point where we hold neither; and therefore
2999 * wake_futex_pi() must observe a state consistent with what we
3000 * observed.
1a1fb985
TG
3001 *
3002 * In particular; this forces __rt_mutex_start_proxy() to
3003 * complete such that we're guaranteed to observe the
3004 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3005 */
bebe5b51 3006 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3007 spin_unlock(&hb->lock);
3008
c74aef2d 3009 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3010 ret = wake_futex_pi(uaddr, uval, pi_state);
3011
3012 put_pi_state(pi_state);
3013
3014 /*
3015 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3016 */
3017 if (!ret)
0f943850 3018 return ret;
c87e2837 3019 /*
ccf9e6a8
TG
3020 * The atomic access to the futex value generated a
3021 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3022 */
3023 if (ret == -EFAULT)
3024 goto pi_faulted;
89e9e66b
SAS
3025 /*
3026 * A unconditional UNLOCK_PI op raced against a waiter
3027 * setting the FUTEX_WAITERS bit. Try again.
3028 */
6b4f4bc9
WD
3029 if (ret == -EAGAIN)
3030 goto pi_retry;
802ab58d
SAS
3031 /*
3032 * wake_futex_pi has detected invalid state. Tell user
3033 * space.
3034 */
0f943850 3035 return ret;
c87e2837 3036 }
ccf9e6a8 3037
c87e2837 3038 /*
ccf9e6a8
TG
3039 * We have no kernel internal state, i.e. no waiters in the
3040 * kernel. Waiters which are about to queue themselves are stuck
3041 * on hb->lock. So we can safely ignore them. We do neither
3042 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3043 * owner.
c87e2837 3044 */
6b4f4bc9 3045 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3046 spin_unlock(&hb->lock);
6b4f4bc9
WD
3047 switch (ret) {
3048 case -EFAULT:
3049 goto pi_faulted;
3050
3051 case -EAGAIN:
3052 goto pi_retry;
3053
3054 default:
3055 WARN_ON_ONCE(1);
0f943850 3056 return ret;
6b4f4bc9 3057 }
16ffa12d 3058 }
c87e2837 3059
ccf9e6a8
TG
3060 /*
3061 * If uval has changed, let user space handle it.
3062 */
3063 ret = (curval == uval) ? 0 : -EAGAIN;
3064
c87e2837
IM
3065out_unlock:
3066 spin_unlock(&hb->lock);
c87e2837
IM
3067 return ret;
3068
6b4f4bc9 3069pi_retry:
6b4f4bc9
WD
3070 cond_resched();
3071 goto retry;
3072
c87e2837 3073pi_faulted:
c87e2837 3074
d0725992 3075 ret = fault_in_user_writeable(uaddr);
b5686363 3076 if (!ret)
c87e2837
IM
3077 goto retry;
3078
1da177e4
LT
3079 return ret;
3080}
3081
52400ba9
DH
3082/**
3083 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3084 * @hb: the hash_bucket futex_q was original enqueued on
3085 * @q: the futex_q woken while waiting to be requeued
3086 * @key2: the futex_key of the requeue target futex
3087 * @timeout: the timeout associated with the wait (NULL if none)
3088 *
3089 * Detect if the task was woken on the initial futex as opposed to the requeue
3090 * target futex. If so, determine if it was a timeout or a signal that caused
3091 * the wakeup and return the appropriate error code to the caller. Must be
3092 * called with the hb lock held.
3093 *
6c23cbbd 3094 * Return:
7b4ff1ad
MCC
3095 * - 0 = no early wakeup detected;
3096 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3097 */
3098static inline
3099int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3100 struct futex_q *q, union futex_key *key2,
3101 struct hrtimer_sleeper *timeout)
3102{
3103 int ret = 0;
3104
3105 /*
3106 * With the hb lock held, we avoid races while we process the wakeup.
3107 * We only need to hold hb (and not hb2) to ensure atomicity as the
3108 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3109 * It can't be requeued from uaddr2 to something else since we don't
3110 * support a PI aware source futex for requeue.
3111 */
3112 if (!match_futex(&q->key, key2)) {
3113 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3114 /*
3115 * We were woken prior to requeue by a timeout or a signal.
3116 * Unqueue the futex_q and determine which it was.
3117 */
2e12978a 3118 plist_del(&q->list, &hb->chain);
11d4616b 3119 hb_waiters_dec(hb);
52400ba9 3120
d58e6576 3121 /* Handle spurious wakeups gracefully */
11df6ddd 3122 ret = -EWOULDBLOCK;
52400ba9
DH
3123 if (timeout && !timeout->task)
3124 ret = -ETIMEDOUT;
d58e6576 3125 else if (signal_pending(current))
1c840c14 3126 ret = -ERESTARTNOINTR;
52400ba9
DH
3127 }
3128 return ret;
3129}
3130
3131/**
3132 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3133 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3134 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3135 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3136 * @val: the expected value of uaddr
3137 * @abs_time: absolute timeout
56ec1607 3138 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3139 * @uaddr2: the pi futex we will take prior to returning to user-space
3140 *
3141 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3142 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3143 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3144 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3145 * without one, the pi logic would not know which task to boost/deboost, if
3146 * there was a need to.
52400ba9
DH
3147 *
3148 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3149 * via the following--
52400ba9 3150 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3151 * 2) wakeup on uaddr2 after a requeue
3152 * 3) signal
3153 * 4) timeout
52400ba9 3154 *
cc6db4e6 3155 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3156 *
3157 * If 2, we may then block on trying to take the rt_mutex and return via:
3158 * 5) successful lock
3159 * 6) signal
3160 * 7) timeout
3161 * 8) other lock acquisition failure
3162 *
cc6db4e6 3163 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3164 *
3165 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3166 *
6c23cbbd 3167 * Return:
7b4ff1ad
MCC
3168 * - 0 - On success;
3169 * - <0 - On error
52400ba9 3170 */
b41277dc 3171static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3172 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3173 u32 __user *uaddr2)
52400ba9 3174{
5ca584d9 3175 struct hrtimer_sleeper timeout, *to;
52400ba9 3176 struct rt_mutex_waiter rt_waiter;
52400ba9 3177 struct futex_hash_bucket *hb;
5bdb05f9
DH
3178 union futex_key key2 = FUTEX_KEY_INIT;
3179 struct futex_q q = futex_q_init;
52400ba9 3180 int res, ret;
52400ba9 3181
bc2eecd7
NP
3182 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183 return -ENOSYS;
3184
6f7b0a2a
DH
3185 if (uaddr == uaddr2)
3186 return -EINVAL;
3187
52400ba9
DH
3188 if (!bitset)
3189 return -EINVAL;
3190
5ca584d9
WL
3191 to = futex_setup_timer(abs_time, &timeout, flags,
3192 current->timer_slack_ns);
52400ba9
DH
3193
3194 /*
3195 * The waiter is allocated on our stack, manipulated by the requeue
3196 * code while we sleep on uaddr.
3197 */
50809358 3198 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3199
96d4f267 3200 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3201 if (unlikely(ret != 0))
3202 goto out;
3203
84bc4af5
DH
3204 q.bitset = bitset;
3205 q.rt_waiter = &rt_waiter;
3206 q.requeue_pi_key = &key2;
3207
7ada876a
DH
3208 /*
3209 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3210 * count.
3211 */
b41277dc 3212 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3213 if (ret)
9180bd46 3214 goto out;
52400ba9 3215
e9c243a5
TG
3216 /*
3217 * The check above which compares uaddrs is not sufficient for
3218 * shared futexes. We need to compare the keys:
3219 */
3220 if (match_futex(&q.key, &key2)) {
13c42c2f 3221 queue_unlock(hb);
e9c243a5 3222 ret = -EINVAL;
9180bd46 3223 goto out;
e9c243a5
TG
3224 }
3225
52400ba9 3226 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3227 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3228
3229 spin_lock(&hb->lock);
3230 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3231 spin_unlock(&hb->lock);
3232 if (ret)
9180bd46 3233 goto out;
52400ba9
DH
3234
3235 /*
3236 * In order for us to be here, we know our q.key == key2, and since
3237 * we took the hb->lock above, we also know that futex_requeue() has
3238 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3239 * race with the atomic proxy lock acquisition by the requeue code. The
3240 * futex_requeue dropped our key1 reference and incremented our key2
3241 * reference count.
52400ba9
DH
3242 */
3243
a1565aa4
DB
3244 /*
3245 * Check if the requeue code acquired the second futex for us and do
3246 * any pertinent fixup.
3247 */
52400ba9 3248 if (!q.rt_waiter) {
52400ba9
DH
3249 if (q.pi_state && (q.pi_state->owner != current)) {
3250 spin_lock(q.lock_ptr);
a1565aa4 3251 ret = fixup_owner(uaddr2, &q, true);
fb75a428
TG
3252 /*
3253 * Drop the reference to the pi state which
3254 * the requeue_pi() code acquired for us.
3255 */
29e9ee5d 3256 put_pi_state(q.pi_state);
52400ba9 3257 spin_unlock(q.lock_ptr);
12bb3f7f
TG
3258 /*
3259 * Adjust the return value. It's either -EFAULT or
3260 * success (1) but the caller expects 0 for success.
3261 */
3262 ret = ret < 0 ? ret : 0;
52400ba9
DH
3263 }
3264 } else {
c236c8e9
PZ
3265 struct rt_mutex *pi_mutex;
3266
52400ba9
DH
3267 /*
3268 * We have been woken up by futex_unlock_pi(), a timeout, or a
3269 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3270 * the pi_state.
3271 */
f27071cb 3272 WARN_ON(!q.pi_state);
52400ba9 3273 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3274 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3275
3276 spin_lock(q.lock_ptr);
38d589f2
PZ
3277 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3278 ret = 0;
3279
3280 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3281 /*
3282 * Fixup the pi_state owner and possibly acquire the lock if we
3283 * haven't already.
3284 */
ae791a2d 3285 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3286 /*
3287 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3288 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3289 */
3290 if (res)
3291 ret = (res < 0) ? res : 0;
3292
3293 /* Unqueue and drop the lock. */
3294 unqueue_me_pi(&q);
3295 }
3296
c236c8e9 3297 if (ret == -EINTR) {
52400ba9 3298 /*
cc6db4e6
DH
3299 * We've already been requeued, but cannot restart by calling
3300 * futex_lock_pi() directly. We could restart this syscall, but
3301 * it would detect that the user space "val" changed and return
3302 * -EWOULDBLOCK. Save the overhead of the restart and return
3303 * -EWOULDBLOCK directly.
52400ba9 3304 */
2070887f 3305 ret = -EWOULDBLOCK;
52400ba9
DH
3306 }
3307
52400ba9
DH
3308out:
3309 if (to) {
3310 hrtimer_cancel(&to->timer);
3311 destroy_hrtimer_on_stack(&to->timer);
3312 }
3313 return ret;
3314}
3315
0771dfef
IM
3316/*
3317 * Support for robust futexes: the kernel cleans up held futexes at
3318 * thread exit time.
3319 *
3320 * Implementation: user-space maintains a per-thread list of locks it
3321 * is holding. Upon do_exit(), the kernel carefully walks this list,
3322 * and marks all locks that are owned by this thread with the
c87e2837 3323 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3324 * always manipulated with the lock held, so the list is private and
3325 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3326 * field, to allow the kernel to clean up if the thread dies after
3327 * acquiring the lock, but just before it could have added itself to
3328 * the list. There can only be one such pending lock.
3329 */
3330
3331/**
d96ee56c
DH
3332 * sys_set_robust_list() - Set the robust-futex list head of a task
3333 * @head: pointer to the list-head
3334 * @len: length of the list-head, as userspace expects
0771dfef 3335 */
836f92ad
HC
3336SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3337 size_t, len)
0771dfef 3338{
a0c1e907
TG
3339 if (!futex_cmpxchg_enabled)
3340 return -ENOSYS;
0771dfef
IM
3341 /*
3342 * The kernel knows only one size for now:
3343 */
3344 if (unlikely(len != sizeof(*head)))
3345 return -EINVAL;
3346
3347 current->robust_list = head;
3348
3349 return 0;
3350}
3351
3352/**
d96ee56c
DH
3353 * sys_get_robust_list() - Get the robust-futex list head of a task
3354 * @pid: pid of the process [zero for current task]
3355 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3356 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3357 */
836f92ad
HC
3358SYSCALL_DEFINE3(get_robust_list, int, pid,
3359 struct robust_list_head __user * __user *, head_ptr,
3360 size_t __user *, len_ptr)
0771dfef 3361{
ba46df98 3362 struct robust_list_head __user *head;
0771dfef 3363 unsigned long ret;
bdbb776f 3364 struct task_struct *p;
0771dfef 3365
a0c1e907
TG
3366 if (!futex_cmpxchg_enabled)
3367 return -ENOSYS;
3368
bdbb776f
KC
3369 rcu_read_lock();
3370
3371 ret = -ESRCH;
0771dfef 3372 if (!pid)
bdbb776f 3373 p = current;
0771dfef 3374 else {
228ebcbe 3375 p = find_task_by_vpid(pid);
0771dfef
IM
3376 if (!p)
3377 goto err_unlock;
0771dfef
IM
3378 }
3379
bdbb776f 3380 ret = -EPERM;
caaee623 3381 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3382 goto err_unlock;
3383
3384 head = p->robust_list;
3385 rcu_read_unlock();
3386
0771dfef
IM
3387 if (put_user(sizeof(*head), len_ptr))
3388 return -EFAULT;
3389 return put_user(head, head_ptr);
3390
3391err_unlock:
aaa2a97e 3392 rcu_read_unlock();
0771dfef
IM
3393
3394 return ret;
3395}
3396
ca16d5be
YT
3397/* Constants for the pending_op argument of handle_futex_death */
3398#define HANDLE_DEATH_PENDING true
3399#define HANDLE_DEATH_LIST false
3400
0771dfef
IM
3401/*
3402 * Process a futex-list entry, check whether it's owned by the
3403 * dying task, and do notification if so:
3404 */
ca16d5be
YT
3405static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3406 bool pi, bool pending_op)
0771dfef 3407{
3f649ab7 3408 u32 uval, nval, mval;
6b4f4bc9 3409 int err;
0771dfef 3410
5a07168d
CJ
3411 /* Futex address must be 32bit aligned */
3412 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3413 return -1;
3414
8f17d3a5
IM
3415retry:
3416 if (get_user(uval, uaddr))
0771dfef
IM
3417 return -1;
3418
ca16d5be
YT
3419 /*
3420 * Special case for regular (non PI) futexes. The unlock path in
3421 * user space has two race scenarios:
3422 *
3423 * 1. The unlock path releases the user space futex value and
3424 * before it can execute the futex() syscall to wake up
3425 * waiters it is killed.
3426 *
3427 * 2. A woken up waiter is killed before it can acquire the
3428 * futex in user space.
3429 *
3430 * In both cases the TID validation below prevents a wakeup of
3431 * potential waiters which can cause these waiters to block
3432 * forever.
3433 *
3434 * In both cases the following conditions are met:
3435 *
3436 * 1) task->robust_list->list_op_pending != NULL
3437 * @pending_op == true
3438 * 2) User space futex value == 0
3439 * 3) Regular futex: @pi == false
3440 *
3441 * If these conditions are met, it is safe to attempt waking up a
3442 * potential waiter without touching the user space futex value and
3443 * trying to set the OWNER_DIED bit. The user space futex value is
3444 * uncontended and the rest of the user space mutex state is
3445 * consistent, so a woken waiter will just take over the
3446 * uncontended futex. Setting the OWNER_DIED bit would create
3447 * inconsistent state and malfunction of the user space owner died
3448 * handling.
3449 */
3450 if (pending_op && !pi && !uval) {
3451 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3452 return 0;
3453 }
3454
6b4f4bc9
WD
3455 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3456 return 0;
3457
3458 /*
3459 * Ok, this dying thread is truly holding a futex
3460 * of interest. Set the OWNER_DIED bit atomically
3461 * via cmpxchg, and if the value had FUTEX_WAITERS
3462 * set, wake up a waiter (if any). (We have to do a
3463 * futex_wake() even if OWNER_DIED is already set -
3464 * to handle the rare but possible case of recursive
3465 * thread-death.) The rest of the cleanup is done in
3466 * userspace.
3467 */
3468 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3469
3470 /*
3471 * We are not holding a lock here, but we want to have
3472 * the pagefault_disable/enable() protection because
3473 * we want to handle the fault gracefully. If the
3474 * access fails we try to fault in the futex with R/W
3475 * verification via get_user_pages. get_user() above
3476 * does not guarantee R/W access. If that fails we
3477 * give up and leave the futex locked.
3478 */
3479 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3480 switch (err) {
3481 case -EFAULT:
6e0aa9f8
TG
3482 if (fault_in_user_writeable(uaddr))
3483 return -1;
3484 goto retry;
6b4f4bc9
WD
3485
3486 case -EAGAIN:
3487 cond_resched();
8f17d3a5 3488 goto retry;
0771dfef 3489
6b4f4bc9
WD
3490 default:
3491 WARN_ON_ONCE(1);
3492 return err;
3493 }
0771dfef 3494 }
6b4f4bc9
WD
3495
3496 if (nval != uval)
3497 goto retry;
3498
3499 /*
3500 * Wake robust non-PI futexes here. The wakeup of
3501 * PI futexes happens in exit_pi_state():
3502 */
3503 if (!pi && (uval & FUTEX_WAITERS))
3504 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3505
0771dfef
IM
3506 return 0;
3507}
3508
e3f2ddea
IM
3509/*
3510 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3511 */
3512static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3513 struct robust_list __user * __user *head,
1dcc41bb 3514 unsigned int *pi)
e3f2ddea
IM
3515{
3516 unsigned long uentry;
3517
ba46df98 3518 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3519 return -EFAULT;
3520
ba46df98 3521 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3522 *pi = uentry & 1;
3523
3524 return 0;
3525}
3526
0771dfef
IM
3527/*
3528 * Walk curr->robust_list (very carefully, it's a userspace list!)
3529 * and mark any locks found there dead, and notify any waiters.
3530 *
3531 * We silently return on any sign of list-walking problem.
3532 */
ba31c1a4 3533static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3534{
3535 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3536 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3537 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3538 unsigned int next_pi;
0771dfef 3539 unsigned long futex_offset;
9f96cb1e 3540 int rc;
0771dfef 3541
a0c1e907
TG
3542 if (!futex_cmpxchg_enabled)
3543 return;
3544
0771dfef
IM
3545 /*
3546 * Fetch the list head (which was registered earlier, via
3547 * sys_set_robust_list()):
3548 */
e3f2ddea 3549 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3550 return;
3551 /*
3552 * Fetch the relative futex offset:
3553 */
3554 if (get_user(futex_offset, &head->futex_offset))
3555 return;
3556 /*
3557 * Fetch any possibly pending lock-add first, and handle it
3558 * if it exists:
3559 */
e3f2ddea 3560 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3561 return;
e3f2ddea 3562
9f96cb1e 3563 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3564 while (entry != &head->list) {
9f96cb1e
MS
3565 /*
3566 * Fetch the next entry in the list before calling
3567 * handle_futex_death:
3568 */
3569 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3570 /*
3571 * A pending lock might already be on the list, so
c87e2837 3572 * don't process it twice:
0771dfef 3573 */
ca16d5be 3574 if (entry != pending) {
ba46df98 3575 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3576 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3577 return;
ca16d5be 3578 }
9f96cb1e 3579 if (rc)
0771dfef 3580 return;
9f96cb1e
MS
3581 entry = next_entry;
3582 pi = next_pi;
0771dfef
IM
3583 /*
3584 * Avoid excessively long or circular lists:
3585 */
3586 if (!--limit)
3587 break;
3588
3589 cond_resched();
3590 }
9f96cb1e 3591
ca16d5be 3592 if (pending) {
9f96cb1e 3593 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3594 curr, pip, HANDLE_DEATH_PENDING);
3595 }
0771dfef
IM
3596}
3597
af8cbda2 3598static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3599{
3600 if (unlikely(tsk->robust_list)) {
3601 exit_robust_list(tsk);
3602 tsk->robust_list = NULL;
3603 }
3604
3605#ifdef CONFIG_COMPAT
3606 if (unlikely(tsk->compat_robust_list)) {
3607 compat_exit_robust_list(tsk);
3608 tsk->compat_robust_list = NULL;
3609 }
3610#endif
3611
3612 if (unlikely(!list_empty(&tsk->pi_state_list)))
3613 exit_pi_state_list(tsk);
3614}
3615
18f69438
TG
3616/**
3617 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3618 * @tsk: task to set the state on
3619 *
3620 * Set the futex exit state of the task lockless. The futex waiter code
3621 * observes that state when a task is exiting and loops until the task has
3622 * actually finished the futex cleanup. The worst case for this is that the
3623 * waiter runs through the wait loop until the state becomes visible.
3624 *
3625 * This is called from the recursive fault handling path in do_exit().
3626 *
3627 * This is best effort. Either the futex exit code has run already or
3628 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3629 * take it over. If not, the problem is pushed back to user space. If the
3630 * futex exit code did not run yet, then an already queued waiter might
3631 * block forever, but there is nothing which can be done about that.
3632 */
3633void futex_exit_recursive(struct task_struct *tsk)
3634{
3f186d97
TG
3635 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3636 if (tsk->futex_state == FUTEX_STATE_EXITING)
3637 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3638 tsk->futex_state = FUTEX_STATE_DEAD;
3639}
3640
af8cbda2 3641static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3642{
3f186d97
TG
3643 /*
3644 * Prevent various race issues against a concurrent incoming waiter
3645 * including live locks by forcing the waiter to block on
3646 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3647 * attach_to_pi_owner().
3648 */
3649 mutex_lock(&tsk->futex_exit_mutex);
3650
18f69438 3651 /*
4a8e991b
TG
3652 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3653 *
3654 * This ensures that all subsequent checks of tsk->futex_state in
3655 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3656 * tsk->pi_lock held.
3657 *
3658 * It guarantees also that a pi_state which was queued right before
3659 * the state change under tsk->pi_lock by a concurrent waiter must
3660 * be observed in exit_pi_state_list().
18f69438
TG
3661 */
3662 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3663 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3664 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3665}
18f69438 3666
af8cbda2
TG
3667static void futex_cleanup_end(struct task_struct *tsk, int state)
3668{
3669 /*
3670 * Lockless store. The only side effect is that an observer might
3671 * take another loop until it becomes visible.
3672 */
3673 tsk->futex_state = state;
3f186d97
TG
3674 /*
3675 * Drop the exit protection. This unblocks waiters which observed
3676 * FUTEX_STATE_EXITING to reevaluate the state.
3677 */
3678 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3679}
18f69438 3680
af8cbda2
TG
3681void futex_exec_release(struct task_struct *tsk)
3682{
3683 /*
3684 * The state handling is done for consistency, but in the case of
3685 * exec() there is no way to prevent futher damage as the PID stays
3686 * the same. But for the unlikely and arguably buggy case that a
3687 * futex is held on exec(), this provides at least as much state
3688 * consistency protection which is possible.
3689 */
3690 futex_cleanup_begin(tsk);
3691 futex_cleanup(tsk);
3692 /*
3693 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3694 * exec a new binary.
3695 */
3696 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3697}
3698
3699void futex_exit_release(struct task_struct *tsk)
3700{
3701 futex_cleanup_begin(tsk);
3702 futex_cleanup(tsk);
3703 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3704}
3705
c19384b5 3706long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3707 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3708{
81b40539 3709 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3710 unsigned int flags = 0;
34f01cc1
ED
3711
3712 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3713 flags |= FLAGS_SHARED;
1da177e4 3714
b41277dc
DH
3715 if (op & FUTEX_CLOCK_REALTIME) {
3716 flags |= FLAGS_CLOCKRT;
337f1304
DH
3717 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3718 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3719 return -ENOSYS;
3720 }
1da177e4 3721
59263b51
TG
3722 switch (cmd) {
3723 case FUTEX_LOCK_PI:
3724 case FUTEX_UNLOCK_PI:
3725 case FUTEX_TRYLOCK_PI:
3726 case FUTEX_WAIT_REQUEUE_PI:
3727 case FUTEX_CMP_REQUEUE_PI:
3728 if (!futex_cmpxchg_enabled)
3729 return -ENOSYS;
3730 }
3731
34f01cc1 3732 switch (cmd) {
1da177e4 3733 case FUTEX_WAIT:
cd689985 3734 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3735 fallthrough;
cd689985 3736 case FUTEX_WAIT_BITSET:
81b40539 3737 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3738 case FUTEX_WAKE:
cd689985 3739 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3740 fallthrough;
cd689985 3741 case FUTEX_WAKE_BITSET:
81b40539 3742 return futex_wake(uaddr, flags, val, val3);
1da177e4 3743 case FUTEX_REQUEUE:
81b40539 3744 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3745 case FUTEX_CMP_REQUEUE:
81b40539 3746 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3747 case FUTEX_WAKE_OP:
81b40539 3748 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3749 case FUTEX_LOCK_PI:
996636dd 3750 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3751 case FUTEX_UNLOCK_PI:
81b40539 3752 return futex_unlock_pi(uaddr, flags);
c87e2837 3753 case FUTEX_TRYLOCK_PI:
996636dd 3754 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3755 case FUTEX_WAIT_REQUEUE_PI:
3756 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3757 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3758 uaddr2);
52400ba9 3759 case FUTEX_CMP_REQUEUE_PI:
81b40539 3760 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3761 }
81b40539 3762 return -ENOSYS;
1da177e4
LT
3763}
3764
3765
17da2bd9 3766SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c
AC
3767 const struct __kernel_timespec __user *, utime,
3768 u32 __user *, uaddr2, u32, val3)
1da177e4 3769{
bec2f7cb 3770 struct timespec64 ts;
c19384b5 3771 ktime_t t, *tp = NULL;
e2970f2f 3772 u32 val2 = 0;
34f01cc1 3773 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3774
cd689985 3775 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3776 cmd == FUTEX_WAIT_BITSET ||
3777 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3778 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3779 return -EFAULT;
bec2f7cb 3780 if (get_timespec64(&ts, utime))
1da177e4 3781 return -EFAULT;
bec2f7cb 3782 if (!timespec64_valid(&ts))
9741ef96 3783 return -EINVAL;
c19384b5 3784
bec2f7cb 3785 t = timespec64_to_ktime(ts);
34f01cc1 3786 if (cmd == FUTEX_WAIT)
5a7780e7 3787 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
3788 else if (!(op & FUTEX_CLOCK_REALTIME))
3789 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
c19384b5 3790 tp = &t;
1da177e4
LT
3791 }
3792 /*
52400ba9 3793 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3794 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3795 */
f54f0986 3796 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3797 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3798 val2 = (u32) (unsigned long) utime;
1da177e4 3799
c19384b5 3800 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3801}
3802
04e7712f
AB
3803#ifdef CONFIG_COMPAT
3804/*
3805 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3806 */
3807static inline int
3808compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3809 compat_uptr_t __user *head, unsigned int *pi)
3810{
3811 if (get_user(*uentry, head))
3812 return -EFAULT;
3813
3814 *entry = compat_ptr((*uentry) & ~1);
3815 *pi = (unsigned int)(*uentry) & 1;
3816
3817 return 0;
3818}
3819
3820static void __user *futex_uaddr(struct robust_list __user *entry,
3821 compat_long_t futex_offset)
3822{
3823 compat_uptr_t base = ptr_to_compat(entry);
3824 void __user *uaddr = compat_ptr(base + futex_offset);
3825
3826 return uaddr;
3827}
3828
3829/*
3830 * Walk curr->robust_list (very carefully, it's a userspace list!)
3831 * and mark any locks found there dead, and notify any waiters.
3832 *
3833 * We silently return on any sign of list-walking problem.
3834 */
ba31c1a4 3835static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3836{
3837 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3838 struct robust_list __user *entry, *next_entry, *pending;
3839 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3840 unsigned int next_pi;
04e7712f
AB
3841 compat_uptr_t uentry, next_uentry, upending;
3842 compat_long_t futex_offset;
3843 int rc;
3844
3845 if (!futex_cmpxchg_enabled)
3846 return;
3847
3848 /*
3849 * Fetch the list head (which was registered earlier, via
3850 * sys_set_robust_list()):
3851 */
3852 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3853 return;
3854 /*
3855 * Fetch the relative futex offset:
3856 */
3857 if (get_user(futex_offset, &head->futex_offset))
3858 return;
3859 /*
3860 * Fetch any possibly pending lock-add first, and handle it
3861 * if it exists:
3862 */
3863 if (compat_fetch_robust_entry(&upending, &pending,
3864 &head->list_op_pending, &pip))
3865 return;
3866
3867 next_entry = NULL; /* avoid warning with gcc */
3868 while (entry != (struct robust_list __user *) &head->list) {
3869 /*
3870 * Fetch the next entry in the list before calling
3871 * handle_futex_death:
3872 */
3873 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3874 (compat_uptr_t __user *)&entry->next, &next_pi);
3875 /*
3876 * A pending lock might already be on the list, so
3877 * dont process it twice:
3878 */
3879 if (entry != pending) {
3880 void __user *uaddr = futex_uaddr(entry, futex_offset);
3881
ca16d5be
YT
3882 if (handle_futex_death(uaddr, curr, pi,
3883 HANDLE_DEATH_LIST))
04e7712f
AB
3884 return;
3885 }
3886 if (rc)
3887 return;
3888 uentry = next_uentry;
3889 entry = next_entry;
3890 pi = next_pi;
3891 /*
3892 * Avoid excessively long or circular lists:
3893 */
3894 if (!--limit)
3895 break;
3896
3897 cond_resched();
3898 }
3899 if (pending) {
3900 void __user *uaddr = futex_uaddr(pending, futex_offset);
3901
ca16d5be 3902 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3903 }
3904}
3905
3906COMPAT_SYSCALL_DEFINE2(set_robust_list,
3907 struct compat_robust_list_head __user *, head,
3908 compat_size_t, len)
3909{
3910 if (!futex_cmpxchg_enabled)
3911 return -ENOSYS;
3912
3913 if (unlikely(len != sizeof(*head)))
3914 return -EINVAL;
3915
3916 current->compat_robust_list = head;
3917
3918 return 0;
3919}
3920
3921COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3922 compat_uptr_t __user *, head_ptr,
3923 compat_size_t __user *, len_ptr)
3924{
3925 struct compat_robust_list_head __user *head;
3926 unsigned long ret;
3927 struct task_struct *p;
3928
3929 if (!futex_cmpxchg_enabled)
3930 return -ENOSYS;
3931
3932 rcu_read_lock();
3933
3934 ret = -ESRCH;
3935 if (!pid)
3936 p = current;
3937 else {
3938 p = find_task_by_vpid(pid);
3939 if (!p)
3940 goto err_unlock;
3941 }
3942
3943 ret = -EPERM;
3944 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3945 goto err_unlock;
3946
3947 head = p->compat_robust_list;
3948 rcu_read_unlock();
3949
3950 if (put_user(sizeof(*head), len_ptr))
3951 return -EFAULT;
3952 return put_user(ptr_to_compat(head), head_ptr);
3953
3954err_unlock:
3955 rcu_read_unlock();
3956
3957 return ret;
3958}
bec2f7cb 3959#endif /* CONFIG_COMPAT */
04e7712f 3960
bec2f7cb 3961#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3962SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c 3963 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
04e7712f
AB
3964 u32, val3)
3965{
bec2f7cb 3966 struct timespec64 ts;
04e7712f
AB
3967 ktime_t t, *tp = NULL;
3968 int val2 = 0;
3969 int cmd = op & FUTEX_CMD_MASK;
3970
3971 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3972 cmd == FUTEX_WAIT_BITSET ||
3973 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3974 if (get_old_timespec32(&ts, utime))
04e7712f 3975 return -EFAULT;
bec2f7cb 3976 if (!timespec64_valid(&ts))
04e7712f
AB
3977 return -EINVAL;
3978
bec2f7cb 3979 t = timespec64_to_ktime(ts);
04e7712f
AB
3980 if (cmd == FUTEX_WAIT)
3981 t = ktime_add_safe(ktime_get(), t);
c2f7d08c
AV
3982 else if (!(op & FUTEX_CLOCK_REALTIME))
3983 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
04e7712f
AB
3984 tp = &t;
3985 }
3986 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3987 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3988 val2 = (int) (unsigned long) utime;
3989
3990 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3991}
bec2f7cb 3992#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3993
03b8c7b6 3994static void __init futex_detect_cmpxchg(void)
1da177e4 3995{
03b8c7b6 3996#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3997 u32 curval;
03b8c7b6
HC
3998
3999 /*
4000 * This will fail and we want it. Some arch implementations do
4001 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4002 * functionality. We want to know that before we call in any
4003 * of the complex code paths. Also we want to prevent
4004 * registration of robust lists in that case. NULL is
4005 * guaranteed to fault and we get -EFAULT on functional
4006 * implementation, the non-functional ones will return
4007 * -ENOSYS.
4008 */
4009 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4010 futex_cmpxchg_enabled = 1;
4011#endif
4012}
4013
4014static int __init futex_init(void)
4015{
63b1a816 4016 unsigned int futex_shift;
a52b89eb
DB
4017 unsigned long i;
4018
4019#if CONFIG_BASE_SMALL
4020 futex_hashsize = 16;
4021#else
4022 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4023#endif
4024
4025 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4026 futex_hashsize, 0,
4027 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4028 &futex_shift, NULL,
4029 futex_hashsize, futex_hashsize);
4030 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4031
4032 futex_detect_cmpxchg();
a0c1e907 4033
a52b89eb 4034 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4035 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4036 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4037 spin_lock_init(&futex_queues[i].lock);
4038 }
4039
1da177e4
LT
4040 return 0;
4041}
25f71d1c 4042core_initcall(futex_init);