]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
locking/hung_task: Show all locks
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
ab51fbab 67#include <linux/fault-inject.h>
b488893a 68
4732efbe 69#include <asm/futex.h>
1da177e4 70
1696a8be 71#include "locking/rtmutex_common.h"
c87e2837 72
99b60ce6 73/*
d7e8af1a
DB
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
99b60ce6
TG
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
99b60ce6
TG
85 *
86 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
99b60ce6 90 *
b0c29f79
DB
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 116 *
b0c29f79
DB
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
99b60ce6
TG
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
b0c29f79 125 *
d7e8af1a 126 * waiters++; (a)
8ad7b378
DB
127 * smp_mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `--------> smp_mb(); (B)
99b60ce6 137 * if (uval == val)
b0c29f79 138 * queue();
99b60ce6 139 * unlock(hash_bucket(futex));
b0c29f79
DB
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
d7e8af1a
DB
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 144 *
d7e8af1a
DB
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
784bdf3b
TG
182#ifdef CONFIG_MMU
183# define FLAGS_SHARED 0x01
184#else
185/*
186 * NOMMU does not have per process address space. Let the compiler optimize
187 * code away.
188 */
189# define FLAGS_SHARED 0x00
190#endif
b41277dc
DH
191#define FLAGS_CLOCKRT 0x02
192#define FLAGS_HAS_TIMEOUT 0x04
193
c87e2837
IM
194/*
195 * Priority Inheritance state:
196 */
197struct futex_pi_state {
198 /*
199 * list of 'owned' pi_state instances - these have to be
200 * cleaned up in do_exit() if the task exits prematurely:
201 */
202 struct list_head list;
203
204 /*
205 * The PI object:
206 */
207 struct rt_mutex pi_mutex;
208
209 struct task_struct *owner;
210 atomic_t refcount;
211
212 union futex_key key;
213};
214
d8d88fbb
DH
215/**
216 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 217 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
218 * @task: the task waiting on the futex
219 * @lock_ptr: the hash bucket lock
220 * @key: the key the futex is hashed on
221 * @pi_state: optional priority inheritance state
222 * @rt_waiter: rt_waiter storage for use with requeue_pi
223 * @requeue_pi_key: the requeue_pi target futex key
224 * @bitset: bitset for the optional bitmasked wakeup
225 *
226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
227 * we can wake only the relevant ones (hashed queues may be shared).
228 *
229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 231 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
232 * the second.
233 *
234 * PI futexes are typically woken before they are removed from the hash list via
235 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
236 */
237struct futex_q {
ec92d082 238 struct plist_node list;
1da177e4 239
d8d88fbb 240 struct task_struct *task;
1da177e4 241 spinlock_t *lock_ptr;
1da177e4 242 union futex_key key;
c87e2837 243 struct futex_pi_state *pi_state;
52400ba9 244 struct rt_mutex_waiter *rt_waiter;
84bc4af5 245 union futex_key *requeue_pi_key;
cd689985 246 u32 bitset;
1da177e4
LT
247};
248
5bdb05f9
DH
249static const struct futex_q futex_q_init = {
250 /* list gets initialized in queue_me()*/
251 .key = FUTEX_KEY_INIT,
252 .bitset = FUTEX_BITSET_MATCH_ANY
253};
254
1da177e4 255/*
b2d0994b
DH
256 * Hash buckets are shared by all the futex_keys that hash to the same
257 * location. Each key may have multiple futex_q structures, one for each task
258 * waiting on a futex.
1da177e4
LT
259 */
260struct futex_hash_bucket {
11d4616b 261 atomic_t waiters;
ec92d082
PP
262 spinlock_t lock;
263 struct plist_head chain;
a52b89eb 264} ____cacheline_aligned_in_smp;
1da177e4 265
ac742d37
RV
266/*
267 * The base of the bucket array and its size are always used together
268 * (after initialization only in hash_futex()), so ensure that they
269 * reside in the same cacheline.
270 */
271static struct {
272 struct futex_hash_bucket *queues;
273 unsigned long hashsize;
274} __futex_data __read_mostly __aligned(2*sizeof(long));
275#define futex_queues (__futex_data.queues)
276#define futex_hashsize (__futex_data.hashsize)
a52b89eb 277
1da177e4 278
ab51fbab
DB
279/*
280 * Fault injections for futexes.
281 */
282#ifdef CONFIG_FAIL_FUTEX
283
284static struct {
285 struct fault_attr attr;
286
621a5f7a 287 bool ignore_private;
ab51fbab
DB
288} fail_futex = {
289 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 290 .ignore_private = false,
ab51fbab
DB
291};
292
293static int __init setup_fail_futex(char *str)
294{
295 return setup_fault_attr(&fail_futex.attr, str);
296}
297__setup("fail_futex=", setup_fail_futex);
298
5d285a7f 299static bool should_fail_futex(bool fshared)
ab51fbab
DB
300{
301 if (fail_futex.ignore_private && !fshared)
302 return false;
303
304 return should_fail(&fail_futex.attr, 1);
305}
306
307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
308
309static int __init fail_futex_debugfs(void)
310{
311 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
312 struct dentry *dir;
313
314 dir = fault_create_debugfs_attr("fail_futex", NULL,
315 &fail_futex.attr);
316 if (IS_ERR(dir))
317 return PTR_ERR(dir);
318
319 if (!debugfs_create_bool("ignore-private", mode, dir,
320 &fail_futex.ignore_private)) {
321 debugfs_remove_recursive(dir);
322 return -ENOMEM;
323 }
324
325 return 0;
326}
327
328late_initcall(fail_futex_debugfs);
329
330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
331
332#else
333static inline bool should_fail_futex(bool fshared)
334{
335 return false;
336}
337#endif /* CONFIG_FAIL_FUTEX */
338
b0c29f79
DB
339static inline void futex_get_mm(union futex_key *key)
340{
341 atomic_inc(&key->private.mm->mm_count);
342 /*
343 * Ensure futex_get_mm() implies a full barrier such that
344 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 345 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 346 */
4e857c58 347 smp_mb__after_atomic();
b0c29f79
DB
348}
349
11d4616b
LT
350/*
351 * Reflects a new waiter being added to the waitqueue.
352 */
353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
354{
355#ifdef CONFIG_SMP
11d4616b 356 atomic_inc(&hb->waiters);
b0c29f79 357 /*
11d4616b 358 * Full barrier (A), see the ordering comment above.
b0c29f79 359 */
4e857c58 360 smp_mb__after_atomic();
11d4616b
LT
361#endif
362}
363
364/*
365 * Reflects a waiter being removed from the waitqueue by wakeup
366 * paths.
367 */
368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
369{
370#ifdef CONFIG_SMP
371 atomic_dec(&hb->waiters);
372#endif
373}
b0c29f79 374
11d4616b
LT
375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
376{
377#ifdef CONFIG_SMP
378 return atomic_read(&hb->waiters);
b0c29f79 379#else
11d4616b 380 return 1;
b0c29f79
DB
381#endif
382}
383
1da177e4
LT
384/*
385 * We hash on the keys returned from get_futex_key (see below).
386 */
387static struct futex_hash_bucket *hash_futex(union futex_key *key)
388{
389 u32 hash = jhash2((u32*)&key->both.word,
390 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
391 key->both.offset);
a52b89eb 392 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
393}
394
395/*
396 * Return 1 if two futex_keys are equal, 0 otherwise.
397 */
398static inline int match_futex(union futex_key *key1, union futex_key *key2)
399{
2bc87203
DH
400 return (key1 && key2
401 && key1->both.word == key2->both.word
1da177e4
LT
402 && key1->both.ptr == key2->both.ptr
403 && key1->both.offset == key2->both.offset);
404}
405
38d47c1b
PZ
406/*
407 * Take a reference to the resource addressed by a key.
408 * Can be called while holding spinlocks.
409 *
410 */
411static void get_futex_key_refs(union futex_key *key)
412{
413 if (!key->both.ptr)
414 return;
415
784bdf3b
TG
416 /*
417 * On MMU less systems futexes are always "private" as there is no per
418 * process address space. We need the smp wmb nevertheless - yes,
419 * arch/blackfin has MMU less SMP ...
420 */
421 if (!IS_ENABLED(CONFIG_MMU)) {
422 smp_mb(); /* explicit smp_mb(); (B) */
423 return;
424 }
425
38d47c1b
PZ
426 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
427 case FUT_OFF_INODE:
8ad7b378 428 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
429 break;
430 case FUT_OFF_MMSHARED:
8ad7b378 431 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 432 break;
76835b0e 433 default:
993b2ff2
DB
434 /*
435 * Private futexes do not hold reference on an inode or
436 * mm, therefore the only purpose of calling get_futex_key_refs
437 * is because we need the barrier for the lockless waiter check.
438 */
8ad7b378 439 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
440 }
441}
442
443/*
444 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
445 * The hash bucket spinlock must not be held. This is
446 * a no-op for private futexes, see comment in the get
447 * counterpart.
38d47c1b
PZ
448 */
449static void drop_futex_key_refs(union futex_key *key)
450{
90621c40
DH
451 if (!key->both.ptr) {
452 /* If we're here then we tried to put a key we failed to get */
453 WARN_ON_ONCE(1);
38d47c1b 454 return;
90621c40 455 }
38d47c1b 456
784bdf3b
TG
457 if (!IS_ENABLED(CONFIG_MMU))
458 return;
459
38d47c1b
PZ
460 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
461 case FUT_OFF_INODE:
462 iput(key->shared.inode);
463 break;
464 case FUT_OFF_MMSHARED:
465 mmdrop(key->private.mm);
466 break;
467 }
468}
469
34f01cc1 470/**
d96ee56c
DH
471 * get_futex_key() - Get parameters which are the keys for a futex
472 * @uaddr: virtual address of the futex
473 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
474 * @key: address where result is stored.
9ea71503
SB
475 * @rw: mapping needs to be read/write (values: VERIFY_READ,
476 * VERIFY_WRITE)
34f01cc1 477 *
6c23cbbd
RD
478 * Return: a negative error code or 0
479 *
34f01cc1 480 * The key words are stored in *key on success.
1da177e4 481 *
6131ffaa 482 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
483 * offset_within_page). For private mappings, it's (uaddr, current->mm).
484 * We can usually work out the index without swapping in the page.
485 *
b2d0994b 486 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 487 */
64d1304a 488static int
9ea71503 489get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 490{
e2970f2f 491 unsigned long address = (unsigned long)uaddr;
1da177e4 492 struct mm_struct *mm = current->mm;
077fa7ae 493 struct page *page, *tail;
14d27abd 494 struct address_space *mapping;
9ea71503 495 int err, ro = 0;
1da177e4
LT
496
497 /*
498 * The futex address must be "naturally" aligned.
499 */
e2970f2f 500 key->both.offset = address % PAGE_SIZE;
34f01cc1 501 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 502 return -EINVAL;
e2970f2f 503 address -= key->both.offset;
1da177e4 504
5cdec2d8
LT
505 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
506 return -EFAULT;
507
ab51fbab
DB
508 if (unlikely(should_fail_futex(fshared)))
509 return -EFAULT;
510
34f01cc1
ED
511 /*
512 * PROCESS_PRIVATE futexes are fast.
513 * As the mm cannot disappear under us and the 'key' only needs
514 * virtual address, we dont even have to find the underlying vma.
515 * Note : We do have to check 'uaddr' is a valid user address,
516 * but access_ok() should be faster than find_vma()
517 */
518 if (!fshared) {
34f01cc1
ED
519 key->private.mm = mm;
520 key->private.address = address;
8ad7b378 521 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
522 return 0;
523 }
1da177e4 524
38d47c1b 525again:
ab51fbab
DB
526 /* Ignore any VERIFY_READ mapping (futex common case) */
527 if (unlikely(should_fail_futex(fshared)))
528 return -EFAULT;
529
7485d0d3 530 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
531 /*
532 * If write access is not required (eg. FUTEX_WAIT), try
533 * and get read-only access.
534 */
535 if (err == -EFAULT && rw == VERIFY_READ) {
536 err = get_user_pages_fast(address, 1, 0, &page);
537 ro = 1;
538 }
38d47c1b
PZ
539 if (err < 0)
540 return err;
9ea71503
SB
541 else
542 err = 0;
38d47c1b 543
65d8fc77
MG
544 /*
545 * The treatment of mapping from this point on is critical. The page
546 * lock protects many things but in this context the page lock
547 * stabilizes mapping, prevents inode freeing in the shared
548 * file-backed region case and guards against movement to swap cache.
549 *
550 * Strictly speaking the page lock is not needed in all cases being
551 * considered here and page lock forces unnecessarily serialization
552 * From this point on, mapping will be re-verified if necessary and
553 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
554 *
555 * Mapping checks require the head page for any compound page so the
556 * head page and mapping is looked up now. For anonymous pages, it
557 * does not matter if the page splits in the future as the key is
558 * based on the address. For filesystem-backed pages, the tail is
559 * required as the index of the page determines the key. For
560 * base pages, there is no tail page and tail == page.
65d8fc77 561 */
077fa7ae 562 tail = page;
65d8fc77
MG
563 page = compound_head(page);
564 mapping = READ_ONCE(page->mapping);
565
e6780f72 566 /*
14d27abd 567 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
568 * page; but it might be the ZERO_PAGE or in the gate area or
569 * in a special mapping (all cases which we are happy to fail);
570 * or it may have been a good file page when get_user_pages_fast
571 * found it, but truncated or holepunched or subjected to
572 * invalidate_complete_page2 before we got the page lock (also
573 * cases which we are happy to fail). And we hold a reference,
574 * so refcount care in invalidate_complete_page's remove_mapping
575 * prevents drop_caches from setting mapping to NULL beneath us.
576 *
577 * The case we do have to guard against is when memory pressure made
578 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 579 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 580 */
65d8fc77
MG
581 if (unlikely(!mapping)) {
582 int shmem_swizzled;
583
584 /*
585 * Page lock is required to identify which special case above
586 * applies. If this is really a shmem page then the page lock
587 * will prevent unexpected transitions.
588 */
589 lock_page(page);
590 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
591 unlock_page(page);
592 put_page(page);
65d8fc77 593
e6780f72
HD
594 if (shmem_swizzled)
595 goto again;
65d8fc77 596
e6780f72 597 return -EFAULT;
38d47c1b 598 }
1da177e4
LT
599
600 /*
601 * Private mappings are handled in a simple way.
602 *
65d8fc77
MG
603 * If the futex key is stored on an anonymous page, then the associated
604 * object is the mm which is implicitly pinned by the calling process.
605 *
1da177e4
LT
606 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
607 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 608 * the object not the particular process.
1da177e4 609 */
14d27abd 610 if (PageAnon(page)) {
9ea71503
SB
611 /*
612 * A RO anonymous page will never change and thus doesn't make
613 * sense for futex operations.
614 */
ab51fbab 615 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
616 err = -EFAULT;
617 goto out;
618 }
619
38d47c1b 620 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 621 key->private.mm = mm;
e2970f2f 622 key->private.address = address;
65d8fc77
MG
623
624 get_futex_key_refs(key); /* implies smp_mb(); (B) */
625
38d47c1b 626 } else {
65d8fc77
MG
627 struct inode *inode;
628
629 /*
630 * The associated futex object in this case is the inode and
631 * the page->mapping must be traversed. Ordinarily this should
632 * be stabilised under page lock but it's not strictly
633 * necessary in this case as we just want to pin the inode, not
634 * update the radix tree or anything like that.
635 *
636 * The RCU read lock is taken as the inode is finally freed
637 * under RCU. If the mapping still matches expectations then the
638 * mapping->host can be safely accessed as being a valid inode.
639 */
640 rcu_read_lock();
641
642 if (READ_ONCE(page->mapping) != mapping) {
643 rcu_read_unlock();
644 put_page(page);
645
646 goto again;
647 }
648
649 inode = READ_ONCE(mapping->host);
650 if (!inode) {
651 rcu_read_unlock();
652 put_page(page);
653
654 goto again;
655 }
656
657 /*
658 * Take a reference unless it is about to be freed. Previously
659 * this reference was taken by ihold under the page lock
660 * pinning the inode in place so i_lock was unnecessary. The
661 * only way for this check to fail is if the inode was
662 * truncated in parallel so warn for now if this happens.
663 *
664 * We are not calling into get_futex_key_refs() in file-backed
665 * cases, therefore a successful atomic_inc return below will
666 * guarantee that get_futex_key() will still imply smp_mb(); (B).
667 */
668 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
669 rcu_read_unlock();
670 put_page(page);
671
672 goto again;
673 }
674
675 /* Should be impossible but lets be paranoid for now */
676 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
677 err = -EFAULT;
678 rcu_read_unlock();
679 iput(inode);
680
681 goto out;
682 }
683
38d47c1b 684 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 685 key->shared.inode = inode;
077fa7ae 686 key->shared.pgoff = basepage_index(tail);
65d8fc77 687 rcu_read_unlock();
1da177e4
LT
688 }
689
9ea71503 690out:
14d27abd 691 put_page(page);
9ea71503 692 return err;
1da177e4
LT
693}
694
ae791a2d 695static inline void put_futex_key(union futex_key *key)
1da177e4 696{
38d47c1b 697 drop_futex_key_refs(key);
1da177e4
LT
698}
699
d96ee56c
DH
700/**
701 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
702 * @uaddr: pointer to faulting user space address
703 *
704 * Slow path to fixup the fault we just took in the atomic write
705 * access to @uaddr.
706 *
fb62db2b 707 * We have no generic implementation of a non-destructive write to the
d0725992
TG
708 * user address. We know that we faulted in the atomic pagefault
709 * disabled section so we can as well avoid the #PF overhead by
710 * calling get_user_pages() right away.
711 */
712static int fault_in_user_writeable(u32 __user *uaddr)
713{
722d0172
AK
714 struct mm_struct *mm = current->mm;
715 int ret;
716
717 down_read(&mm->mmap_sem);
2efaca92 718 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 719 FAULT_FLAG_WRITE, NULL);
722d0172
AK
720 up_read(&mm->mmap_sem);
721
d0725992
TG
722 return ret < 0 ? ret : 0;
723}
724
4b1c486b
DH
725/**
726 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
727 * @hb: the hash bucket the futex_q's reside in
728 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
729 *
730 * Must be called with the hb lock held.
731 */
732static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
733 union futex_key *key)
734{
735 struct futex_q *this;
736
737 plist_for_each_entry(this, &hb->chain, list) {
738 if (match_futex(&this->key, key))
739 return this;
740 }
741 return NULL;
742}
743
37a9d912
ML
744static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
745 u32 uval, u32 newval)
36cf3b5c 746{
37a9d912 747 int ret;
36cf3b5c
TG
748
749 pagefault_disable();
37a9d912 750 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
751 pagefault_enable();
752
37a9d912 753 return ret;
36cf3b5c
TG
754}
755
756static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
757{
758 int ret;
759
a866374a 760 pagefault_disable();
bd28b145 761 ret = __get_user(*dest, from);
a866374a 762 pagefault_enable();
1da177e4
LT
763
764 return ret ? -EFAULT : 0;
765}
766
c87e2837
IM
767
768/*
769 * PI code:
770 */
771static int refill_pi_state_cache(void)
772{
773 struct futex_pi_state *pi_state;
774
775 if (likely(current->pi_state_cache))
776 return 0;
777
4668edc3 778 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
779
780 if (!pi_state)
781 return -ENOMEM;
782
c87e2837
IM
783 INIT_LIST_HEAD(&pi_state->list);
784 /* pi_mutex gets initialized later */
785 pi_state->owner = NULL;
786 atomic_set(&pi_state->refcount, 1);
38d47c1b 787 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
788
789 current->pi_state_cache = pi_state;
790
791 return 0;
792}
793
794static struct futex_pi_state * alloc_pi_state(void)
795{
796 struct futex_pi_state *pi_state = current->pi_state_cache;
797
798 WARN_ON(!pi_state);
799 current->pi_state_cache = NULL;
800
801 return pi_state;
802}
803
30a6b803 804/*
29e9ee5d
TG
805 * Drops a reference to the pi_state object and frees or caches it
806 * when the last reference is gone.
807 *
30a6b803
BS
808 * Must be called with the hb lock held.
809 */
29e9ee5d 810static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 811{
30a6b803
BS
812 if (!pi_state)
813 return;
814
c87e2837
IM
815 if (!atomic_dec_and_test(&pi_state->refcount))
816 return;
817
818 /*
819 * If pi_state->owner is NULL, the owner is most probably dying
820 * and has cleaned up the pi_state already
821 */
822 if (pi_state->owner) {
1d615482 823 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 824 list_del_init(&pi_state->list);
1d615482 825 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
826
827 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
828 }
829
830 if (current->pi_state_cache)
831 kfree(pi_state);
832 else {
833 /*
834 * pi_state->list is already empty.
835 * clear pi_state->owner.
836 * refcount is at 0 - put it back to 1.
837 */
838 pi_state->owner = NULL;
839 atomic_set(&pi_state->refcount, 1);
840 current->pi_state_cache = pi_state;
841 }
842}
843
844/*
845 * Look up the task based on what TID userspace gave us.
846 * We dont trust it.
847 */
848static struct task_struct * futex_find_get_task(pid_t pid)
849{
850 struct task_struct *p;
851
d359b549 852 rcu_read_lock();
228ebcbe 853 p = find_task_by_vpid(pid);
7a0ea09a
MH
854 if (p)
855 get_task_struct(p);
a06381fe 856
d359b549 857 rcu_read_unlock();
c87e2837
IM
858
859 return p;
860}
861
862/*
863 * This task is holding PI mutexes at exit time => bad.
864 * Kernel cleans up PI-state, but userspace is likely hosed.
865 * (Robust-futex cleanup is separate and might save the day for userspace.)
866 */
867void exit_pi_state_list(struct task_struct *curr)
868{
c87e2837
IM
869 struct list_head *next, *head = &curr->pi_state_list;
870 struct futex_pi_state *pi_state;
627371d7 871 struct futex_hash_bucket *hb;
38d47c1b 872 union futex_key key = FUTEX_KEY_INIT;
c87e2837 873
a0c1e907
TG
874 if (!futex_cmpxchg_enabled)
875 return;
c87e2837
IM
876 /*
877 * We are a ZOMBIE and nobody can enqueue itself on
878 * pi_state_list anymore, but we have to be careful
627371d7 879 * versus waiters unqueueing themselves:
c87e2837 880 */
1d615482 881 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
882 while (!list_empty(head)) {
883
884 next = head->next;
885 pi_state = list_entry(next, struct futex_pi_state, list);
886 key = pi_state->key;
627371d7 887 hb = hash_futex(&key);
1d615482 888 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 889
c87e2837
IM
890 spin_lock(&hb->lock);
891
1d615482 892 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
893 /*
894 * We dropped the pi-lock, so re-check whether this
895 * task still owns the PI-state:
896 */
c87e2837
IM
897 if (head->next != next) {
898 spin_unlock(&hb->lock);
899 continue;
900 }
901
c87e2837 902 WARN_ON(pi_state->owner != curr);
627371d7
IM
903 WARN_ON(list_empty(&pi_state->list));
904 list_del_init(&pi_state->list);
c87e2837 905 pi_state->owner = NULL;
1d615482 906 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
907
908 rt_mutex_unlock(&pi_state->pi_mutex);
909
910 spin_unlock(&hb->lock);
911
1d615482 912 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 913 }
1d615482 914 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
915}
916
54a21788
TG
917/*
918 * We need to check the following states:
919 *
920 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
921 *
922 * [1] NULL | --- | --- | 0 | 0/1 | Valid
923 * [2] NULL | --- | --- | >0 | 0/1 | Valid
924 *
925 * [3] Found | NULL | -- | Any | 0/1 | Invalid
926 *
927 * [4] Found | Found | NULL | 0 | 1 | Valid
928 * [5] Found | Found | NULL | >0 | 1 | Invalid
929 *
930 * [6] Found | Found | task | 0 | 1 | Valid
931 *
932 * [7] Found | Found | NULL | Any | 0 | Invalid
933 *
934 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
935 * [9] Found | Found | task | 0 | 0 | Invalid
936 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
937 *
938 * [1] Indicates that the kernel can acquire the futex atomically. We
939 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
940 *
941 * [2] Valid, if TID does not belong to a kernel thread. If no matching
942 * thread is found then it indicates that the owner TID has died.
943 *
944 * [3] Invalid. The waiter is queued on a non PI futex
945 *
946 * [4] Valid state after exit_robust_list(), which sets the user space
947 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
948 *
949 * [5] The user space value got manipulated between exit_robust_list()
950 * and exit_pi_state_list()
951 *
952 * [6] Valid state after exit_pi_state_list() which sets the new owner in
953 * the pi_state but cannot access the user space value.
954 *
955 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
956 *
957 * [8] Owner and user space value match
958 *
959 * [9] There is no transient state which sets the user space TID to 0
960 * except exit_robust_list(), but this is indicated by the
961 * FUTEX_OWNER_DIED bit. See [4]
962 *
963 * [10] There is no transient state which leaves owner and user space
964 * TID out of sync.
965 */
e60cbc5c
TG
966
967/*
968 * Validate that the existing waiter has a pi_state and sanity check
969 * the pi_state against the user space value. If correct, attach to
970 * it.
971 */
972static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
973 struct futex_pi_state **ps)
c87e2837 974{
778e9a9c 975 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 976
e60cbc5c
TG
977 /*
978 * Userspace might have messed up non-PI and PI futexes [3]
979 */
980 if (unlikely(!pi_state))
981 return -EINVAL;
06a9ec29 982
e60cbc5c 983 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 984
e60cbc5c
TG
985 /*
986 * Handle the owner died case:
987 */
988 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 989 /*
e60cbc5c
TG
990 * exit_pi_state_list sets owner to NULL and wakes the
991 * topmost waiter. The task which acquires the
992 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 993 */
e60cbc5c 994 if (!pi_state->owner) {
59647b6a 995 /*
e60cbc5c
TG
996 * No pi state owner, but the user space TID
997 * is not 0. Inconsistent state. [5]
59647b6a 998 */
e60cbc5c
TG
999 if (pid)
1000 return -EINVAL;
bd1dbcc6 1001 /*
e60cbc5c 1002 * Take a ref on the state and return success. [4]
866293ee 1003 */
e60cbc5c 1004 goto out_state;
c87e2837 1005 }
bd1dbcc6
TG
1006
1007 /*
e60cbc5c
TG
1008 * If TID is 0, then either the dying owner has not
1009 * yet executed exit_pi_state_list() or some waiter
1010 * acquired the rtmutex in the pi state, but did not
1011 * yet fixup the TID in user space.
1012 *
1013 * Take a ref on the state and return success. [6]
1014 */
1015 if (!pid)
1016 goto out_state;
1017 } else {
1018 /*
1019 * If the owner died bit is not set, then the pi_state
1020 * must have an owner. [7]
bd1dbcc6 1021 */
e60cbc5c 1022 if (!pi_state->owner)
bd1dbcc6 1023 return -EINVAL;
c87e2837
IM
1024 }
1025
e60cbc5c
TG
1026 /*
1027 * Bail out if user space manipulated the futex value. If pi
1028 * state exists then the owner TID must be the same as the
1029 * user space TID. [9/10]
1030 */
1031 if (pid != task_pid_vnr(pi_state->owner))
1032 return -EINVAL;
1033out_state:
1034 atomic_inc(&pi_state->refcount);
1035 *ps = pi_state;
1036 return 0;
1037}
1038
04e1b2e5
TG
1039/*
1040 * Lookup the task for the TID provided from user space and attach to
1041 * it after doing proper sanity checks.
1042 */
1043static int attach_to_pi_owner(u32 uval, union futex_key *key,
1044 struct futex_pi_state **ps)
e60cbc5c 1045{
e60cbc5c 1046 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1047 struct futex_pi_state *pi_state;
1048 struct task_struct *p;
e60cbc5c 1049
c87e2837 1050 /*
e3f2ddea 1051 * We are the first waiter - try to look up the real owner and attach
54a21788 1052 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1053 */
778e9a9c 1054 if (!pid)
e3f2ddea 1055 return -ESRCH;
c87e2837 1056 p = futex_find_get_task(pid);
7a0ea09a
MH
1057 if (!p)
1058 return -ESRCH;
778e9a9c 1059
a2129464 1060 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1061 put_task_struct(p);
1062 return -EPERM;
1063 }
1064
778e9a9c
AK
1065 /*
1066 * We need to look at the task state flags to figure out,
1067 * whether the task is exiting. To protect against the do_exit
1068 * change of the task flags, we do this protected by
1069 * p->pi_lock:
1070 */
1d615482 1071 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1072 if (unlikely(p->flags & PF_EXITING)) {
1073 /*
1074 * The task is on the way out. When PF_EXITPIDONE is
1075 * set, we know that the task has finished the
1076 * cleanup:
1077 */
1078 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1079
1d615482 1080 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1081 put_task_struct(p);
1082 return ret;
1083 }
c87e2837 1084
54a21788
TG
1085 /*
1086 * No existing pi state. First waiter. [2]
1087 */
c87e2837
IM
1088 pi_state = alloc_pi_state();
1089
1090 /*
04e1b2e5 1091 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1092 * the owner of it:
1093 */
1094 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1095
1096 /* Store the key for possible exit cleanups: */
d0aa7a70 1097 pi_state->key = *key;
c87e2837 1098
627371d7 1099 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1100 list_add(&pi_state->list, &p->pi_state_list);
1101 pi_state->owner = p;
1d615482 1102 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1103
1104 put_task_struct(p);
1105
d0aa7a70 1106 *ps = pi_state;
c87e2837
IM
1107
1108 return 0;
1109}
1110
04e1b2e5
TG
1111static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1112 union futex_key *key, struct futex_pi_state **ps)
1113{
1114 struct futex_q *match = futex_top_waiter(hb, key);
1115
1116 /*
1117 * If there is a waiter on that futex, validate it and
1118 * attach to the pi_state when the validation succeeds.
1119 */
1120 if (match)
1121 return attach_to_pi_state(uval, match->pi_state, ps);
1122
1123 /*
1124 * We are the first waiter - try to look up the owner based on
1125 * @uval and attach to it.
1126 */
1127 return attach_to_pi_owner(uval, key, ps);
1128}
1129
af54d6a1
TG
1130static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1131{
1132 u32 uninitialized_var(curval);
1133
ab51fbab
DB
1134 if (unlikely(should_fail_futex(true)))
1135 return -EFAULT;
1136
af54d6a1
TG
1137 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1138 return -EFAULT;
1139
1140 /*If user space value changed, let the caller retry */
1141 return curval != uval ? -EAGAIN : 0;
1142}
1143
1a52084d 1144/**
d96ee56c 1145 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1146 * @uaddr: the pi futex user address
1147 * @hb: the pi futex hash bucket
1148 * @key: the futex key associated with uaddr and hb
1149 * @ps: the pi_state pointer where we store the result of the
1150 * lookup
1151 * @task: the task to perform the atomic lock work for. This will
1152 * be "current" except in the case of requeue pi.
1153 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1154 *
6c23cbbd
RD
1155 * Return:
1156 * 0 - ready to wait;
1157 * 1 - acquired the lock;
1a52084d
DH
1158 * <0 - error
1159 *
1160 * The hb->lock and futex_key refs shall be held by the caller.
1161 */
1162static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1163 union futex_key *key,
1164 struct futex_pi_state **ps,
bab5bc9e 1165 struct task_struct *task, int set_waiters)
1a52084d 1166{
af54d6a1
TG
1167 u32 uval, newval, vpid = task_pid_vnr(task);
1168 struct futex_q *match;
1169 int ret;
1a52084d
DH
1170
1171 /*
af54d6a1
TG
1172 * Read the user space value first so we can validate a few
1173 * things before proceeding further.
1a52084d 1174 */
af54d6a1 1175 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1176 return -EFAULT;
1177
ab51fbab
DB
1178 if (unlikely(should_fail_futex(true)))
1179 return -EFAULT;
1180
1a52084d
DH
1181 /*
1182 * Detect deadlocks.
1183 */
af54d6a1 1184 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1185 return -EDEADLK;
1186
ab51fbab
DB
1187 if ((unlikely(should_fail_futex(true))))
1188 return -EDEADLK;
1189
1a52084d 1190 /*
af54d6a1
TG
1191 * Lookup existing state first. If it exists, try to attach to
1192 * its pi_state.
1a52084d 1193 */
af54d6a1
TG
1194 match = futex_top_waiter(hb, key);
1195 if (match)
1196 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1197
1198 /*
af54d6a1
TG
1199 * No waiter and user TID is 0. We are here because the
1200 * waiters or the owner died bit is set or called from
1201 * requeue_cmp_pi or for whatever reason something took the
1202 * syscall.
1a52084d 1203 */
af54d6a1 1204 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1205 /*
af54d6a1
TG
1206 * We take over the futex. No other waiters and the user space
1207 * TID is 0. We preserve the owner died bit.
59fa6245 1208 */
af54d6a1
TG
1209 newval = uval & FUTEX_OWNER_DIED;
1210 newval |= vpid;
1a52084d 1211
af54d6a1
TG
1212 /* The futex requeue_pi code can enforce the waiters bit */
1213 if (set_waiters)
1214 newval |= FUTEX_WAITERS;
1215
1216 ret = lock_pi_update_atomic(uaddr, uval, newval);
1217 /* If the take over worked, return 1 */
1218 return ret < 0 ? ret : 1;
1219 }
1a52084d
DH
1220
1221 /*
af54d6a1
TG
1222 * First waiter. Set the waiters bit before attaching ourself to
1223 * the owner. If owner tries to unlock, it will be forced into
1224 * the kernel and blocked on hb->lock.
1a52084d 1225 */
af54d6a1
TG
1226 newval = uval | FUTEX_WAITERS;
1227 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228 if (ret)
1229 return ret;
1a52084d 1230 /*
af54d6a1
TG
1231 * If the update of the user space value succeeded, we try to
1232 * attach to the owner. If that fails, no harm done, we only
1233 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1234 */
af54d6a1 1235 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1236}
1237
2e12978a
LJ
1238/**
1239 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1240 * @q: The futex_q to unqueue
1241 *
1242 * The q->lock_ptr must not be NULL and must be held by the caller.
1243 */
1244static void __unqueue_futex(struct futex_q *q)
1245{
1246 struct futex_hash_bucket *hb;
1247
29096202
SR
1248 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1249 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1250 return;
1251
1252 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1253 plist_del(&q->list, &hb->chain);
11d4616b 1254 hb_waiters_dec(hb);
2e12978a
LJ
1255}
1256
1da177e4
LT
1257/*
1258 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1259 * Afterwards, the futex_q must not be accessed. Callers
1260 * must ensure to later call wake_up_q() for the actual
1261 * wakeups to occur.
1da177e4 1262 */
1d0dcb3a 1263static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1264{
f1a11e05
TG
1265 struct task_struct *p = q->task;
1266
aa10990e
DH
1267 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1268 return;
1269
1da177e4 1270 /*
1d0dcb3a
DB
1271 * Queue the task for later wakeup for after we've released
1272 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1273 */
1d0dcb3a 1274 wake_q_add(wake_q, p);
2e12978a 1275 __unqueue_futex(q);
1da177e4 1276 /*
f1a11e05
TG
1277 * The waiting task can free the futex_q as soon as
1278 * q->lock_ptr = NULL is written, without taking any locks. A
1279 * memory barrier is required here to prevent the following
1280 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1281 */
ccdea2f8 1282 smp_wmb();
1da177e4
LT
1283 q->lock_ptr = NULL;
1284}
1285
802ab58d
SAS
1286static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1287 struct futex_hash_bucket *hb)
c87e2837
IM
1288{
1289 struct task_struct *new_owner;
1290 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1291 u32 uninitialized_var(curval), newval;
802ab58d
SAS
1292 WAKE_Q(wake_q);
1293 bool deboost;
13fbca4c 1294 int ret = 0;
c87e2837
IM
1295
1296 if (!pi_state)
1297 return -EINVAL;
1298
51246bfd
TG
1299 /*
1300 * If current does not own the pi_state then the futex is
1301 * inconsistent and user space fiddled with the futex value.
1302 */
1303 if (pi_state->owner != current)
1304 return -EINVAL;
1305
b4abf910 1306 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1307 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1308
1309 /*
f123c98e
SR
1310 * It is possible that the next waiter (the one that brought
1311 * this owner to the kernel) timed out and is no longer
1312 * waiting on the lock.
c87e2837
IM
1313 */
1314 if (!new_owner)
1315 new_owner = this->task;
1316
1317 /*
13fbca4c
TG
1318 * We pass it to the next owner. The WAITERS bit is always
1319 * kept enabled while there is PI state around. We cleanup the
1320 * owner died bit, because we are the owner.
c87e2837 1321 */
13fbca4c 1322 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1323
ab51fbab
DB
1324 if (unlikely(should_fail_futex(true)))
1325 ret = -EFAULT;
1326
89e9e66b 1327 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1328 ret = -EFAULT;
89e9e66b
SAS
1329 } else if (curval != uval) {
1330 /*
1331 * If a unconditional UNLOCK_PI operation (user space did not
1332 * try the TID->0 transition) raced with a waiter setting the
1333 * FUTEX_WAITERS flag between get_user() and locking the hash
1334 * bucket lock, retry the operation.
1335 */
1336 if ((FUTEX_TID_MASK & curval) == uval)
1337 ret = -EAGAIN;
1338 else
1339 ret = -EINVAL;
1340 }
13fbca4c 1341 if (ret) {
b4abf910 1342 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
13fbca4c 1343 return ret;
e3f2ddea 1344 }
c87e2837 1345
b4abf910 1346 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1347 WARN_ON(list_empty(&pi_state->list));
1348 list_del_init(&pi_state->list);
b4abf910 1349 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1350
b4abf910 1351 raw_spin_lock(&new_owner->pi_lock);
627371d7 1352 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1353 list_add(&pi_state->list, &new_owner->pi_state_list);
1354 pi_state->owner = new_owner;
b4abf910 1355 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1356
b4abf910 1357 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1358
1359 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1360
1361 /*
1362 * First unlock HB so the waiter does not spin on it once he got woken
1363 * up. Second wake up the waiter before the priority is adjusted. If we
1364 * deboost first (and lose our higher priority), then the task might get
1365 * scheduled away before the wake up can take place.
1366 */
1367 spin_unlock(&hb->lock);
1368 wake_up_q(&wake_q);
1369 if (deboost)
1370 rt_mutex_adjust_prio(current);
c87e2837
IM
1371
1372 return 0;
1373}
1374
8b8f319f
IM
1375/*
1376 * Express the locking dependencies for lockdep:
1377 */
1378static inline void
1379double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1380{
1381 if (hb1 <= hb2) {
1382 spin_lock(&hb1->lock);
1383 if (hb1 < hb2)
1384 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1385 } else { /* hb1 > hb2 */
1386 spin_lock(&hb2->lock);
1387 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1388 }
1389}
1390
5eb3dc62
DH
1391static inline void
1392double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1393{
f061d351 1394 spin_unlock(&hb1->lock);
88f502fe
IM
1395 if (hb1 != hb2)
1396 spin_unlock(&hb2->lock);
5eb3dc62
DH
1397}
1398
1da177e4 1399/*
b2d0994b 1400 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1401 */
b41277dc
DH
1402static int
1403futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1404{
e2970f2f 1405 struct futex_hash_bucket *hb;
1da177e4 1406 struct futex_q *this, *next;
38d47c1b 1407 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1408 int ret;
1d0dcb3a 1409 WAKE_Q(wake_q);
1da177e4 1410
cd689985
TG
1411 if (!bitset)
1412 return -EINVAL;
1413
9ea71503 1414 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1415 if (unlikely(ret != 0))
1416 goto out;
1417
e2970f2f 1418 hb = hash_futex(&key);
b0c29f79
DB
1419
1420 /* Make sure we really have tasks to wakeup */
1421 if (!hb_waiters_pending(hb))
1422 goto out_put_key;
1423
e2970f2f 1424 spin_lock(&hb->lock);
1da177e4 1425
0d00c7b2 1426 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1427 if (match_futex (&this->key, &key)) {
52400ba9 1428 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1429 ret = -EINVAL;
1430 break;
1431 }
cd689985
TG
1432
1433 /* Check if one of the bits is set in both bitsets */
1434 if (!(this->bitset & bitset))
1435 continue;
1436
1d0dcb3a 1437 mark_wake_futex(&wake_q, this);
1da177e4
LT
1438 if (++ret >= nr_wake)
1439 break;
1440 }
1441 }
1442
e2970f2f 1443 spin_unlock(&hb->lock);
1d0dcb3a 1444 wake_up_q(&wake_q);
b0c29f79 1445out_put_key:
ae791a2d 1446 put_futex_key(&key);
42d35d48 1447out:
1da177e4
LT
1448 return ret;
1449}
1450
4732efbe
JJ
1451/*
1452 * Wake up all waiters hashed on the physical page that is mapped
1453 * to this virtual address:
1454 */
e2970f2f 1455static int
b41277dc 1456futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1457 int nr_wake, int nr_wake2, int op)
4732efbe 1458{
38d47c1b 1459 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1460 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1461 struct futex_q *this, *next;
e4dc5b7a 1462 int ret, op_ret;
1d0dcb3a 1463 WAKE_Q(wake_q);
4732efbe 1464
e4dc5b7a 1465retry:
9ea71503 1466 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1467 if (unlikely(ret != 0))
1468 goto out;
9ea71503 1469 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1470 if (unlikely(ret != 0))
42d35d48 1471 goto out_put_key1;
4732efbe 1472
e2970f2f
IM
1473 hb1 = hash_futex(&key1);
1474 hb2 = hash_futex(&key2);
4732efbe 1475
e4dc5b7a 1476retry_private:
eaaea803 1477 double_lock_hb(hb1, hb2);
e2970f2f 1478 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1479 if (unlikely(op_ret < 0)) {
4732efbe 1480
5eb3dc62 1481 double_unlock_hb(hb1, hb2);
4732efbe 1482
7ee1dd3f 1483#ifndef CONFIG_MMU
e2970f2f
IM
1484 /*
1485 * we don't get EFAULT from MMU faults if we don't have an MMU,
1486 * but we might get them from range checking
1487 */
7ee1dd3f 1488 ret = op_ret;
42d35d48 1489 goto out_put_keys;
7ee1dd3f
DH
1490#endif
1491
796f8d9b
DG
1492 if (unlikely(op_ret != -EFAULT)) {
1493 ret = op_ret;
42d35d48 1494 goto out_put_keys;
796f8d9b
DG
1495 }
1496
d0725992 1497 ret = fault_in_user_writeable(uaddr2);
4732efbe 1498 if (ret)
de87fcc1 1499 goto out_put_keys;
4732efbe 1500
b41277dc 1501 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1502 goto retry_private;
1503
ae791a2d
TG
1504 put_futex_key(&key2);
1505 put_futex_key(&key1);
e4dc5b7a 1506 goto retry;
4732efbe
JJ
1507 }
1508
0d00c7b2 1509 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1510 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1511 if (this->pi_state || this->rt_waiter) {
1512 ret = -EINVAL;
1513 goto out_unlock;
1514 }
1d0dcb3a 1515 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1516 if (++ret >= nr_wake)
1517 break;
1518 }
1519 }
1520
1521 if (op_ret > 0) {
4732efbe 1522 op_ret = 0;
0d00c7b2 1523 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1524 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1525 if (this->pi_state || this->rt_waiter) {
1526 ret = -EINVAL;
1527 goto out_unlock;
1528 }
1d0dcb3a 1529 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1530 if (++op_ret >= nr_wake2)
1531 break;
1532 }
1533 }
1534 ret += op_ret;
1535 }
1536
aa10990e 1537out_unlock:
5eb3dc62 1538 double_unlock_hb(hb1, hb2);
1d0dcb3a 1539 wake_up_q(&wake_q);
42d35d48 1540out_put_keys:
ae791a2d 1541 put_futex_key(&key2);
42d35d48 1542out_put_key1:
ae791a2d 1543 put_futex_key(&key1);
42d35d48 1544out:
4732efbe
JJ
1545 return ret;
1546}
1547
9121e478
DH
1548/**
1549 * requeue_futex() - Requeue a futex_q from one hb to another
1550 * @q: the futex_q to requeue
1551 * @hb1: the source hash_bucket
1552 * @hb2: the target hash_bucket
1553 * @key2: the new key for the requeued futex_q
1554 */
1555static inline
1556void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1557 struct futex_hash_bucket *hb2, union futex_key *key2)
1558{
1559
1560 /*
1561 * If key1 and key2 hash to the same bucket, no need to
1562 * requeue.
1563 */
1564 if (likely(&hb1->chain != &hb2->chain)) {
1565 plist_del(&q->list, &hb1->chain);
11d4616b 1566 hb_waiters_dec(hb1);
11d4616b 1567 hb_waiters_inc(hb2);
fe1bce9e 1568 plist_add(&q->list, &hb2->chain);
9121e478 1569 q->lock_ptr = &hb2->lock;
9121e478
DH
1570 }
1571 get_futex_key_refs(key2);
1572 q->key = *key2;
1573}
1574
52400ba9
DH
1575/**
1576 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1577 * @q: the futex_q
1578 * @key: the key of the requeue target futex
1579 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1580 *
1581 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1582 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1583 * to the requeue target futex so the waiter can detect the wakeup on the right
1584 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1585 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1586 * to protect access to the pi_state to fixup the owner later. Must be called
1587 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1588 */
1589static inline
beda2c7e
DH
1590void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1591 struct futex_hash_bucket *hb)
52400ba9 1592{
52400ba9
DH
1593 get_futex_key_refs(key);
1594 q->key = *key;
1595
2e12978a 1596 __unqueue_futex(q);
52400ba9
DH
1597
1598 WARN_ON(!q->rt_waiter);
1599 q->rt_waiter = NULL;
1600
beda2c7e 1601 q->lock_ptr = &hb->lock;
beda2c7e 1602
f1a11e05 1603 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1604}
1605
1606/**
1607 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1608 * @pifutex: the user address of the to futex
1609 * @hb1: the from futex hash bucket, must be locked by the caller
1610 * @hb2: the to futex hash bucket, must be locked by the caller
1611 * @key1: the from futex key
1612 * @key2: the to futex key
1613 * @ps: address to store the pi_state pointer
1614 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1615 *
1616 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1617 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1618 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1619 * hb1 and hb2 must be held by the caller.
52400ba9 1620 *
6c23cbbd
RD
1621 * Return:
1622 * 0 - failed to acquire the lock atomically;
866293ee 1623 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1624 * <0 - error
1625 */
1626static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1627 struct futex_hash_bucket *hb1,
1628 struct futex_hash_bucket *hb2,
1629 union futex_key *key1, union futex_key *key2,
bab5bc9e 1630 struct futex_pi_state **ps, int set_waiters)
52400ba9 1631{
bab5bc9e 1632 struct futex_q *top_waiter = NULL;
52400ba9 1633 u32 curval;
866293ee 1634 int ret, vpid;
52400ba9
DH
1635
1636 if (get_futex_value_locked(&curval, pifutex))
1637 return -EFAULT;
1638
ab51fbab
DB
1639 if (unlikely(should_fail_futex(true)))
1640 return -EFAULT;
1641
bab5bc9e
DH
1642 /*
1643 * Find the top_waiter and determine if there are additional waiters.
1644 * If the caller intends to requeue more than 1 waiter to pifutex,
1645 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1646 * as we have means to handle the possible fault. If not, don't set
1647 * the bit unecessarily as it will force the subsequent unlock to enter
1648 * the kernel.
1649 */
52400ba9
DH
1650 top_waiter = futex_top_waiter(hb1, key1);
1651
1652 /* There are no waiters, nothing for us to do. */
1653 if (!top_waiter)
1654 return 0;
1655
84bc4af5
DH
1656 /* Ensure we requeue to the expected futex. */
1657 if (!match_futex(top_waiter->requeue_pi_key, key2))
1658 return -EINVAL;
1659
52400ba9 1660 /*
bab5bc9e
DH
1661 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1662 * the contended case or if set_waiters is 1. The pi_state is returned
1663 * in ps in contended cases.
52400ba9 1664 */
866293ee 1665 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1666 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1667 set_waiters);
866293ee 1668 if (ret == 1) {
beda2c7e 1669 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1670 return vpid;
1671 }
52400ba9
DH
1672 return ret;
1673}
1674
1675/**
1676 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1677 * @uaddr1: source futex user address
b41277dc 1678 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1679 * @uaddr2: target futex user address
1680 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1681 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1682 * @cmpval: @uaddr1 expected value (or %NULL)
1683 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1684 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1685 *
1686 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1687 * uaddr2 atomically on behalf of the top waiter.
1688 *
6c23cbbd
RD
1689 * Return:
1690 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1691 * <0 - on error
1da177e4 1692 */
b41277dc
DH
1693static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1694 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1695 u32 *cmpval, int requeue_pi)
1da177e4 1696{
38d47c1b 1697 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1698 int drop_count = 0, task_count = 0, ret;
1699 struct futex_pi_state *pi_state = NULL;
e2970f2f 1700 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1701 struct futex_q *this, *next;
1d0dcb3a 1702 WAKE_Q(wake_q);
52400ba9
DH
1703
1704 if (requeue_pi) {
e9c243a5
TG
1705 /*
1706 * Requeue PI only works on two distinct uaddrs. This
1707 * check is only valid for private futexes. See below.
1708 */
1709 if (uaddr1 == uaddr2)
1710 return -EINVAL;
1711
52400ba9
DH
1712 /*
1713 * requeue_pi requires a pi_state, try to allocate it now
1714 * without any locks in case it fails.
1715 */
1716 if (refill_pi_state_cache())
1717 return -ENOMEM;
1718 /*
1719 * requeue_pi must wake as many tasks as it can, up to nr_wake
1720 * + nr_requeue, since it acquires the rt_mutex prior to
1721 * returning to userspace, so as to not leave the rt_mutex with
1722 * waiters and no owner. However, second and third wake-ups
1723 * cannot be predicted as they involve race conditions with the
1724 * first wake and a fault while looking up the pi_state. Both
1725 * pthread_cond_signal() and pthread_cond_broadcast() should
1726 * use nr_wake=1.
1727 */
1728 if (nr_wake != 1)
1729 return -EINVAL;
1730 }
1da177e4 1731
42d35d48 1732retry:
9ea71503 1733 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1734 if (unlikely(ret != 0))
1735 goto out;
9ea71503
SB
1736 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1737 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1738 if (unlikely(ret != 0))
42d35d48 1739 goto out_put_key1;
1da177e4 1740
e9c243a5
TG
1741 /*
1742 * The check above which compares uaddrs is not sufficient for
1743 * shared futexes. We need to compare the keys:
1744 */
1745 if (requeue_pi && match_futex(&key1, &key2)) {
1746 ret = -EINVAL;
1747 goto out_put_keys;
1748 }
1749
e2970f2f
IM
1750 hb1 = hash_futex(&key1);
1751 hb2 = hash_futex(&key2);
1da177e4 1752
e4dc5b7a 1753retry_private:
69cd9eba 1754 hb_waiters_inc(hb2);
8b8f319f 1755 double_lock_hb(hb1, hb2);
1da177e4 1756
e2970f2f
IM
1757 if (likely(cmpval != NULL)) {
1758 u32 curval;
1da177e4 1759
e2970f2f 1760 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1761
1762 if (unlikely(ret)) {
5eb3dc62 1763 double_unlock_hb(hb1, hb2);
69cd9eba 1764 hb_waiters_dec(hb2);
1da177e4 1765
e2970f2f 1766 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1767 if (ret)
1768 goto out_put_keys;
1da177e4 1769
b41277dc 1770 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1771 goto retry_private;
1da177e4 1772
ae791a2d
TG
1773 put_futex_key(&key2);
1774 put_futex_key(&key1);
e4dc5b7a 1775 goto retry;
1da177e4 1776 }
e2970f2f 1777 if (curval != *cmpval) {
1da177e4
LT
1778 ret = -EAGAIN;
1779 goto out_unlock;
1780 }
1781 }
1782
52400ba9 1783 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1784 /*
1785 * Attempt to acquire uaddr2 and wake the top waiter. If we
1786 * intend to requeue waiters, force setting the FUTEX_WAITERS
1787 * bit. We force this here where we are able to easily handle
1788 * faults rather in the requeue loop below.
1789 */
52400ba9 1790 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1791 &key2, &pi_state, nr_requeue);
52400ba9
DH
1792
1793 /*
1794 * At this point the top_waiter has either taken uaddr2 or is
1795 * waiting on it. If the former, then the pi_state will not
1796 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1797 * reference to it. If the lock was taken, ret contains the
1798 * vpid of the top waiter task.
ecb38b78
TG
1799 * If the lock was not taken, we have pi_state and an initial
1800 * refcount on it. In case of an error we have nothing.
52400ba9 1801 */
866293ee 1802 if (ret > 0) {
52400ba9 1803 WARN_ON(pi_state);
89061d3d 1804 drop_count++;
52400ba9 1805 task_count++;
866293ee 1806 /*
ecb38b78
TG
1807 * If we acquired the lock, then the user space value
1808 * of uaddr2 should be vpid. It cannot be changed by
1809 * the top waiter as it is blocked on hb2 lock if it
1810 * tries to do so. If something fiddled with it behind
1811 * our back the pi state lookup might unearth it. So
1812 * we rather use the known value than rereading and
1813 * handing potential crap to lookup_pi_state.
1814 *
1815 * If that call succeeds then we have pi_state and an
1816 * initial refcount on it.
866293ee 1817 */
54a21788 1818 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1819 }
1820
1821 switch (ret) {
1822 case 0:
ecb38b78 1823 /* We hold a reference on the pi state. */
52400ba9 1824 break;
4959f2de
TG
1825
1826 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1827 case -EFAULT:
1828 double_unlock_hb(hb1, hb2);
69cd9eba 1829 hb_waiters_dec(hb2);
ae791a2d
TG
1830 put_futex_key(&key2);
1831 put_futex_key(&key1);
d0725992 1832 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1833 if (!ret)
1834 goto retry;
1835 goto out;
1836 case -EAGAIN:
af54d6a1
TG
1837 /*
1838 * Two reasons for this:
1839 * - Owner is exiting and we just wait for the
1840 * exit to complete.
1841 * - The user space value changed.
1842 */
52400ba9 1843 double_unlock_hb(hb1, hb2);
69cd9eba 1844 hb_waiters_dec(hb2);
ae791a2d
TG
1845 put_futex_key(&key2);
1846 put_futex_key(&key1);
52400ba9
DH
1847 cond_resched();
1848 goto retry;
1849 default:
1850 goto out_unlock;
1851 }
1852 }
1853
0d00c7b2 1854 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1855 if (task_count - nr_wake >= nr_requeue)
1856 break;
1857
1858 if (!match_futex(&this->key, &key1))
1da177e4 1859 continue;
52400ba9 1860
392741e0
DH
1861 /*
1862 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1863 * be paired with each other and no other futex ops.
aa10990e
DH
1864 *
1865 * We should never be requeueing a futex_q with a pi_state,
1866 * which is awaiting a futex_unlock_pi().
392741e0
DH
1867 */
1868 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1869 (!requeue_pi && this->rt_waiter) ||
1870 this->pi_state) {
392741e0
DH
1871 ret = -EINVAL;
1872 break;
1873 }
52400ba9
DH
1874
1875 /*
1876 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1877 * lock, we already woke the top_waiter. If not, it will be
1878 * woken by futex_unlock_pi().
1879 */
1880 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1881 mark_wake_futex(&wake_q, this);
52400ba9
DH
1882 continue;
1883 }
1da177e4 1884
84bc4af5
DH
1885 /* Ensure we requeue to the expected futex for requeue_pi. */
1886 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1887 ret = -EINVAL;
1888 break;
1889 }
1890
52400ba9
DH
1891 /*
1892 * Requeue nr_requeue waiters and possibly one more in the case
1893 * of requeue_pi if we couldn't acquire the lock atomically.
1894 */
1895 if (requeue_pi) {
ecb38b78
TG
1896 /*
1897 * Prepare the waiter to take the rt_mutex. Take a
1898 * refcount on the pi_state and store the pointer in
1899 * the futex_q object of the waiter.
1900 */
52400ba9
DH
1901 atomic_inc(&pi_state->refcount);
1902 this->pi_state = pi_state;
1903 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1904 this->rt_waiter,
c051b21f 1905 this->task);
52400ba9 1906 if (ret == 1) {
ecb38b78
TG
1907 /*
1908 * We got the lock. We do neither drop the
1909 * refcount on pi_state nor clear
1910 * this->pi_state because the waiter needs the
1911 * pi_state for cleaning up the user space
1912 * value. It will drop the refcount after
1913 * doing so.
1914 */
beda2c7e 1915 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1916 drop_count++;
52400ba9
DH
1917 continue;
1918 } else if (ret) {
ecb38b78
TG
1919 /*
1920 * rt_mutex_start_proxy_lock() detected a
1921 * potential deadlock when we tried to queue
1922 * that waiter. Drop the pi_state reference
1923 * which we took above and remove the pointer
1924 * to the state from the waiters futex_q
1925 * object.
1926 */
52400ba9 1927 this->pi_state = NULL;
29e9ee5d 1928 put_pi_state(pi_state);
885c2cb7
TG
1929 /*
1930 * We stop queueing more waiters and let user
1931 * space deal with the mess.
1932 */
1933 break;
52400ba9 1934 }
1da177e4 1935 }
52400ba9
DH
1936 requeue_futex(this, hb1, hb2, &key2);
1937 drop_count++;
1da177e4
LT
1938 }
1939
ecb38b78
TG
1940 /*
1941 * We took an extra initial reference to the pi_state either
1942 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1943 * need to drop it here again.
1944 */
29e9ee5d 1945 put_pi_state(pi_state);
885c2cb7
TG
1946
1947out_unlock:
5eb3dc62 1948 double_unlock_hb(hb1, hb2);
1d0dcb3a 1949 wake_up_q(&wake_q);
69cd9eba 1950 hb_waiters_dec(hb2);
1da177e4 1951
cd84a42f
DH
1952 /*
1953 * drop_futex_key_refs() must be called outside the spinlocks. During
1954 * the requeue we moved futex_q's from the hash bucket at key1 to the
1955 * one at key2 and updated their key pointer. We no longer need to
1956 * hold the references to key1.
1957 */
1da177e4 1958 while (--drop_count >= 0)
9adef58b 1959 drop_futex_key_refs(&key1);
1da177e4 1960
42d35d48 1961out_put_keys:
ae791a2d 1962 put_futex_key(&key2);
42d35d48 1963out_put_key1:
ae791a2d 1964 put_futex_key(&key1);
42d35d48 1965out:
52400ba9 1966 return ret ? ret : task_count;
1da177e4
LT
1967}
1968
1969/* The key must be already stored in q->key. */
82af7aca 1970static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1971 __acquires(&hb->lock)
1da177e4 1972{
e2970f2f 1973 struct futex_hash_bucket *hb;
1da177e4 1974
e2970f2f 1975 hb = hash_futex(&q->key);
11d4616b
LT
1976
1977 /*
1978 * Increment the counter before taking the lock so that
1979 * a potential waker won't miss a to-be-slept task that is
1980 * waiting for the spinlock. This is safe as all queue_lock()
1981 * users end up calling queue_me(). Similarly, for housekeeping,
1982 * decrement the counter at queue_unlock() when some error has
1983 * occurred and we don't end up adding the task to the list.
1984 */
1985 hb_waiters_inc(hb);
1986
e2970f2f 1987 q->lock_ptr = &hb->lock;
1da177e4 1988
8ad7b378 1989 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 1990 return hb;
1da177e4
LT
1991}
1992
d40d65c8 1993static inline void
0d00c7b2 1994queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1995 __releases(&hb->lock)
d40d65c8
DH
1996{
1997 spin_unlock(&hb->lock);
11d4616b 1998 hb_waiters_dec(hb);
d40d65c8
DH
1999}
2000
2001/**
2002 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2003 * @q: The futex_q to enqueue
2004 * @hb: The destination hash bucket
2005 *
2006 * The hb->lock must be held by the caller, and is released here. A call to
2007 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2008 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2009 * or nothing if the unqueue is done as part of the wake process and the unqueue
2010 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2011 * an example).
2012 */
82af7aca 2013static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 2014 __releases(&hb->lock)
1da177e4 2015{
ec92d082
PP
2016 int prio;
2017
2018 /*
2019 * The priority used to register this element is
2020 * - either the real thread-priority for the real-time threads
2021 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2022 * - or MAX_RT_PRIO for non-RT threads.
2023 * Thus, all RT-threads are woken first in priority order, and
2024 * the others are woken last, in FIFO order.
2025 */
2026 prio = min(current->normal_prio, MAX_RT_PRIO);
2027
2028 plist_node_init(&q->list, prio);
ec92d082 2029 plist_add(&q->list, &hb->chain);
c87e2837 2030 q->task = current;
e2970f2f 2031 spin_unlock(&hb->lock);
1da177e4
LT
2032}
2033
d40d65c8
DH
2034/**
2035 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2036 * @q: The futex_q to unqueue
2037 *
2038 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2039 * be paired with exactly one earlier call to queue_me().
2040 *
6c23cbbd
RD
2041 * Return:
2042 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2043 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2044 */
1da177e4
LT
2045static int unqueue_me(struct futex_q *q)
2046{
1da177e4 2047 spinlock_t *lock_ptr;
e2970f2f 2048 int ret = 0;
1da177e4
LT
2049
2050 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2051retry:
29b75eb2
JZ
2052 /*
2053 * q->lock_ptr can change between this read and the following spin_lock.
2054 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2055 * optimizing lock_ptr out of the logic below.
2056 */
2057 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2058 if (lock_ptr != NULL) {
1da177e4
LT
2059 spin_lock(lock_ptr);
2060 /*
2061 * q->lock_ptr can change between reading it and
2062 * spin_lock(), causing us to take the wrong lock. This
2063 * corrects the race condition.
2064 *
2065 * Reasoning goes like this: if we have the wrong lock,
2066 * q->lock_ptr must have changed (maybe several times)
2067 * between reading it and the spin_lock(). It can
2068 * change again after the spin_lock() but only if it was
2069 * already changed before the spin_lock(). It cannot,
2070 * however, change back to the original value. Therefore
2071 * we can detect whether we acquired the correct lock.
2072 */
2073 if (unlikely(lock_ptr != q->lock_ptr)) {
2074 spin_unlock(lock_ptr);
2075 goto retry;
2076 }
2e12978a 2077 __unqueue_futex(q);
c87e2837
IM
2078
2079 BUG_ON(q->pi_state);
2080
1da177e4
LT
2081 spin_unlock(lock_ptr);
2082 ret = 1;
2083 }
2084
9adef58b 2085 drop_futex_key_refs(&q->key);
1da177e4
LT
2086 return ret;
2087}
2088
c87e2837
IM
2089/*
2090 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2091 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2092 * and dropped here.
c87e2837 2093 */
d0aa7a70 2094static void unqueue_me_pi(struct futex_q *q)
15e408cd 2095 __releases(q->lock_ptr)
c87e2837 2096{
2e12978a 2097 __unqueue_futex(q);
c87e2837
IM
2098
2099 BUG_ON(!q->pi_state);
29e9ee5d 2100 put_pi_state(q->pi_state);
c87e2837
IM
2101 q->pi_state = NULL;
2102
d0aa7a70 2103 spin_unlock(q->lock_ptr);
c87e2837
IM
2104}
2105
d0aa7a70 2106/*
cdf71a10 2107 * Fixup the pi_state owner with the new owner.
d0aa7a70 2108 *
778e9a9c
AK
2109 * Must be called with hash bucket lock held and mm->sem held for non
2110 * private futexes.
d0aa7a70 2111 */
778e9a9c 2112static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2113 struct task_struct *newowner)
d0aa7a70 2114{
cdf71a10 2115 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2116 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2117 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2118 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2119 int ret;
d0aa7a70
PP
2120
2121 /* Owner died? */
1b7558e4
TG
2122 if (!pi_state->owner)
2123 newtid |= FUTEX_OWNER_DIED;
2124
2125 /*
2126 * We are here either because we stole the rtmutex from the
8161239a
LJ
2127 * previous highest priority waiter or we are the highest priority
2128 * waiter but failed to get the rtmutex the first time.
2129 * We have to replace the newowner TID in the user space variable.
2130 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2131 *
b2d0994b
DH
2132 * Note: We write the user space value _before_ changing the pi_state
2133 * because we can fault here. Imagine swapped out pages or a fork
2134 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2135 *
2136 * Modifying pi_state _before_ the user space value would
2137 * leave the pi_state in an inconsistent state when we fault
2138 * here, because we need to drop the hash bucket lock to
2139 * handle the fault. This might be observed in the PID check
2140 * in lookup_pi_state.
2141 */
2142retry:
2143 if (get_futex_value_locked(&uval, uaddr))
2144 goto handle_fault;
2145
2146 while (1) {
2147 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2148
37a9d912 2149 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2150 goto handle_fault;
2151 if (curval == uval)
2152 break;
2153 uval = curval;
2154 }
2155
2156 /*
2157 * We fixed up user space. Now we need to fix the pi_state
2158 * itself.
2159 */
d0aa7a70 2160 if (pi_state->owner != NULL) {
1d615482 2161 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2162 WARN_ON(list_empty(&pi_state->list));
2163 list_del_init(&pi_state->list);
1d615482 2164 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2165 }
d0aa7a70 2166
cdf71a10 2167 pi_state->owner = newowner;
d0aa7a70 2168
1d615482 2169 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2170 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2171 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2172 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2173 return 0;
d0aa7a70 2174
d0aa7a70 2175 /*
1b7558e4 2176 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2177 * lock here. That gives the other task (either the highest priority
2178 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2179 * chance to try the fixup of the pi_state. So once we are
2180 * back from handling the fault we need to check the pi_state
2181 * after reacquiring the hash bucket lock and before trying to
2182 * do another fixup. When the fixup has been done already we
2183 * simply return.
d0aa7a70 2184 */
1b7558e4
TG
2185handle_fault:
2186 spin_unlock(q->lock_ptr);
778e9a9c 2187
d0725992 2188 ret = fault_in_user_writeable(uaddr);
778e9a9c 2189
1b7558e4 2190 spin_lock(q->lock_ptr);
778e9a9c 2191
1b7558e4
TG
2192 /*
2193 * Check if someone else fixed it for us:
2194 */
2195 if (pi_state->owner != oldowner)
2196 return 0;
2197
2198 if (ret)
2199 return ret;
2200
2201 goto retry;
d0aa7a70
PP
2202}
2203
72c1bbf3 2204static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2205
dd973998
DH
2206/**
2207 * fixup_owner() - Post lock pi_state and corner case management
2208 * @uaddr: user address of the futex
dd973998
DH
2209 * @q: futex_q (contains pi_state and access to the rt_mutex)
2210 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2211 *
2212 * After attempting to lock an rt_mutex, this function is called to cleanup
2213 * the pi_state owner as well as handle race conditions that may allow us to
2214 * acquire the lock. Must be called with the hb lock held.
2215 *
6c23cbbd
RD
2216 * Return:
2217 * 1 - success, lock taken;
2218 * 0 - success, lock not taken;
dd973998
DH
2219 * <0 - on error (-EFAULT)
2220 */
ae791a2d 2221static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2222{
2223 struct task_struct *owner;
2224 int ret = 0;
2225
2226 if (locked) {
2227 /*
2228 * Got the lock. We might not be the anticipated owner if we
2229 * did a lock-steal - fix up the PI-state in that case:
2230 */
2231 if (q->pi_state->owner != current)
ae791a2d 2232 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2233 goto out;
2234 }
2235
2236 /*
2237 * Catch the rare case, where the lock was released when we were on the
2238 * way back before we locked the hash bucket.
2239 */
2240 if (q->pi_state->owner == current) {
2241 /*
2242 * Try to get the rt_mutex now. This might fail as some other
2243 * task acquired the rt_mutex after we removed ourself from the
2244 * rt_mutex waiters list.
2245 */
2246 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2247 locked = 1;
2248 goto out;
2249 }
2250
2251 /*
2252 * pi_state is incorrect, some other task did a lock steal and
2253 * we returned due to timeout or signal without taking the
8161239a 2254 * rt_mutex. Too late.
dd973998 2255 */
b4abf910 2256 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
dd973998 2257 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2258 if (!owner)
2259 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
b4abf910 2260 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2261 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2262 goto out;
2263 }
2264
2265 /*
2266 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2267 * the owner of the rt_mutex.
dd973998
DH
2268 */
2269 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2270 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2271 "pi-state %p\n", ret,
2272 q->pi_state->pi_mutex.owner,
2273 q->pi_state->owner);
2274
2275out:
2276 return ret ? ret : locked;
2277}
2278
ca5f9524
DH
2279/**
2280 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2281 * @hb: the futex hash bucket, must be locked by the caller
2282 * @q: the futex_q to queue up on
2283 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2284 */
2285static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2286 struct hrtimer_sleeper *timeout)
ca5f9524 2287{
9beba3c5
DH
2288 /*
2289 * The task state is guaranteed to be set before another task can
b92b8b35 2290 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2291 * queue_me() calls spin_unlock() upon completion, both serializing
2292 * access to the hash list and forcing another memory barrier.
2293 */
f1a11e05 2294 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2295 queue_me(q, hb);
ca5f9524
DH
2296
2297 /* Arm the timer */
2e4b0d3f 2298 if (timeout)
ca5f9524 2299 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2300
2301 /*
0729e196
DH
2302 * If we have been removed from the hash list, then another task
2303 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2304 */
2305 if (likely(!plist_node_empty(&q->list))) {
2306 /*
2307 * If the timer has already expired, current will already be
2308 * flagged for rescheduling. Only call schedule if there
2309 * is no timeout, or if it has yet to expire.
2310 */
2311 if (!timeout || timeout->task)
88c8004f 2312 freezable_schedule();
ca5f9524
DH
2313 }
2314 __set_current_state(TASK_RUNNING);
2315}
2316
f801073f
DH
2317/**
2318 * futex_wait_setup() - Prepare to wait on a futex
2319 * @uaddr: the futex userspace address
2320 * @val: the expected value
b41277dc 2321 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2322 * @q: the associated futex_q
2323 * @hb: storage for hash_bucket pointer to be returned to caller
2324 *
2325 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2326 * compare it with the expected value. Handle atomic faults internally.
2327 * Return with the hb lock held and a q.key reference on success, and unlocked
2328 * with no q.key reference on failure.
2329 *
6c23cbbd
RD
2330 * Return:
2331 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2332 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2333 */
b41277dc 2334static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2335 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2336{
e2970f2f
IM
2337 u32 uval;
2338 int ret;
1da177e4 2339
1da177e4 2340 /*
b2d0994b 2341 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2342 * Order is important:
2343 *
2344 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2345 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2346 *
2347 * The basic logical guarantee of a futex is that it blocks ONLY
2348 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2349 * any cond. If we locked the hash-bucket after testing *uaddr, that
2350 * would open a race condition where we could block indefinitely with
1da177e4
LT
2351 * cond(var) false, which would violate the guarantee.
2352 *
8fe8f545
ML
2353 * On the other hand, we insert q and release the hash-bucket only
2354 * after testing *uaddr. This guarantees that futex_wait() will NOT
2355 * absorb a wakeup if *uaddr does not match the desired values
2356 * while the syscall executes.
1da177e4 2357 */
f801073f 2358retry:
9ea71503 2359 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2360 if (unlikely(ret != 0))
a5a2a0c7 2361 return ret;
f801073f
DH
2362
2363retry_private:
2364 *hb = queue_lock(q);
2365
e2970f2f 2366 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2367
f801073f 2368 if (ret) {
0d00c7b2 2369 queue_unlock(*hb);
1da177e4 2370
e2970f2f 2371 ret = get_user(uval, uaddr);
e4dc5b7a 2372 if (ret)
f801073f 2373 goto out;
1da177e4 2374
b41277dc 2375 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2376 goto retry_private;
2377
ae791a2d 2378 put_futex_key(&q->key);
e4dc5b7a 2379 goto retry;
1da177e4 2380 }
ca5f9524 2381
f801073f 2382 if (uval != val) {
0d00c7b2 2383 queue_unlock(*hb);
f801073f 2384 ret = -EWOULDBLOCK;
2fff78c7 2385 }
1da177e4 2386
f801073f
DH
2387out:
2388 if (ret)
ae791a2d 2389 put_futex_key(&q->key);
f801073f
DH
2390 return ret;
2391}
2392
b41277dc
DH
2393static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2394 ktime_t *abs_time, u32 bitset)
f801073f
DH
2395{
2396 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2397 struct restart_block *restart;
2398 struct futex_hash_bucket *hb;
5bdb05f9 2399 struct futex_q q = futex_q_init;
f801073f
DH
2400 int ret;
2401
2402 if (!bitset)
2403 return -EINVAL;
f801073f
DH
2404 q.bitset = bitset;
2405
2406 if (abs_time) {
2407 to = &timeout;
2408
b41277dc
DH
2409 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2410 CLOCK_REALTIME : CLOCK_MONOTONIC,
2411 HRTIMER_MODE_ABS);
f801073f
DH
2412 hrtimer_init_sleeper(to, current);
2413 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2414 current->timer_slack_ns);
2415 }
2416
d58e6576 2417retry:
7ada876a
DH
2418 /*
2419 * Prepare to wait on uaddr. On success, holds hb lock and increments
2420 * q.key refs.
2421 */
b41277dc 2422 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2423 if (ret)
2424 goto out;
2425
ca5f9524 2426 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2427 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2428
2429 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2430 ret = 0;
7ada876a 2431 /* unqueue_me() drops q.key ref */
1da177e4 2432 if (!unqueue_me(&q))
7ada876a 2433 goto out;
2fff78c7 2434 ret = -ETIMEDOUT;
ca5f9524 2435 if (to && !to->task)
7ada876a 2436 goto out;
72c1bbf3 2437
e2970f2f 2438 /*
d58e6576
TG
2439 * We expect signal_pending(current), but we might be the
2440 * victim of a spurious wakeup as well.
e2970f2f 2441 */
7ada876a 2442 if (!signal_pending(current))
d58e6576 2443 goto retry;
d58e6576 2444
2fff78c7 2445 ret = -ERESTARTSYS;
c19384b5 2446 if (!abs_time)
7ada876a 2447 goto out;
1da177e4 2448
f56141e3 2449 restart = &current->restart_block;
2fff78c7 2450 restart->fn = futex_wait_restart;
a3c74c52 2451 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2452 restart->futex.val = val;
2453 restart->futex.time = abs_time->tv64;
2454 restart->futex.bitset = bitset;
0cd9c649 2455 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2456
2fff78c7
PZ
2457 ret = -ERESTART_RESTARTBLOCK;
2458
42d35d48 2459out:
ca5f9524
DH
2460 if (to) {
2461 hrtimer_cancel(&to->timer);
2462 destroy_hrtimer_on_stack(&to->timer);
2463 }
c87e2837
IM
2464 return ret;
2465}
2466
72c1bbf3
NP
2467
2468static long futex_wait_restart(struct restart_block *restart)
2469{
a3c74c52 2470 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2471 ktime_t t, *tp = NULL;
72c1bbf3 2472
a72188d8
DH
2473 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2474 t.tv64 = restart->futex.time;
2475 tp = &t;
2476 }
72c1bbf3 2477 restart->fn = do_no_restart_syscall;
b41277dc
DH
2478
2479 return (long)futex_wait(uaddr, restart->futex.flags,
2480 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2481}
2482
2483
c87e2837
IM
2484/*
2485 * Userspace tried a 0 -> TID atomic transition of the futex value
2486 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2487 * if there are waiters then it will block as a consequence of relying
2488 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2489 * a 0 value of the futex too.).
2490 *
2491 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2492 */
996636dd 2493static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2494 ktime_t *time, int trylock)
c87e2837 2495{
c5780e97 2496 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2497 struct futex_hash_bucket *hb;
5bdb05f9 2498 struct futex_q q = futex_q_init;
dd973998 2499 int res, ret;
c87e2837
IM
2500
2501 if (refill_pi_state_cache())
2502 return -ENOMEM;
2503
c19384b5 2504 if (time) {
c5780e97 2505 to = &timeout;
237fc6e7
TG
2506 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2507 HRTIMER_MODE_ABS);
c5780e97 2508 hrtimer_init_sleeper(to, current);
cc584b21 2509 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2510 }
2511
42d35d48 2512retry:
9ea71503 2513 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2514 if (unlikely(ret != 0))
42d35d48 2515 goto out;
c87e2837 2516
e4dc5b7a 2517retry_private:
82af7aca 2518 hb = queue_lock(&q);
c87e2837 2519
bab5bc9e 2520 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2521 if (unlikely(ret)) {
767f509c
DB
2522 /*
2523 * Atomic work succeeded and we got the lock,
2524 * or failed. Either way, we do _not_ block.
2525 */
778e9a9c 2526 switch (ret) {
1a52084d
DH
2527 case 1:
2528 /* We got the lock. */
2529 ret = 0;
2530 goto out_unlock_put_key;
2531 case -EFAULT:
2532 goto uaddr_faulted;
778e9a9c
AK
2533 case -EAGAIN:
2534 /*
af54d6a1
TG
2535 * Two reasons for this:
2536 * - Task is exiting and we just wait for the
2537 * exit to complete.
2538 * - The user space value changed.
778e9a9c 2539 */
0d00c7b2 2540 queue_unlock(hb);
ae791a2d 2541 put_futex_key(&q.key);
778e9a9c
AK
2542 cond_resched();
2543 goto retry;
778e9a9c 2544 default:
42d35d48 2545 goto out_unlock_put_key;
c87e2837 2546 }
c87e2837
IM
2547 }
2548
2549 /*
2550 * Only actually queue now that the atomic ops are done:
2551 */
82af7aca 2552 queue_me(&q, hb);
c87e2837 2553
c87e2837
IM
2554 WARN_ON(!q.pi_state);
2555 /*
2556 * Block on the PI mutex:
2557 */
c051b21f
TG
2558 if (!trylock) {
2559 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2560 } else {
c87e2837
IM
2561 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2562 /* Fixup the trylock return value: */
2563 ret = ret ? 0 : -EWOULDBLOCK;
2564 }
2565
a99e4e41 2566 spin_lock(q.lock_ptr);
dd973998
DH
2567 /*
2568 * Fixup the pi_state owner and possibly acquire the lock if we
2569 * haven't already.
2570 */
ae791a2d 2571 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2572 /*
2573 * If fixup_owner() returned an error, proprogate that. If it acquired
2574 * the lock, clear our -ETIMEDOUT or -EINTR.
2575 */
2576 if (res)
2577 ret = (res < 0) ? res : 0;
c87e2837 2578
e8f6386c 2579 /*
dd973998
DH
2580 * If fixup_owner() faulted and was unable to handle the fault, unlock
2581 * it and return the fault to userspace.
e8f6386c
DH
2582 */
2583 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2584 rt_mutex_unlock(&q.pi_state->pi_mutex);
2585
778e9a9c
AK
2586 /* Unqueue and drop the lock */
2587 unqueue_me_pi(&q);
c87e2837 2588
5ecb01cf 2589 goto out_put_key;
c87e2837 2590
42d35d48 2591out_unlock_put_key:
0d00c7b2 2592 queue_unlock(hb);
c87e2837 2593
42d35d48 2594out_put_key:
ae791a2d 2595 put_futex_key(&q.key);
42d35d48 2596out:
237fc6e7
TG
2597 if (to)
2598 destroy_hrtimer_on_stack(&to->timer);
dd973998 2599 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2600
42d35d48 2601uaddr_faulted:
0d00c7b2 2602 queue_unlock(hb);
778e9a9c 2603
d0725992 2604 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2605 if (ret)
2606 goto out_put_key;
c87e2837 2607
b41277dc 2608 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2609 goto retry_private;
2610
ae791a2d 2611 put_futex_key(&q.key);
e4dc5b7a 2612 goto retry;
c87e2837
IM
2613}
2614
c87e2837
IM
2615/*
2616 * Userspace attempted a TID -> 0 atomic transition, and failed.
2617 * This is the in-kernel slowpath: we look up the PI state (if any),
2618 * and do the rt-mutex unlock.
2619 */
b41277dc 2620static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2621{
ccf9e6a8 2622 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2623 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2624 struct futex_hash_bucket *hb;
2625 struct futex_q *match;
e4dc5b7a 2626 int ret;
c87e2837
IM
2627
2628retry:
2629 if (get_user(uval, uaddr))
2630 return -EFAULT;
2631 /*
2632 * We release only a lock we actually own:
2633 */
c0c9ed15 2634 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2635 return -EPERM;
c87e2837 2636
9ea71503 2637 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2638 if (ret)
2639 return ret;
c87e2837
IM
2640
2641 hb = hash_futex(&key);
2642 spin_lock(&hb->lock);
2643
c87e2837 2644 /*
ccf9e6a8
TG
2645 * Check waiters first. We do not trust user space values at
2646 * all and we at least want to know if user space fiddled
2647 * with the futex value instead of blindly unlocking.
c87e2837 2648 */
ccf9e6a8
TG
2649 match = futex_top_waiter(hb, &key);
2650 if (match) {
802ab58d
SAS
2651 ret = wake_futex_pi(uaddr, uval, match, hb);
2652 /*
2653 * In case of success wake_futex_pi dropped the hash
2654 * bucket lock.
2655 */
2656 if (!ret)
2657 goto out_putkey;
c87e2837 2658 /*
ccf9e6a8
TG
2659 * The atomic access to the futex value generated a
2660 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2661 */
2662 if (ret == -EFAULT)
2663 goto pi_faulted;
89e9e66b
SAS
2664 /*
2665 * A unconditional UNLOCK_PI op raced against a waiter
2666 * setting the FUTEX_WAITERS bit. Try again.
2667 */
2668 if (ret == -EAGAIN) {
2669 spin_unlock(&hb->lock);
2670 put_futex_key(&key);
2671 goto retry;
2672 }
802ab58d
SAS
2673 /*
2674 * wake_futex_pi has detected invalid state. Tell user
2675 * space.
2676 */
c87e2837
IM
2677 goto out_unlock;
2678 }
ccf9e6a8 2679
c87e2837 2680 /*
ccf9e6a8
TG
2681 * We have no kernel internal state, i.e. no waiters in the
2682 * kernel. Waiters which are about to queue themselves are stuck
2683 * on hb->lock. So we can safely ignore them. We do neither
2684 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2685 * owner.
c87e2837 2686 */
ccf9e6a8 2687 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2688 goto pi_faulted;
c87e2837 2689
ccf9e6a8
TG
2690 /*
2691 * If uval has changed, let user space handle it.
2692 */
2693 ret = (curval == uval) ? 0 : -EAGAIN;
2694
c87e2837
IM
2695out_unlock:
2696 spin_unlock(&hb->lock);
802ab58d 2697out_putkey:
ae791a2d 2698 put_futex_key(&key);
c87e2837
IM
2699 return ret;
2700
2701pi_faulted:
778e9a9c 2702 spin_unlock(&hb->lock);
ae791a2d 2703 put_futex_key(&key);
c87e2837 2704
d0725992 2705 ret = fault_in_user_writeable(uaddr);
b5686363 2706 if (!ret)
c87e2837
IM
2707 goto retry;
2708
1da177e4
LT
2709 return ret;
2710}
2711
52400ba9
DH
2712/**
2713 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2714 * @hb: the hash_bucket futex_q was original enqueued on
2715 * @q: the futex_q woken while waiting to be requeued
2716 * @key2: the futex_key of the requeue target futex
2717 * @timeout: the timeout associated with the wait (NULL if none)
2718 *
2719 * Detect if the task was woken on the initial futex as opposed to the requeue
2720 * target futex. If so, determine if it was a timeout or a signal that caused
2721 * the wakeup and return the appropriate error code to the caller. Must be
2722 * called with the hb lock held.
2723 *
6c23cbbd
RD
2724 * Return:
2725 * 0 = no early wakeup detected;
2726 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2727 */
2728static inline
2729int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2730 struct futex_q *q, union futex_key *key2,
2731 struct hrtimer_sleeper *timeout)
2732{
2733 int ret = 0;
2734
2735 /*
2736 * With the hb lock held, we avoid races while we process the wakeup.
2737 * We only need to hold hb (and not hb2) to ensure atomicity as the
2738 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2739 * It can't be requeued from uaddr2 to something else since we don't
2740 * support a PI aware source futex for requeue.
2741 */
2742 if (!match_futex(&q->key, key2)) {
2743 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2744 /*
2745 * We were woken prior to requeue by a timeout or a signal.
2746 * Unqueue the futex_q and determine which it was.
2747 */
2e12978a 2748 plist_del(&q->list, &hb->chain);
11d4616b 2749 hb_waiters_dec(hb);
52400ba9 2750
d58e6576 2751 /* Handle spurious wakeups gracefully */
11df6ddd 2752 ret = -EWOULDBLOCK;
52400ba9
DH
2753 if (timeout && !timeout->task)
2754 ret = -ETIMEDOUT;
d58e6576 2755 else if (signal_pending(current))
1c840c14 2756 ret = -ERESTARTNOINTR;
52400ba9
DH
2757 }
2758 return ret;
2759}
2760
2761/**
2762 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2763 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2764 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2765 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2766 * @val: the expected value of uaddr
2767 * @abs_time: absolute timeout
56ec1607 2768 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2769 * @uaddr2: the pi futex we will take prior to returning to user-space
2770 *
2771 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2772 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2773 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2774 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2775 * without one, the pi logic would not know which task to boost/deboost, if
2776 * there was a need to.
52400ba9
DH
2777 *
2778 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2779 * via the following--
52400ba9 2780 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2781 * 2) wakeup on uaddr2 after a requeue
2782 * 3) signal
2783 * 4) timeout
52400ba9 2784 *
cc6db4e6 2785 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2786 *
2787 * If 2, we may then block on trying to take the rt_mutex and return via:
2788 * 5) successful lock
2789 * 6) signal
2790 * 7) timeout
2791 * 8) other lock acquisition failure
2792 *
cc6db4e6 2793 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2794 *
2795 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2796 *
6c23cbbd
RD
2797 * Return:
2798 * 0 - On success;
52400ba9
DH
2799 * <0 - On error
2800 */
b41277dc 2801static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2802 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2803 u32 __user *uaddr2)
52400ba9
DH
2804{
2805 struct hrtimer_sleeper timeout, *to = NULL;
2806 struct rt_mutex_waiter rt_waiter;
2807 struct rt_mutex *pi_mutex = NULL;
52400ba9 2808 struct futex_hash_bucket *hb;
5bdb05f9
DH
2809 union futex_key key2 = FUTEX_KEY_INIT;
2810 struct futex_q q = futex_q_init;
52400ba9 2811 int res, ret;
52400ba9 2812
6f7b0a2a
DH
2813 if (uaddr == uaddr2)
2814 return -EINVAL;
2815
52400ba9
DH
2816 if (!bitset)
2817 return -EINVAL;
2818
2819 if (abs_time) {
2820 to = &timeout;
b41277dc
DH
2821 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2822 CLOCK_REALTIME : CLOCK_MONOTONIC,
2823 HRTIMER_MODE_ABS);
52400ba9
DH
2824 hrtimer_init_sleeper(to, current);
2825 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2826 current->timer_slack_ns);
2827 }
2828
2829 /*
2830 * The waiter is allocated on our stack, manipulated by the requeue
2831 * code while we sleep on uaddr.
2832 */
2833 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2834 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2835 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2836 rt_waiter.task = NULL;
2837
9ea71503 2838 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2839 if (unlikely(ret != 0))
2840 goto out;
2841
84bc4af5
DH
2842 q.bitset = bitset;
2843 q.rt_waiter = &rt_waiter;
2844 q.requeue_pi_key = &key2;
2845
7ada876a
DH
2846 /*
2847 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2848 * count.
2849 */
b41277dc 2850 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2851 if (ret)
2852 goto out_key2;
52400ba9 2853
e9c243a5
TG
2854 /*
2855 * The check above which compares uaddrs is not sufficient for
2856 * shared futexes. We need to compare the keys:
2857 */
2858 if (match_futex(&q.key, &key2)) {
13c42c2f 2859 queue_unlock(hb);
e9c243a5
TG
2860 ret = -EINVAL;
2861 goto out_put_keys;
2862 }
2863
52400ba9 2864 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2865 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2866
2867 spin_lock(&hb->lock);
2868 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2869 spin_unlock(&hb->lock);
2870 if (ret)
2871 goto out_put_keys;
2872
2873 /*
2874 * In order for us to be here, we know our q.key == key2, and since
2875 * we took the hb->lock above, we also know that futex_requeue() has
2876 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2877 * race with the atomic proxy lock acquisition by the requeue code. The
2878 * futex_requeue dropped our key1 reference and incremented our key2
2879 * reference count.
52400ba9
DH
2880 */
2881
2882 /* Check if the requeue code acquired the second futex for us. */
2883 if (!q.rt_waiter) {
2884 /*
2885 * Got the lock. We might not be the anticipated owner if we
2886 * did a lock-steal - fix up the PI-state in that case.
2887 */
2888 if (q.pi_state && (q.pi_state->owner != current)) {
2889 spin_lock(q.lock_ptr);
ae791a2d 2890 ret = fixup_pi_state_owner(uaddr2, &q, current);
fb75a428
TG
2891 /*
2892 * Drop the reference to the pi state which
2893 * the requeue_pi() code acquired for us.
2894 */
29e9ee5d 2895 put_pi_state(q.pi_state);
52400ba9
DH
2896 spin_unlock(q.lock_ptr);
2897 }
2898 } else {
2899 /*
2900 * We have been woken up by futex_unlock_pi(), a timeout, or a
2901 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2902 * the pi_state.
2903 */
f27071cb 2904 WARN_ON(!q.pi_state);
52400ba9 2905 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2906 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2907 debug_rt_mutex_free_waiter(&rt_waiter);
2908
2909 spin_lock(q.lock_ptr);
2910 /*
2911 * Fixup the pi_state owner and possibly acquire the lock if we
2912 * haven't already.
2913 */
ae791a2d 2914 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2915 /*
2916 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2917 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2918 */
2919 if (res)
2920 ret = (res < 0) ? res : 0;
2921
2922 /* Unqueue and drop the lock. */
2923 unqueue_me_pi(&q);
2924 }
2925
2926 /*
2927 * If fixup_pi_state_owner() faulted and was unable to handle the
2928 * fault, unlock the rt_mutex and return the fault to userspace.
2929 */
2930 if (ret == -EFAULT) {
b6070a8d 2931 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2932 rt_mutex_unlock(pi_mutex);
2933 } else if (ret == -EINTR) {
52400ba9 2934 /*
cc6db4e6
DH
2935 * We've already been requeued, but cannot restart by calling
2936 * futex_lock_pi() directly. We could restart this syscall, but
2937 * it would detect that the user space "val" changed and return
2938 * -EWOULDBLOCK. Save the overhead of the restart and return
2939 * -EWOULDBLOCK directly.
52400ba9 2940 */
2070887f 2941 ret = -EWOULDBLOCK;
52400ba9
DH
2942 }
2943
2944out_put_keys:
ae791a2d 2945 put_futex_key(&q.key);
c8b15a70 2946out_key2:
ae791a2d 2947 put_futex_key(&key2);
52400ba9
DH
2948
2949out:
2950 if (to) {
2951 hrtimer_cancel(&to->timer);
2952 destroy_hrtimer_on_stack(&to->timer);
2953 }
2954 return ret;
2955}
2956
0771dfef
IM
2957/*
2958 * Support for robust futexes: the kernel cleans up held futexes at
2959 * thread exit time.
2960 *
2961 * Implementation: user-space maintains a per-thread list of locks it
2962 * is holding. Upon do_exit(), the kernel carefully walks this list,
2963 * and marks all locks that are owned by this thread with the
c87e2837 2964 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2965 * always manipulated with the lock held, so the list is private and
2966 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2967 * field, to allow the kernel to clean up if the thread dies after
2968 * acquiring the lock, but just before it could have added itself to
2969 * the list. There can only be one such pending lock.
2970 */
2971
2972/**
d96ee56c
DH
2973 * sys_set_robust_list() - Set the robust-futex list head of a task
2974 * @head: pointer to the list-head
2975 * @len: length of the list-head, as userspace expects
0771dfef 2976 */
836f92ad
HC
2977SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2978 size_t, len)
0771dfef 2979{
a0c1e907
TG
2980 if (!futex_cmpxchg_enabled)
2981 return -ENOSYS;
0771dfef
IM
2982 /*
2983 * The kernel knows only one size for now:
2984 */
2985 if (unlikely(len != sizeof(*head)))
2986 return -EINVAL;
2987
2988 current->robust_list = head;
2989
2990 return 0;
2991}
2992
2993/**
d96ee56c
DH
2994 * sys_get_robust_list() - Get the robust-futex list head of a task
2995 * @pid: pid of the process [zero for current task]
2996 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2997 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2998 */
836f92ad
HC
2999SYSCALL_DEFINE3(get_robust_list, int, pid,
3000 struct robust_list_head __user * __user *, head_ptr,
3001 size_t __user *, len_ptr)
0771dfef 3002{
ba46df98 3003 struct robust_list_head __user *head;
0771dfef 3004 unsigned long ret;
bdbb776f 3005 struct task_struct *p;
0771dfef 3006
a0c1e907
TG
3007 if (!futex_cmpxchg_enabled)
3008 return -ENOSYS;
3009
bdbb776f
KC
3010 rcu_read_lock();
3011
3012 ret = -ESRCH;
0771dfef 3013 if (!pid)
bdbb776f 3014 p = current;
0771dfef 3015 else {
228ebcbe 3016 p = find_task_by_vpid(pid);
0771dfef
IM
3017 if (!p)
3018 goto err_unlock;
0771dfef
IM
3019 }
3020
bdbb776f 3021 ret = -EPERM;
caaee623 3022 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3023 goto err_unlock;
3024
3025 head = p->robust_list;
3026 rcu_read_unlock();
3027
0771dfef
IM
3028 if (put_user(sizeof(*head), len_ptr))
3029 return -EFAULT;
3030 return put_user(head, head_ptr);
3031
3032err_unlock:
aaa2a97e 3033 rcu_read_unlock();
0771dfef
IM
3034
3035 return ret;
3036}
3037
3038/*
3039 * Process a futex-list entry, check whether it's owned by the
3040 * dying task, and do notification if so:
3041 */
e3f2ddea 3042int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3043{
7cfdaf38 3044 u32 uval, uninitialized_var(nval), mval;
0771dfef 3045
8f17d3a5
IM
3046retry:
3047 if (get_user(uval, uaddr))
0771dfef
IM
3048 return -1;
3049
b488893a 3050 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3051 /*
3052 * Ok, this dying thread is truly holding a futex
3053 * of interest. Set the OWNER_DIED bit atomically
3054 * via cmpxchg, and if the value had FUTEX_WAITERS
3055 * set, wake up a waiter (if any). (We have to do a
3056 * futex_wake() even if OWNER_DIED is already set -
3057 * to handle the rare but possible case of recursive
3058 * thread-death.) The rest of the cleanup is done in
3059 * userspace.
3060 */
e3f2ddea 3061 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3062 /*
3063 * We are not holding a lock here, but we want to have
3064 * the pagefault_disable/enable() protection because
3065 * we want to handle the fault gracefully. If the
3066 * access fails we try to fault in the futex with R/W
3067 * verification via get_user_pages. get_user() above
3068 * does not guarantee R/W access. If that fails we
3069 * give up and leave the futex locked.
3070 */
3071 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3072 if (fault_in_user_writeable(uaddr))
3073 return -1;
3074 goto retry;
3075 }
c87e2837 3076 if (nval != uval)
8f17d3a5 3077 goto retry;
0771dfef 3078
e3f2ddea
IM
3079 /*
3080 * Wake robust non-PI futexes here. The wakeup of
3081 * PI futexes happens in exit_pi_state():
3082 */
36cf3b5c 3083 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3084 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3085 }
3086 return 0;
3087}
3088
e3f2ddea
IM
3089/*
3090 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3091 */
3092static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3093 struct robust_list __user * __user *head,
1dcc41bb 3094 unsigned int *pi)
e3f2ddea
IM
3095{
3096 unsigned long uentry;
3097
ba46df98 3098 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3099 return -EFAULT;
3100
ba46df98 3101 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3102 *pi = uentry & 1;
3103
3104 return 0;
3105}
3106
0771dfef
IM
3107/*
3108 * Walk curr->robust_list (very carefully, it's a userspace list!)
3109 * and mark any locks found there dead, and notify any waiters.
3110 *
3111 * We silently return on any sign of list-walking problem.
3112 */
3113void exit_robust_list(struct task_struct *curr)
3114{
3115 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3116 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3117 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3118 unsigned int uninitialized_var(next_pi);
0771dfef 3119 unsigned long futex_offset;
9f96cb1e 3120 int rc;
0771dfef 3121
a0c1e907
TG
3122 if (!futex_cmpxchg_enabled)
3123 return;
3124
0771dfef
IM
3125 /*
3126 * Fetch the list head (which was registered earlier, via
3127 * sys_set_robust_list()):
3128 */
e3f2ddea 3129 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3130 return;
3131 /*
3132 * Fetch the relative futex offset:
3133 */
3134 if (get_user(futex_offset, &head->futex_offset))
3135 return;
3136 /*
3137 * Fetch any possibly pending lock-add first, and handle it
3138 * if it exists:
3139 */
e3f2ddea 3140 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3141 return;
e3f2ddea 3142
9f96cb1e 3143 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3144 while (entry != &head->list) {
9f96cb1e
MS
3145 /*
3146 * Fetch the next entry in the list before calling
3147 * handle_futex_death:
3148 */
3149 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3150 /*
3151 * A pending lock might already be on the list, so
c87e2837 3152 * don't process it twice:
0771dfef
IM
3153 */
3154 if (entry != pending)
ba46df98 3155 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3156 curr, pi))
0771dfef 3157 return;
9f96cb1e 3158 if (rc)
0771dfef 3159 return;
9f96cb1e
MS
3160 entry = next_entry;
3161 pi = next_pi;
0771dfef
IM
3162 /*
3163 * Avoid excessively long or circular lists:
3164 */
3165 if (!--limit)
3166 break;
3167
3168 cond_resched();
3169 }
9f96cb1e
MS
3170
3171 if (pending)
3172 handle_futex_death((void __user *)pending + futex_offset,
3173 curr, pip);
0771dfef
IM
3174}
3175
c19384b5 3176long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3177 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3178{
81b40539 3179 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3180 unsigned int flags = 0;
34f01cc1
ED
3181
3182 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3183 flags |= FLAGS_SHARED;
1da177e4 3184
b41277dc
DH
3185 if (op & FUTEX_CLOCK_REALTIME) {
3186 flags |= FLAGS_CLOCKRT;
337f1304
DH
3187 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3188 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3189 return -ENOSYS;
3190 }
1da177e4 3191
59263b51
TG
3192 switch (cmd) {
3193 case FUTEX_LOCK_PI:
3194 case FUTEX_UNLOCK_PI:
3195 case FUTEX_TRYLOCK_PI:
3196 case FUTEX_WAIT_REQUEUE_PI:
3197 case FUTEX_CMP_REQUEUE_PI:
3198 if (!futex_cmpxchg_enabled)
3199 return -ENOSYS;
3200 }
3201
34f01cc1 3202 switch (cmd) {
1da177e4 3203 case FUTEX_WAIT:
cd689985
TG
3204 val3 = FUTEX_BITSET_MATCH_ANY;
3205 case FUTEX_WAIT_BITSET:
81b40539 3206 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3207 case FUTEX_WAKE:
cd689985
TG
3208 val3 = FUTEX_BITSET_MATCH_ANY;
3209 case FUTEX_WAKE_BITSET:
81b40539 3210 return futex_wake(uaddr, flags, val, val3);
1da177e4 3211 case FUTEX_REQUEUE:
81b40539 3212 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3213 case FUTEX_CMP_REQUEUE:
81b40539 3214 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3215 case FUTEX_WAKE_OP:
81b40539 3216 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3217 case FUTEX_LOCK_PI:
996636dd 3218 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3219 case FUTEX_UNLOCK_PI:
81b40539 3220 return futex_unlock_pi(uaddr, flags);
c87e2837 3221 case FUTEX_TRYLOCK_PI:
996636dd 3222 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3223 case FUTEX_WAIT_REQUEUE_PI:
3224 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3225 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3226 uaddr2);
52400ba9 3227 case FUTEX_CMP_REQUEUE_PI:
81b40539 3228 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3229 }
81b40539 3230 return -ENOSYS;
1da177e4
LT
3231}
3232
3233
17da2bd9
HC
3234SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3235 struct timespec __user *, utime, u32 __user *, uaddr2,
3236 u32, val3)
1da177e4 3237{
c19384b5
PP
3238 struct timespec ts;
3239 ktime_t t, *tp = NULL;
e2970f2f 3240 u32 val2 = 0;
34f01cc1 3241 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3242
cd689985 3243 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3244 cmd == FUTEX_WAIT_BITSET ||
3245 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3246 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3247 return -EFAULT;
c19384b5 3248 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3249 return -EFAULT;
c19384b5 3250 if (!timespec_valid(&ts))
9741ef96 3251 return -EINVAL;
c19384b5
PP
3252
3253 t = timespec_to_ktime(ts);
34f01cc1 3254 if (cmd == FUTEX_WAIT)
5a7780e7 3255 t = ktime_add_safe(ktime_get(), t);
c19384b5 3256 tp = &t;
1da177e4
LT
3257 }
3258 /*
52400ba9 3259 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3260 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3261 */
f54f0986 3262 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3263 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3264 val2 = (u32) (unsigned long) utime;
1da177e4 3265
c19384b5 3266 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3267}
3268
03b8c7b6 3269static void __init futex_detect_cmpxchg(void)
1da177e4 3270{
03b8c7b6 3271#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3272 u32 curval;
03b8c7b6
HC
3273
3274 /*
3275 * This will fail and we want it. Some arch implementations do
3276 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3277 * functionality. We want to know that before we call in any
3278 * of the complex code paths. Also we want to prevent
3279 * registration of robust lists in that case. NULL is
3280 * guaranteed to fault and we get -EFAULT on functional
3281 * implementation, the non-functional ones will return
3282 * -ENOSYS.
3283 */
3284 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3285 futex_cmpxchg_enabled = 1;
3286#endif
3287}
3288
3289static int __init futex_init(void)
3290{
63b1a816 3291 unsigned int futex_shift;
a52b89eb
DB
3292 unsigned long i;
3293
3294#if CONFIG_BASE_SMALL
3295 futex_hashsize = 16;
3296#else
3297 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3298#endif
3299
3300 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3301 futex_hashsize, 0,
3302 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3303 &futex_shift, NULL,
3304 futex_hashsize, futex_hashsize);
3305 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3306
3307 futex_detect_cmpxchg();
a0c1e907 3308
a52b89eb 3309 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3310 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3311 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3312 spin_lock_init(&futex_queues[i].lock);
3313 }
3314
1da177e4
LT
3315 return 0;
3316}
f6d107fb 3317__initcall(futex_init);