]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: clean up futex_(un)lock_pi fault handling
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
117 * Split the global futex_lock into every hash list lock.
118 */
119struct futex_hash_bucket {
ec92d082
PP
120 spinlock_t lock;
121 struct plist_head chain;
1da177e4
LT
122};
123
124static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
1da177e4
LT
126/*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
129static struct futex_hash_bucket *hash_futex(union futex_key *key)
130{
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135}
136
137/*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
140static inline int match_futex(union futex_key *key1, union futex_key *key2)
141{
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145}
146
38d47c1b
PZ
147/*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
152static void get_futex_key_refs(union futex_key *key)
153{
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165}
166
167/*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
171static void drop_futex_key_refs(union futex_key *key)
172{
173 if (!key->both.ptr)
174 return;
175
176 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
177 case FUT_OFF_INODE:
178 iput(key->shared.inode);
179 break;
180 case FUT_OFF_MMSHARED:
181 mmdrop(key->private.mm);
182 break;
183 }
184}
185
34f01cc1
ED
186/**
187 * get_futex_key - Get parameters which are the keys for a futex.
188 * @uaddr: virtual address of the futex
189 * @shared: NULL for a PROCESS_PRIVATE futex,
190 * &current->mm->mmap_sem for a PROCESS_SHARED futex
191 * @key: address where result is stored.
192 *
193 * Returns a negative error code or 0
194 * The key words are stored in *key on success.
1da177e4 195 *
f3a43f3f 196 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
197 * offset_within_page). For private mappings, it's (uaddr, current->mm).
198 * We can usually work out the index without swapping in the page.
199 *
34f01cc1
ED
200 * fshared is NULL for PROCESS_PRIVATE futexes
201 * For other futexes, it points to &current->mm->mmap_sem and
202 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 203 */
c2f9f201 204static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 205{
e2970f2f 206 unsigned long address = (unsigned long)uaddr;
1da177e4 207 struct mm_struct *mm = current->mm;
1da177e4
LT
208 struct page *page;
209 int err;
210
211 /*
212 * The futex address must be "naturally" aligned.
213 */
e2970f2f 214 key->both.offset = address % PAGE_SIZE;
34f01cc1 215 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 216 return -EINVAL;
e2970f2f 217 address -= key->both.offset;
1da177e4 218
34f01cc1
ED
219 /*
220 * PROCESS_PRIVATE futexes are fast.
221 * As the mm cannot disappear under us and the 'key' only needs
222 * virtual address, we dont even have to find the underlying vma.
223 * Note : We do have to check 'uaddr' is a valid user address,
224 * but access_ok() should be faster than find_vma()
225 */
226 if (!fshared) {
227 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228 return -EFAULT;
229 key->private.mm = mm;
230 key->private.address = address;
42569c39 231 get_futex_key_refs(key);
34f01cc1
ED
232 return 0;
233 }
1da177e4 234
38d47c1b 235again:
734b05b1 236 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
237 if (err < 0)
238 return err;
239
240 lock_page(page);
241 if (!page->mapping) {
242 unlock_page(page);
243 put_page(page);
244 goto again;
245 }
1da177e4
LT
246
247 /*
248 * Private mappings are handled in a simple way.
249 *
250 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
251 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 252 * the object not the particular process.
1da177e4 253 */
38d47c1b
PZ
254 if (PageAnon(page)) {
255 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 256 key->private.mm = mm;
e2970f2f 257 key->private.address = address;
38d47c1b
PZ
258 } else {
259 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
260 key->shared.inode = page->mapping->host;
261 key->shared.pgoff = page->index;
1da177e4
LT
262 }
263
38d47c1b 264 get_futex_key_refs(key);
1da177e4 265
38d47c1b
PZ
266 unlock_page(page);
267 put_page(page);
268 return 0;
1da177e4
LT
269}
270
38d47c1b 271static inline
c2f9f201 272void put_futex_key(int fshared, union futex_key *key)
1da177e4 273{
38d47c1b 274 drop_futex_key_refs(key);
1da177e4
LT
275}
276
36cf3b5c
TG
277static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
278{
279 u32 curval;
280
281 pagefault_disable();
282 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
283 pagefault_enable();
284
285 return curval;
286}
287
288static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
289{
290 int ret;
291
a866374a 292 pagefault_disable();
e2970f2f 293 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 294 pagefault_enable();
1da177e4
LT
295
296 return ret ? -EFAULT : 0;
297}
298
c87e2837 299/*
34f01cc1 300 * Fault handling.
c87e2837 301 */
c2f9f201 302static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
303{
304 struct vm_area_struct * vma;
305 struct mm_struct *mm = current->mm;
34f01cc1 306 int ret = -EFAULT;
c87e2837 307
34f01cc1
ED
308 if (attempt > 2)
309 return ret;
c87e2837 310
61270708 311 down_read(&mm->mmap_sem);
34f01cc1
ED
312 vma = find_vma(mm, address);
313 if (vma && address >= vma->vm_start &&
314 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
315 int fault;
316 fault = handle_mm_fault(mm, vma, address, 1);
317 if (unlikely((fault & VM_FAULT_ERROR))) {
318#if 0
319 /* XXX: let's do this when we verify it is OK */
320 if (ret & VM_FAULT_OOM)
321 ret = -ENOMEM;
322#endif
323 } else {
34f01cc1 324 ret = 0;
83c54070
NP
325 if (fault & VM_FAULT_MAJOR)
326 current->maj_flt++;
327 else
328 current->min_flt++;
34f01cc1 329 }
c87e2837 330 }
61270708 331 up_read(&mm->mmap_sem);
34f01cc1 332 return ret;
c87e2837
IM
333}
334
335/*
336 * PI code:
337 */
338static int refill_pi_state_cache(void)
339{
340 struct futex_pi_state *pi_state;
341
342 if (likely(current->pi_state_cache))
343 return 0;
344
4668edc3 345 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
346
347 if (!pi_state)
348 return -ENOMEM;
349
c87e2837
IM
350 INIT_LIST_HEAD(&pi_state->list);
351 /* pi_mutex gets initialized later */
352 pi_state->owner = NULL;
353 atomic_set(&pi_state->refcount, 1);
38d47c1b 354 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
355
356 current->pi_state_cache = pi_state;
357
358 return 0;
359}
360
361static struct futex_pi_state * alloc_pi_state(void)
362{
363 struct futex_pi_state *pi_state = current->pi_state_cache;
364
365 WARN_ON(!pi_state);
366 current->pi_state_cache = NULL;
367
368 return pi_state;
369}
370
371static void free_pi_state(struct futex_pi_state *pi_state)
372{
373 if (!atomic_dec_and_test(&pi_state->refcount))
374 return;
375
376 /*
377 * If pi_state->owner is NULL, the owner is most probably dying
378 * and has cleaned up the pi_state already
379 */
380 if (pi_state->owner) {
381 spin_lock_irq(&pi_state->owner->pi_lock);
382 list_del_init(&pi_state->list);
383 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386 }
387
388 if (current->pi_state_cache)
389 kfree(pi_state);
390 else {
391 /*
392 * pi_state->list is already empty.
393 * clear pi_state->owner.
394 * refcount is at 0 - put it back to 1.
395 */
396 pi_state->owner = NULL;
397 atomic_set(&pi_state->refcount, 1);
398 current->pi_state_cache = pi_state;
399 }
400}
401
402/*
403 * Look up the task based on what TID userspace gave us.
404 * We dont trust it.
405 */
406static struct task_struct * futex_find_get_task(pid_t pid)
407{
408 struct task_struct *p;
409
d359b549 410 rcu_read_lock();
228ebcbe 411 p = find_task_by_vpid(pid);
a06381fe
TG
412 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
413 p = ERR_PTR(-ESRCH);
414 else
415 get_task_struct(p);
416
d359b549 417 rcu_read_unlock();
c87e2837
IM
418
419 return p;
420}
421
422/*
423 * This task is holding PI mutexes at exit time => bad.
424 * Kernel cleans up PI-state, but userspace is likely hosed.
425 * (Robust-futex cleanup is separate and might save the day for userspace.)
426 */
427void exit_pi_state_list(struct task_struct *curr)
428{
c87e2837
IM
429 struct list_head *next, *head = &curr->pi_state_list;
430 struct futex_pi_state *pi_state;
627371d7 431 struct futex_hash_bucket *hb;
38d47c1b 432 union futex_key key = FUTEX_KEY_INIT;
c87e2837 433
a0c1e907
TG
434 if (!futex_cmpxchg_enabled)
435 return;
c87e2837
IM
436 /*
437 * We are a ZOMBIE and nobody can enqueue itself on
438 * pi_state_list anymore, but we have to be careful
627371d7 439 * versus waiters unqueueing themselves:
c87e2837
IM
440 */
441 spin_lock_irq(&curr->pi_lock);
442 while (!list_empty(head)) {
443
444 next = head->next;
445 pi_state = list_entry(next, struct futex_pi_state, list);
446 key = pi_state->key;
627371d7 447 hb = hash_futex(&key);
c87e2837
IM
448 spin_unlock_irq(&curr->pi_lock);
449
c87e2837
IM
450 spin_lock(&hb->lock);
451
452 spin_lock_irq(&curr->pi_lock);
627371d7
IM
453 /*
454 * We dropped the pi-lock, so re-check whether this
455 * task still owns the PI-state:
456 */
c87e2837
IM
457 if (head->next != next) {
458 spin_unlock(&hb->lock);
459 continue;
460 }
461
c87e2837 462 WARN_ON(pi_state->owner != curr);
627371d7
IM
463 WARN_ON(list_empty(&pi_state->list));
464 list_del_init(&pi_state->list);
c87e2837
IM
465 pi_state->owner = NULL;
466 spin_unlock_irq(&curr->pi_lock);
467
468 rt_mutex_unlock(&pi_state->pi_mutex);
469
470 spin_unlock(&hb->lock);
471
472 spin_lock_irq(&curr->pi_lock);
473 }
474 spin_unlock_irq(&curr->pi_lock);
475}
476
477static int
d0aa7a70
PP
478lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
480{
481 struct futex_pi_state *pi_state = NULL;
482 struct futex_q *this, *next;
ec92d082 483 struct plist_head *head;
c87e2837 484 struct task_struct *p;
778e9a9c 485 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
486
487 head = &hb->chain;
488
ec92d082 489 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 490 if (match_futex(&this->key, key)) {
c87e2837
IM
491 /*
492 * Another waiter already exists - bump up
493 * the refcount and return its pi_state:
494 */
495 pi_state = this->pi_state;
06a9ec29
TG
496 /*
497 * Userspace might have messed up non PI and PI futexes
498 */
499 if (unlikely(!pi_state))
500 return -EINVAL;
501
627371d7 502 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
503 WARN_ON(pid && pi_state->owner &&
504 pi_state->owner->pid != pid);
627371d7 505
c87e2837 506 atomic_inc(&pi_state->refcount);
d0aa7a70 507 *ps = pi_state;
c87e2837
IM
508
509 return 0;
510 }
511 }
512
513 /*
e3f2ddea 514 * We are the first waiter - try to look up the real owner and attach
778e9a9c 515 * the new pi_state to it, but bail out when TID = 0
c87e2837 516 */
778e9a9c 517 if (!pid)
e3f2ddea 518 return -ESRCH;
c87e2837 519 p = futex_find_get_task(pid);
778e9a9c
AK
520 if (IS_ERR(p))
521 return PTR_ERR(p);
522
523 /*
524 * We need to look at the task state flags to figure out,
525 * whether the task is exiting. To protect against the do_exit
526 * change of the task flags, we do this protected by
527 * p->pi_lock:
528 */
529 spin_lock_irq(&p->pi_lock);
530 if (unlikely(p->flags & PF_EXITING)) {
531 /*
532 * The task is on the way out. When PF_EXITPIDONE is
533 * set, we know that the task has finished the
534 * cleanup:
535 */
536 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538 spin_unlock_irq(&p->pi_lock);
539 put_task_struct(p);
540 return ret;
541 }
c87e2837
IM
542
543 pi_state = alloc_pi_state();
544
545 /*
546 * Initialize the pi_mutex in locked state and make 'p'
547 * the owner of it:
548 */
549 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551 /* Store the key for possible exit cleanups: */
d0aa7a70 552 pi_state->key = *key;
c87e2837 553
627371d7 554 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
555 list_add(&pi_state->list, &p->pi_state_list);
556 pi_state->owner = p;
557 spin_unlock_irq(&p->pi_lock);
558
559 put_task_struct(p);
560
d0aa7a70 561 *ps = pi_state;
c87e2837
IM
562
563 return 0;
564}
565
1da177e4
LT
566/*
567 * The hash bucket lock must be held when this is called.
568 * Afterwards, the futex_q must not be accessed.
569 */
570static void wake_futex(struct futex_q *q)
571{
ec92d082 572 plist_del(&q->list, &q->list.plist);
1da177e4
LT
573 /*
574 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 575 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 576 */
73500ac5 577 wake_up(&q->waiter);
1da177e4
LT
578 /*
579 * The waiting task can free the futex_q as soon as this is written,
580 * without taking any locks. This must come last.
8e31108b
AM
581 *
582 * A memory barrier is required here to prevent the following store
583 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
584 * at the end of wake_up_all() does not prevent this store from
585 * moving.
1da177e4 586 */
ccdea2f8 587 smp_wmb();
1da177e4
LT
588 q->lock_ptr = NULL;
589}
590
c87e2837
IM
591static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
592{
593 struct task_struct *new_owner;
594 struct futex_pi_state *pi_state = this->pi_state;
595 u32 curval, newval;
596
597 if (!pi_state)
598 return -EINVAL;
599
21778867 600 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
601 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
602
603 /*
604 * This happens when we have stolen the lock and the original
605 * pending owner did not enqueue itself back on the rt_mutex.
606 * Thats not a tragedy. We know that way, that a lock waiter
607 * is on the fly. We make the futex_q waiter the pending owner.
608 */
609 if (!new_owner)
610 new_owner = this->task;
611
612 /*
613 * We pass it to the next owner. (The WAITERS bit is always
614 * kept enabled while there is PI state around. We must also
615 * preserve the owner died bit.)
616 */
e3f2ddea 617 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
618 int ret = 0;
619
b488893a 620 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 621
36cf3b5c 622 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 623
e3f2ddea 624 if (curval == -EFAULT)
778e9a9c 625 ret = -EFAULT;
cde898fa 626 else if (curval != uval)
778e9a9c
AK
627 ret = -EINVAL;
628 if (ret) {
629 spin_unlock(&pi_state->pi_mutex.wait_lock);
630 return ret;
631 }
e3f2ddea 632 }
c87e2837 633
627371d7
IM
634 spin_lock_irq(&pi_state->owner->pi_lock);
635 WARN_ON(list_empty(&pi_state->list));
636 list_del_init(&pi_state->list);
637 spin_unlock_irq(&pi_state->owner->pi_lock);
638
639 spin_lock_irq(&new_owner->pi_lock);
640 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
641 list_add(&pi_state->list, &new_owner->pi_state_list);
642 pi_state->owner = new_owner;
627371d7
IM
643 spin_unlock_irq(&new_owner->pi_lock);
644
21778867 645 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
646 rt_mutex_unlock(&pi_state->pi_mutex);
647
648 return 0;
649}
650
651static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
652{
653 u32 oldval;
654
655 /*
656 * There is no waiter, so we unlock the futex. The owner died
657 * bit has not to be preserved here. We are the owner:
658 */
36cf3b5c 659 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
660
661 if (oldval == -EFAULT)
662 return oldval;
663 if (oldval != uval)
664 return -EAGAIN;
665
666 return 0;
667}
668
8b8f319f
IM
669/*
670 * Express the locking dependencies for lockdep:
671 */
672static inline void
673double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
674{
675 if (hb1 <= hb2) {
676 spin_lock(&hb1->lock);
677 if (hb1 < hb2)
678 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
679 } else { /* hb1 > hb2 */
680 spin_lock(&hb2->lock);
681 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
682 }
683}
684
1da177e4
LT
685/*
686 * Wake up all waiters hashed on the physical page that is mapped
687 * to this virtual address:
688 */
c2f9f201 689static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 690{
e2970f2f 691 struct futex_hash_bucket *hb;
1da177e4 692 struct futex_q *this, *next;
ec92d082 693 struct plist_head *head;
38d47c1b 694 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
695 int ret;
696
cd689985
TG
697 if (!bitset)
698 return -EINVAL;
699
34f01cc1 700 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
701 if (unlikely(ret != 0))
702 goto out;
703
e2970f2f
IM
704 hb = hash_futex(&key);
705 spin_lock(&hb->lock);
706 head = &hb->chain;
1da177e4 707
ec92d082 708 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 709 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
710 if (this->pi_state) {
711 ret = -EINVAL;
712 break;
713 }
cd689985
TG
714
715 /* Check if one of the bits is set in both bitsets */
716 if (!(this->bitset & bitset))
717 continue;
718
1da177e4
LT
719 wake_futex(this);
720 if (++ret >= nr_wake)
721 break;
722 }
723 }
724
e2970f2f 725 spin_unlock(&hb->lock);
1da177e4 726out:
38d47c1b 727 put_futex_key(fshared, &key);
1da177e4
LT
728 return ret;
729}
730
4732efbe
JJ
731/*
732 * Wake up all waiters hashed on the physical page that is mapped
733 * to this virtual address:
734 */
e2970f2f 735static int
c2f9f201 736futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 737 int nr_wake, int nr_wake2, int op)
4732efbe 738{
38d47c1b 739 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 740 struct futex_hash_bucket *hb1, *hb2;
ec92d082 741 struct plist_head *head;
4732efbe
JJ
742 struct futex_q *this, *next;
743 int ret, op_ret, attempt = 0;
744
745retryfull:
34f01cc1 746 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
747 if (unlikely(ret != 0))
748 goto out;
34f01cc1 749 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
750 if (unlikely(ret != 0))
751 goto out;
752
e2970f2f
IM
753 hb1 = hash_futex(&key1);
754 hb2 = hash_futex(&key2);
4732efbe
JJ
755
756retry:
8b8f319f 757 double_lock_hb(hb1, hb2);
4732efbe 758
e2970f2f 759 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 760 if (unlikely(op_ret < 0)) {
e2970f2f 761 u32 dummy;
4732efbe 762
e2970f2f
IM
763 spin_unlock(&hb1->lock);
764 if (hb1 != hb2)
765 spin_unlock(&hb2->lock);
4732efbe 766
7ee1dd3f 767#ifndef CONFIG_MMU
e2970f2f
IM
768 /*
769 * we don't get EFAULT from MMU faults if we don't have an MMU,
770 * but we might get them from range checking
771 */
7ee1dd3f
DH
772 ret = op_ret;
773 goto out;
774#endif
775
796f8d9b
DG
776 if (unlikely(op_ret != -EFAULT)) {
777 ret = op_ret;
778 goto out;
779 }
780
e2970f2f
IM
781 /*
782 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
783 * *(int __user *)uaddr2, but we can't modify it
784 * non-atomically. Therefore, if get_user below is not
785 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
786 * still holding the mmap_sem.
787 */
4732efbe 788 if (attempt++) {
34f01cc1 789 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 790 attempt);
34f01cc1 791 if (ret)
4732efbe 792 goto out;
4732efbe
JJ
793 goto retry;
794 }
795
e2970f2f 796 ret = get_user(dummy, uaddr2);
4732efbe
JJ
797 if (ret)
798 return ret;
799
800 goto retryfull;
801 }
802
e2970f2f 803 head = &hb1->chain;
4732efbe 804
ec92d082 805 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
806 if (match_futex (&this->key, &key1)) {
807 wake_futex(this);
808 if (++ret >= nr_wake)
809 break;
810 }
811 }
812
813 if (op_ret > 0) {
e2970f2f 814 head = &hb2->chain;
4732efbe
JJ
815
816 op_ret = 0;
ec92d082 817 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
818 if (match_futex (&this->key, &key2)) {
819 wake_futex(this);
820 if (++op_ret >= nr_wake2)
821 break;
822 }
823 }
824 ret += op_ret;
825 }
826
e2970f2f
IM
827 spin_unlock(&hb1->lock);
828 if (hb1 != hb2)
829 spin_unlock(&hb2->lock);
4732efbe 830out:
38d47c1b
PZ
831 put_futex_key(fshared, &key2);
832 put_futex_key(fshared, &key1);
36cf3b5c 833
4732efbe
JJ
834 return ret;
835}
836
1da177e4
LT
837/*
838 * Requeue all waiters hashed on one physical page to another
839 * physical page.
840 */
c2f9f201 841static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 842 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 843{
38d47c1b 844 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 845 struct futex_hash_bucket *hb1, *hb2;
ec92d082 846 struct plist_head *head1;
1da177e4
LT
847 struct futex_q *this, *next;
848 int ret, drop_count = 0;
849
850 retry:
34f01cc1 851 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
852 if (unlikely(ret != 0))
853 goto out;
34f01cc1 854 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
855 if (unlikely(ret != 0))
856 goto out;
857
e2970f2f
IM
858 hb1 = hash_futex(&key1);
859 hb2 = hash_futex(&key2);
1da177e4 860
8b8f319f 861 double_lock_hb(hb1, hb2);
1da177e4 862
e2970f2f
IM
863 if (likely(cmpval != NULL)) {
864 u32 curval;
1da177e4 865
e2970f2f 866 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
867
868 if (unlikely(ret)) {
e2970f2f
IM
869 spin_unlock(&hb1->lock);
870 if (hb1 != hb2)
871 spin_unlock(&hb2->lock);
1da177e4 872
e2970f2f 873 ret = get_user(curval, uaddr1);
1da177e4
LT
874
875 if (!ret)
876 goto retry;
877
878 return ret;
879 }
e2970f2f 880 if (curval != *cmpval) {
1da177e4
LT
881 ret = -EAGAIN;
882 goto out_unlock;
883 }
884 }
885
e2970f2f 886 head1 = &hb1->chain;
ec92d082 887 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
888 if (!match_futex (&this->key, &key1))
889 continue;
890 if (++ret <= nr_wake) {
891 wake_futex(this);
892 } else {
59e0e0ac
SD
893 /*
894 * If key1 and key2 hash to the same bucket, no need to
895 * requeue.
896 */
897 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
898 plist_del(&this->list, &hb1->chain);
899 plist_add(&this->list, &hb2->chain);
59e0e0ac 900 this->lock_ptr = &hb2->lock;
ec92d082
PP
901#ifdef CONFIG_DEBUG_PI_LIST
902 this->list.plist.lock = &hb2->lock;
903#endif
778e9a9c 904 }
1da177e4 905 this->key = key2;
9adef58b 906 get_futex_key_refs(&key2);
1da177e4
LT
907 drop_count++;
908
909 if (ret - nr_wake >= nr_requeue)
910 break;
1da177e4
LT
911 }
912 }
913
914out_unlock:
e2970f2f
IM
915 spin_unlock(&hb1->lock);
916 if (hb1 != hb2)
917 spin_unlock(&hb2->lock);
1da177e4 918
9adef58b 919 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 920 while (--drop_count >= 0)
9adef58b 921 drop_futex_key_refs(&key1);
1da177e4
LT
922
923out:
38d47c1b
PZ
924 put_futex_key(fshared, &key2);
925 put_futex_key(fshared, &key1);
1da177e4
LT
926 return ret;
927}
928
929/* The key must be already stored in q->key. */
82af7aca 930static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 931{
e2970f2f 932 struct futex_hash_bucket *hb;
1da177e4 933
73500ac5 934 init_waitqueue_head(&q->waiter);
1da177e4 935
9adef58b 936 get_futex_key_refs(&q->key);
e2970f2f
IM
937 hb = hash_futex(&q->key);
938 q->lock_ptr = &hb->lock;
1da177e4 939
e2970f2f
IM
940 spin_lock(&hb->lock);
941 return hb;
1da177e4
LT
942}
943
82af7aca 944static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 945{
ec92d082
PP
946 int prio;
947
948 /*
949 * The priority used to register this element is
950 * - either the real thread-priority for the real-time threads
951 * (i.e. threads with a priority lower than MAX_RT_PRIO)
952 * - or MAX_RT_PRIO for non-RT threads.
953 * Thus, all RT-threads are woken first in priority order, and
954 * the others are woken last, in FIFO order.
955 */
956 prio = min(current->normal_prio, MAX_RT_PRIO);
957
958 plist_node_init(&q->list, prio);
959#ifdef CONFIG_DEBUG_PI_LIST
960 q->list.plist.lock = &hb->lock;
961#endif
962 plist_add(&q->list, &hb->chain);
c87e2837 963 q->task = current;
e2970f2f 964 spin_unlock(&hb->lock);
1da177e4
LT
965}
966
967static inline void
e2970f2f 968queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 969{
e2970f2f 970 spin_unlock(&hb->lock);
9adef58b 971 drop_futex_key_refs(&q->key);
1da177e4
LT
972}
973
974/*
975 * queue_me and unqueue_me must be called as a pair, each
976 * exactly once. They are called with the hashed spinlock held.
977 */
978
1da177e4
LT
979/* Return 1 if we were still queued (ie. 0 means we were woken) */
980static int unqueue_me(struct futex_q *q)
981{
1da177e4 982 spinlock_t *lock_ptr;
e2970f2f 983 int ret = 0;
1da177e4
LT
984
985 /* In the common case we don't take the spinlock, which is nice. */
986 retry:
987 lock_ptr = q->lock_ptr;
e91467ec 988 barrier();
c80544dc 989 if (lock_ptr != NULL) {
1da177e4
LT
990 spin_lock(lock_ptr);
991 /*
992 * q->lock_ptr can change between reading it and
993 * spin_lock(), causing us to take the wrong lock. This
994 * corrects the race condition.
995 *
996 * Reasoning goes like this: if we have the wrong lock,
997 * q->lock_ptr must have changed (maybe several times)
998 * between reading it and the spin_lock(). It can
999 * change again after the spin_lock() but only if it was
1000 * already changed before the spin_lock(). It cannot,
1001 * however, change back to the original value. Therefore
1002 * we can detect whether we acquired the correct lock.
1003 */
1004 if (unlikely(lock_ptr != q->lock_ptr)) {
1005 spin_unlock(lock_ptr);
1006 goto retry;
1007 }
ec92d082
PP
1008 WARN_ON(plist_node_empty(&q->list));
1009 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1010
1011 BUG_ON(q->pi_state);
1012
1da177e4
LT
1013 spin_unlock(lock_ptr);
1014 ret = 1;
1015 }
1016
9adef58b 1017 drop_futex_key_refs(&q->key);
1da177e4
LT
1018 return ret;
1019}
1020
c87e2837
IM
1021/*
1022 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1023 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1024 * and dropped here.
c87e2837 1025 */
d0aa7a70 1026static void unqueue_me_pi(struct futex_q *q)
c87e2837 1027{
ec92d082
PP
1028 WARN_ON(plist_node_empty(&q->list));
1029 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1030
1031 BUG_ON(!q->pi_state);
1032 free_pi_state(q->pi_state);
1033 q->pi_state = NULL;
1034
d0aa7a70 1035 spin_unlock(q->lock_ptr);
c87e2837 1036
9adef58b 1037 drop_futex_key_refs(&q->key);
c87e2837
IM
1038}
1039
d0aa7a70 1040/*
cdf71a10 1041 * Fixup the pi_state owner with the new owner.
d0aa7a70 1042 *
778e9a9c
AK
1043 * Must be called with hash bucket lock held and mm->sem held for non
1044 * private futexes.
d0aa7a70 1045 */
778e9a9c 1046static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1047 struct task_struct *newowner, int fshared)
d0aa7a70 1048{
cdf71a10 1049 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1050 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1051 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1052 u32 uval, curval, newval;
1b7558e4 1053 int ret, attempt = 0;
d0aa7a70
PP
1054
1055 /* Owner died? */
1b7558e4
TG
1056 if (!pi_state->owner)
1057 newtid |= FUTEX_OWNER_DIED;
1058
1059 /*
1060 * We are here either because we stole the rtmutex from the
1061 * pending owner or we are the pending owner which failed to
1062 * get the rtmutex. We have to replace the pending owner TID
1063 * in the user space variable. This must be atomic as we have
1064 * to preserve the owner died bit here.
1065 *
1066 * Note: We write the user space value _before_ changing the
1067 * pi_state because we can fault here. Imagine swapped out
1068 * pages or a fork, which was running right before we acquired
1069 * mmap_sem, that marked all the anonymous memory readonly for
1070 * cow.
1071 *
1072 * Modifying pi_state _before_ the user space value would
1073 * leave the pi_state in an inconsistent state when we fault
1074 * here, because we need to drop the hash bucket lock to
1075 * handle the fault. This might be observed in the PID check
1076 * in lookup_pi_state.
1077 */
1078retry:
1079 if (get_futex_value_locked(&uval, uaddr))
1080 goto handle_fault;
1081
1082 while (1) {
1083 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1084
1085 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1086
1087 if (curval == -EFAULT)
1088 goto handle_fault;
1089 if (curval == uval)
1090 break;
1091 uval = curval;
1092 }
1093
1094 /*
1095 * We fixed up user space. Now we need to fix the pi_state
1096 * itself.
1097 */
d0aa7a70
PP
1098 if (pi_state->owner != NULL) {
1099 spin_lock_irq(&pi_state->owner->pi_lock);
1100 WARN_ON(list_empty(&pi_state->list));
1101 list_del_init(&pi_state->list);
1102 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1103 }
d0aa7a70 1104
cdf71a10 1105 pi_state->owner = newowner;
d0aa7a70 1106
cdf71a10 1107 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1108 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1109 list_add(&pi_state->list, &newowner->pi_state_list);
1110 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1111 return 0;
d0aa7a70 1112
d0aa7a70 1113 /*
1b7558e4
TG
1114 * To handle the page fault we need to drop the hash bucket
1115 * lock here. That gives the other task (either the pending
1116 * owner itself or the task which stole the rtmutex) the
1117 * chance to try the fixup of the pi_state. So once we are
1118 * back from handling the fault we need to check the pi_state
1119 * after reacquiring the hash bucket lock and before trying to
1120 * do another fixup. When the fixup has been done already we
1121 * simply return.
d0aa7a70 1122 */
1b7558e4
TG
1123handle_fault:
1124 spin_unlock(q->lock_ptr);
778e9a9c 1125
c2f9f201 1126 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1127
1b7558e4 1128 spin_lock(q->lock_ptr);
778e9a9c 1129
1b7558e4
TG
1130 /*
1131 * Check if someone else fixed it for us:
1132 */
1133 if (pi_state->owner != oldowner)
1134 return 0;
1135
1136 if (ret)
1137 return ret;
1138
1139 goto retry;
d0aa7a70
PP
1140}
1141
34f01cc1
ED
1142/*
1143 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1144 * we encode in the 'flags' shared capability
34f01cc1 1145 */
1acdac10
TG
1146#define FLAGS_SHARED 0x01
1147#define FLAGS_CLOCKRT 0x02
34f01cc1 1148
72c1bbf3 1149static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1150
c2f9f201 1151static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1152 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1153{
c87e2837
IM
1154 struct task_struct *curr = current;
1155 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1156 struct futex_hash_bucket *hb;
1da177e4 1157 struct futex_q q;
e2970f2f
IM
1158 u32 uval;
1159 int ret;
bd197234 1160 struct hrtimer_sleeper t;
c19384b5 1161 int rem = 0;
1da177e4 1162
cd689985
TG
1163 if (!bitset)
1164 return -EINVAL;
1165
c87e2837 1166 q.pi_state = NULL;
cd689985 1167 q.bitset = bitset;
1da177e4 1168 retry:
38d47c1b 1169 q.key = FUTEX_KEY_INIT;
34f01cc1 1170 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1171 if (unlikely(ret != 0))
1172 goto out_release_sem;
1173
82af7aca 1174 hb = queue_lock(&q);
1da177e4
LT
1175
1176 /*
1177 * Access the page AFTER the futex is queued.
1178 * Order is important:
1179 *
1180 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1181 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1182 *
1183 * The basic logical guarantee of a futex is that it blocks ONLY
1184 * if cond(var) is known to be true at the time of blocking, for
1185 * any cond. If we queued after testing *uaddr, that would open
1186 * a race condition where we could block indefinitely with
1187 * cond(var) false, which would violate the guarantee.
1188 *
1189 * A consequence is that futex_wait() can return zero and absorb
1190 * a wakeup when *uaddr != val on entry to the syscall. This is
1191 * rare, but normal.
1192 *
34f01cc1
ED
1193 * for shared futexes, we hold the mmap semaphore, so the mapping
1194 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1195 */
e2970f2f 1196 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1197
1198 if (unlikely(ret)) {
e2970f2f 1199 queue_unlock(&q, hb);
1da177e4 1200
e2970f2f 1201 ret = get_user(uval, uaddr);
1da177e4
LT
1202
1203 if (!ret)
1204 goto retry;
1205 return ret;
1206 }
c87e2837
IM
1207 ret = -EWOULDBLOCK;
1208 if (uval != val)
1209 goto out_unlock_release_sem;
1da177e4
LT
1210
1211 /* Only actually queue if *uaddr contained val. */
82af7aca 1212 queue_me(&q, hb);
1da177e4 1213
1da177e4
LT
1214 /*
1215 * There might have been scheduling since the queue_me(), as we
1216 * cannot hold a spinlock across the get_user() in case it
1217 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1218 * queueing ourselves into the futex hash. This code thus has to
1219 * rely on the futex_wake() code removing us from hash when it
1220 * wakes us up.
1221 */
1222
1223 /* add_wait_queue is the barrier after __set_current_state. */
1224 __set_current_state(TASK_INTERRUPTIBLE);
73500ac5 1225 add_wait_queue(&q.waiter, &wait);
1da177e4 1226 /*
ec92d082 1227 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1228 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1229 */
ec92d082 1230 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1231 if (!abs_time)
1232 schedule();
1233 else {
ae4b748e
AV
1234 unsigned long slack;
1235 slack = current->timer_slack_ns;
1236 if (rt_task(current))
1237 slack = 0;
1acdac10
TG
1238 hrtimer_init_on_stack(&t.timer,
1239 clockrt ? CLOCK_REALTIME :
1240 CLOCK_MONOTONIC,
1241 HRTIMER_MODE_ABS);
c19384b5 1242 hrtimer_init_sleeper(&t, current);
ae4b748e 1243 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
c19384b5 1244
cc584b21 1245 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
3588a085
PZ
1246 if (!hrtimer_active(&t.timer))
1247 t.task = NULL;
c19384b5
PP
1248
1249 /*
1250 * the timer could have already expired, in which
1251 * case current would be flagged for rescheduling.
1252 * Don't bother calling schedule.
1253 */
1254 if (likely(t.task))
1255 schedule();
1256
1257 hrtimer_cancel(&t.timer);
72c1bbf3 1258
c19384b5
PP
1259 /* Flag if a timeout occured */
1260 rem = (t.task == NULL);
237fc6e7
TG
1261
1262 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1263 }
72c1bbf3 1264 }
1da177e4
LT
1265 __set_current_state(TASK_RUNNING);
1266
1267 /*
1268 * NOTE: we don't remove ourselves from the waitqueue because
1269 * we are the only user of it.
1270 */
1271
1272 /* If we were woken (and unqueued), we succeeded, whatever. */
1273 if (!unqueue_me(&q))
1274 return 0;
c19384b5 1275 if (rem)
1da177e4 1276 return -ETIMEDOUT;
72c1bbf3 1277
e2970f2f
IM
1278 /*
1279 * We expect signal_pending(current), but another thread may
1280 * have handled it for us already.
1281 */
c19384b5 1282 if (!abs_time)
72c1bbf3
NP
1283 return -ERESTARTSYS;
1284 else {
1285 struct restart_block *restart;
1286 restart = &current_thread_info()->restart_block;
1287 restart->fn = futex_wait_restart;
ce6bd420
SR
1288 restart->futex.uaddr = (u32 *)uaddr;
1289 restart->futex.val = val;
1290 restart->futex.time = abs_time->tv64;
cd689985 1291 restart->futex.bitset = bitset;
ce6bd420
SR
1292 restart->futex.flags = 0;
1293
34f01cc1 1294 if (fshared)
ce6bd420 1295 restart->futex.flags |= FLAGS_SHARED;
1acdac10
TG
1296 if (clockrt)
1297 restart->futex.flags |= FLAGS_CLOCKRT;
72c1bbf3
NP
1298 return -ERESTART_RESTARTBLOCK;
1299 }
1da177e4 1300
c87e2837
IM
1301 out_unlock_release_sem:
1302 queue_unlock(&q, hb);
1303
1da177e4 1304 out_release_sem:
38d47c1b 1305 put_futex_key(fshared, &q.key);
c87e2837
IM
1306 return ret;
1307}
1308
72c1bbf3
NP
1309
1310static long futex_wait_restart(struct restart_block *restart)
1311{
ce6bd420 1312 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1313 int fshared = 0;
ce6bd420 1314 ktime_t t;
72c1bbf3 1315
ce6bd420 1316 t.tv64 = restart->futex.time;
72c1bbf3 1317 restart->fn = do_no_restart_syscall;
ce6bd420 1318 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1319 fshared = 1;
cd689985 1320 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1321 restart->futex.bitset,
1322 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1323}
1324
1325
c87e2837
IM
1326/*
1327 * Userspace tried a 0 -> TID atomic transition of the futex value
1328 * and failed. The kernel side here does the whole locking operation:
1329 * if there are waiters then it will block, it does PI, etc. (Due to
1330 * races the kernel might see a 0 value of the futex too.)
1331 */
c2f9f201 1332static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1333 int detect, ktime_t *time, int trylock)
c87e2837 1334{
c5780e97 1335 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1336 struct task_struct *curr = current;
1337 struct futex_hash_bucket *hb;
1338 u32 uval, newval, curval;
1339 struct futex_q q;
778e9a9c 1340 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1341
1342 if (refill_pi_state_cache())
1343 return -ENOMEM;
1344
c19384b5 1345 if (time) {
c5780e97 1346 to = &timeout;
237fc6e7
TG
1347 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1348 HRTIMER_MODE_ABS);
c5780e97 1349 hrtimer_init_sleeper(to, current);
cc584b21 1350 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1351 }
1352
c87e2837
IM
1353 q.pi_state = NULL;
1354 retry:
38d47c1b 1355 q.key = FUTEX_KEY_INIT;
34f01cc1 1356 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1357 if (unlikely(ret != 0))
1358 goto out_release_sem;
1359
778e9a9c 1360 retry_unlocked:
82af7aca 1361 hb = queue_lock(&q);
c87e2837
IM
1362
1363 retry_locked:
778e9a9c 1364 ret = lock_taken = 0;
d0aa7a70 1365
c87e2837
IM
1366 /*
1367 * To avoid races, we attempt to take the lock here again
1368 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369 * the locks. It will most likely not succeed.
1370 */
b488893a 1371 newval = task_pid_vnr(current);
c87e2837 1372
36cf3b5c 1373 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1374
1375 if (unlikely(curval == -EFAULT))
1376 goto uaddr_faulted;
1377
778e9a9c
AK
1378 /*
1379 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380 * situation and we return success to user space.
1381 */
b488893a 1382 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1383 ret = -EDEADLK;
c87e2837
IM
1384 goto out_unlock_release_sem;
1385 }
1386
1387 /*
778e9a9c 1388 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1389 */
1390 if (unlikely(!curval))
1391 goto out_unlock_release_sem;
1392
1393 uval = curval;
778e9a9c 1394
d0aa7a70 1395 /*
778e9a9c
AK
1396 * Set the WAITERS flag, so the owner will know it has someone
1397 * to wake at next unlock
d0aa7a70 1398 */
778e9a9c
AK
1399 newval = curval | FUTEX_WAITERS;
1400
1401 /*
1402 * There are two cases, where a futex might have no owner (the
bd197234
TG
1403 * owner TID is 0): OWNER_DIED. We take over the futex in this
1404 * case. We also do an unconditional take over, when the owner
1405 * of the futex died.
778e9a9c
AK
1406 *
1407 * This is safe as we are protected by the hash bucket lock !
1408 */
1409 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1410 /* Keep the OWNER_DIED bit */
b488893a 1411 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1412 ownerdied = 0;
1413 lock_taken = 1;
1414 }
c87e2837 1415
36cf3b5c 1416 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1417
1418 if (unlikely(curval == -EFAULT))
1419 goto uaddr_faulted;
1420 if (unlikely(curval != uval))
1421 goto retry_locked;
1422
778e9a9c 1423 /*
bd197234 1424 * We took the lock due to owner died take over.
778e9a9c 1425 */
bd197234 1426 if (unlikely(lock_taken))
d0aa7a70 1427 goto out_unlock_release_sem;
d0aa7a70 1428
c87e2837
IM
1429 /*
1430 * We dont have the lock. Look up the PI state (or create it if
1431 * we are the first waiter):
1432 */
d0aa7a70 1433 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1434
1435 if (unlikely(ret)) {
778e9a9c 1436 switch (ret) {
c87e2837 1437
778e9a9c
AK
1438 case -EAGAIN:
1439 /*
1440 * Task is exiting and we just wait for the
1441 * exit to complete.
1442 */
1443 queue_unlock(&q, hb);
778e9a9c
AK
1444 cond_resched();
1445 goto retry;
c87e2837 1446
778e9a9c
AK
1447 case -ESRCH:
1448 /*
1449 * No owner found for this futex. Check if the
1450 * OWNER_DIED bit is set to figure out whether
1451 * this is a robust futex or not.
1452 */
1453 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1454 goto uaddr_faulted;
778e9a9c
AK
1455
1456 /*
1457 * We simply start over in case of a robust
1458 * futex. The code above will take the futex
1459 * and return happy.
1460 */
1461 if (curval & FUTEX_OWNER_DIED) {
1462 ownerdied = 1;
c87e2837 1463 goto retry_locked;
778e9a9c
AK
1464 }
1465 default:
1466 goto out_unlock_release_sem;
c87e2837 1467 }
c87e2837
IM
1468 }
1469
1470 /*
1471 * Only actually queue now that the atomic ops are done:
1472 */
82af7aca 1473 queue_me(&q, hb);
c87e2837 1474
c87e2837
IM
1475 WARN_ON(!q.pi_state);
1476 /*
1477 * Block on the PI mutex:
1478 */
1479 if (!trylock)
1480 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1481 else {
1482 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1483 /* Fixup the trylock return value: */
1484 ret = ret ? 0 : -EWOULDBLOCK;
1485 }
1486
a99e4e41 1487 spin_lock(q.lock_ptr);
c87e2837 1488
778e9a9c
AK
1489 if (!ret) {
1490 /*
1491 * Got the lock. We might not be the anticipated owner
1492 * if we did a lock-steal - fix up the PI-state in
1493 * that case:
1494 */
1495 if (q.pi_state->owner != curr)
1b7558e4 1496 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1497 } else {
c87e2837
IM
1498 /*
1499 * Catch the rare case, where the lock was released
778e9a9c
AK
1500 * when we were on the way back before we locked the
1501 * hash bucket.
c87e2837 1502 */
cdf71a10
TG
1503 if (q.pi_state->owner == curr) {
1504 /*
1505 * Try to get the rt_mutex now. This might
1506 * fail as some other task acquired the
1507 * rt_mutex after we removed ourself from the
1508 * rt_mutex waiters list.
1509 */
1510 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1511 ret = 0;
1512 else {
1513 /*
1514 * pi_state is incorrect, some other
1515 * task did a lock steal and we
1516 * returned due to timeout or signal
1517 * without taking the rt_mutex. Too
1518 * late. We can access the
1519 * rt_mutex_owner without locking, as
1520 * the other task is now blocked on
1521 * the hash bucket lock. Fix the state
1522 * up.
1523 */
1524 struct task_struct *owner;
1525 int res;
1526
1527 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1528 res = fixup_pi_state_owner(uaddr, &q, owner,
1529 fshared);
cdf71a10 1530
cdf71a10
TG
1531 /* propagate -EFAULT, if the fixup failed */
1532 if (res)
1533 ret = res;
1534 }
778e9a9c
AK
1535 } else {
1536 /*
1537 * Paranoia check. If we did not take the lock
1538 * in the trylock above, then we should not be
1539 * the owner of the rtmutex, neither the real
1540 * nor the pending one:
1541 */
1542 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1543 printk(KERN_ERR "futex_lock_pi: ret = %d "
1544 "pi-mutex: %p pi-state %p\n", ret,
1545 q.pi_state->pi_mutex.owner,
1546 q.pi_state->owner);
c87e2837 1547 }
c87e2837
IM
1548 }
1549
778e9a9c
AK
1550 /* Unqueue and drop the lock */
1551 unqueue_me_pi(&q);
c87e2837 1552
237fc6e7
TG
1553 if (to)
1554 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1555 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1556
1557 out_unlock_release_sem:
1558 queue_unlock(&q, hb);
1559
1560 out_release_sem:
38d47c1b 1561 put_futex_key(fshared, &q.key);
237fc6e7
TG
1562 if (to)
1563 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1564 return ret;
1565
1566 uaddr_faulted:
1567 /*
b5686363
DH
1568 * We have to r/w *(int __user *)uaddr, and we have to modify it
1569 * atomically. Therefore, if we continue to fault after get_user()
1570 * below, we need to handle the fault ourselves, while still holding
1571 * the mmap_sem. This can occur if the uaddr is under contention as
1572 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1573 */
778e9a9c
AK
1574 queue_unlock(&q, hb);
1575
c87e2837 1576 if (attempt++) {
c2f9f201 1577 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1578 if (ret)
778e9a9c
AK
1579 goto out_release_sem;
1580 goto retry_unlocked;
c87e2837
IM
1581 }
1582
c87e2837 1583 ret = get_user(uval, uaddr);
b5686363 1584 if (!ret)
c87e2837
IM
1585 goto retry;
1586
237fc6e7
TG
1587 if (to)
1588 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1589 return ret;
1590}
1591
c87e2837
IM
1592/*
1593 * Userspace attempted a TID -> 0 atomic transition, and failed.
1594 * This is the in-kernel slowpath: we look up the PI state (if any),
1595 * and do the rt-mutex unlock.
1596 */
c2f9f201 1597static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1598{
1599 struct futex_hash_bucket *hb;
1600 struct futex_q *this, *next;
1601 u32 uval;
ec92d082 1602 struct plist_head *head;
38d47c1b 1603 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1604 int ret, attempt = 0;
1605
1606retry:
1607 if (get_user(uval, uaddr))
1608 return -EFAULT;
1609 /*
1610 * We release only a lock we actually own:
1611 */
b488893a 1612 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1613 return -EPERM;
c87e2837 1614
34f01cc1 1615 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1616 if (unlikely(ret != 0))
1617 goto out;
1618
1619 hb = hash_futex(&key);
778e9a9c 1620retry_unlocked:
c87e2837
IM
1621 spin_lock(&hb->lock);
1622
c87e2837
IM
1623 /*
1624 * To avoid races, try to do the TID -> 0 atomic transition
1625 * again. If it succeeds then we can return without waking
1626 * anyone else up:
1627 */
36cf3b5c 1628 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1629 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1630
c87e2837
IM
1631
1632 if (unlikely(uval == -EFAULT))
1633 goto pi_faulted;
1634 /*
1635 * Rare case: we managed to release the lock atomically,
1636 * no need to wake anyone else up:
1637 */
b488893a 1638 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1639 goto out_unlock;
1640
1641 /*
1642 * Ok, other tasks may need to be woken up - check waiters
1643 * and do the wakeup if necessary:
1644 */
1645 head = &hb->chain;
1646
ec92d082 1647 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1648 if (!match_futex (&this->key, &key))
1649 continue;
1650 ret = wake_futex_pi(uaddr, uval, this);
1651 /*
1652 * The atomic access to the futex value
1653 * generated a pagefault, so retry the
1654 * user-access and the wakeup:
1655 */
1656 if (ret == -EFAULT)
1657 goto pi_faulted;
1658 goto out_unlock;
1659 }
1660 /*
1661 * No waiters - kernel unlocks the futex:
1662 */
e3f2ddea
IM
1663 if (!(uval & FUTEX_OWNER_DIED)) {
1664 ret = unlock_futex_pi(uaddr, uval);
1665 if (ret == -EFAULT)
1666 goto pi_faulted;
1667 }
c87e2837
IM
1668
1669out_unlock:
1670 spin_unlock(&hb->lock);
1671out:
38d47c1b 1672 put_futex_key(fshared, &key);
c87e2837
IM
1673
1674 return ret;
1675
1676pi_faulted:
1677 /*
b5686363
DH
1678 * We have to r/w *(int __user *)uaddr, and we have to modify it
1679 * atomically. Therefore, if we continue to fault after get_user()
1680 * below, we need to handle the fault ourselves, while still holding
1681 * the mmap_sem. This can occur if the uaddr is under contention as
1682 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1683 */
778e9a9c
AK
1684 spin_unlock(&hb->lock);
1685
c87e2837 1686 if (attempt++) {
c2f9f201 1687 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1688 if (ret)
778e9a9c 1689 goto out;
187226f5 1690 uval = 0;
778e9a9c 1691 goto retry_unlocked;
c87e2837
IM
1692 }
1693
c87e2837 1694 ret = get_user(uval, uaddr);
b5686363 1695 if (!ret)
c87e2837
IM
1696 goto retry;
1697
1da177e4
LT
1698 return ret;
1699}
1700
0771dfef
IM
1701/*
1702 * Support for robust futexes: the kernel cleans up held futexes at
1703 * thread exit time.
1704 *
1705 * Implementation: user-space maintains a per-thread list of locks it
1706 * is holding. Upon do_exit(), the kernel carefully walks this list,
1707 * and marks all locks that are owned by this thread with the
c87e2837 1708 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1709 * always manipulated with the lock held, so the list is private and
1710 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1711 * field, to allow the kernel to clean up if the thread dies after
1712 * acquiring the lock, but just before it could have added itself to
1713 * the list. There can only be one such pending lock.
1714 */
1715
1716/**
1717 * sys_set_robust_list - set the robust-futex list head of a task
1718 * @head: pointer to the list-head
1719 * @len: length of the list-head, as userspace expects
1720 */
1721asmlinkage long
1722sys_set_robust_list(struct robust_list_head __user *head,
1723 size_t len)
1724{
a0c1e907
TG
1725 if (!futex_cmpxchg_enabled)
1726 return -ENOSYS;
0771dfef
IM
1727 /*
1728 * The kernel knows only one size for now:
1729 */
1730 if (unlikely(len != sizeof(*head)))
1731 return -EINVAL;
1732
1733 current->robust_list = head;
1734
1735 return 0;
1736}
1737
1738/**
1739 * sys_get_robust_list - get the robust-futex list head of a task
1740 * @pid: pid of the process [zero for current task]
1741 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1742 * @len_ptr: pointer to a length field, the kernel fills in the header size
1743 */
1744asmlinkage long
ba46df98 1745sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1746 size_t __user *len_ptr)
1747{
ba46df98 1748 struct robust_list_head __user *head;
0771dfef
IM
1749 unsigned long ret;
1750
a0c1e907
TG
1751 if (!futex_cmpxchg_enabled)
1752 return -ENOSYS;
1753
0771dfef
IM
1754 if (!pid)
1755 head = current->robust_list;
1756 else {
1757 struct task_struct *p;
1758
1759 ret = -ESRCH;
aaa2a97e 1760 rcu_read_lock();
228ebcbe 1761 p = find_task_by_vpid(pid);
0771dfef
IM
1762 if (!p)
1763 goto err_unlock;
1764 ret = -EPERM;
1765 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1766 !capable(CAP_SYS_PTRACE))
1767 goto err_unlock;
1768 head = p->robust_list;
aaa2a97e 1769 rcu_read_unlock();
0771dfef
IM
1770 }
1771
1772 if (put_user(sizeof(*head), len_ptr))
1773 return -EFAULT;
1774 return put_user(head, head_ptr);
1775
1776err_unlock:
aaa2a97e 1777 rcu_read_unlock();
0771dfef
IM
1778
1779 return ret;
1780}
1781
1782/*
1783 * Process a futex-list entry, check whether it's owned by the
1784 * dying task, and do notification if so:
1785 */
e3f2ddea 1786int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1787{
e3f2ddea 1788 u32 uval, nval, mval;
0771dfef 1789
8f17d3a5
IM
1790retry:
1791 if (get_user(uval, uaddr))
0771dfef
IM
1792 return -1;
1793
b488893a 1794 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1795 /*
1796 * Ok, this dying thread is truly holding a futex
1797 * of interest. Set the OWNER_DIED bit atomically
1798 * via cmpxchg, and if the value had FUTEX_WAITERS
1799 * set, wake up a waiter (if any). (We have to do a
1800 * futex_wake() even if OWNER_DIED is already set -
1801 * to handle the rare but possible case of recursive
1802 * thread-death.) The rest of the cleanup is done in
1803 * userspace.
1804 */
e3f2ddea
IM
1805 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1806 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1807
c87e2837
IM
1808 if (nval == -EFAULT)
1809 return -1;
1810
1811 if (nval != uval)
8f17d3a5 1812 goto retry;
0771dfef 1813
e3f2ddea
IM
1814 /*
1815 * Wake robust non-PI futexes here. The wakeup of
1816 * PI futexes happens in exit_pi_state():
1817 */
36cf3b5c 1818 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1819 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1820 }
1821 return 0;
1822}
1823
e3f2ddea
IM
1824/*
1825 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1826 */
1827static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1828 struct robust_list __user * __user *head,
1829 int *pi)
e3f2ddea
IM
1830{
1831 unsigned long uentry;
1832
ba46df98 1833 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1834 return -EFAULT;
1835
ba46df98 1836 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1837 *pi = uentry & 1;
1838
1839 return 0;
1840}
1841
0771dfef
IM
1842/*
1843 * Walk curr->robust_list (very carefully, it's a userspace list!)
1844 * and mark any locks found there dead, and notify any waiters.
1845 *
1846 * We silently return on any sign of list-walking problem.
1847 */
1848void exit_robust_list(struct task_struct *curr)
1849{
1850 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1851 struct robust_list __user *entry, *next_entry, *pending;
1852 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1853 unsigned long futex_offset;
9f96cb1e 1854 int rc;
0771dfef 1855
a0c1e907
TG
1856 if (!futex_cmpxchg_enabled)
1857 return;
1858
0771dfef
IM
1859 /*
1860 * Fetch the list head (which was registered earlier, via
1861 * sys_set_robust_list()):
1862 */
e3f2ddea 1863 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1864 return;
1865 /*
1866 * Fetch the relative futex offset:
1867 */
1868 if (get_user(futex_offset, &head->futex_offset))
1869 return;
1870 /*
1871 * Fetch any possibly pending lock-add first, and handle it
1872 * if it exists:
1873 */
e3f2ddea 1874 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1875 return;
e3f2ddea 1876
9f96cb1e 1877 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1878 while (entry != &head->list) {
9f96cb1e
MS
1879 /*
1880 * Fetch the next entry in the list before calling
1881 * handle_futex_death:
1882 */
1883 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1884 /*
1885 * A pending lock might already be on the list, so
c87e2837 1886 * don't process it twice:
0771dfef
IM
1887 */
1888 if (entry != pending)
ba46df98 1889 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1890 curr, pi))
0771dfef 1891 return;
9f96cb1e 1892 if (rc)
0771dfef 1893 return;
9f96cb1e
MS
1894 entry = next_entry;
1895 pi = next_pi;
0771dfef
IM
1896 /*
1897 * Avoid excessively long or circular lists:
1898 */
1899 if (!--limit)
1900 break;
1901
1902 cond_resched();
1903 }
9f96cb1e
MS
1904
1905 if (pending)
1906 handle_futex_death((void __user *)pending + futex_offset,
1907 curr, pip);
0771dfef
IM
1908}
1909
c19384b5 1910long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1911 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1912{
1acdac10 1913 int clockrt, ret = -ENOSYS;
34f01cc1 1914 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1915 int fshared = 0;
34f01cc1
ED
1916
1917 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1918 fshared = 1;
1da177e4 1919
1acdac10
TG
1920 clockrt = op & FUTEX_CLOCK_REALTIME;
1921 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1922 return -ENOSYS;
1923
34f01cc1 1924 switch (cmd) {
1da177e4 1925 case FUTEX_WAIT:
cd689985
TG
1926 val3 = FUTEX_BITSET_MATCH_ANY;
1927 case FUTEX_WAIT_BITSET:
1acdac10 1928 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1929 break;
1930 case FUTEX_WAKE:
cd689985
TG
1931 val3 = FUTEX_BITSET_MATCH_ANY;
1932 case FUTEX_WAKE_BITSET:
1933 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1934 break;
1da177e4 1935 case FUTEX_REQUEUE:
34f01cc1 1936 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1937 break;
1938 case FUTEX_CMP_REQUEUE:
34f01cc1 1939 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1940 break;
4732efbe 1941 case FUTEX_WAKE_OP:
34f01cc1 1942 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1943 break;
c87e2837 1944 case FUTEX_LOCK_PI:
a0c1e907
TG
1945 if (futex_cmpxchg_enabled)
1946 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1947 break;
1948 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1949 if (futex_cmpxchg_enabled)
1950 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1951 break;
1952 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1953 if (futex_cmpxchg_enabled)
1954 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1955 break;
1da177e4
LT
1956 default:
1957 ret = -ENOSYS;
1958 }
1959 return ret;
1960}
1961
1962
e2970f2f 1963asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1964 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1965 u32 val3)
1da177e4 1966{
c19384b5
PP
1967 struct timespec ts;
1968 ktime_t t, *tp = NULL;
e2970f2f 1969 u32 val2 = 0;
34f01cc1 1970 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1971
cd689985
TG
1972 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1973 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1974 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1975 return -EFAULT;
c19384b5 1976 if (!timespec_valid(&ts))
9741ef96 1977 return -EINVAL;
c19384b5
PP
1978
1979 t = timespec_to_ktime(ts);
34f01cc1 1980 if (cmd == FUTEX_WAIT)
5a7780e7 1981 t = ktime_add_safe(ktime_get(), t);
c19384b5 1982 tp = &t;
1da177e4
LT
1983 }
1984 /*
34f01cc1 1985 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1986 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1987 */
f54f0986
AS
1988 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1989 cmd == FUTEX_WAKE_OP)
e2970f2f 1990 val2 = (u32) (unsigned long) utime;
1da177e4 1991
c19384b5 1992 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1993}
1994
f6d107fb 1995static int __init futex_init(void)
1da177e4 1996{
a0c1e907 1997 u32 curval;
3e4ab747 1998 int i;
95362fa9 1999
a0c1e907
TG
2000 /*
2001 * This will fail and we want it. Some arch implementations do
2002 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2003 * functionality. We want to know that before we call in any
2004 * of the complex code paths. Also we want to prevent
2005 * registration of robust lists in that case. NULL is
2006 * guaranteed to fault and we get -EFAULT on functional
2007 * implementation, the non functional ones will return
2008 * -ENOSYS.
2009 */
2010 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2011 if (curval == -EFAULT)
2012 futex_cmpxchg_enabled = 1;
2013
3e4ab747
TG
2014 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2015 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2016 spin_lock_init(&futex_queues[i].lock);
2017 }
2018
1da177e4
LT
2019 return 0;
2020}
f6d107fb 2021__initcall(futex_init);