]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futexes: Increase hash table size for better performance
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
a0c1e907
TG
72int __read_mostly futex_cmpxchg_enabled;
73
b41277dc
DH
74/*
75 * Futex flags used to encode options to functions and preserve them across
76 * restarts.
77 */
78#define FLAGS_SHARED 0x01
79#define FLAGS_CLOCKRT 0x02
80#define FLAGS_HAS_TIMEOUT 0x04
81
c87e2837
IM
82/*
83 * Priority Inheritance state:
84 */
85struct futex_pi_state {
86 /*
87 * list of 'owned' pi_state instances - these have to be
88 * cleaned up in do_exit() if the task exits prematurely:
89 */
90 struct list_head list;
91
92 /*
93 * The PI object:
94 */
95 struct rt_mutex pi_mutex;
96
97 struct task_struct *owner;
98 atomic_t refcount;
99
100 union futex_key key;
101};
102
d8d88fbb
DH
103/**
104 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 105 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
106 * @task: the task waiting on the futex
107 * @lock_ptr: the hash bucket lock
108 * @key: the key the futex is hashed on
109 * @pi_state: optional priority inheritance state
110 * @rt_waiter: rt_waiter storage for use with requeue_pi
111 * @requeue_pi_key: the requeue_pi target futex key
112 * @bitset: bitset for the optional bitmasked wakeup
113 *
114 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
115 * we can wake only the relevant ones (hashed queues may be shared).
116 *
117 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 118 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 119 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
120 * the second.
121 *
122 * PI futexes are typically woken before they are removed from the hash list via
123 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
124 */
125struct futex_q {
ec92d082 126 struct plist_node list;
1da177e4 127
d8d88fbb 128 struct task_struct *task;
1da177e4 129 spinlock_t *lock_ptr;
1da177e4 130 union futex_key key;
c87e2837 131 struct futex_pi_state *pi_state;
52400ba9 132 struct rt_mutex_waiter *rt_waiter;
84bc4af5 133 union futex_key *requeue_pi_key;
cd689985 134 u32 bitset;
1da177e4
LT
135};
136
5bdb05f9
DH
137static const struct futex_q futex_q_init = {
138 /* list gets initialized in queue_me()*/
139 .key = FUTEX_KEY_INIT,
140 .bitset = FUTEX_BITSET_MATCH_ANY
141};
142
1da177e4 143/*
b2d0994b
DH
144 * Hash buckets are shared by all the futex_keys that hash to the same
145 * location. Each key may have multiple futex_q structures, one for each task
146 * waiting on a futex.
1da177e4
LT
147 */
148struct futex_hash_bucket {
ec92d082
PP
149 spinlock_t lock;
150 struct plist_head chain;
a52b89eb 151} ____cacheline_aligned_in_smp;
1da177e4 152
a52b89eb
DB
153static unsigned long __read_mostly futex_hashsize;
154
155static struct futex_hash_bucket *futex_queues;
1da177e4 156
1da177e4
LT
157/*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160static struct futex_hash_bucket *hash_futex(union futex_key *key)
161{
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
a52b89eb 165 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
166}
167
168/*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171static inline int match_futex(union futex_key *key1, union futex_key *key2)
172{
2bc87203
DH
173 return (key1 && key2
174 && key1->both.word == key2->both.word
1da177e4
LT
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177}
178
38d47c1b
PZ
179/*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184static void get_futex_key_refs(union futex_key *key)
185{
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
7de9c6ee 191 ihold(key->shared.inode);
38d47c1b
PZ
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197}
198
199/*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203static void drop_futex_key_refs(union futex_key *key)
204{
90621c40
DH
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
38d47c1b 208 return;
90621c40 209 }
38d47c1b
PZ
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219}
220
34f01cc1 221/**
d96ee56c
DH
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
9ea71503
SB
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
34f01cc1 228 *
6c23cbbd
RD
229 * Return: a negative error code or 0
230 *
34f01cc1 231 * The key words are stored in *key on success.
1da177e4 232 *
6131ffaa 233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
b2d0994b 237 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 238 */
64d1304a 239static int
9ea71503 240get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 241{
e2970f2f 242 unsigned long address = (unsigned long)uaddr;
1da177e4 243 struct mm_struct *mm = current->mm;
a5b338f2 244 struct page *page, *page_head;
9ea71503 245 int err, ro = 0;
1da177e4
LT
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
e2970f2f 250 key->both.offset = address % PAGE_SIZE;
34f01cc1 251 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 252 return -EINVAL;
e2970f2f 253 address -= key->both.offset;
1da177e4 254
5cdec2d8
LT
255 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
256 return -EFAULT;
257
34f01cc1
ED
258 /*
259 * PROCESS_PRIVATE futexes are fast.
260 * As the mm cannot disappear under us and the 'key' only needs
261 * virtual address, we dont even have to find the underlying vma.
262 * Note : We do have to check 'uaddr' is a valid user address,
263 * but access_ok() should be faster than find_vma()
264 */
265 if (!fshared) {
34f01cc1
ED
266 key->private.mm = mm;
267 key->private.address = address;
42569c39 268 get_futex_key_refs(key);
34f01cc1
ED
269 return 0;
270 }
1da177e4 271
38d47c1b 272again:
7485d0d3 273 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
274 /*
275 * If write access is not required (eg. FUTEX_WAIT), try
276 * and get read-only access.
277 */
278 if (err == -EFAULT && rw == VERIFY_READ) {
279 err = get_user_pages_fast(address, 1, 0, &page);
280 ro = 1;
281 }
38d47c1b
PZ
282 if (err < 0)
283 return err;
9ea71503
SB
284 else
285 err = 0;
38d47c1b 286
a5b338f2
AA
287#ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 page_head = page;
289 if (unlikely(PageTail(page))) {
38d47c1b 290 put_page(page);
a5b338f2
AA
291 /* serialize against __split_huge_page_splitting() */
292 local_irq_disable();
f12d5bfc 293 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
294 page_head = compound_head(page);
295 /*
296 * page_head is valid pointer but we must pin
297 * it before taking the PG_lock and/or
298 * PG_compound_lock. The moment we re-enable
299 * irqs __split_huge_page_splitting() can
300 * return and the head page can be freed from
301 * under us. We can't take the PG_lock and/or
302 * PG_compound_lock on a page that could be
303 * freed from under us.
304 */
305 if (page != page_head) {
306 get_page(page_head);
307 put_page(page);
308 }
309 local_irq_enable();
310 } else {
311 local_irq_enable();
312 goto again;
313 }
314 }
315#else
316 page_head = compound_head(page);
317 if (page != page_head) {
318 get_page(page_head);
319 put_page(page);
320 }
321#endif
322
323 lock_page(page_head);
e6780f72
HD
324
325 /*
326 * If page_head->mapping is NULL, then it cannot be a PageAnon
327 * page; but it might be the ZERO_PAGE or in the gate area or
328 * in a special mapping (all cases which we are happy to fail);
329 * or it may have been a good file page when get_user_pages_fast
330 * found it, but truncated or holepunched or subjected to
331 * invalidate_complete_page2 before we got the page lock (also
332 * cases which we are happy to fail). And we hold a reference,
333 * so refcount care in invalidate_complete_page's remove_mapping
334 * prevents drop_caches from setting mapping to NULL beneath us.
335 *
336 * The case we do have to guard against is when memory pressure made
337 * shmem_writepage move it from filecache to swapcache beneath us:
338 * an unlikely race, but we do need to retry for page_head->mapping.
339 */
a5b338f2 340 if (!page_head->mapping) {
e6780f72 341 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
342 unlock_page(page_head);
343 put_page(page_head);
e6780f72
HD
344 if (shmem_swizzled)
345 goto again;
346 return -EFAULT;
38d47c1b 347 }
1da177e4
LT
348
349 /*
350 * Private mappings are handled in a simple way.
351 *
352 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
353 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 354 * the object not the particular process.
1da177e4 355 */
a5b338f2 356 if (PageAnon(page_head)) {
9ea71503
SB
357 /*
358 * A RO anonymous page will never change and thus doesn't make
359 * sense for futex operations.
360 */
361 if (ro) {
362 err = -EFAULT;
363 goto out;
364 }
365
38d47c1b 366 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 367 key->private.mm = mm;
e2970f2f 368 key->private.address = address;
38d47c1b
PZ
369 } else {
370 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 371 key->shared.inode = page_head->mapping->host;
13d60f4b 372 key->shared.pgoff = basepage_index(page);
1da177e4
LT
373 }
374
38d47c1b 375 get_futex_key_refs(key);
1da177e4 376
9ea71503 377out:
a5b338f2
AA
378 unlock_page(page_head);
379 put_page(page_head);
9ea71503 380 return err;
1da177e4
LT
381}
382
ae791a2d 383static inline void put_futex_key(union futex_key *key)
1da177e4 384{
38d47c1b 385 drop_futex_key_refs(key);
1da177e4
LT
386}
387
d96ee56c
DH
388/**
389 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
390 * @uaddr: pointer to faulting user space address
391 *
392 * Slow path to fixup the fault we just took in the atomic write
393 * access to @uaddr.
394 *
fb62db2b 395 * We have no generic implementation of a non-destructive write to the
d0725992
TG
396 * user address. We know that we faulted in the atomic pagefault
397 * disabled section so we can as well avoid the #PF overhead by
398 * calling get_user_pages() right away.
399 */
400static int fault_in_user_writeable(u32 __user *uaddr)
401{
722d0172
AK
402 struct mm_struct *mm = current->mm;
403 int ret;
404
405 down_read(&mm->mmap_sem);
2efaca92
BH
406 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
407 FAULT_FLAG_WRITE);
722d0172
AK
408 up_read(&mm->mmap_sem);
409
d0725992
TG
410 return ret < 0 ? ret : 0;
411}
412
4b1c486b
DH
413/**
414 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
415 * @hb: the hash bucket the futex_q's reside in
416 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
417 *
418 * Must be called with the hb lock held.
419 */
420static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
421 union futex_key *key)
422{
423 struct futex_q *this;
424
425 plist_for_each_entry(this, &hb->chain, list) {
426 if (match_futex(&this->key, key))
427 return this;
428 }
429 return NULL;
430}
431
37a9d912
ML
432static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
433 u32 uval, u32 newval)
36cf3b5c 434{
37a9d912 435 int ret;
36cf3b5c
TG
436
437 pagefault_disable();
37a9d912 438 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
439 pagefault_enable();
440
37a9d912 441 return ret;
36cf3b5c
TG
442}
443
444static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
445{
446 int ret;
447
a866374a 448 pagefault_disable();
e2970f2f 449 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 450 pagefault_enable();
1da177e4
LT
451
452 return ret ? -EFAULT : 0;
453}
454
c87e2837
IM
455
456/*
457 * PI code:
458 */
459static int refill_pi_state_cache(void)
460{
461 struct futex_pi_state *pi_state;
462
463 if (likely(current->pi_state_cache))
464 return 0;
465
4668edc3 466 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
467
468 if (!pi_state)
469 return -ENOMEM;
470
c87e2837
IM
471 INIT_LIST_HEAD(&pi_state->list);
472 /* pi_mutex gets initialized later */
473 pi_state->owner = NULL;
474 atomic_set(&pi_state->refcount, 1);
38d47c1b 475 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
476
477 current->pi_state_cache = pi_state;
478
479 return 0;
480}
481
482static struct futex_pi_state * alloc_pi_state(void)
483{
484 struct futex_pi_state *pi_state = current->pi_state_cache;
485
486 WARN_ON(!pi_state);
487 current->pi_state_cache = NULL;
488
489 return pi_state;
490}
491
492static void free_pi_state(struct futex_pi_state *pi_state)
493{
494 if (!atomic_dec_and_test(&pi_state->refcount))
495 return;
496
497 /*
498 * If pi_state->owner is NULL, the owner is most probably dying
499 * and has cleaned up the pi_state already
500 */
501 if (pi_state->owner) {
1d615482 502 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 503 list_del_init(&pi_state->list);
1d615482 504 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
505
506 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
507 }
508
509 if (current->pi_state_cache)
510 kfree(pi_state);
511 else {
512 /*
513 * pi_state->list is already empty.
514 * clear pi_state->owner.
515 * refcount is at 0 - put it back to 1.
516 */
517 pi_state->owner = NULL;
518 atomic_set(&pi_state->refcount, 1);
519 current->pi_state_cache = pi_state;
520 }
521}
522
523/*
524 * Look up the task based on what TID userspace gave us.
525 * We dont trust it.
526 */
527static struct task_struct * futex_find_get_task(pid_t pid)
528{
529 struct task_struct *p;
530
d359b549 531 rcu_read_lock();
228ebcbe 532 p = find_task_by_vpid(pid);
7a0ea09a
MH
533 if (p)
534 get_task_struct(p);
a06381fe 535
d359b549 536 rcu_read_unlock();
c87e2837
IM
537
538 return p;
539}
540
541/*
542 * This task is holding PI mutexes at exit time => bad.
543 * Kernel cleans up PI-state, but userspace is likely hosed.
544 * (Robust-futex cleanup is separate and might save the day for userspace.)
545 */
546void exit_pi_state_list(struct task_struct *curr)
547{
c87e2837
IM
548 struct list_head *next, *head = &curr->pi_state_list;
549 struct futex_pi_state *pi_state;
627371d7 550 struct futex_hash_bucket *hb;
38d47c1b 551 union futex_key key = FUTEX_KEY_INIT;
c87e2837 552
a0c1e907
TG
553 if (!futex_cmpxchg_enabled)
554 return;
c87e2837
IM
555 /*
556 * We are a ZOMBIE and nobody can enqueue itself on
557 * pi_state_list anymore, but we have to be careful
627371d7 558 * versus waiters unqueueing themselves:
c87e2837 559 */
1d615482 560 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
561 while (!list_empty(head)) {
562
563 next = head->next;
564 pi_state = list_entry(next, struct futex_pi_state, list);
565 key = pi_state->key;
627371d7 566 hb = hash_futex(&key);
1d615482 567 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 568
c87e2837
IM
569 spin_lock(&hb->lock);
570
1d615482 571 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
572 /*
573 * We dropped the pi-lock, so re-check whether this
574 * task still owns the PI-state:
575 */
c87e2837
IM
576 if (head->next != next) {
577 spin_unlock(&hb->lock);
578 continue;
579 }
580
c87e2837 581 WARN_ON(pi_state->owner != curr);
627371d7
IM
582 WARN_ON(list_empty(&pi_state->list));
583 list_del_init(&pi_state->list);
c87e2837 584 pi_state->owner = NULL;
1d615482 585 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
586
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 spin_unlock(&hb->lock);
590
1d615482 591 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 592 }
1d615482 593 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
594}
595
596static int
d0aa7a70
PP
597lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
598 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
599{
600 struct futex_pi_state *pi_state = NULL;
601 struct futex_q *this, *next;
c87e2837 602 struct task_struct *p;
778e9a9c 603 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 604
0d00c7b2 605 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 606 if (match_futex(&this->key, key)) {
c87e2837
IM
607 /*
608 * Another waiter already exists - bump up
609 * the refcount and return its pi_state:
610 */
611 pi_state = this->pi_state;
06a9ec29 612 /*
fb62db2b 613 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
614 */
615 if (unlikely(!pi_state))
616 return -EINVAL;
617
627371d7 618 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
619
620 /*
621 * When pi_state->owner is NULL then the owner died
622 * and another waiter is on the fly. pi_state->owner
623 * is fixed up by the task which acquires
624 * pi_state->rt_mutex.
625 *
626 * We do not check for pid == 0 which can happen when
627 * the owner died and robust_list_exit() cleared the
628 * TID.
629 */
630 if (pid && pi_state->owner) {
631 /*
632 * Bail out if user space manipulated the
633 * futex value.
634 */
635 if (pid != task_pid_vnr(pi_state->owner))
636 return -EINVAL;
637 }
627371d7 638
c87e2837 639 atomic_inc(&pi_state->refcount);
d0aa7a70 640 *ps = pi_state;
c87e2837
IM
641
642 return 0;
643 }
644 }
645
646 /*
e3f2ddea 647 * We are the first waiter - try to look up the real owner and attach
778e9a9c 648 * the new pi_state to it, but bail out when TID = 0
c87e2837 649 */
778e9a9c 650 if (!pid)
e3f2ddea 651 return -ESRCH;
c87e2837 652 p = futex_find_get_task(pid);
7a0ea09a
MH
653 if (!p)
654 return -ESRCH;
778e9a9c
AK
655
656 /*
657 * We need to look at the task state flags to figure out,
658 * whether the task is exiting. To protect against the do_exit
659 * change of the task flags, we do this protected by
660 * p->pi_lock:
661 */
1d615482 662 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
663 if (unlikely(p->flags & PF_EXITING)) {
664 /*
665 * The task is on the way out. When PF_EXITPIDONE is
666 * set, we know that the task has finished the
667 * cleanup:
668 */
669 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
670
1d615482 671 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
672 put_task_struct(p);
673 return ret;
674 }
c87e2837
IM
675
676 pi_state = alloc_pi_state();
677
678 /*
679 * Initialize the pi_mutex in locked state and make 'p'
680 * the owner of it:
681 */
682 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
683
684 /* Store the key for possible exit cleanups: */
d0aa7a70 685 pi_state->key = *key;
c87e2837 686
627371d7 687 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
688 list_add(&pi_state->list, &p->pi_state_list);
689 pi_state->owner = p;
1d615482 690 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
691
692 put_task_struct(p);
693
d0aa7a70 694 *ps = pi_state;
c87e2837
IM
695
696 return 0;
697}
698
1a52084d 699/**
d96ee56c 700 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
701 * @uaddr: the pi futex user address
702 * @hb: the pi futex hash bucket
703 * @key: the futex key associated with uaddr and hb
704 * @ps: the pi_state pointer where we store the result of the
705 * lookup
706 * @task: the task to perform the atomic lock work for. This will
707 * be "current" except in the case of requeue pi.
708 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 709 *
6c23cbbd
RD
710 * Return:
711 * 0 - ready to wait;
712 * 1 - acquired the lock;
1a52084d
DH
713 * <0 - error
714 *
715 * The hb->lock and futex_key refs shall be held by the caller.
716 */
717static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
718 union futex_key *key,
719 struct futex_pi_state **ps,
bab5bc9e 720 struct task_struct *task, int set_waiters)
1a52084d 721{
59fa6245 722 int lock_taken, ret, force_take = 0;
c0c9ed15 723 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
724
725retry:
726 ret = lock_taken = 0;
727
728 /*
729 * To avoid races, we attempt to take the lock here again
730 * (by doing a 0 -> TID atomic cmpxchg), while holding all
731 * the locks. It will most likely not succeed.
732 */
c0c9ed15 733 newval = vpid;
bab5bc9e
DH
734 if (set_waiters)
735 newval |= FUTEX_WAITERS;
1a52084d 736
37a9d912 737 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
738 return -EFAULT;
739
740 /*
741 * Detect deadlocks.
742 */
c0c9ed15 743 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
744 return -EDEADLK;
745
746 /*
747 * Surprise - we got the lock. Just return to userspace:
748 */
749 if (unlikely(!curval))
750 return 1;
751
752 uval = curval;
753
754 /*
755 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
756 * to wake at the next unlock.
757 */
758 newval = curval | FUTEX_WAITERS;
759
760 /*
59fa6245 761 * Should we force take the futex? See below.
1a52084d 762 */
59fa6245
TG
763 if (unlikely(force_take)) {
764 /*
765 * Keep the OWNER_DIED and the WAITERS bit and set the
766 * new TID value.
767 */
c0c9ed15 768 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 769 force_take = 0;
1a52084d
DH
770 lock_taken = 1;
771 }
772
37a9d912 773 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
774 return -EFAULT;
775 if (unlikely(curval != uval))
776 goto retry;
777
778 /*
59fa6245 779 * We took the lock due to forced take over.
1a52084d
DH
780 */
781 if (unlikely(lock_taken))
782 return 1;
783
784 /*
785 * We dont have the lock. Look up the PI state (or create it if
786 * we are the first waiter):
787 */
788 ret = lookup_pi_state(uval, hb, key, ps);
789
790 if (unlikely(ret)) {
791 switch (ret) {
792 case -ESRCH:
793 /*
59fa6245
TG
794 * We failed to find an owner for this
795 * futex. So we have no pi_state to block
796 * on. This can happen in two cases:
797 *
798 * 1) The owner died
799 * 2) A stale FUTEX_WAITERS bit
800 *
801 * Re-read the futex value.
1a52084d
DH
802 */
803 if (get_futex_value_locked(&curval, uaddr))
804 return -EFAULT;
805
806 /*
59fa6245
TG
807 * If the owner died or we have a stale
808 * WAITERS bit the owner TID in the user space
809 * futex is 0.
1a52084d 810 */
59fa6245
TG
811 if (!(curval & FUTEX_TID_MASK)) {
812 force_take = 1;
1a52084d
DH
813 goto retry;
814 }
815 default:
816 break;
817 }
818 }
819
820 return ret;
821}
822
2e12978a
LJ
823/**
824 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
825 * @q: The futex_q to unqueue
826 *
827 * The q->lock_ptr must not be NULL and must be held by the caller.
828 */
829static void __unqueue_futex(struct futex_q *q)
830{
831 struct futex_hash_bucket *hb;
832
29096202
SR
833 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
834 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
835 return;
836
837 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
838 plist_del(&q->list, &hb->chain);
839}
840
1da177e4
LT
841/*
842 * The hash bucket lock must be held when this is called.
843 * Afterwards, the futex_q must not be accessed.
844 */
845static void wake_futex(struct futex_q *q)
846{
f1a11e05
TG
847 struct task_struct *p = q->task;
848
aa10990e
DH
849 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
850 return;
851
1da177e4 852 /*
f1a11e05 853 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
854 * a non-futex wake up happens on another CPU then the task
855 * might exit and p would dereference a non-existing task
f1a11e05
TG
856 * struct. Prevent this by holding a reference on p across the
857 * wake up.
1da177e4 858 */
f1a11e05
TG
859 get_task_struct(p);
860
2e12978a 861 __unqueue_futex(q);
1da177e4 862 /*
f1a11e05
TG
863 * The waiting task can free the futex_q as soon as
864 * q->lock_ptr = NULL is written, without taking any locks. A
865 * memory barrier is required here to prevent the following
866 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 867 */
ccdea2f8 868 smp_wmb();
1da177e4 869 q->lock_ptr = NULL;
f1a11e05
TG
870
871 wake_up_state(p, TASK_NORMAL);
872 put_task_struct(p);
1da177e4
LT
873}
874
c87e2837
IM
875static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
876{
877 struct task_struct *new_owner;
878 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 879 u32 uninitialized_var(curval), newval;
c87e2837
IM
880
881 if (!pi_state)
882 return -EINVAL;
883
51246bfd
TG
884 /*
885 * If current does not own the pi_state then the futex is
886 * inconsistent and user space fiddled with the futex value.
887 */
888 if (pi_state->owner != current)
889 return -EINVAL;
890
d209d74d 891 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
892 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
893
894 /*
f123c98e
SR
895 * It is possible that the next waiter (the one that brought
896 * this owner to the kernel) timed out and is no longer
897 * waiting on the lock.
c87e2837
IM
898 */
899 if (!new_owner)
900 new_owner = this->task;
901
902 /*
903 * We pass it to the next owner. (The WAITERS bit is always
904 * kept enabled while there is PI state around. We must also
905 * preserve the owner died bit.)
906 */
e3f2ddea 907 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
908 int ret = 0;
909
b488893a 910 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 911
37a9d912 912 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 913 ret = -EFAULT;
cde898fa 914 else if (curval != uval)
778e9a9c
AK
915 ret = -EINVAL;
916 if (ret) {
d209d74d 917 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
918 return ret;
919 }
e3f2ddea 920 }
c87e2837 921
1d615482 922 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
923 WARN_ON(list_empty(&pi_state->list));
924 list_del_init(&pi_state->list);
1d615482 925 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 926
1d615482 927 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 928 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
929 list_add(&pi_state->list, &new_owner->pi_state_list);
930 pi_state->owner = new_owner;
1d615482 931 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 932
d209d74d 933 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
934 rt_mutex_unlock(&pi_state->pi_mutex);
935
936 return 0;
937}
938
939static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
940{
7cfdaf38 941 u32 uninitialized_var(oldval);
c87e2837
IM
942
943 /*
944 * There is no waiter, so we unlock the futex. The owner died
945 * bit has not to be preserved here. We are the owner:
946 */
37a9d912
ML
947 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
948 return -EFAULT;
c87e2837
IM
949 if (oldval != uval)
950 return -EAGAIN;
951
952 return 0;
953}
954
8b8f319f
IM
955/*
956 * Express the locking dependencies for lockdep:
957 */
958static inline void
959double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
960{
961 if (hb1 <= hb2) {
962 spin_lock(&hb1->lock);
963 if (hb1 < hb2)
964 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
965 } else { /* hb1 > hb2 */
966 spin_lock(&hb2->lock);
967 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
968 }
969}
970
5eb3dc62
DH
971static inline void
972double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
973{
f061d351 974 spin_unlock(&hb1->lock);
88f502fe
IM
975 if (hb1 != hb2)
976 spin_unlock(&hb2->lock);
5eb3dc62
DH
977}
978
1da177e4 979/*
b2d0994b 980 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 981 */
b41277dc
DH
982static int
983futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 984{
e2970f2f 985 struct futex_hash_bucket *hb;
1da177e4 986 struct futex_q *this, *next;
38d47c1b 987 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
988 int ret;
989
cd689985
TG
990 if (!bitset)
991 return -EINVAL;
992
9ea71503 993 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
994 if (unlikely(ret != 0))
995 goto out;
996
e2970f2f
IM
997 hb = hash_futex(&key);
998 spin_lock(&hb->lock);
1da177e4 999
0d00c7b2 1000 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1001 if (match_futex (&this->key, &key)) {
52400ba9 1002 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1003 ret = -EINVAL;
1004 break;
1005 }
cd689985
TG
1006
1007 /* Check if one of the bits is set in both bitsets */
1008 if (!(this->bitset & bitset))
1009 continue;
1010
1da177e4
LT
1011 wake_futex(this);
1012 if (++ret >= nr_wake)
1013 break;
1014 }
1015 }
1016
e2970f2f 1017 spin_unlock(&hb->lock);
ae791a2d 1018 put_futex_key(&key);
42d35d48 1019out:
1da177e4
LT
1020 return ret;
1021}
1022
4732efbe
JJ
1023/*
1024 * Wake up all waiters hashed on the physical page that is mapped
1025 * to this virtual address:
1026 */
e2970f2f 1027static int
b41277dc 1028futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1029 int nr_wake, int nr_wake2, int op)
4732efbe 1030{
38d47c1b 1031 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1032 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1033 struct futex_q *this, *next;
e4dc5b7a 1034 int ret, op_ret;
4732efbe 1035
e4dc5b7a 1036retry:
9ea71503 1037 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1038 if (unlikely(ret != 0))
1039 goto out;
9ea71503 1040 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1041 if (unlikely(ret != 0))
42d35d48 1042 goto out_put_key1;
4732efbe 1043
e2970f2f
IM
1044 hb1 = hash_futex(&key1);
1045 hb2 = hash_futex(&key2);
4732efbe 1046
e4dc5b7a 1047retry_private:
eaaea803 1048 double_lock_hb(hb1, hb2);
e2970f2f 1049 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1050 if (unlikely(op_ret < 0)) {
4732efbe 1051
5eb3dc62 1052 double_unlock_hb(hb1, hb2);
4732efbe 1053
7ee1dd3f 1054#ifndef CONFIG_MMU
e2970f2f
IM
1055 /*
1056 * we don't get EFAULT from MMU faults if we don't have an MMU,
1057 * but we might get them from range checking
1058 */
7ee1dd3f 1059 ret = op_ret;
42d35d48 1060 goto out_put_keys;
7ee1dd3f
DH
1061#endif
1062
796f8d9b
DG
1063 if (unlikely(op_ret != -EFAULT)) {
1064 ret = op_ret;
42d35d48 1065 goto out_put_keys;
796f8d9b
DG
1066 }
1067
d0725992 1068 ret = fault_in_user_writeable(uaddr2);
4732efbe 1069 if (ret)
de87fcc1 1070 goto out_put_keys;
4732efbe 1071
b41277dc 1072 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1073 goto retry_private;
1074
ae791a2d
TG
1075 put_futex_key(&key2);
1076 put_futex_key(&key1);
e4dc5b7a 1077 goto retry;
4732efbe
JJ
1078 }
1079
0d00c7b2 1080 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1081 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1082 if (this->pi_state || this->rt_waiter) {
1083 ret = -EINVAL;
1084 goto out_unlock;
1085 }
4732efbe
JJ
1086 wake_futex(this);
1087 if (++ret >= nr_wake)
1088 break;
1089 }
1090 }
1091
1092 if (op_ret > 0) {
4732efbe 1093 op_ret = 0;
0d00c7b2 1094 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1095 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1096 if (this->pi_state || this->rt_waiter) {
1097 ret = -EINVAL;
1098 goto out_unlock;
1099 }
4732efbe
JJ
1100 wake_futex(this);
1101 if (++op_ret >= nr_wake2)
1102 break;
1103 }
1104 }
1105 ret += op_ret;
1106 }
1107
aa10990e 1108out_unlock:
5eb3dc62 1109 double_unlock_hb(hb1, hb2);
42d35d48 1110out_put_keys:
ae791a2d 1111 put_futex_key(&key2);
42d35d48 1112out_put_key1:
ae791a2d 1113 put_futex_key(&key1);
42d35d48 1114out:
4732efbe
JJ
1115 return ret;
1116}
1117
9121e478
DH
1118/**
1119 * requeue_futex() - Requeue a futex_q from one hb to another
1120 * @q: the futex_q to requeue
1121 * @hb1: the source hash_bucket
1122 * @hb2: the target hash_bucket
1123 * @key2: the new key for the requeued futex_q
1124 */
1125static inline
1126void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1127 struct futex_hash_bucket *hb2, union futex_key *key2)
1128{
1129
1130 /*
1131 * If key1 and key2 hash to the same bucket, no need to
1132 * requeue.
1133 */
1134 if (likely(&hb1->chain != &hb2->chain)) {
1135 plist_del(&q->list, &hb1->chain);
1136 plist_add(&q->list, &hb2->chain);
1137 q->lock_ptr = &hb2->lock;
9121e478
DH
1138 }
1139 get_futex_key_refs(key2);
1140 q->key = *key2;
1141}
1142
52400ba9
DH
1143/**
1144 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1145 * @q: the futex_q
1146 * @key: the key of the requeue target futex
1147 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1148 *
1149 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1150 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1151 * to the requeue target futex so the waiter can detect the wakeup on the right
1152 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1153 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1154 * to protect access to the pi_state to fixup the owner later. Must be called
1155 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1156 */
1157static inline
beda2c7e
DH
1158void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1159 struct futex_hash_bucket *hb)
52400ba9 1160{
52400ba9
DH
1161 get_futex_key_refs(key);
1162 q->key = *key;
1163
2e12978a 1164 __unqueue_futex(q);
52400ba9
DH
1165
1166 WARN_ON(!q->rt_waiter);
1167 q->rt_waiter = NULL;
1168
beda2c7e 1169 q->lock_ptr = &hb->lock;
beda2c7e 1170
f1a11e05 1171 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1172}
1173
1174/**
1175 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1176 * @pifutex: the user address of the to futex
1177 * @hb1: the from futex hash bucket, must be locked by the caller
1178 * @hb2: the to futex hash bucket, must be locked by the caller
1179 * @key1: the from futex key
1180 * @key2: the to futex key
1181 * @ps: address to store the pi_state pointer
1182 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1183 *
1184 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1185 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1186 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1187 * hb1 and hb2 must be held by the caller.
52400ba9 1188 *
6c23cbbd
RD
1189 * Return:
1190 * 0 - failed to acquire the lock atomically;
1191 * 1 - acquired the lock;
52400ba9
DH
1192 * <0 - error
1193 */
1194static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1195 struct futex_hash_bucket *hb1,
1196 struct futex_hash_bucket *hb2,
1197 union futex_key *key1, union futex_key *key2,
bab5bc9e 1198 struct futex_pi_state **ps, int set_waiters)
52400ba9 1199{
bab5bc9e 1200 struct futex_q *top_waiter = NULL;
52400ba9
DH
1201 u32 curval;
1202 int ret;
1203
1204 if (get_futex_value_locked(&curval, pifutex))
1205 return -EFAULT;
1206
bab5bc9e
DH
1207 /*
1208 * Find the top_waiter and determine if there are additional waiters.
1209 * If the caller intends to requeue more than 1 waiter to pifutex,
1210 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1211 * as we have means to handle the possible fault. If not, don't set
1212 * the bit unecessarily as it will force the subsequent unlock to enter
1213 * the kernel.
1214 */
52400ba9
DH
1215 top_waiter = futex_top_waiter(hb1, key1);
1216
1217 /* There are no waiters, nothing for us to do. */
1218 if (!top_waiter)
1219 return 0;
1220
84bc4af5
DH
1221 /* Ensure we requeue to the expected futex. */
1222 if (!match_futex(top_waiter->requeue_pi_key, key2))
1223 return -EINVAL;
1224
52400ba9 1225 /*
bab5bc9e
DH
1226 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1227 * the contended case or if set_waiters is 1. The pi_state is returned
1228 * in ps in contended cases.
52400ba9 1229 */
bab5bc9e
DH
1230 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1231 set_waiters);
52400ba9 1232 if (ret == 1)
beda2c7e 1233 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1234
1235 return ret;
1236}
1237
1238/**
1239 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1240 * @uaddr1: source futex user address
b41277dc 1241 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1242 * @uaddr2: target futex user address
1243 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1244 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1245 * @cmpval: @uaddr1 expected value (or %NULL)
1246 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1247 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1248 *
1249 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1250 * uaddr2 atomically on behalf of the top waiter.
1251 *
6c23cbbd
RD
1252 * Return:
1253 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1254 * <0 - on error
1da177e4 1255 */
b41277dc
DH
1256static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1257 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1258 u32 *cmpval, int requeue_pi)
1da177e4 1259{
38d47c1b 1260 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1261 int drop_count = 0, task_count = 0, ret;
1262 struct futex_pi_state *pi_state = NULL;
e2970f2f 1263 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1264 struct futex_q *this, *next;
52400ba9
DH
1265 u32 curval2;
1266
1267 if (requeue_pi) {
1268 /*
1269 * requeue_pi requires a pi_state, try to allocate it now
1270 * without any locks in case it fails.
1271 */
1272 if (refill_pi_state_cache())
1273 return -ENOMEM;
1274 /*
1275 * requeue_pi must wake as many tasks as it can, up to nr_wake
1276 * + nr_requeue, since it acquires the rt_mutex prior to
1277 * returning to userspace, so as to not leave the rt_mutex with
1278 * waiters and no owner. However, second and third wake-ups
1279 * cannot be predicted as they involve race conditions with the
1280 * first wake and a fault while looking up the pi_state. Both
1281 * pthread_cond_signal() and pthread_cond_broadcast() should
1282 * use nr_wake=1.
1283 */
1284 if (nr_wake != 1)
1285 return -EINVAL;
1286 }
1da177e4 1287
42d35d48 1288retry:
52400ba9
DH
1289 if (pi_state != NULL) {
1290 /*
1291 * We will have to lookup the pi_state again, so free this one
1292 * to keep the accounting correct.
1293 */
1294 free_pi_state(pi_state);
1295 pi_state = NULL;
1296 }
1297
9ea71503 1298 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1299 if (unlikely(ret != 0))
1300 goto out;
9ea71503
SB
1301 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1302 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1303 if (unlikely(ret != 0))
42d35d48 1304 goto out_put_key1;
1da177e4 1305
e2970f2f
IM
1306 hb1 = hash_futex(&key1);
1307 hb2 = hash_futex(&key2);
1da177e4 1308
e4dc5b7a 1309retry_private:
8b8f319f 1310 double_lock_hb(hb1, hb2);
1da177e4 1311
e2970f2f
IM
1312 if (likely(cmpval != NULL)) {
1313 u32 curval;
1da177e4 1314
e2970f2f 1315 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1316
1317 if (unlikely(ret)) {
5eb3dc62 1318 double_unlock_hb(hb1, hb2);
1da177e4 1319
e2970f2f 1320 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1321 if (ret)
1322 goto out_put_keys;
1da177e4 1323
b41277dc 1324 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1325 goto retry_private;
1da177e4 1326
ae791a2d
TG
1327 put_futex_key(&key2);
1328 put_futex_key(&key1);
e4dc5b7a 1329 goto retry;
1da177e4 1330 }
e2970f2f 1331 if (curval != *cmpval) {
1da177e4
LT
1332 ret = -EAGAIN;
1333 goto out_unlock;
1334 }
1335 }
1336
52400ba9 1337 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1338 /*
1339 * Attempt to acquire uaddr2 and wake the top waiter. If we
1340 * intend to requeue waiters, force setting the FUTEX_WAITERS
1341 * bit. We force this here where we are able to easily handle
1342 * faults rather in the requeue loop below.
1343 */
52400ba9 1344 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1345 &key2, &pi_state, nr_requeue);
52400ba9
DH
1346
1347 /*
1348 * At this point the top_waiter has either taken uaddr2 or is
1349 * waiting on it. If the former, then the pi_state will not
1350 * exist yet, look it up one more time to ensure we have a
1351 * reference to it.
1352 */
1353 if (ret == 1) {
1354 WARN_ON(pi_state);
89061d3d 1355 drop_count++;
52400ba9
DH
1356 task_count++;
1357 ret = get_futex_value_locked(&curval2, uaddr2);
1358 if (!ret)
1359 ret = lookup_pi_state(curval2, hb2, &key2,
1360 &pi_state);
1361 }
1362
1363 switch (ret) {
1364 case 0:
1365 break;
1366 case -EFAULT:
1367 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1368 put_futex_key(&key2);
1369 put_futex_key(&key1);
d0725992 1370 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1371 if (!ret)
1372 goto retry;
1373 goto out;
1374 case -EAGAIN:
1375 /* The owner was exiting, try again. */
1376 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1377 put_futex_key(&key2);
1378 put_futex_key(&key1);
52400ba9
DH
1379 cond_resched();
1380 goto retry;
1381 default:
1382 goto out_unlock;
1383 }
1384 }
1385
0d00c7b2 1386 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1387 if (task_count - nr_wake >= nr_requeue)
1388 break;
1389
1390 if (!match_futex(&this->key, &key1))
1da177e4 1391 continue;
52400ba9 1392
392741e0
DH
1393 /*
1394 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1395 * be paired with each other and no other futex ops.
aa10990e
DH
1396 *
1397 * We should never be requeueing a futex_q with a pi_state,
1398 * which is awaiting a futex_unlock_pi().
392741e0
DH
1399 */
1400 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1401 (!requeue_pi && this->rt_waiter) ||
1402 this->pi_state) {
392741e0
DH
1403 ret = -EINVAL;
1404 break;
1405 }
52400ba9
DH
1406
1407 /*
1408 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1409 * lock, we already woke the top_waiter. If not, it will be
1410 * woken by futex_unlock_pi().
1411 */
1412 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1413 wake_futex(this);
52400ba9
DH
1414 continue;
1415 }
1da177e4 1416
84bc4af5
DH
1417 /* Ensure we requeue to the expected futex for requeue_pi. */
1418 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1419 ret = -EINVAL;
1420 break;
1421 }
1422
52400ba9
DH
1423 /*
1424 * Requeue nr_requeue waiters and possibly one more in the case
1425 * of requeue_pi if we couldn't acquire the lock atomically.
1426 */
1427 if (requeue_pi) {
1428 /* Prepare the waiter to take the rt_mutex. */
1429 atomic_inc(&pi_state->refcount);
1430 this->pi_state = pi_state;
1431 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1432 this->rt_waiter,
1433 this->task, 1);
1434 if (ret == 1) {
1435 /* We got the lock. */
beda2c7e 1436 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1437 drop_count++;
52400ba9
DH
1438 continue;
1439 } else if (ret) {
1440 /* -EDEADLK */
1441 this->pi_state = NULL;
1442 free_pi_state(pi_state);
1443 goto out_unlock;
1444 }
1da177e4 1445 }
52400ba9
DH
1446 requeue_futex(this, hb1, hb2, &key2);
1447 drop_count++;
1da177e4
LT
1448 }
1449
1450out_unlock:
5eb3dc62 1451 double_unlock_hb(hb1, hb2);
1da177e4 1452
cd84a42f
DH
1453 /*
1454 * drop_futex_key_refs() must be called outside the spinlocks. During
1455 * the requeue we moved futex_q's from the hash bucket at key1 to the
1456 * one at key2 and updated their key pointer. We no longer need to
1457 * hold the references to key1.
1458 */
1da177e4 1459 while (--drop_count >= 0)
9adef58b 1460 drop_futex_key_refs(&key1);
1da177e4 1461
42d35d48 1462out_put_keys:
ae791a2d 1463 put_futex_key(&key2);
42d35d48 1464out_put_key1:
ae791a2d 1465 put_futex_key(&key1);
42d35d48 1466out:
52400ba9
DH
1467 if (pi_state != NULL)
1468 free_pi_state(pi_state);
1469 return ret ? ret : task_count;
1da177e4
LT
1470}
1471
1472/* The key must be already stored in q->key. */
82af7aca 1473static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1474 __acquires(&hb->lock)
1da177e4 1475{
e2970f2f 1476 struct futex_hash_bucket *hb;
1da177e4 1477
e2970f2f
IM
1478 hb = hash_futex(&q->key);
1479 q->lock_ptr = &hb->lock;
1da177e4 1480
e2970f2f
IM
1481 spin_lock(&hb->lock);
1482 return hb;
1da177e4
LT
1483}
1484
d40d65c8 1485static inline void
0d00c7b2 1486queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1487 __releases(&hb->lock)
d40d65c8
DH
1488{
1489 spin_unlock(&hb->lock);
d40d65c8
DH
1490}
1491
1492/**
1493 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1494 * @q: The futex_q to enqueue
1495 * @hb: The destination hash bucket
1496 *
1497 * The hb->lock must be held by the caller, and is released here. A call to
1498 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1499 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1500 * or nothing if the unqueue is done as part of the wake process and the unqueue
1501 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1502 * an example).
1503 */
82af7aca 1504static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1505 __releases(&hb->lock)
1da177e4 1506{
ec92d082
PP
1507 int prio;
1508
1509 /*
1510 * The priority used to register this element is
1511 * - either the real thread-priority for the real-time threads
1512 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1513 * - or MAX_RT_PRIO for non-RT threads.
1514 * Thus, all RT-threads are woken first in priority order, and
1515 * the others are woken last, in FIFO order.
1516 */
1517 prio = min(current->normal_prio, MAX_RT_PRIO);
1518
1519 plist_node_init(&q->list, prio);
ec92d082 1520 plist_add(&q->list, &hb->chain);
c87e2837 1521 q->task = current;
e2970f2f 1522 spin_unlock(&hb->lock);
1da177e4
LT
1523}
1524
d40d65c8
DH
1525/**
1526 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1527 * @q: The futex_q to unqueue
1528 *
1529 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1530 * be paired with exactly one earlier call to queue_me().
1531 *
6c23cbbd
RD
1532 * Return:
1533 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1534 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1535 */
1da177e4
LT
1536static int unqueue_me(struct futex_q *q)
1537{
1da177e4 1538 spinlock_t *lock_ptr;
e2970f2f 1539 int ret = 0;
1da177e4
LT
1540
1541 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1542retry:
1da177e4 1543 lock_ptr = q->lock_ptr;
e91467ec 1544 barrier();
c80544dc 1545 if (lock_ptr != NULL) {
1da177e4
LT
1546 spin_lock(lock_ptr);
1547 /*
1548 * q->lock_ptr can change between reading it and
1549 * spin_lock(), causing us to take the wrong lock. This
1550 * corrects the race condition.
1551 *
1552 * Reasoning goes like this: if we have the wrong lock,
1553 * q->lock_ptr must have changed (maybe several times)
1554 * between reading it and the spin_lock(). It can
1555 * change again after the spin_lock() but only if it was
1556 * already changed before the spin_lock(). It cannot,
1557 * however, change back to the original value. Therefore
1558 * we can detect whether we acquired the correct lock.
1559 */
1560 if (unlikely(lock_ptr != q->lock_ptr)) {
1561 spin_unlock(lock_ptr);
1562 goto retry;
1563 }
2e12978a 1564 __unqueue_futex(q);
c87e2837
IM
1565
1566 BUG_ON(q->pi_state);
1567
1da177e4
LT
1568 spin_unlock(lock_ptr);
1569 ret = 1;
1570 }
1571
9adef58b 1572 drop_futex_key_refs(&q->key);
1da177e4
LT
1573 return ret;
1574}
1575
c87e2837
IM
1576/*
1577 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1578 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1579 * and dropped here.
c87e2837 1580 */
d0aa7a70 1581static void unqueue_me_pi(struct futex_q *q)
15e408cd 1582 __releases(q->lock_ptr)
c87e2837 1583{
2e12978a 1584 __unqueue_futex(q);
c87e2837
IM
1585
1586 BUG_ON(!q->pi_state);
1587 free_pi_state(q->pi_state);
1588 q->pi_state = NULL;
1589
d0aa7a70 1590 spin_unlock(q->lock_ptr);
c87e2837
IM
1591}
1592
d0aa7a70 1593/*
cdf71a10 1594 * Fixup the pi_state owner with the new owner.
d0aa7a70 1595 *
778e9a9c
AK
1596 * Must be called with hash bucket lock held and mm->sem held for non
1597 * private futexes.
d0aa7a70 1598 */
778e9a9c 1599static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1600 struct task_struct *newowner)
d0aa7a70 1601{
cdf71a10 1602 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1603 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1604 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1605 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1606 int ret;
d0aa7a70
PP
1607
1608 /* Owner died? */
1b7558e4
TG
1609 if (!pi_state->owner)
1610 newtid |= FUTEX_OWNER_DIED;
1611
1612 /*
1613 * We are here either because we stole the rtmutex from the
8161239a
LJ
1614 * previous highest priority waiter or we are the highest priority
1615 * waiter but failed to get the rtmutex the first time.
1616 * We have to replace the newowner TID in the user space variable.
1617 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1618 *
b2d0994b
DH
1619 * Note: We write the user space value _before_ changing the pi_state
1620 * because we can fault here. Imagine swapped out pages or a fork
1621 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1622 *
1623 * Modifying pi_state _before_ the user space value would
1624 * leave the pi_state in an inconsistent state when we fault
1625 * here, because we need to drop the hash bucket lock to
1626 * handle the fault. This might be observed in the PID check
1627 * in lookup_pi_state.
1628 */
1629retry:
1630 if (get_futex_value_locked(&uval, uaddr))
1631 goto handle_fault;
1632
1633 while (1) {
1634 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1635
37a9d912 1636 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1637 goto handle_fault;
1638 if (curval == uval)
1639 break;
1640 uval = curval;
1641 }
1642
1643 /*
1644 * We fixed up user space. Now we need to fix the pi_state
1645 * itself.
1646 */
d0aa7a70 1647 if (pi_state->owner != NULL) {
1d615482 1648 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1649 WARN_ON(list_empty(&pi_state->list));
1650 list_del_init(&pi_state->list);
1d615482 1651 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1652 }
d0aa7a70 1653
cdf71a10 1654 pi_state->owner = newowner;
d0aa7a70 1655
1d615482 1656 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1657 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1658 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1659 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1660 return 0;
d0aa7a70 1661
d0aa7a70 1662 /*
1b7558e4 1663 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1664 * lock here. That gives the other task (either the highest priority
1665 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1666 * chance to try the fixup of the pi_state. So once we are
1667 * back from handling the fault we need to check the pi_state
1668 * after reacquiring the hash bucket lock and before trying to
1669 * do another fixup. When the fixup has been done already we
1670 * simply return.
d0aa7a70 1671 */
1b7558e4
TG
1672handle_fault:
1673 spin_unlock(q->lock_ptr);
778e9a9c 1674
d0725992 1675 ret = fault_in_user_writeable(uaddr);
778e9a9c 1676
1b7558e4 1677 spin_lock(q->lock_ptr);
778e9a9c 1678
1b7558e4
TG
1679 /*
1680 * Check if someone else fixed it for us:
1681 */
1682 if (pi_state->owner != oldowner)
1683 return 0;
1684
1685 if (ret)
1686 return ret;
1687
1688 goto retry;
d0aa7a70
PP
1689}
1690
72c1bbf3 1691static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1692
dd973998
DH
1693/**
1694 * fixup_owner() - Post lock pi_state and corner case management
1695 * @uaddr: user address of the futex
dd973998
DH
1696 * @q: futex_q (contains pi_state and access to the rt_mutex)
1697 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1698 *
1699 * After attempting to lock an rt_mutex, this function is called to cleanup
1700 * the pi_state owner as well as handle race conditions that may allow us to
1701 * acquire the lock. Must be called with the hb lock held.
1702 *
6c23cbbd
RD
1703 * Return:
1704 * 1 - success, lock taken;
1705 * 0 - success, lock not taken;
dd973998
DH
1706 * <0 - on error (-EFAULT)
1707 */
ae791a2d 1708static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1709{
1710 struct task_struct *owner;
1711 int ret = 0;
1712
1713 if (locked) {
1714 /*
1715 * Got the lock. We might not be the anticipated owner if we
1716 * did a lock-steal - fix up the PI-state in that case:
1717 */
1718 if (q->pi_state->owner != current)
ae791a2d 1719 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1720 goto out;
1721 }
1722
1723 /*
1724 * Catch the rare case, where the lock was released when we were on the
1725 * way back before we locked the hash bucket.
1726 */
1727 if (q->pi_state->owner == current) {
1728 /*
1729 * Try to get the rt_mutex now. This might fail as some other
1730 * task acquired the rt_mutex after we removed ourself from the
1731 * rt_mutex waiters list.
1732 */
1733 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1734 locked = 1;
1735 goto out;
1736 }
1737
1738 /*
1739 * pi_state is incorrect, some other task did a lock steal and
1740 * we returned due to timeout or signal without taking the
8161239a 1741 * rt_mutex. Too late.
dd973998 1742 */
8161239a 1743 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1744 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1745 if (!owner)
1746 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1747 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1748 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1749 goto out;
1750 }
1751
1752 /*
1753 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1754 * the owner of the rt_mutex.
dd973998
DH
1755 */
1756 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1757 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1758 "pi-state %p\n", ret,
1759 q->pi_state->pi_mutex.owner,
1760 q->pi_state->owner);
1761
1762out:
1763 return ret ? ret : locked;
1764}
1765
ca5f9524
DH
1766/**
1767 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1768 * @hb: the futex hash bucket, must be locked by the caller
1769 * @q: the futex_q to queue up on
1770 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1771 */
1772static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1773 struct hrtimer_sleeper *timeout)
ca5f9524 1774{
9beba3c5
DH
1775 /*
1776 * The task state is guaranteed to be set before another task can
1777 * wake it. set_current_state() is implemented using set_mb() and
1778 * queue_me() calls spin_unlock() upon completion, both serializing
1779 * access to the hash list and forcing another memory barrier.
1780 */
f1a11e05 1781 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1782 queue_me(q, hb);
ca5f9524
DH
1783
1784 /* Arm the timer */
1785 if (timeout) {
1786 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1787 if (!hrtimer_active(&timeout->timer))
1788 timeout->task = NULL;
1789 }
1790
1791 /*
0729e196
DH
1792 * If we have been removed from the hash list, then another task
1793 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1794 */
1795 if (likely(!plist_node_empty(&q->list))) {
1796 /*
1797 * If the timer has already expired, current will already be
1798 * flagged for rescheduling. Only call schedule if there
1799 * is no timeout, or if it has yet to expire.
1800 */
1801 if (!timeout || timeout->task)
88c8004f 1802 freezable_schedule();
ca5f9524
DH
1803 }
1804 __set_current_state(TASK_RUNNING);
1805}
1806
f801073f
DH
1807/**
1808 * futex_wait_setup() - Prepare to wait on a futex
1809 * @uaddr: the futex userspace address
1810 * @val: the expected value
b41277dc 1811 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1812 * @q: the associated futex_q
1813 * @hb: storage for hash_bucket pointer to be returned to caller
1814 *
1815 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1816 * compare it with the expected value. Handle atomic faults internally.
1817 * Return with the hb lock held and a q.key reference on success, and unlocked
1818 * with no q.key reference on failure.
1819 *
6c23cbbd
RD
1820 * Return:
1821 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1822 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1823 */
b41277dc 1824static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1825 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1826{
e2970f2f
IM
1827 u32 uval;
1828 int ret;
1da177e4 1829
1da177e4 1830 /*
b2d0994b 1831 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1832 * Order is important:
1833 *
1834 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1835 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1836 *
1837 * The basic logical guarantee of a futex is that it blocks ONLY
1838 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1839 * any cond. If we locked the hash-bucket after testing *uaddr, that
1840 * would open a race condition where we could block indefinitely with
1da177e4
LT
1841 * cond(var) false, which would violate the guarantee.
1842 *
8fe8f545
ML
1843 * On the other hand, we insert q and release the hash-bucket only
1844 * after testing *uaddr. This guarantees that futex_wait() will NOT
1845 * absorb a wakeup if *uaddr does not match the desired values
1846 * while the syscall executes.
1da177e4 1847 */
f801073f 1848retry:
9ea71503 1849 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1850 if (unlikely(ret != 0))
a5a2a0c7 1851 return ret;
f801073f
DH
1852
1853retry_private:
1854 *hb = queue_lock(q);
1855
e2970f2f 1856 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1857
f801073f 1858 if (ret) {
0d00c7b2 1859 queue_unlock(*hb);
1da177e4 1860
e2970f2f 1861 ret = get_user(uval, uaddr);
e4dc5b7a 1862 if (ret)
f801073f 1863 goto out;
1da177e4 1864
b41277dc 1865 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1866 goto retry_private;
1867
ae791a2d 1868 put_futex_key(&q->key);
e4dc5b7a 1869 goto retry;
1da177e4 1870 }
ca5f9524 1871
f801073f 1872 if (uval != val) {
0d00c7b2 1873 queue_unlock(*hb);
f801073f 1874 ret = -EWOULDBLOCK;
2fff78c7 1875 }
1da177e4 1876
f801073f
DH
1877out:
1878 if (ret)
ae791a2d 1879 put_futex_key(&q->key);
f801073f
DH
1880 return ret;
1881}
1882
b41277dc
DH
1883static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1884 ktime_t *abs_time, u32 bitset)
f801073f
DH
1885{
1886 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1887 struct restart_block *restart;
1888 struct futex_hash_bucket *hb;
5bdb05f9 1889 struct futex_q q = futex_q_init;
f801073f
DH
1890 int ret;
1891
1892 if (!bitset)
1893 return -EINVAL;
f801073f
DH
1894 q.bitset = bitset;
1895
1896 if (abs_time) {
1897 to = &timeout;
1898
b41277dc
DH
1899 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1900 CLOCK_REALTIME : CLOCK_MONOTONIC,
1901 HRTIMER_MODE_ABS);
f801073f
DH
1902 hrtimer_init_sleeper(to, current);
1903 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1904 current->timer_slack_ns);
1905 }
1906
d58e6576 1907retry:
7ada876a
DH
1908 /*
1909 * Prepare to wait on uaddr. On success, holds hb lock and increments
1910 * q.key refs.
1911 */
b41277dc 1912 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1913 if (ret)
1914 goto out;
1915
ca5f9524 1916 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1917 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1918
1919 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1920 ret = 0;
7ada876a 1921 /* unqueue_me() drops q.key ref */
1da177e4 1922 if (!unqueue_me(&q))
7ada876a 1923 goto out;
2fff78c7 1924 ret = -ETIMEDOUT;
ca5f9524 1925 if (to && !to->task)
7ada876a 1926 goto out;
72c1bbf3 1927
e2970f2f 1928 /*
d58e6576
TG
1929 * We expect signal_pending(current), but we might be the
1930 * victim of a spurious wakeup as well.
e2970f2f 1931 */
7ada876a 1932 if (!signal_pending(current))
d58e6576 1933 goto retry;
d58e6576 1934
2fff78c7 1935 ret = -ERESTARTSYS;
c19384b5 1936 if (!abs_time)
7ada876a 1937 goto out;
1da177e4 1938
2fff78c7
PZ
1939 restart = &current_thread_info()->restart_block;
1940 restart->fn = futex_wait_restart;
a3c74c52 1941 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1942 restart->futex.val = val;
1943 restart->futex.time = abs_time->tv64;
1944 restart->futex.bitset = bitset;
0cd9c649 1945 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1946
2fff78c7
PZ
1947 ret = -ERESTART_RESTARTBLOCK;
1948
42d35d48 1949out:
ca5f9524
DH
1950 if (to) {
1951 hrtimer_cancel(&to->timer);
1952 destroy_hrtimer_on_stack(&to->timer);
1953 }
c87e2837
IM
1954 return ret;
1955}
1956
72c1bbf3
NP
1957
1958static long futex_wait_restart(struct restart_block *restart)
1959{
a3c74c52 1960 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1961 ktime_t t, *tp = NULL;
72c1bbf3 1962
a72188d8
DH
1963 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1964 t.tv64 = restart->futex.time;
1965 tp = &t;
1966 }
72c1bbf3 1967 restart->fn = do_no_restart_syscall;
b41277dc
DH
1968
1969 return (long)futex_wait(uaddr, restart->futex.flags,
1970 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1971}
1972
1973
c87e2837
IM
1974/*
1975 * Userspace tried a 0 -> TID atomic transition of the futex value
1976 * and failed. The kernel side here does the whole locking operation:
1977 * if there are waiters then it will block, it does PI, etc. (Due to
1978 * races the kernel might see a 0 value of the futex too.)
1979 */
b41277dc
DH
1980static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1981 ktime_t *time, int trylock)
c87e2837 1982{
c5780e97 1983 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1984 struct futex_hash_bucket *hb;
5bdb05f9 1985 struct futex_q q = futex_q_init;
dd973998 1986 int res, ret;
c87e2837
IM
1987
1988 if (refill_pi_state_cache())
1989 return -ENOMEM;
1990
c19384b5 1991 if (time) {
c5780e97 1992 to = &timeout;
237fc6e7
TG
1993 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1994 HRTIMER_MODE_ABS);
c5780e97 1995 hrtimer_init_sleeper(to, current);
cc584b21 1996 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1997 }
1998
42d35d48 1999retry:
9ea71503 2000 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2001 if (unlikely(ret != 0))
42d35d48 2002 goto out;
c87e2837 2003
e4dc5b7a 2004retry_private:
82af7aca 2005 hb = queue_lock(&q);
c87e2837 2006
bab5bc9e 2007 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2008 if (unlikely(ret)) {
778e9a9c 2009 switch (ret) {
1a52084d
DH
2010 case 1:
2011 /* We got the lock. */
2012 ret = 0;
2013 goto out_unlock_put_key;
2014 case -EFAULT:
2015 goto uaddr_faulted;
778e9a9c
AK
2016 case -EAGAIN:
2017 /*
2018 * Task is exiting and we just wait for the
2019 * exit to complete.
2020 */
0d00c7b2 2021 queue_unlock(hb);
ae791a2d 2022 put_futex_key(&q.key);
778e9a9c
AK
2023 cond_resched();
2024 goto retry;
778e9a9c 2025 default:
42d35d48 2026 goto out_unlock_put_key;
c87e2837 2027 }
c87e2837
IM
2028 }
2029
2030 /*
2031 * Only actually queue now that the atomic ops are done:
2032 */
82af7aca 2033 queue_me(&q, hb);
c87e2837 2034
c87e2837
IM
2035 WARN_ON(!q.pi_state);
2036 /*
2037 * Block on the PI mutex:
2038 */
2039 if (!trylock)
2040 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2041 else {
2042 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2043 /* Fixup the trylock return value: */
2044 ret = ret ? 0 : -EWOULDBLOCK;
2045 }
2046
a99e4e41 2047 spin_lock(q.lock_ptr);
dd973998
DH
2048 /*
2049 * Fixup the pi_state owner and possibly acquire the lock if we
2050 * haven't already.
2051 */
ae791a2d 2052 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2053 /*
2054 * If fixup_owner() returned an error, proprogate that. If it acquired
2055 * the lock, clear our -ETIMEDOUT or -EINTR.
2056 */
2057 if (res)
2058 ret = (res < 0) ? res : 0;
c87e2837 2059
e8f6386c 2060 /*
dd973998
DH
2061 * If fixup_owner() faulted and was unable to handle the fault, unlock
2062 * it and return the fault to userspace.
e8f6386c
DH
2063 */
2064 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2065 rt_mutex_unlock(&q.pi_state->pi_mutex);
2066
778e9a9c
AK
2067 /* Unqueue and drop the lock */
2068 unqueue_me_pi(&q);
c87e2837 2069
5ecb01cf 2070 goto out_put_key;
c87e2837 2071
42d35d48 2072out_unlock_put_key:
0d00c7b2 2073 queue_unlock(hb);
c87e2837 2074
42d35d48 2075out_put_key:
ae791a2d 2076 put_futex_key(&q.key);
42d35d48 2077out:
237fc6e7
TG
2078 if (to)
2079 destroy_hrtimer_on_stack(&to->timer);
dd973998 2080 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2081
42d35d48 2082uaddr_faulted:
0d00c7b2 2083 queue_unlock(hb);
778e9a9c 2084
d0725992 2085 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2086 if (ret)
2087 goto out_put_key;
c87e2837 2088
b41277dc 2089 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2090 goto retry_private;
2091
ae791a2d 2092 put_futex_key(&q.key);
e4dc5b7a 2093 goto retry;
c87e2837
IM
2094}
2095
c87e2837
IM
2096/*
2097 * Userspace attempted a TID -> 0 atomic transition, and failed.
2098 * This is the in-kernel slowpath: we look up the PI state (if any),
2099 * and do the rt-mutex unlock.
2100 */
b41277dc 2101static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2102{
2103 struct futex_hash_bucket *hb;
2104 struct futex_q *this, *next;
38d47c1b 2105 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2106 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2107 int ret;
c87e2837
IM
2108
2109retry:
2110 if (get_user(uval, uaddr))
2111 return -EFAULT;
2112 /*
2113 * We release only a lock we actually own:
2114 */
c0c9ed15 2115 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2116 return -EPERM;
c87e2837 2117
9ea71503 2118 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2119 if (unlikely(ret != 0))
2120 goto out;
2121
2122 hb = hash_futex(&key);
2123 spin_lock(&hb->lock);
2124
c87e2837
IM
2125 /*
2126 * To avoid races, try to do the TID -> 0 atomic transition
2127 * again. If it succeeds then we can return without waking
2128 * anyone else up:
2129 */
37a9d912
ML
2130 if (!(uval & FUTEX_OWNER_DIED) &&
2131 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2132 goto pi_faulted;
2133 /*
2134 * Rare case: we managed to release the lock atomically,
2135 * no need to wake anyone else up:
2136 */
c0c9ed15 2137 if (unlikely(uval == vpid))
c87e2837
IM
2138 goto out_unlock;
2139
2140 /*
2141 * Ok, other tasks may need to be woken up - check waiters
2142 * and do the wakeup if necessary:
2143 */
0d00c7b2 2144 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2145 if (!match_futex (&this->key, &key))
2146 continue;
2147 ret = wake_futex_pi(uaddr, uval, this);
2148 /*
2149 * The atomic access to the futex value
2150 * generated a pagefault, so retry the
2151 * user-access and the wakeup:
2152 */
2153 if (ret == -EFAULT)
2154 goto pi_faulted;
2155 goto out_unlock;
2156 }
2157 /*
2158 * No waiters - kernel unlocks the futex:
2159 */
e3f2ddea
IM
2160 if (!(uval & FUTEX_OWNER_DIED)) {
2161 ret = unlock_futex_pi(uaddr, uval);
2162 if (ret == -EFAULT)
2163 goto pi_faulted;
2164 }
c87e2837
IM
2165
2166out_unlock:
2167 spin_unlock(&hb->lock);
ae791a2d 2168 put_futex_key(&key);
c87e2837 2169
42d35d48 2170out:
c87e2837
IM
2171 return ret;
2172
2173pi_faulted:
778e9a9c 2174 spin_unlock(&hb->lock);
ae791a2d 2175 put_futex_key(&key);
c87e2837 2176
d0725992 2177 ret = fault_in_user_writeable(uaddr);
b5686363 2178 if (!ret)
c87e2837
IM
2179 goto retry;
2180
1da177e4
LT
2181 return ret;
2182}
2183
52400ba9
DH
2184/**
2185 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2186 * @hb: the hash_bucket futex_q was original enqueued on
2187 * @q: the futex_q woken while waiting to be requeued
2188 * @key2: the futex_key of the requeue target futex
2189 * @timeout: the timeout associated with the wait (NULL if none)
2190 *
2191 * Detect if the task was woken on the initial futex as opposed to the requeue
2192 * target futex. If so, determine if it was a timeout or a signal that caused
2193 * the wakeup and return the appropriate error code to the caller. Must be
2194 * called with the hb lock held.
2195 *
6c23cbbd
RD
2196 * Return:
2197 * 0 = no early wakeup detected;
2198 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2199 */
2200static inline
2201int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2202 struct futex_q *q, union futex_key *key2,
2203 struct hrtimer_sleeper *timeout)
2204{
2205 int ret = 0;
2206
2207 /*
2208 * With the hb lock held, we avoid races while we process the wakeup.
2209 * We only need to hold hb (and not hb2) to ensure atomicity as the
2210 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2211 * It can't be requeued from uaddr2 to something else since we don't
2212 * support a PI aware source futex for requeue.
2213 */
2214 if (!match_futex(&q->key, key2)) {
2215 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2216 /*
2217 * We were woken prior to requeue by a timeout or a signal.
2218 * Unqueue the futex_q and determine which it was.
2219 */
2e12978a 2220 plist_del(&q->list, &hb->chain);
52400ba9 2221
d58e6576 2222 /* Handle spurious wakeups gracefully */
11df6ddd 2223 ret = -EWOULDBLOCK;
52400ba9
DH
2224 if (timeout && !timeout->task)
2225 ret = -ETIMEDOUT;
d58e6576 2226 else if (signal_pending(current))
1c840c14 2227 ret = -ERESTARTNOINTR;
52400ba9
DH
2228 }
2229 return ret;
2230}
2231
2232/**
2233 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2234 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2235 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2236 * the same type, no requeueing from private to shared, etc.
2237 * @val: the expected value of uaddr
2238 * @abs_time: absolute timeout
56ec1607 2239 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2240 * @uaddr2: the pi futex we will take prior to returning to user-space
2241 *
2242 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2243 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2244 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2245 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2246 * without one, the pi logic would not know which task to boost/deboost, if
2247 * there was a need to.
52400ba9
DH
2248 *
2249 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2250 * via the following--
52400ba9 2251 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2252 * 2) wakeup on uaddr2 after a requeue
2253 * 3) signal
2254 * 4) timeout
52400ba9 2255 *
cc6db4e6 2256 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2257 *
2258 * If 2, we may then block on trying to take the rt_mutex and return via:
2259 * 5) successful lock
2260 * 6) signal
2261 * 7) timeout
2262 * 8) other lock acquisition failure
2263 *
cc6db4e6 2264 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2265 *
2266 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2267 *
6c23cbbd
RD
2268 * Return:
2269 * 0 - On success;
52400ba9
DH
2270 * <0 - On error
2271 */
b41277dc 2272static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2273 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2274 u32 __user *uaddr2)
52400ba9
DH
2275{
2276 struct hrtimer_sleeper timeout, *to = NULL;
2277 struct rt_mutex_waiter rt_waiter;
2278 struct rt_mutex *pi_mutex = NULL;
52400ba9 2279 struct futex_hash_bucket *hb;
5bdb05f9
DH
2280 union futex_key key2 = FUTEX_KEY_INIT;
2281 struct futex_q q = futex_q_init;
52400ba9 2282 int res, ret;
52400ba9 2283
6f7b0a2a
DH
2284 if (uaddr == uaddr2)
2285 return -EINVAL;
2286
52400ba9
DH
2287 if (!bitset)
2288 return -EINVAL;
2289
2290 if (abs_time) {
2291 to = &timeout;
b41277dc
DH
2292 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2293 CLOCK_REALTIME : CLOCK_MONOTONIC,
2294 HRTIMER_MODE_ABS);
52400ba9
DH
2295 hrtimer_init_sleeper(to, current);
2296 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2297 current->timer_slack_ns);
2298 }
2299
2300 /*
2301 * The waiter is allocated on our stack, manipulated by the requeue
2302 * code while we sleep on uaddr.
2303 */
2304 debug_rt_mutex_init_waiter(&rt_waiter);
2305 rt_waiter.task = NULL;
2306
9ea71503 2307 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2308 if (unlikely(ret != 0))
2309 goto out;
2310
84bc4af5
DH
2311 q.bitset = bitset;
2312 q.rt_waiter = &rt_waiter;
2313 q.requeue_pi_key = &key2;
2314
7ada876a
DH
2315 /*
2316 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2317 * count.
2318 */
b41277dc 2319 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2320 if (ret)
2321 goto out_key2;
52400ba9
DH
2322
2323 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2324 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2325
2326 spin_lock(&hb->lock);
2327 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2328 spin_unlock(&hb->lock);
2329 if (ret)
2330 goto out_put_keys;
2331
2332 /*
2333 * In order for us to be here, we know our q.key == key2, and since
2334 * we took the hb->lock above, we also know that futex_requeue() has
2335 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2336 * race with the atomic proxy lock acquisition by the requeue code. The
2337 * futex_requeue dropped our key1 reference and incremented our key2
2338 * reference count.
52400ba9
DH
2339 */
2340
2341 /* Check if the requeue code acquired the second futex for us. */
2342 if (!q.rt_waiter) {
2343 /*
2344 * Got the lock. We might not be the anticipated owner if we
2345 * did a lock-steal - fix up the PI-state in that case.
2346 */
2347 if (q.pi_state && (q.pi_state->owner != current)) {
2348 spin_lock(q.lock_ptr);
ae791a2d 2349 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2350 spin_unlock(q.lock_ptr);
2351 }
2352 } else {
2353 /*
2354 * We have been woken up by futex_unlock_pi(), a timeout, or a
2355 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2356 * the pi_state.
2357 */
f27071cb 2358 WARN_ON(!q.pi_state);
52400ba9
DH
2359 pi_mutex = &q.pi_state->pi_mutex;
2360 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2361 debug_rt_mutex_free_waiter(&rt_waiter);
2362
2363 spin_lock(q.lock_ptr);
2364 /*
2365 * Fixup the pi_state owner and possibly acquire the lock if we
2366 * haven't already.
2367 */
ae791a2d 2368 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2369 /*
2370 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2371 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2372 */
2373 if (res)
2374 ret = (res < 0) ? res : 0;
2375
2376 /* Unqueue and drop the lock. */
2377 unqueue_me_pi(&q);
2378 }
2379
2380 /*
2381 * If fixup_pi_state_owner() faulted and was unable to handle the
2382 * fault, unlock the rt_mutex and return the fault to userspace.
2383 */
2384 if (ret == -EFAULT) {
b6070a8d 2385 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2386 rt_mutex_unlock(pi_mutex);
2387 } else if (ret == -EINTR) {
52400ba9 2388 /*
cc6db4e6
DH
2389 * We've already been requeued, but cannot restart by calling
2390 * futex_lock_pi() directly. We could restart this syscall, but
2391 * it would detect that the user space "val" changed and return
2392 * -EWOULDBLOCK. Save the overhead of the restart and return
2393 * -EWOULDBLOCK directly.
52400ba9 2394 */
2070887f 2395 ret = -EWOULDBLOCK;
52400ba9
DH
2396 }
2397
2398out_put_keys:
ae791a2d 2399 put_futex_key(&q.key);
c8b15a70 2400out_key2:
ae791a2d 2401 put_futex_key(&key2);
52400ba9
DH
2402
2403out:
2404 if (to) {
2405 hrtimer_cancel(&to->timer);
2406 destroy_hrtimer_on_stack(&to->timer);
2407 }
2408 return ret;
2409}
2410
0771dfef
IM
2411/*
2412 * Support for robust futexes: the kernel cleans up held futexes at
2413 * thread exit time.
2414 *
2415 * Implementation: user-space maintains a per-thread list of locks it
2416 * is holding. Upon do_exit(), the kernel carefully walks this list,
2417 * and marks all locks that are owned by this thread with the
c87e2837 2418 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2419 * always manipulated with the lock held, so the list is private and
2420 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2421 * field, to allow the kernel to clean up if the thread dies after
2422 * acquiring the lock, but just before it could have added itself to
2423 * the list. There can only be one such pending lock.
2424 */
2425
2426/**
d96ee56c
DH
2427 * sys_set_robust_list() - Set the robust-futex list head of a task
2428 * @head: pointer to the list-head
2429 * @len: length of the list-head, as userspace expects
0771dfef 2430 */
836f92ad
HC
2431SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2432 size_t, len)
0771dfef 2433{
a0c1e907
TG
2434 if (!futex_cmpxchg_enabled)
2435 return -ENOSYS;
0771dfef
IM
2436 /*
2437 * The kernel knows only one size for now:
2438 */
2439 if (unlikely(len != sizeof(*head)))
2440 return -EINVAL;
2441
2442 current->robust_list = head;
2443
2444 return 0;
2445}
2446
2447/**
d96ee56c
DH
2448 * sys_get_robust_list() - Get the robust-futex list head of a task
2449 * @pid: pid of the process [zero for current task]
2450 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2451 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2452 */
836f92ad
HC
2453SYSCALL_DEFINE3(get_robust_list, int, pid,
2454 struct robust_list_head __user * __user *, head_ptr,
2455 size_t __user *, len_ptr)
0771dfef 2456{
ba46df98 2457 struct robust_list_head __user *head;
0771dfef 2458 unsigned long ret;
bdbb776f 2459 struct task_struct *p;
0771dfef 2460
a0c1e907
TG
2461 if (!futex_cmpxchg_enabled)
2462 return -ENOSYS;
2463
bdbb776f
KC
2464 rcu_read_lock();
2465
2466 ret = -ESRCH;
0771dfef 2467 if (!pid)
bdbb776f 2468 p = current;
0771dfef 2469 else {
228ebcbe 2470 p = find_task_by_vpid(pid);
0771dfef
IM
2471 if (!p)
2472 goto err_unlock;
0771dfef
IM
2473 }
2474
bdbb776f
KC
2475 ret = -EPERM;
2476 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2477 goto err_unlock;
2478
2479 head = p->robust_list;
2480 rcu_read_unlock();
2481
0771dfef
IM
2482 if (put_user(sizeof(*head), len_ptr))
2483 return -EFAULT;
2484 return put_user(head, head_ptr);
2485
2486err_unlock:
aaa2a97e 2487 rcu_read_unlock();
0771dfef
IM
2488
2489 return ret;
2490}
2491
2492/*
2493 * Process a futex-list entry, check whether it's owned by the
2494 * dying task, and do notification if so:
2495 */
e3f2ddea 2496int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2497{
7cfdaf38 2498 u32 uval, uninitialized_var(nval), mval;
0771dfef 2499
8f17d3a5
IM
2500retry:
2501 if (get_user(uval, uaddr))
0771dfef
IM
2502 return -1;
2503
b488893a 2504 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2505 /*
2506 * Ok, this dying thread is truly holding a futex
2507 * of interest. Set the OWNER_DIED bit atomically
2508 * via cmpxchg, and if the value had FUTEX_WAITERS
2509 * set, wake up a waiter (if any). (We have to do a
2510 * futex_wake() even if OWNER_DIED is already set -
2511 * to handle the rare but possible case of recursive
2512 * thread-death.) The rest of the cleanup is done in
2513 * userspace.
2514 */
e3f2ddea 2515 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2516 /*
2517 * We are not holding a lock here, but we want to have
2518 * the pagefault_disable/enable() protection because
2519 * we want to handle the fault gracefully. If the
2520 * access fails we try to fault in the futex with R/W
2521 * verification via get_user_pages. get_user() above
2522 * does not guarantee R/W access. If that fails we
2523 * give up and leave the futex locked.
2524 */
2525 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2526 if (fault_in_user_writeable(uaddr))
2527 return -1;
2528 goto retry;
2529 }
c87e2837 2530 if (nval != uval)
8f17d3a5 2531 goto retry;
0771dfef 2532
e3f2ddea
IM
2533 /*
2534 * Wake robust non-PI futexes here. The wakeup of
2535 * PI futexes happens in exit_pi_state():
2536 */
36cf3b5c 2537 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2538 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2539 }
2540 return 0;
2541}
2542
e3f2ddea
IM
2543/*
2544 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2545 */
2546static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2547 struct robust_list __user * __user *head,
1dcc41bb 2548 unsigned int *pi)
e3f2ddea
IM
2549{
2550 unsigned long uentry;
2551
ba46df98 2552 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2553 return -EFAULT;
2554
ba46df98 2555 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2556 *pi = uentry & 1;
2557
2558 return 0;
2559}
2560
0771dfef
IM
2561/*
2562 * Walk curr->robust_list (very carefully, it's a userspace list!)
2563 * and mark any locks found there dead, and notify any waiters.
2564 *
2565 * We silently return on any sign of list-walking problem.
2566 */
2567void exit_robust_list(struct task_struct *curr)
2568{
2569 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2570 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2571 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2572 unsigned int uninitialized_var(next_pi);
0771dfef 2573 unsigned long futex_offset;
9f96cb1e 2574 int rc;
0771dfef 2575
a0c1e907
TG
2576 if (!futex_cmpxchg_enabled)
2577 return;
2578
0771dfef
IM
2579 /*
2580 * Fetch the list head (which was registered earlier, via
2581 * sys_set_robust_list()):
2582 */
e3f2ddea 2583 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2584 return;
2585 /*
2586 * Fetch the relative futex offset:
2587 */
2588 if (get_user(futex_offset, &head->futex_offset))
2589 return;
2590 /*
2591 * Fetch any possibly pending lock-add first, and handle it
2592 * if it exists:
2593 */
e3f2ddea 2594 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2595 return;
e3f2ddea 2596
9f96cb1e 2597 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2598 while (entry != &head->list) {
9f96cb1e
MS
2599 /*
2600 * Fetch the next entry in the list before calling
2601 * handle_futex_death:
2602 */
2603 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2604 /*
2605 * A pending lock might already be on the list, so
c87e2837 2606 * don't process it twice:
0771dfef
IM
2607 */
2608 if (entry != pending)
ba46df98 2609 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2610 curr, pi))
0771dfef 2611 return;
9f96cb1e 2612 if (rc)
0771dfef 2613 return;
9f96cb1e
MS
2614 entry = next_entry;
2615 pi = next_pi;
0771dfef
IM
2616 /*
2617 * Avoid excessively long or circular lists:
2618 */
2619 if (!--limit)
2620 break;
2621
2622 cond_resched();
2623 }
9f96cb1e
MS
2624
2625 if (pending)
2626 handle_futex_death((void __user *)pending + futex_offset,
2627 curr, pip);
0771dfef
IM
2628}
2629
c19384b5 2630long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2631 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2632{
81b40539 2633 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2634 unsigned int flags = 0;
34f01cc1
ED
2635
2636 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2637 flags |= FLAGS_SHARED;
1da177e4 2638
b41277dc
DH
2639 if (op & FUTEX_CLOCK_REALTIME) {
2640 flags |= FLAGS_CLOCKRT;
2641 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2642 return -ENOSYS;
2643 }
1da177e4 2644
59263b51
TG
2645 switch (cmd) {
2646 case FUTEX_LOCK_PI:
2647 case FUTEX_UNLOCK_PI:
2648 case FUTEX_TRYLOCK_PI:
2649 case FUTEX_WAIT_REQUEUE_PI:
2650 case FUTEX_CMP_REQUEUE_PI:
2651 if (!futex_cmpxchg_enabled)
2652 return -ENOSYS;
2653 }
2654
34f01cc1 2655 switch (cmd) {
1da177e4 2656 case FUTEX_WAIT:
cd689985
TG
2657 val3 = FUTEX_BITSET_MATCH_ANY;
2658 case FUTEX_WAIT_BITSET:
81b40539 2659 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2660 case FUTEX_WAKE:
cd689985
TG
2661 val3 = FUTEX_BITSET_MATCH_ANY;
2662 case FUTEX_WAKE_BITSET:
81b40539 2663 return futex_wake(uaddr, flags, val, val3);
1da177e4 2664 case FUTEX_REQUEUE:
81b40539 2665 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2666 case FUTEX_CMP_REQUEUE:
81b40539 2667 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2668 case FUTEX_WAKE_OP:
81b40539 2669 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2670 case FUTEX_LOCK_PI:
81b40539 2671 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2672 case FUTEX_UNLOCK_PI:
81b40539 2673 return futex_unlock_pi(uaddr, flags);
c87e2837 2674 case FUTEX_TRYLOCK_PI:
81b40539 2675 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2676 case FUTEX_WAIT_REQUEUE_PI:
2677 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2678 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2679 uaddr2);
52400ba9 2680 case FUTEX_CMP_REQUEUE_PI:
81b40539 2681 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2682 }
81b40539 2683 return -ENOSYS;
1da177e4
LT
2684}
2685
2686
17da2bd9
HC
2687SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2688 struct timespec __user *, utime, u32 __user *, uaddr2,
2689 u32, val3)
1da177e4 2690{
c19384b5
PP
2691 struct timespec ts;
2692 ktime_t t, *tp = NULL;
e2970f2f 2693 u32 val2 = 0;
34f01cc1 2694 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2695
cd689985 2696 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2697 cmd == FUTEX_WAIT_BITSET ||
2698 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2699 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2700 return -EFAULT;
c19384b5 2701 if (!timespec_valid(&ts))
9741ef96 2702 return -EINVAL;
c19384b5
PP
2703
2704 t = timespec_to_ktime(ts);
34f01cc1 2705 if (cmd == FUTEX_WAIT)
5a7780e7 2706 t = ktime_add_safe(ktime_get(), t);
c19384b5 2707 tp = &t;
1da177e4
LT
2708 }
2709 /*
52400ba9 2710 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2711 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2712 */
f54f0986 2713 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2714 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2715 val2 = (u32) (unsigned long) utime;
1da177e4 2716
c19384b5 2717 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2718}
2719
f6d107fb 2720static int __init futex_init(void)
1da177e4 2721{
a0c1e907 2722 u32 curval;
a52b89eb
DB
2723 unsigned long i;
2724
2725#if CONFIG_BASE_SMALL
2726 futex_hashsize = 16;
2727#else
2728 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2729#endif
2730
2731 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2732 futex_hashsize, 0,
2733 futex_hashsize < 256 ? HASH_SMALL : 0,
2734 NULL, NULL, futex_hashsize, futex_hashsize);
95362fa9 2735
a0c1e907
TG
2736 /*
2737 * This will fail and we want it. Some arch implementations do
2738 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2739 * functionality. We want to know that before we call in any
2740 * of the complex code paths. Also we want to prevent
2741 * registration of robust lists in that case. NULL is
2742 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2743 * implementation, the non-functional ones will return
a0c1e907
TG
2744 * -ENOSYS.
2745 */
37a9d912 2746 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2747 futex_cmpxchg_enabled = 1;
2748
a52b89eb 2749 for (i = 0; i < futex_hashsize; i++) {
732375c6 2750 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2751 spin_lock_init(&futex_queues[i].lock);
2752 }
2753
1da177e4
LT
2754 return 0;
2755}
f6d107fb 2756__initcall(futex_init);