]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/futex.c
futex: update futex commentary
[mirror_ubuntu-zesty-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
b2d0994b
DH
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
1da177e4
LT
120 */
121struct futex_hash_bucket {
ec92d082
PP
122 spinlock_t lock;
123 struct plist_head chain;
1da177e4
LT
124};
125
126static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
1da177e4
LT
128/*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131static struct futex_hash_bucket *hash_futex(union futex_key *key)
132{
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137}
138
139/*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142static inline int match_futex(union futex_key *key1, union futex_key *key2)
143{
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147}
148
38d47c1b
PZ
149/*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154static void get_futex_key_refs(union futex_key *key)
155{
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167}
168
169/*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173static void drop_futex_key_refs(union futex_key *key)
174{
90621c40
DH
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
38d47c1b 178 return;
90621c40 179 }
38d47c1b
PZ
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189}
190
34f01cc1
ED
191/**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
b2d0994b 194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1
ED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
1da177e4 199 *
f3a43f3f 200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
b2d0994b 204 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 205 */
c2f9f201 206static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 207{
e2970f2f 208 unsigned long address = (unsigned long)uaddr;
1da177e4 209 struct mm_struct *mm = current->mm;
1da177e4
LT
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
e2970f2f 216 key->both.offset = address % PAGE_SIZE;
34f01cc1 217 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 218 return -EINVAL;
e2970f2f 219 address -= key->both.offset;
1da177e4 220
34f01cc1
ED
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
42569c39 233 get_futex_key_refs(key);
34f01cc1
ED
234 return 0;
235 }
1da177e4 236
38d47c1b 237again:
734b05b1 238 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
1da177e4
LT
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 254 * the object not the particular process.
1da177e4 255 */
38d47c1b
PZ
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 258 key->private.mm = mm;
e2970f2f 259 key->private.address = address;
38d47c1b
PZ
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
1da177e4
LT
264 }
265
38d47c1b 266 get_futex_key_refs(key);
1da177e4 267
38d47c1b
PZ
268 unlock_page(page);
269 put_page(page);
270 return 0;
1da177e4
LT
271}
272
38d47c1b 273static inline
c2f9f201 274void put_futex_key(int fshared, union futex_key *key)
1da177e4 275{
38d47c1b 276 drop_futex_key_refs(key);
1da177e4
LT
277}
278
36cf3b5c
TG
279static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
280{
281 u32 curval;
282
283 pagefault_disable();
284 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
285 pagefault_enable();
286
287 return curval;
288}
289
290static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
291{
292 int ret;
293
a866374a 294 pagefault_disable();
e2970f2f 295 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 296 pagefault_enable();
1da177e4
LT
297
298 return ret ? -EFAULT : 0;
299}
300
c87e2837 301/*
34f01cc1 302 * Fault handling.
c87e2837 303 */
c2f9f201 304static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
305{
306 struct vm_area_struct * vma;
307 struct mm_struct *mm = current->mm;
34f01cc1 308 int ret = -EFAULT;
c87e2837 309
34f01cc1
ED
310 if (attempt > 2)
311 return ret;
c87e2837 312
61270708 313 down_read(&mm->mmap_sem);
34f01cc1
ED
314 vma = find_vma(mm, address);
315 if (vma && address >= vma->vm_start &&
316 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
317 int fault;
318 fault = handle_mm_fault(mm, vma, address, 1);
319 if (unlikely((fault & VM_FAULT_ERROR))) {
320#if 0
321 /* XXX: let's do this when we verify it is OK */
322 if (ret & VM_FAULT_OOM)
323 ret = -ENOMEM;
324#endif
325 } else {
34f01cc1 326 ret = 0;
83c54070
NP
327 if (fault & VM_FAULT_MAJOR)
328 current->maj_flt++;
329 else
330 current->min_flt++;
34f01cc1 331 }
c87e2837 332 }
61270708 333 up_read(&mm->mmap_sem);
34f01cc1 334 return ret;
c87e2837
IM
335}
336
337/*
338 * PI code:
339 */
340static int refill_pi_state_cache(void)
341{
342 struct futex_pi_state *pi_state;
343
344 if (likely(current->pi_state_cache))
345 return 0;
346
4668edc3 347 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
348
349 if (!pi_state)
350 return -ENOMEM;
351
c87e2837
IM
352 INIT_LIST_HEAD(&pi_state->list);
353 /* pi_mutex gets initialized later */
354 pi_state->owner = NULL;
355 atomic_set(&pi_state->refcount, 1);
38d47c1b 356 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
357
358 current->pi_state_cache = pi_state;
359
360 return 0;
361}
362
363static struct futex_pi_state * alloc_pi_state(void)
364{
365 struct futex_pi_state *pi_state = current->pi_state_cache;
366
367 WARN_ON(!pi_state);
368 current->pi_state_cache = NULL;
369
370 return pi_state;
371}
372
373static void free_pi_state(struct futex_pi_state *pi_state)
374{
375 if (!atomic_dec_and_test(&pi_state->refcount))
376 return;
377
378 /*
379 * If pi_state->owner is NULL, the owner is most probably dying
380 * and has cleaned up the pi_state already
381 */
382 if (pi_state->owner) {
383 spin_lock_irq(&pi_state->owner->pi_lock);
384 list_del_init(&pi_state->list);
385 spin_unlock_irq(&pi_state->owner->pi_lock);
386
387 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
388 }
389
390 if (current->pi_state_cache)
391 kfree(pi_state);
392 else {
393 /*
394 * pi_state->list is already empty.
395 * clear pi_state->owner.
396 * refcount is at 0 - put it back to 1.
397 */
398 pi_state->owner = NULL;
399 atomic_set(&pi_state->refcount, 1);
400 current->pi_state_cache = pi_state;
401 }
402}
403
404/*
405 * Look up the task based on what TID userspace gave us.
406 * We dont trust it.
407 */
408static struct task_struct * futex_find_get_task(pid_t pid)
409{
410 struct task_struct *p;
c69e8d9c 411 const struct cred *cred = current_cred(), *pcred;
c87e2837 412
d359b549 413 rcu_read_lock();
228ebcbe 414 p = find_task_by_vpid(pid);
c69e8d9c 415 if (!p) {
a06381fe 416 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
417 } else {
418 pcred = __task_cred(p);
419 if (cred->euid != pcred->euid &&
420 cred->euid != pcred->uid)
421 p = ERR_PTR(-ESRCH);
422 else
423 get_task_struct(p);
424 }
a06381fe 425
d359b549 426 rcu_read_unlock();
c87e2837
IM
427
428 return p;
429}
430
431/*
432 * This task is holding PI mutexes at exit time => bad.
433 * Kernel cleans up PI-state, but userspace is likely hosed.
434 * (Robust-futex cleanup is separate and might save the day for userspace.)
435 */
436void exit_pi_state_list(struct task_struct *curr)
437{
c87e2837
IM
438 struct list_head *next, *head = &curr->pi_state_list;
439 struct futex_pi_state *pi_state;
627371d7 440 struct futex_hash_bucket *hb;
38d47c1b 441 union futex_key key = FUTEX_KEY_INIT;
c87e2837 442
a0c1e907
TG
443 if (!futex_cmpxchg_enabled)
444 return;
c87e2837
IM
445 /*
446 * We are a ZOMBIE and nobody can enqueue itself on
447 * pi_state_list anymore, but we have to be careful
627371d7 448 * versus waiters unqueueing themselves:
c87e2837
IM
449 */
450 spin_lock_irq(&curr->pi_lock);
451 while (!list_empty(head)) {
452
453 next = head->next;
454 pi_state = list_entry(next, struct futex_pi_state, list);
455 key = pi_state->key;
627371d7 456 hb = hash_futex(&key);
c87e2837
IM
457 spin_unlock_irq(&curr->pi_lock);
458
c87e2837
IM
459 spin_lock(&hb->lock);
460
461 spin_lock_irq(&curr->pi_lock);
627371d7
IM
462 /*
463 * We dropped the pi-lock, so re-check whether this
464 * task still owns the PI-state:
465 */
c87e2837
IM
466 if (head->next != next) {
467 spin_unlock(&hb->lock);
468 continue;
469 }
470
c87e2837 471 WARN_ON(pi_state->owner != curr);
627371d7
IM
472 WARN_ON(list_empty(&pi_state->list));
473 list_del_init(&pi_state->list);
c87e2837
IM
474 pi_state->owner = NULL;
475 spin_unlock_irq(&curr->pi_lock);
476
477 rt_mutex_unlock(&pi_state->pi_mutex);
478
479 spin_unlock(&hb->lock);
480
481 spin_lock_irq(&curr->pi_lock);
482 }
483 spin_unlock_irq(&curr->pi_lock);
484}
485
486static int
d0aa7a70
PP
487lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
488 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
489{
490 struct futex_pi_state *pi_state = NULL;
491 struct futex_q *this, *next;
ec92d082 492 struct plist_head *head;
c87e2837 493 struct task_struct *p;
778e9a9c 494 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
495
496 head = &hb->chain;
497
ec92d082 498 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 499 if (match_futex(&this->key, key)) {
c87e2837
IM
500 /*
501 * Another waiter already exists - bump up
502 * the refcount and return its pi_state:
503 */
504 pi_state = this->pi_state;
06a9ec29
TG
505 /*
506 * Userspace might have messed up non PI and PI futexes
507 */
508 if (unlikely(!pi_state))
509 return -EINVAL;
510
627371d7 511 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
512 WARN_ON(pid && pi_state->owner &&
513 pi_state->owner->pid != pid);
627371d7 514
c87e2837 515 atomic_inc(&pi_state->refcount);
d0aa7a70 516 *ps = pi_state;
c87e2837
IM
517
518 return 0;
519 }
520 }
521
522 /*
e3f2ddea 523 * We are the first waiter - try to look up the real owner and attach
778e9a9c 524 * the new pi_state to it, but bail out when TID = 0
c87e2837 525 */
778e9a9c 526 if (!pid)
e3f2ddea 527 return -ESRCH;
c87e2837 528 p = futex_find_get_task(pid);
778e9a9c
AK
529 if (IS_ERR(p))
530 return PTR_ERR(p);
531
532 /*
533 * We need to look at the task state flags to figure out,
534 * whether the task is exiting. To protect against the do_exit
535 * change of the task flags, we do this protected by
536 * p->pi_lock:
537 */
538 spin_lock_irq(&p->pi_lock);
539 if (unlikely(p->flags & PF_EXITING)) {
540 /*
541 * The task is on the way out. When PF_EXITPIDONE is
542 * set, we know that the task has finished the
543 * cleanup:
544 */
545 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
546
547 spin_unlock_irq(&p->pi_lock);
548 put_task_struct(p);
549 return ret;
550 }
c87e2837
IM
551
552 pi_state = alloc_pi_state();
553
554 /*
555 * Initialize the pi_mutex in locked state and make 'p'
556 * the owner of it:
557 */
558 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
559
560 /* Store the key for possible exit cleanups: */
d0aa7a70 561 pi_state->key = *key;
c87e2837 562
627371d7 563 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
564 list_add(&pi_state->list, &p->pi_state_list);
565 pi_state->owner = p;
566 spin_unlock_irq(&p->pi_lock);
567
568 put_task_struct(p);
569
d0aa7a70 570 *ps = pi_state;
c87e2837
IM
571
572 return 0;
573}
574
1da177e4
LT
575/*
576 * The hash bucket lock must be held when this is called.
577 * Afterwards, the futex_q must not be accessed.
578 */
579static void wake_futex(struct futex_q *q)
580{
ec92d082 581 plist_del(&q->list, &q->list.plist);
1da177e4
LT
582 /*
583 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 584 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 585 */
73500ac5 586 wake_up(&q->waiter);
1da177e4
LT
587 /*
588 * The waiting task can free the futex_q as soon as this is written,
589 * without taking any locks. This must come last.
8e31108b 590 *
b2d0994b
DH
591 * A memory barrier is required here to prevent the following store to
592 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
593 * end of wake_up() does not prevent this store from moving.
1da177e4 594 */
ccdea2f8 595 smp_wmb();
1da177e4
LT
596 q->lock_ptr = NULL;
597}
598
c87e2837
IM
599static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
600{
601 struct task_struct *new_owner;
602 struct futex_pi_state *pi_state = this->pi_state;
603 u32 curval, newval;
604
605 if (!pi_state)
606 return -EINVAL;
607
21778867 608 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
609 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
610
611 /*
612 * This happens when we have stolen the lock and the original
613 * pending owner did not enqueue itself back on the rt_mutex.
614 * Thats not a tragedy. We know that way, that a lock waiter
615 * is on the fly. We make the futex_q waiter the pending owner.
616 */
617 if (!new_owner)
618 new_owner = this->task;
619
620 /*
621 * We pass it to the next owner. (The WAITERS bit is always
622 * kept enabled while there is PI state around. We must also
623 * preserve the owner died bit.)
624 */
e3f2ddea 625 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
626 int ret = 0;
627
b488893a 628 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 629
36cf3b5c 630 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 631
e3f2ddea 632 if (curval == -EFAULT)
778e9a9c 633 ret = -EFAULT;
cde898fa 634 else if (curval != uval)
778e9a9c
AK
635 ret = -EINVAL;
636 if (ret) {
637 spin_unlock(&pi_state->pi_mutex.wait_lock);
638 return ret;
639 }
e3f2ddea 640 }
c87e2837 641
627371d7
IM
642 spin_lock_irq(&pi_state->owner->pi_lock);
643 WARN_ON(list_empty(&pi_state->list));
644 list_del_init(&pi_state->list);
645 spin_unlock_irq(&pi_state->owner->pi_lock);
646
647 spin_lock_irq(&new_owner->pi_lock);
648 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
649 list_add(&pi_state->list, &new_owner->pi_state_list);
650 pi_state->owner = new_owner;
627371d7
IM
651 spin_unlock_irq(&new_owner->pi_lock);
652
21778867 653 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
654 rt_mutex_unlock(&pi_state->pi_mutex);
655
656 return 0;
657}
658
659static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
660{
661 u32 oldval;
662
663 /*
664 * There is no waiter, so we unlock the futex. The owner died
665 * bit has not to be preserved here. We are the owner:
666 */
36cf3b5c 667 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
668
669 if (oldval == -EFAULT)
670 return oldval;
671 if (oldval != uval)
672 return -EAGAIN;
673
674 return 0;
675}
676
8b8f319f
IM
677/*
678 * Express the locking dependencies for lockdep:
679 */
680static inline void
681double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
682{
683 if (hb1 <= hb2) {
684 spin_lock(&hb1->lock);
685 if (hb1 < hb2)
686 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
687 } else { /* hb1 > hb2 */
688 spin_lock(&hb2->lock);
689 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
690 }
691}
692
1da177e4 693/*
b2d0994b 694 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 695 */
c2f9f201 696static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 697{
e2970f2f 698 struct futex_hash_bucket *hb;
1da177e4 699 struct futex_q *this, *next;
ec92d082 700 struct plist_head *head;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
702 int ret;
703
cd689985
TG
704 if (!bitset)
705 return -EINVAL;
706
34f01cc1 707 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
708 if (unlikely(ret != 0))
709 goto out;
710
e2970f2f
IM
711 hb = hash_futex(&key);
712 spin_lock(&hb->lock);
713 head = &hb->chain;
1da177e4 714
ec92d082 715 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 716 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
717 if (this->pi_state) {
718 ret = -EINVAL;
719 break;
720 }
cd689985
TG
721
722 /* Check if one of the bits is set in both bitsets */
723 if (!(this->bitset & bitset))
724 continue;
725
1da177e4
LT
726 wake_futex(this);
727 if (++ret >= nr_wake)
728 break;
729 }
730 }
731
e2970f2f 732 spin_unlock(&hb->lock);
38d47c1b 733 put_futex_key(fshared, &key);
42d35d48 734out:
1da177e4
LT
735 return ret;
736}
737
4732efbe
JJ
738/*
739 * Wake up all waiters hashed on the physical page that is mapped
740 * to this virtual address:
741 */
e2970f2f 742static int
c2f9f201 743futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 744 int nr_wake, int nr_wake2, int op)
4732efbe 745{
38d47c1b 746 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 747 struct futex_hash_bucket *hb1, *hb2;
ec92d082 748 struct plist_head *head;
4732efbe
JJ
749 struct futex_q *this, *next;
750 int ret, op_ret, attempt = 0;
751
752retryfull:
34f01cc1 753 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
754 if (unlikely(ret != 0))
755 goto out;
34f01cc1 756 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 757 if (unlikely(ret != 0))
42d35d48 758 goto out_put_key1;
4732efbe 759
e2970f2f
IM
760 hb1 = hash_futex(&key1);
761 hb2 = hash_futex(&key2);
4732efbe
JJ
762
763retry:
8b8f319f 764 double_lock_hb(hb1, hb2);
4732efbe 765
e2970f2f 766 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 767 if (unlikely(op_ret < 0)) {
e2970f2f 768 u32 dummy;
4732efbe 769
e2970f2f
IM
770 spin_unlock(&hb1->lock);
771 if (hb1 != hb2)
772 spin_unlock(&hb2->lock);
4732efbe 773
7ee1dd3f 774#ifndef CONFIG_MMU
e2970f2f
IM
775 /*
776 * we don't get EFAULT from MMU faults if we don't have an MMU,
777 * but we might get them from range checking
778 */
7ee1dd3f 779 ret = op_ret;
42d35d48 780 goto out_put_keys;
7ee1dd3f
DH
781#endif
782
796f8d9b
DG
783 if (unlikely(op_ret != -EFAULT)) {
784 ret = op_ret;
42d35d48 785 goto out_put_keys;
796f8d9b
DG
786 }
787
e2970f2f
IM
788 /*
789 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
790 * *(int __user *)uaddr2, but we can't modify it
791 * non-atomically. Therefore, if get_user below is not
792 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
793 * still holding the mmap_sem.
794 */
4732efbe 795 if (attempt++) {
34f01cc1 796 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 797 attempt);
34f01cc1 798 if (ret)
42d35d48 799 goto out_put_keys;
4732efbe
JJ
800 goto retry;
801 }
802
e2970f2f 803 ret = get_user(dummy, uaddr2);
4732efbe
JJ
804 if (ret)
805 return ret;
806
807 goto retryfull;
808 }
809
e2970f2f 810 head = &hb1->chain;
4732efbe 811
ec92d082 812 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
813 if (match_futex (&this->key, &key1)) {
814 wake_futex(this);
815 if (++ret >= nr_wake)
816 break;
817 }
818 }
819
820 if (op_ret > 0) {
e2970f2f 821 head = &hb2->chain;
4732efbe
JJ
822
823 op_ret = 0;
ec92d082 824 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
825 if (match_futex (&this->key, &key2)) {
826 wake_futex(this);
827 if (++op_ret >= nr_wake2)
828 break;
829 }
830 }
831 ret += op_ret;
832 }
833
e2970f2f
IM
834 spin_unlock(&hb1->lock);
835 if (hb1 != hb2)
836 spin_unlock(&hb2->lock);
42d35d48 837out_put_keys:
38d47c1b 838 put_futex_key(fshared, &key2);
42d35d48 839out_put_key1:
38d47c1b 840 put_futex_key(fshared, &key1);
42d35d48 841out:
4732efbe
JJ
842 return ret;
843}
844
1da177e4
LT
845/*
846 * Requeue all waiters hashed on one physical page to another
847 * physical page.
848 */
c2f9f201 849static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 850 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 851{
38d47c1b 852 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 853 struct futex_hash_bucket *hb1, *hb2;
ec92d082 854 struct plist_head *head1;
1da177e4
LT
855 struct futex_q *this, *next;
856 int ret, drop_count = 0;
857
42d35d48 858retry:
34f01cc1 859 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
860 if (unlikely(ret != 0))
861 goto out;
34f01cc1 862 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 863 if (unlikely(ret != 0))
42d35d48 864 goto out_put_key1;
1da177e4 865
e2970f2f
IM
866 hb1 = hash_futex(&key1);
867 hb2 = hash_futex(&key2);
1da177e4 868
8b8f319f 869 double_lock_hb(hb1, hb2);
1da177e4 870
e2970f2f
IM
871 if (likely(cmpval != NULL)) {
872 u32 curval;
1da177e4 873
e2970f2f 874 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
875
876 if (unlikely(ret)) {
e2970f2f
IM
877 spin_unlock(&hb1->lock);
878 if (hb1 != hb2)
879 spin_unlock(&hb2->lock);
1da177e4 880
e2970f2f 881 ret = get_user(curval, uaddr1);
1da177e4
LT
882
883 if (!ret)
884 goto retry;
885
42d35d48 886 goto out_put_keys;
1da177e4 887 }
e2970f2f 888 if (curval != *cmpval) {
1da177e4
LT
889 ret = -EAGAIN;
890 goto out_unlock;
891 }
892 }
893
e2970f2f 894 head1 = &hb1->chain;
ec92d082 895 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
896 if (!match_futex (&this->key, &key1))
897 continue;
898 if (++ret <= nr_wake) {
899 wake_futex(this);
900 } else {
59e0e0ac
SD
901 /*
902 * If key1 and key2 hash to the same bucket, no need to
903 * requeue.
904 */
905 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
906 plist_del(&this->list, &hb1->chain);
907 plist_add(&this->list, &hb2->chain);
59e0e0ac 908 this->lock_ptr = &hb2->lock;
ec92d082
PP
909#ifdef CONFIG_DEBUG_PI_LIST
910 this->list.plist.lock = &hb2->lock;
911#endif
778e9a9c 912 }
1da177e4 913 this->key = key2;
9adef58b 914 get_futex_key_refs(&key2);
1da177e4
LT
915 drop_count++;
916
917 if (ret - nr_wake >= nr_requeue)
918 break;
1da177e4
LT
919 }
920 }
921
922out_unlock:
e2970f2f
IM
923 spin_unlock(&hb1->lock);
924 if (hb1 != hb2)
925 spin_unlock(&hb2->lock);
1da177e4 926
9adef58b 927 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 928 while (--drop_count >= 0)
9adef58b 929 drop_futex_key_refs(&key1);
1da177e4 930
42d35d48 931out_put_keys:
38d47c1b 932 put_futex_key(fshared, &key2);
42d35d48 933out_put_key1:
38d47c1b 934 put_futex_key(fshared, &key1);
42d35d48 935out:
1da177e4
LT
936 return ret;
937}
938
939/* The key must be already stored in q->key. */
82af7aca 940static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 941{
e2970f2f 942 struct futex_hash_bucket *hb;
1da177e4 943
73500ac5 944 init_waitqueue_head(&q->waiter);
1da177e4 945
9adef58b 946 get_futex_key_refs(&q->key);
e2970f2f
IM
947 hb = hash_futex(&q->key);
948 q->lock_ptr = &hb->lock;
1da177e4 949
e2970f2f
IM
950 spin_lock(&hb->lock);
951 return hb;
1da177e4
LT
952}
953
82af7aca 954static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 955{
ec92d082
PP
956 int prio;
957
958 /*
959 * The priority used to register this element is
960 * - either the real thread-priority for the real-time threads
961 * (i.e. threads with a priority lower than MAX_RT_PRIO)
962 * - or MAX_RT_PRIO for non-RT threads.
963 * Thus, all RT-threads are woken first in priority order, and
964 * the others are woken last, in FIFO order.
965 */
966 prio = min(current->normal_prio, MAX_RT_PRIO);
967
968 plist_node_init(&q->list, prio);
969#ifdef CONFIG_DEBUG_PI_LIST
970 q->list.plist.lock = &hb->lock;
971#endif
972 plist_add(&q->list, &hb->chain);
c87e2837 973 q->task = current;
e2970f2f 974 spin_unlock(&hb->lock);
1da177e4
LT
975}
976
977static inline void
e2970f2f 978queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 979{
e2970f2f 980 spin_unlock(&hb->lock);
9adef58b 981 drop_futex_key_refs(&q->key);
1da177e4
LT
982}
983
984/*
985 * queue_me and unqueue_me must be called as a pair, each
986 * exactly once. They are called with the hashed spinlock held.
987 */
988
1da177e4
LT
989/* Return 1 if we were still queued (ie. 0 means we were woken) */
990static int unqueue_me(struct futex_q *q)
991{
1da177e4 992 spinlock_t *lock_ptr;
e2970f2f 993 int ret = 0;
1da177e4
LT
994
995 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 996retry:
1da177e4 997 lock_ptr = q->lock_ptr;
e91467ec 998 barrier();
c80544dc 999 if (lock_ptr != NULL) {
1da177e4
LT
1000 spin_lock(lock_ptr);
1001 /*
1002 * q->lock_ptr can change between reading it and
1003 * spin_lock(), causing us to take the wrong lock. This
1004 * corrects the race condition.
1005 *
1006 * Reasoning goes like this: if we have the wrong lock,
1007 * q->lock_ptr must have changed (maybe several times)
1008 * between reading it and the spin_lock(). It can
1009 * change again after the spin_lock() but only if it was
1010 * already changed before the spin_lock(). It cannot,
1011 * however, change back to the original value. Therefore
1012 * we can detect whether we acquired the correct lock.
1013 */
1014 if (unlikely(lock_ptr != q->lock_ptr)) {
1015 spin_unlock(lock_ptr);
1016 goto retry;
1017 }
ec92d082
PP
1018 WARN_ON(plist_node_empty(&q->list));
1019 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1020
1021 BUG_ON(q->pi_state);
1022
1da177e4
LT
1023 spin_unlock(lock_ptr);
1024 ret = 1;
1025 }
1026
9adef58b 1027 drop_futex_key_refs(&q->key);
1da177e4
LT
1028 return ret;
1029}
1030
c87e2837
IM
1031/*
1032 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1033 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1034 * and dropped here.
c87e2837 1035 */
d0aa7a70 1036static void unqueue_me_pi(struct futex_q *q)
c87e2837 1037{
ec92d082
PP
1038 WARN_ON(plist_node_empty(&q->list));
1039 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1040
1041 BUG_ON(!q->pi_state);
1042 free_pi_state(q->pi_state);
1043 q->pi_state = NULL;
1044
d0aa7a70 1045 spin_unlock(q->lock_ptr);
c87e2837 1046
9adef58b 1047 drop_futex_key_refs(&q->key);
c87e2837
IM
1048}
1049
d0aa7a70 1050/*
cdf71a10 1051 * Fixup the pi_state owner with the new owner.
d0aa7a70 1052 *
778e9a9c
AK
1053 * Must be called with hash bucket lock held and mm->sem held for non
1054 * private futexes.
d0aa7a70 1055 */
778e9a9c 1056static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1057 struct task_struct *newowner, int fshared)
d0aa7a70 1058{
cdf71a10 1059 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1060 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1061 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1062 u32 uval, curval, newval;
1b7558e4 1063 int ret, attempt = 0;
d0aa7a70
PP
1064
1065 /* Owner died? */
1b7558e4
TG
1066 if (!pi_state->owner)
1067 newtid |= FUTEX_OWNER_DIED;
1068
1069 /*
1070 * We are here either because we stole the rtmutex from the
1071 * pending owner or we are the pending owner which failed to
1072 * get the rtmutex. We have to replace the pending owner TID
1073 * in the user space variable. This must be atomic as we have
1074 * to preserve the owner died bit here.
1075 *
b2d0994b
DH
1076 * Note: We write the user space value _before_ changing the pi_state
1077 * because we can fault here. Imagine swapped out pages or a fork
1078 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1079 *
1080 * Modifying pi_state _before_ the user space value would
1081 * leave the pi_state in an inconsistent state when we fault
1082 * here, because we need to drop the hash bucket lock to
1083 * handle the fault. This might be observed in the PID check
1084 * in lookup_pi_state.
1085 */
1086retry:
1087 if (get_futex_value_locked(&uval, uaddr))
1088 goto handle_fault;
1089
1090 while (1) {
1091 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1092
1093 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1094
1095 if (curval == -EFAULT)
1096 goto handle_fault;
1097 if (curval == uval)
1098 break;
1099 uval = curval;
1100 }
1101
1102 /*
1103 * We fixed up user space. Now we need to fix the pi_state
1104 * itself.
1105 */
d0aa7a70
PP
1106 if (pi_state->owner != NULL) {
1107 spin_lock_irq(&pi_state->owner->pi_lock);
1108 WARN_ON(list_empty(&pi_state->list));
1109 list_del_init(&pi_state->list);
1110 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1111 }
d0aa7a70 1112
cdf71a10 1113 pi_state->owner = newowner;
d0aa7a70 1114
cdf71a10 1115 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1116 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1117 list_add(&pi_state->list, &newowner->pi_state_list);
1118 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1119 return 0;
d0aa7a70 1120
d0aa7a70 1121 /*
1b7558e4
TG
1122 * To handle the page fault we need to drop the hash bucket
1123 * lock here. That gives the other task (either the pending
1124 * owner itself or the task which stole the rtmutex) the
1125 * chance to try the fixup of the pi_state. So once we are
1126 * back from handling the fault we need to check the pi_state
1127 * after reacquiring the hash bucket lock and before trying to
1128 * do another fixup. When the fixup has been done already we
1129 * simply return.
d0aa7a70 1130 */
1b7558e4
TG
1131handle_fault:
1132 spin_unlock(q->lock_ptr);
778e9a9c 1133
c2f9f201 1134 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1135
1b7558e4 1136 spin_lock(q->lock_ptr);
778e9a9c 1137
1b7558e4
TG
1138 /*
1139 * Check if someone else fixed it for us:
1140 */
1141 if (pi_state->owner != oldowner)
1142 return 0;
1143
1144 if (ret)
1145 return ret;
1146
1147 goto retry;
d0aa7a70
PP
1148}
1149
34f01cc1
ED
1150/*
1151 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1152 * we encode in the 'flags' shared capability
34f01cc1 1153 */
1acdac10
TG
1154#define FLAGS_SHARED 0x01
1155#define FLAGS_CLOCKRT 0x02
34f01cc1 1156
72c1bbf3 1157static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1158
c2f9f201 1159static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1160 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1161{
c87e2837 1162 struct task_struct *curr = current;
2fff78c7 1163 struct restart_block *restart;
c87e2837 1164 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1165 struct futex_hash_bucket *hb;
1da177e4 1166 struct futex_q q;
e2970f2f
IM
1167 u32 uval;
1168 int ret;
bd197234 1169 struct hrtimer_sleeper t;
c19384b5 1170 int rem = 0;
1da177e4 1171
cd689985
TG
1172 if (!bitset)
1173 return -EINVAL;
1174
c87e2837 1175 q.pi_state = NULL;
cd689985 1176 q.bitset = bitset;
42d35d48 1177retry:
38d47c1b 1178 q.key = FUTEX_KEY_INIT;
34f01cc1 1179 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4 1180 if (unlikely(ret != 0))
42d35d48 1181 goto out;
1da177e4 1182
82af7aca 1183 hb = queue_lock(&q);
1da177e4
LT
1184
1185 /*
b2d0994b 1186 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1187 * Order is important:
1188 *
1189 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1190 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1191 *
1192 * The basic logical guarantee of a futex is that it blocks ONLY
1193 * if cond(var) is known to be true at the time of blocking, for
1194 * any cond. If we queued after testing *uaddr, that would open
1195 * a race condition where we could block indefinitely with
1196 * cond(var) false, which would violate the guarantee.
1197 *
1198 * A consequence is that futex_wait() can return zero and absorb
1199 * a wakeup when *uaddr != val on entry to the syscall. This is
1200 * rare, but normal.
1201 *
b2d0994b 1202 * For shared futexes, we hold the mmap semaphore, so the mapping
34f01cc1 1203 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1204 */
e2970f2f 1205 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1206
1207 if (unlikely(ret)) {
e2970f2f 1208 queue_unlock(&q, hb);
42d35d48 1209 put_futex_key(fshared, &q.key);
1da177e4 1210
e2970f2f 1211 ret = get_user(uval, uaddr);
1da177e4
LT
1212
1213 if (!ret)
1214 goto retry;
2fff78c7 1215 goto out;
1da177e4 1216 }
c87e2837 1217 ret = -EWOULDBLOCK;
2fff78c7
PZ
1218 if (unlikely(uval != val)) {
1219 queue_unlock(&q, hb);
1220 goto out_put_key;
1221 }
1da177e4
LT
1222
1223 /* Only actually queue if *uaddr contained val. */
82af7aca 1224 queue_me(&q, hb);
1da177e4 1225
1da177e4
LT
1226 /*
1227 * There might have been scheduling since the queue_me(), as we
1228 * cannot hold a spinlock across the get_user() in case it
1229 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1230 * queueing ourselves into the futex hash. This code thus has to
1231 * rely on the futex_wake() code removing us from hash when it
1232 * wakes us up.
1233 */
1234
1235 /* add_wait_queue is the barrier after __set_current_state. */
1236 __set_current_state(TASK_INTERRUPTIBLE);
73500ac5 1237 add_wait_queue(&q.waiter, &wait);
1da177e4 1238 /*
ec92d082 1239 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1240 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1241 */
ec92d082 1242 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1243 if (!abs_time)
1244 schedule();
1245 else {
ae4b748e
AV
1246 unsigned long slack;
1247 slack = current->timer_slack_ns;
1248 if (rt_task(current))
1249 slack = 0;
1acdac10
TG
1250 hrtimer_init_on_stack(&t.timer,
1251 clockrt ? CLOCK_REALTIME :
1252 CLOCK_MONOTONIC,
1253 HRTIMER_MODE_ABS);
c19384b5 1254 hrtimer_init_sleeper(&t, current);
ae4b748e 1255 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
c19384b5 1256
cc584b21 1257 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
3588a085
PZ
1258 if (!hrtimer_active(&t.timer))
1259 t.task = NULL;
c19384b5
PP
1260
1261 /*
1262 * the timer could have already expired, in which
1263 * case current would be flagged for rescheduling.
1264 * Don't bother calling schedule.
1265 */
1266 if (likely(t.task))
1267 schedule();
1268
1269 hrtimer_cancel(&t.timer);
72c1bbf3 1270
c19384b5
PP
1271 /* Flag if a timeout occured */
1272 rem = (t.task == NULL);
237fc6e7
TG
1273
1274 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1275 }
72c1bbf3 1276 }
1da177e4
LT
1277 __set_current_state(TASK_RUNNING);
1278
1279 /*
1280 * NOTE: we don't remove ourselves from the waitqueue because
1281 * we are the only user of it.
1282 */
1283
1284 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1285 ret = 0;
1da177e4 1286 if (!unqueue_me(&q))
2fff78c7
PZ
1287 goto out_put_key;
1288 ret = -ETIMEDOUT;
c19384b5 1289 if (rem)
2fff78c7 1290 goto out_put_key;
72c1bbf3 1291
e2970f2f
IM
1292 /*
1293 * We expect signal_pending(current), but another thread may
1294 * have handled it for us already.
1295 */
2fff78c7 1296 ret = -ERESTARTSYS;
c19384b5 1297 if (!abs_time)
2fff78c7 1298 goto out_put_key;
1da177e4 1299
2fff78c7
PZ
1300 restart = &current_thread_info()->restart_block;
1301 restart->fn = futex_wait_restart;
1302 restart->futex.uaddr = (u32 *)uaddr;
1303 restart->futex.val = val;
1304 restart->futex.time = abs_time->tv64;
1305 restart->futex.bitset = bitset;
1306 restart->futex.flags = 0;
1307
1308 if (fshared)
1309 restart->futex.flags |= FLAGS_SHARED;
1310 if (clockrt)
1311 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1312
2fff78c7
PZ
1313 ret = -ERESTART_RESTARTBLOCK;
1314
1315out_put_key:
1316 put_futex_key(fshared, &q.key);
42d35d48 1317out:
c87e2837
IM
1318 return ret;
1319}
1320
72c1bbf3
NP
1321
1322static long futex_wait_restart(struct restart_block *restart)
1323{
ce6bd420 1324 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1325 int fshared = 0;
ce6bd420 1326 ktime_t t;
72c1bbf3 1327
ce6bd420 1328 t.tv64 = restart->futex.time;
72c1bbf3 1329 restart->fn = do_no_restart_syscall;
ce6bd420 1330 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1331 fshared = 1;
cd689985 1332 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1333 restart->futex.bitset,
1334 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1335}
1336
1337
c87e2837
IM
1338/*
1339 * Userspace tried a 0 -> TID atomic transition of the futex value
1340 * and failed. The kernel side here does the whole locking operation:
1341 * if there are waiters then it will block, it does PI, etc. (Due to
1342 * races the kernel might see a 0 value of the futex too.)
1343 */
c2f9f201 1344static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1345 int detect, ktime_t *time, int trylock)
c87e2837 1346{
c5780e97 1347 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1348 struct task_struct *curr = current;
1349 struct futex_hash_bucket *hb;
1350 u32 uval, newval, curval;
1351 struct futex_q q;
778e9a9c 1352 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1353
1354 if (refill_pi_state_cache())
1355 return -ENOMEM;
1356
c19384b5 1357 if (time) {
c5780e97 1358 to = &timeout;
237fc6e7
TG
1359 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1360 HRTIMER_MODE_ABS);
c5780e97 1361 hrtimer_init_sleeper(to, current);
cc584b21 1362 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1363 }
1364
c87e2837 1365 q.pi_state = NULL;
42d35d48 1366retry:
38d47c1b 1367 q.key = FUTEX_KEY_INIT;
34f01cc1 1368 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1369 if (unlikely(ret != 0))
42d35d48 1370 goto out;
c87e2837 1371
42d35d48 1372retry_unlocked:
82af7aca 1373 hb = queue_lock(&q);
c87e2837 1374
42d35d48 1375retry_locked:
778e9a9c 1376 ret = lock_taken = 0;
d0aa7a70 1377
c87e2837
IM
1378 /*
1379 * To avoid races, we attempt to take the lock here again
1380 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1381 * the locks. It will most likely not succeed.
1382 */
b488893a 1383 newval = task_pid_vnr(current);
c87e2837 1384
36cf3b5c 1385 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1386
1387 if (unlikely(curval == -EFAULT))
1388 goto uaddr_faulted;
1389
778e9a9c
AK
1390 /*
1391 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1392 * situation and we return success to user space.
1393 */
b488893a 1394 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1395 ret = -EDEADLK;
42d35d48 1396 goto out_unlock_put_key;
c87e2837
IM
1397 }
1398
1399 /*
778e9a9c 1400 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1401 */
1402 if (unlikely(!curval))
42d35d48 1403 goto out_unlock_put_key;
c87e2837
IM
1404
1405 uval = curval;
778e9a9c 1406
d0aa7a70 1407 /*
778e9a9c
AK
1408 * Set the WAITERS flag, so the owner will know it has someone
1409 * to wake at next unlock
d0aa7a70 1410 */
778e9a9c
AK
1411 newval = curval | FUTEX_WAITERS;
1412
1413 /*
1414 * There are two cases, where a futex might have no owner (the
bd197234
TG
1415 * owner TID is 0): OWNER_DIED. We take over the futex in this
1416 * case. We also do an unconditional take over, when the owner
1417 * of the futex died.
778e9a9c
AK
1418 *
1419 * This is safe as we are protected by the hash bucket lock !
1420 */
1421 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1422 /* Keep the OWNER_DIED bit */
b488893a 1423 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1424 ownerdied = 0;
1425 lock_taken = 1;
1426 }
c87e2837 1427
36cf3b5c 1428 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1429
1430 if (unlikely(curval == -EFAULT))
1431 goto uaddr_faulted;
1432 if (unlikely(curval != uval))
1433 goto retry_locked;
1434
778e9a9c 1435 /*
bd197234 1436 * We took the lock due to owner died take over.
778e9a9c 1437 */
bd197234 1438 if (unlikely(lock_taken))
42d35d48 1439 goto out_unlock_put_key;
d0aa7a70 1440
c87e2837
IM
1441 /*
1442 * We dont have the lock. Look up the PI state (or create it if
1443 * we are the first waiter):
1444 */
d0aa7a70 1445 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1446
1447 if (unlikely(ret)) {
778e9a9c 1448 switch (ret) {
c87e2837 1449
778e9a9c
AK
1450 case -EAGAIN:
1451 /*
1452 * Task is exiting and we just wait for the
1453 * exit to complete.
1454 */
1455 queue_unlock(&q, hb);
778e9a9c
AK
1456 cond_resched();
1457 goto retry;
c87e2837 1458
778e9a9c
AK
1459 case -ESRCH:
1460 /*
1461 * No owner found for this futex. Check if the
1462 * OWNER_DIED bit is set to figure out whether
1463 * this is a robust futex or not.
1464 */
1465 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1466 goto uaddr_faulted;
778e9a9c
AK
1467
1468 /*
1469 * We simply start over in case of a robust
1470 * futex. The code above will take the futex
1471 * and return happy.
1472 */
1473 if (curval & FUTEX_OWNER_DIED) {
1474 ownerdied = 1;
c87e2837 1475 goto retry_locked;
778e9a9c
AK
1476 }
1477 default:
42d35d48 1478 goto out_unlock_put_key;
c87e2837 1479 }
c87e2837
IM
1480 }
1481
1482 /*
1483 * Only actually queue now that the atomic ops are done:
1484 */
82af7aca 1485 queue_me(&q, hb);
c87e2837 1486
c87e2837
IM
1487 WARN_ON(!q.pi_state);
1488 /*
1489 * Block on the PI mutex:
1490 */
1491 if (!trylock)
1492 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1493 else {
1494 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1495 /* Fixup the trylock return value: */
1496 ret = ret ? 0 : -EWOULDBLOCK;
1497 }
1498
a99e4e41 1499 spin_lock(q.lock_ptr);
c87e2837 1500
778e9a9c
AK
1501 if (!ret) {
1502 /*
1503 * Got the lock. We might not be the anticipated owner
1504 * if we did a lock-steal - fix up the PI-state in
1505 * that case:
1506 */
1507 if (q.pi_state->owner != curr)
1b7558e4 1508 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1509 } else {
c87e2837
IM
1510 /*
1511 * Catch the rare case, where the lock was released
778e9a9c
AK
1512 * when we were on the way back before we locked the
1513 * hash bucket.
c87e2837 1514 */
cdf71a10
TG
1515 if (q.pi_state->owner == curr) {
1516 /*
1517 * Try to get the rt_mutex now. This might
1518 * fail as some other task acquired the
1519 * rt_mutex after we removed ourself from the
1520 * rt_mutex waiters list.
1521 */
1522 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1523 ret = 0;
1524 else {
1525 /*
1526 * pi_state is incorrect, some other
1527 * task did a lock steal and we
1528 * returned due to timeout or signal
1529 * without taking the rt_mutex. Too
1530 * late. We can access the
1531 * rt_mutex_owner without locking, as
1532 * the other task is now blocked on
1533 * the hash bucket lock. Fix the state
1534 * up.
1535 */
1536 struct task_struct *owner;
1537 int res;
1538
1539 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1540 res = fixup_pi_state_owner(uaddr, &q, owner,
1541 fshared);
cdf71a10 1542
cdf71a10
TG
1543 /* propagate -EFAULT, if the fixup failed */
1544 if (res)
1545 ret = res;
1546 }
778e9a9c
AK
1547 } else {
1548 /*
1549 * Paranoia check. If we did not take the lock
1550 * in the trylock above, then we should not be
1551 * the owner of the rtmutex, neither the real
1552 * nor the pending one:
1553 */
1554 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1555 printk(KERN_ERR "futex_lock_pi: ret = %d "
1556 "pi-mutex: %p pi-state %p\n", ret,
1557 q.pi_state->pi_mutex.owner,
1558 q.pi_state->owner);
c87e2837 1559 }
c87e2837
IM
1560 }
1561
778e9a9c
AK
1562 /* Unqueue and drop the lock */
1563 unqueue_me_pi(&q);
c87e2837 1564
237fc6e7
TG
1565 if (to)
1566 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1567 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1568
42d35d48 1569out_unlock_put_key:
c87e2837
IM
1570 queue_unlock(&q, hb);
1571
42d35d48 1572out_put_key:
38d47c1b 1573 put_futex_key(fshared, &q.key);
42d35d48 1574out:
237fc6e7
TG
1575 if (to)
1576 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1577 return ret;
1578
42d35d48 1579uaddr_faulted:
c87e2837 1580 /*
b5686363
DH
1581 * We have to r/w *(int __user *)uaddr, and we have to modify it
1582 * atomically. Therefore, if we continue to fault after get_user()
1583 * below, we need to handle the fault ourselves, while still holding
1584 * the mmap_sem. This can occur if the uaddr is under contention as
1585 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1586 */
778e9a9c
AK
1587 queue_unlock(&q, hb);
1588
c87e2837 1589 if (attempt++) {
c2f9f201 1590 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1591 if (ret)
42d35d48 1592 goto out_put_key;
778e9a9c 1593 goto retry_unlocked;
c87e2837
IM
1594 }
1595
c87e2837 1596 ret = get_user(uval, uaddr);
b5686363 1597 if (!ret)
c87e2837
IM
1598 goto retry;
1599
237fc6e7
TG
1600 if (to)
1601 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1602 return ret;
1603}
1604
c87e2837
IM
1605/*
1606 * Userspace attempted a TID -> 0 atomic transition, and failed.
1607 * This is the in-kernel slowpath: we look up the PI state (if any),
1608 * and do the rt-mutex unlock.
1609 */
c2f9f201 1610static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1611{
1612 struct futex_hash_bucket *hb;
1613 struct futex_q *this, *next;
1614 u32 uval;
ec92d082 1615 struct plist_head *head;
38d47c1b 1616 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1617 int ret, attempt = 0;
1618
1619retry:
1620 if (get_user(uval, uaddr))
1621 return -EFAULT;
1622 /*
1623 * We release only a lock we actually own:
1624 */
b488893a 1625 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1626 return -EPERM;
c87e2837 1627
34f01cc1 1628 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1629 if (unlikely(ret != 0))
1630 goto out;
1631
1632 hb = hash_futex(&key);
778e9a9c 1633retry_unlocked:
c87e2837
IM
1634 spin_lock(&hb->lock);
1635
c87e2837
IM
1636 /*
1637 * To avoid races, try to do the TID -> 0 atomic transition
1638 * again. If it succeeds then we can return without waking
1639 * anyone else up:
1640 */
36cf3b5c 1641 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1642 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1643
c87e2837
IM
1644
1645 if (unlikely(uval == -EFAULT))
1646 goto pi_faulted;
1647 /*
1648 * Rare case: we managed to release the lock atomically,
1649 * no need to wake anyone else up:
1650 */
b488893a 1651 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1652 goto out_unlock;
1653
1654 /*
1655 * Ok, other tasks may need to be woken up - check waiters
1656 * and do the wakeup if necessary:
1657 */
1658 head = &hb->chain;
1659
ec92d082 1660 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1661 if (!match_futex (&this->key, &key))
1662 continue;
1663 ret = wake_futex_pi(uaddr, uval, this);
1664 /*
1665 * The atomic access to the futex value
1666 * generated a pagefault, so retry the
1667 * user-access and the wakeup:
1668 */
1669 if (ret == -EFAULT)
1670 goto pi_faulted;
1671 goto out_unlock;
1672 }
1673 /*
1674 * No waiters - kernel unlocks the futex:
1675 */
e3f2ddea
IM
1676 if (!(uval & FUTEX_OWNER_DIED)) {
1677 ret = unlock_futex_pi(uaddr, uval);
1678 if (ret == -EFAULT)
1679 goto pi_faulted;
1680 }
c87e2837
IM
1681
1682out_unlock:
1683 spin_unlock(&hb->lock);
38d47c1b 1684 put_futex_key(fshared, &key);
c87e2837 1685
42d35d48 1686out:
c87e2837
IM
1687 return ret;
1688
1689pi_faulted:
1690 /*
b5686363
DH
1691 * We have to r/w *(int __user *)uaddr, and we have to modify it
1692 * atomically. Therefore, if we continue to fault after get_user()
1693 * below, we need to handle the fault ourselves, while still holding
1694 * the mmap_sem. This can occur if the uaddr is under contention as
1695 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1696 */
778e9a9c
AK
1697 spin_unlock(&hb->lock);
1698
c87e2837 1699 if (attempt++) {
c2f9f201 1700 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1701 if (ret)
778e9a9c 1702 goto out;
187226f5 1703 uval = 0;
778e9a9c 1704 goto retry_unlocked;
c87e2837
IM
1705 }
1706
c87e2837 1707 ret = get_user(uval, uaddr);
b5686363 1708 if (!ret)
c87e2837
IM
1709 goto retry;
1710
1da177e4
LT
1711 return ret;
1712}
1713
0771dfef
IM
1714/*
1715 * Support for robust futexes: the kernel cleans up held futexes at
1716 * thread exit time.
1717 *
1718 * Implementation: user-space maintains a per-thread list of locks it
1719 * is holding. Upon do_exit(), the kernel carefully walks this list,
1720 * and marks all locks that are owned by this thread with the
c87e2837 1721 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1722 * always manipulated with the lock held, so the list is private and
1723 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1724 * field, to allow the kernel to clean up if the thread dies after
1725 * acquiring the lock, but just before it could have added itself to
1726 * the list. There can only be one such pending lock.
1727 */
1728
1729/**
1730 * sys_set_robust_list - set the robust-futex list head of a task
1731 * @head: pointer to the list-head
1732 * @len: length of the list-head, as userspace expects
1733 */
836f92ad
HC
1734SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1735 size_t, len)
0771dfef 1736{
a0c1e907
TG
1737 if (!futex_cmpxchg_enabled)
1738 return -ENOSYS;
0771dfef
IM
1739 /*
1740 * The kernel knows only one size for now:
1741 */
1742 if (unlikely(len != sizeof(*head)))
1743 return -EINVAL;
1744
1745 current->robust_list = head;
1746
1747 return 0;
1748}
1749
1750/**
1751 * sys_get_robust_list - get the robust-futex list head of a task
1752 * @pid: pid of the process [zero for current task]
1753 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1754 * @len_ptr: pointer to a length field, the kernel fills in the header size
1755 */
836f92ad
HC
1756SYSCALL_DEFINE3(get_robust_list, int, pid,
1757 struct robust_list_head __user * __user *, head_ptr,
1758 size_t __user *, len_ptr)
0771dfef 1759{
ba46df98 1760 struct robust_list_head __user *head;
0771dfef 1761 unsigned long ret;
c69e8d9c 1762 const struct cred *cred = current_cred(), *pcred;
0771dfef 1763
a0c1e907
TG
1764 if (!futex_cmpxchg_enabled)
1765 return -ENOSYS;
1766
0771dfef
IM
1767 if (!pid)
1768 head = current->robust_list;
1769 else {
1770 struct task_struct *p;
1771
1772 ret = -ESRCH;
aaa2a97e 1773 rcu_read_lock();
228ebcbe 1774 p = find_task_by_vpid(pid);
0771dfef
IM
1775 if (!p)
1776 goto err_unlock;
1777 ret = -EPERM;
c69e8d9c
DH
1778 pcred = __task_cred(p);
1779 if (cred->euid != pcred->euid &&
1780 cred->euid != pcred->uid &&
76aac0e9 1781 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1782 goto err_unlock;
1783 head = p->robust_list;
aaa2a97e 1784 rcu_read_unlock();
0771dfef
IM
1785 }
1786
1787 if (put_user(sizeof(*head), len_ptr))
1788 return -EFAULT;
1789 return put_user(head, head_ptr);
1790
1791err_unlock:
aaa2a97e 1792 rcu_read_unlock();
0771dfef
IM
1793
1794 return ret;
1795}
1796
1797/*
1798 * Process a futex-list entry, check whether it's owned by the
1799 * dying task, and do notification if so:
1800 */
e3f2ddea 1801int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1802{
e3f2ddea 1803 u32 uval, nval, mval;
0771dfef 1804
8f17d3a5
IM
1805retry:
1806 if (get_user(uval, uaddr))
0771dfef
IM
1807 return -1;
1808
b488893a 1809 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1810 /*
1811 * Ok, this dying thread is truly holding a futex
1812 * of interest. Set the OWNER_DIED bit atomically
1813 * via cmpxchg, and if the value had FUTEX_WAITERS
1814 * set, wake up a waiter (if any). (We have to do a
1815 * futex_wake() even if OWNER_DIED is already set -
1816 * to handle the rare but possible case of recursive
1817 * thread-death.) The rest of the cleanup is done in
1818 * userspace.
1819 */
e3f2ddea
IM
1820 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1821 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1822
c87e2837
IM
1823 if (nval == -EFAULT)
1824 return -1;
1825
1826 if (nval != uval)
8f17d3a5 1827 goto retry;
0771dfef 1828
e3f2ddea
IM
1829 /*
1830 * Wake robust non-PI futexes here. The wakeup of
1831 * PI futexes happens in exit_pi_state():
1832 */
36cf3b5c 1833 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1834 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1835 }
1836 return 0;
1837}
1838
e3f2ddea
IM
1839/*
1840 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1841 */
1842static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1843 struct robust_list __user * __user *head,
1844 int *pi)
e3f2ddea
IM
1845{
1846 unsigned long uentry;
1847
ba46df98 1848 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1849 return -EFAULT;
1850
ba46df98 1851 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1852 *pi = uentry & 1;
1853
1854 return 0;
1855}
1856
0771dfef
IM
1857/*
1858 * Walk curr->robust_list (very carefully, it's a userspace list!)
1859 * and mark any locks found there dead, and notify any waiters.
1860 *
1861 * We silently return on any sign of list-walking problem.
1862 */
1863void exit_robust_list(struct task_struct *curr)
1864{
1865 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1866 struct robust_list __user *entry, *next_entry, *pending;
1867 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1868 unsigned long futex_offset;
9f96cb1e 1869 int rc;
0771dfef 1870
a0c1e907
TG
1871 if (!futex_cmpxchg_enabled)
1872 return;
1873
0771dfef
IM
1874 /*
1875 * Fetch the list head (which was registered earlier, via
1876 * sys_set_robust_list()):
1877 */
e3f2ddea 1878 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1879 return;
1880 /*
1881 * Fetch the relative futex offset:
1882 */
1883 if (get_user(futex_offset, &head->futex_offset))
1884 return;
1885 /*
1886 * Fetch any possibly pending lock-add first, and handle it
1887 * if it exists:
1888 */
e3f2ddea 1889 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1890 return;
e3f2ddea 1891
9f96cb1e 1892 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1893 while (entry != &head->list) {
9f96cb1e
MS
1894 /*
1895 * Fetch the next entry in the list before calling
1896 * handle_futex_death:
1897 */
1898 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1899 /*
1900 * A pending lock might already be on the list, so
c87e2837 1901 * don't process it twice:
0771dfef
IM
1902 */
1903 if (entry != pending)
ba46df98 1904 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1905 curr, pi))
0771dfef 1906 return;
9f96cb1e 1907 if (rc)
0771dfef 1908 return;
9f96cb1e
MS
1909 entry = next_entry;
1910 pi = next_pi;
0771dfef
IM
1911 /*
1912 * Avoid excessively long or circular lists:
1913 */
1914 if (!--limit)
1915 break;
1916
1917 cond_resched();
1918 }
9f96cb1e
MS
1919
1920 if (pending)
1921 handle_futex_death((void __user *)pending + futex_offset,
1922 curr, pip);
0771dfef
IM
1923}
1924
c19384b5 1925long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1926 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1927{
1acdac10 1928 int clockrt, ret = -ENOSYS;
34f01cc1 1929 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1930 int fshared = 0;
34f01cc1
ED
1931
1932 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1933 fshared = 1;
1da177e4 1934
1acdac10
TG
1935 clockrt = op & FUTEX_CLOCK_REALTIME;
1936 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1937 return -ENOSYS;
1da177e4 1938
34f01cc1 1939 switch (cmd) {
1da177e4 1940 case FUTEX_WAIT:
cd689985
TG
1941 val3 = FUTEX_BITSET_MATCH_ANY;
1942 case FUTEX_WAIT_BITSET:
1acdac10 1943 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1944 break;
1945 case FUTEX_WAKE:
cd689985
TG
1946 val3 = FUTEX_BITSET_MATCH_ANY;
1947 case FUTEX_WAKE_BITSET:
1948 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1949 break;
1da177e4 1950 case FUTEX_REQUEUE:
34f01cc1 1951 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1952 break;
1953 case FUTEX_CMP_REQUEUE:
34f01cc1 1954 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1955 break;
4732efbe 1956 case FUTEX_WAKE_OP:
34f01cc1 1957 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1958 break;
c87e2837 1959 case FUTEX_LOCK_PI:
a0c1e907
TG
1960 if (futex_cmpxchg_enabled)
1961 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1962 break;
1963 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1964 if (futex_cmpxchg_enabled)
1965 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1966 break;
1967 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1968 if (futex_cmpxchg_enabled)
1969 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1970 break;
1da177e4
LT
1971 default:
1972 ret = -ENOSYS;
1973 }
1974 return ret;
1975}
1976
1977
17da2bd9
HC
1978SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1979 struct timespec __user *, utime, u32 __user *, uaddr2,
1980 u32, val3)
1da177e4 1981{
c19384b5
PP
1982 struct timespec ts;
1983 ktime_t t, *tp = NULL;
e2970f2f 1984 u32 val2 = 0;
34f01cc1 1985 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1986
cd689985
TG
1987 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1988 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1989 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1990 return -EFAULT;
c19384b5 1991 if (!timespec_valid(&ts))
9741ef96 1992 return -EINVAL;
c19384b5
PP
1993
1994 t = timespec_to_ktime(ts);
34f01cc1 1995 if (cmd == FUTEX_WAIT)
5a7780e7 1996 t = ktime_add_safe(ktime_get(), t);
c19384b5 1997 tp = &t;
1da177e4
LT
1998 }
1999 /*
34f01cc1 2000 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2001 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2002 */
f54f0986
AS
2003 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2004 cmd == FUTEX_WAKE_OP)
e2970f2f 2005 val2 = (u32) (unsigned long) utime;
1da177e4 2006
c19384b5 2007 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2008}
2009
f6d107fb 2010static int __init futex_init(void)
1da177e4 2011{
a0c1e907 2012 u32 curval;
3e4ab747 2013 int i;
95362fa9 2014
a0c1e907
TG
2015 /*
2016 * This will fail and we want it. Some arch implementations do
2017 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2018 * functionality. We want to know that before we call in any
2019 * of the complex code paths. Also we want to prevent
2020 * registration of robust lists in that case. NULL is
2021 * guaranteed to fault and we get -EFAULT on functional
2022 * implementation, the non functional ones will return
2023 * -ENOSYS.
2024 */
2025 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2026 if (curval == -EFAULT)
2027 futex_cmpxchg_enabled = 1;
2028
3e4ab747
TG
2029 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2030 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2031 spin_lock_init(&futex_queues[i].lock);
2032 }
2033
1da177e4
LT
2034 return 0;
2035}
f6d107fb 2036__initcall(futex_init);