]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
Make futex_wait() use an hrtimer for timeout
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
1da177e4
LT
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40#include <linux/slab.h>
41#include <linux/poll.h>
42#include <linux/fs.h>
43#include <linux/file.h>
44#include <linux/jhash.h>
45#include <linux/init.h>
46#include <linux/futex.h>
47#include <linux/mount.h>
48#include <linux/pagemap.h>
49#include <linux/syscalls.h>
7ed20e1a 50#include <linux/signal.h>
9adef58b 51#include <linux/module.h>
4732efbe 52#include <asm/futex.h>
1da177e4 53
c87e2837
IM
54#include "rtmutex_common.h"
55
1da177e4
LT
56#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
57
c87e2837
IM
58/*
59 * Priority Inheritance state:
60 */
61struct futex_pi_state {
62 /*
63 * list of 'owned' pi_state instances - these have to be
64 * cleaned up in do_exit() if the task exits prematurely:
65 */
66 struct list_head list;
67
68 /*
69 * The PI object:
70 */
71 struct rt_mutex pi_mutex;
72
73 struct task_struct *owner;
74 atomic_t refcount;
75
76 union futex_key key;
77};
78
1da177e4
LT
79/*
80 * We use this hashed waitqueue instead of a normal wait_queue_t, so
81 * we can wake only the relevant ones (hashed queues may be shared).
82 *
83 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 84 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
85 * The order of wakup is always to make the first condition true, then
86 * wake up q->waiters, then make the second condition true.
87 */
88struct futex_q {
ec92d082 89 struct plist_node list;
1da177e4
LT
90 wait_queue_head_t waiters;
91
e2970f2f 92 /* Which hash list lock to use: */
1da177e4
LT
93 spinlock_t *lock_ptr;
94
e2970f2f 95 /* Key which the futex is hashed on: */
1da177e4
LT
96 union futex_key key;
97
e2970f2f 98 /* For fd, sigio sent using these: */
1da177e4
LT
99 int fd;
100 struct file *filp;
c87e2837
IM
101
102 /* Optional priority inheritance state: */
103 struct futex_pi_state *pi_state;
104 struct task_struct *task;
1da177e4
LT
105};
106
107/*
108 * Split the global futex_lock into every hash list lock.
109 */
110struct futex_hash_bucket {
ec92d082
PP
111 spinlock_t lock;
112 struct plist_head chain;
1da177e4
LT
113};
114
115static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
116
117/* Futex-fs vfsmount entry: */
118static struct vfsmount *futex_mnt;
119
120/*
121 * We hash on the keys returned from get_futex_key (see below).
122 */
123static struct futex_hash_bucket *hash_futex(union futex_key *key)
124{
125 u32 hash = jhash2((u32*)&key->both.word,
126 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
127 key->both.offset);
128 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
129}
130
131/*
132 * Return 1 if two futex_keys are equal, 0 otherwise.
133 */
134static inline int match_futex(union futex_key *key1, union futex_key *key2)
135{
136 return (key1->both.word == key2->both.word
137 && key1->both.ptr == key2->both.ptr
138 && key1->both.offset == key2->both.offset);
139}
140
141/*
142 * Get parameters which are the keys for a futex.
143 *
f3a43f3f 144 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
145 * offset_within_page). For private mappings, it's (uaddr, current->mm).
146 * We can usually work out the index without swapping in the page.
147 *
148 * Returns: 0, or negative error code.
149 * The key words are stored in *key on success.
150 *
151 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
152 */
9adef58b 153int get_futex_key(u32 __user *uaddr, union futex_key *key)
1da177e4 154{
e2970f2f 155 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
156 struct mm_struct *mm = current->mm;
157 struct vm_area_struct *vma;
158 struct page *page;
159 int err;
160
161 /*
162 * The futex address must be "naturally" aligned.
163 */
e2970f2f 164 key->both.offset = address % PAGE_SIZE;
1da177e4
LT
165 if (unlikely((key->both.offset % sizeof(u32)) != 0))
166 return -EINVAL;
e2970f2f 167 address -= key->both.offset;
1da177e4
LT
168
169 /*
170 * The futex is hashed differently depending on whether
171 * it's in a shared or private mapping. So check vma first.
172 */
e2970f2f 173 vma = find_extend_vma(mm, address);
1da177e4
LT
174 if (unlikely(!vma))
175 return -EFAULT;
176
177 /*
178 * Permissions.
179 */
180 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
181 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
182
183 /*
184 * Private mappings are handled in a simple way.
185 *
186 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
187 * it's a read-only handle, it's expected that futexes attach to
188 * the object not the particular process. Therefore we use
189 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
190 * mappings of _writable_ handles.
191 */
192 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
193 key->private.mm = mm;
e2970f2f 194 key->private.address = address;
1da177e4
LT
195 return 0;
196 }
197
198 /*
199 * Linear file mappings are also simple.
200 */
f3a43f3f 201 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
202 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
203 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 204 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
205 + vma->vm_pgoff);
206 return 0;
207 }
208
209 /*
210 * We could walk the page table to read the non-linear
211 * pte, and get the page index without fetching the page
212 * from swap. But that's a lot of code to duplicate here
213 * for a rare case, so we simply fetch the page.
214 */
e2970f2f 215 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
216 if (err >= 0) {
217 key->shared.pgoff =
218 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
219 put_page(page);
220 return 0;
221 }
222 return err;
223}
9adef58b 224EXPORT_SYMBOL_GPL(get_futex_key);
1da177e4
LT
225
226/*
227 * Take a reference to the resource addressed by a key.
228 * Can be called while holding spinlocks.
229 *
230 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
231 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
232 */
9adef58b 233inline void get_futex_key_refs(union futex_key *key)
1da177e4
LT
234{
235 if (key->both.ptr != 0) {
236 if (key->both.offset & 1)
237 atomic_inc(&key->shared.inode->i_count);
238 else
239 atomic_inc(&key->private.mm->mm_count);
240 }
241}
9adef58b 242EXPORT_SYMBOL_GPL(get_futex_key_refs);
1da177e4
LT
243
244/*
245 * Drop a reference to the resource addressed by a key.
246 * The hash bucket spinlock must not be held.
247 */
9adef58b 248void drop_futex_key_refs(union futex_key *key)
1da177e4
LT
249{
250 if (key->both.ptr != 0) {
251 if (key->both.offset & 1)
252 iput(key->shared.inode);
253 else
254 mmdrop(key->private.mm);
255 }
256}
9adef58b 257EXPORT_SYMBOL_GPL(drop_futex_key_refs);
1da177e4 258
e2970f2f 259static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
260{
261 int ret;
262
a866374a 263 pagefault_disable();
e2970f2f 264 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 265 pagefault_enable();
1da177e4
LT
266
267 return ret ? -EFAULT : 0;
268}
269
c87e2837
IM
270/*
271 * Fault handling. Called with current->mm->mmap_sem held.
272 */
273static int futex_handle_fault(unsigned long address, int attempt)
274{
275 struct vm_area_struct * vma;
276 struct mm_struct *mm = current->mm;
277
e579dcbf 278 if (attempt > 2 || !(vma = find_vma(mm, address)) ||
c87e2837
IM
279 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
280 return -EFAULT;
281
282 switch (handle_mm_fault(mm, vma, address, 1)) {
283 case VM_FAULT_MINOR:
284 current->min_flt++;
285 break;
286 case VM_FAULT_MAJOR:
287 current->maj_flt++;
288 break;
289 default:
290 return -EFAULT;
291 }
292 return 0;
293}
294
295/*
296 * PI code:
297 */
298static int refill_pi_state_cache(void)
299{
300 struct futex_pi_state *pi_state;
301
302 if (likely(current->pi_state_cache))
303 return 0;
304
4668edc3 305 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
306
307 if (!pi_state)
308 return -ENOMEM;
309
c87e2837
IM
310 INIT_LIST_HEAD(&pi_state->list);
311 /* pi_mutex gets initialized later */
312 pi_state->owner = NULL;
313 atomic_set(&pi_state->refcount, 1);
314
315 current->pi_state_cache = pi_state;
316
317 return 0;
318}
319
320static struct futex_pi_state * alloc_pi_state(void)
321{
322 struct futex_pi_state *pi_state = current->pi_state_cache;
323
324 WARN_ON(!pi_state);
325 current->pi_state_cache = NULL;
326
327 return pi_state;
328}
329
330static void free_pi_state(struct futex_pi_state *pi_state)
331{
332 if (!atomic_dec_and_test(&pi_state->refcount))
333 return;
334
335 /*
336 * If pi_state->owner is NULL, the owner is most probably dying
337 * and has cleaned up the pi_state already
338 */
339 if (pi_state->owner) {
340 spin_lock_irq(&pi_state->owner->pi_lock);
341 list_del_init(&pi_state->list);
342 spin_unlock_irq(&pi_state->owner->pi_lock);
343
344 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
345 }
346
347 if (current->pi_state_cache)
348 kfree(pi_state);
349 else {
350 /*
351 * pi_state->list is already empty.
352 * clear pi_state->owner.
353 * refcount is at 0 - put it back to 1.
354 */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
357 current->pi_state_cache = pi_state;
358 }
359}
360
361/*
362 * Look up the task based on what TID userspace gave us.
363 * We dont trust it.
364 */
365static struct task_struct * futex_find_get_task(pid_t pid)
366{
367 struct task_struct *p;
368
d359b549 369 rcu_read_lock();
c87e2837
IM
370 p = find_task_by_pid(pid);
371 if (!p)
372 goto out_unlock;
373 if ((current->euid != p->euid) && (current->euid != p->uid)) {
374 p = NULL;
375 goto out_unlock;
376 }
d015baeb 377 if (p->exit_state != 0) {
c87e2837
IM
378 p = NULL;
379 goto out_unlock;
380 }
381 get_task_struct(p);
382out_unlock:
d359b549 383 rcu_read_unlock();
c87e2837
IM
384
385 return p;
386}
387
388/*
389 * This task is holding PI mutexes at exit time => bad.
390 * Kernel cleans up PI-state, but userspace is likely hosed.
391 * (Robust-futex cleanup is separate and might save the day for userspace.)
392 */
393void exit_pi_state_list(struct task_struct *curr)
394{
c87e2837
IM
395 struct list_head *next, *head = &curr->pi_state_list;
396 struct futex_pi_state *pi_state;
627371d7 397 struct futex_hash_bucket *hb;
c87e2837
IM
398 union futex_key key;
399
400 /*
401 * We are a ZOMBIE and nobody can enqueue itself on
402 * pi_state_list anymore, but we have to be careful
627371d7 403 * versus waiters unqueueing themselves:
c87e2837
IM
404 */
405 spin_lock_irq(&curr->pi_lock);
406 while (!list_empty(head)) {
407
408 next = head->next;
409 pi_state = list_entry(next, struct futex_pi_state, list);
410 key = pi_state->key;
627371d7 411 hb = hash_futex(&key);
c87e2837
IM
412 spin_unlock_irq(&curr->pi_lock);
413
c87e2837
IM
414 spin_lock(&hb->lock);
415
416 spin_lock_irq(&curr->pi_lock);
627371d7
IM
417 /*
418 * We dropped the pi-lock, so re-check whether this
419 * task still owns the PI-state:
420 */
c87e2837
IM
421 if (head->next != next) {
422 spin_unlock(&hb->lock);
423 continue;
424 }
425
c87e2837 426 WARN_ON(pi_state->owner != curr);
627371d7
IM
427 WARN_ON(list_empty(&pi_state->list));
428 list_del_init(&pi_state->list);
c87e2837
IM
429 pi_state->owner = NULL;
430 spin_unlock_irq(&curr->pi_lock);
431
432 rt_mutex_unlock(&pi_state->pi_mutex);
433
434 spin_unlock(&hb->lock);
435
436 spin_lock_irq(&curr->pi_lock);
437 }
438 spin_unlock_irq(&curr->pi_lock);
439}
440
441static int
442lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
443{
444 struct futex_pi_state *pi_state = NULL;
445 struct futex_q *this, *next;
ec92d082 446 struct plist_head *head;
c87e2837
IM
447 struct task_struct *p;
448 pid_t pid;
449
450 head = &hb->chain;
451
ec92d082 452 plist_for_each_entry_safe(this, next, head, list) {
627371d7 453 if (match_futex(&this->key, &me->key)) {
c87e2837
IM
454 /*
455 * Another waiter already exists - bump up
456 * the refcount and return its pi_state:
457 */
458 pi_state = this->pi_state;
06a9ec29
TG
459 /*
460 * Userspace might have messed up non PI and PI futexes
461 */
462 if (unlikely(!pi_state))
463 return -EINVAL;
464
627371d7
IM
465 WARN_ON(!atomic_read(&pi_state->refcount));
466
c87e2837
IM
467 atomic_inc(&pi_state->refcount);
468 me->pi_state = pi_state;
469
470 return 0;
471 }
472 }
473
474 /*
e3f2ddea
IM
475 * We are the first waiter - try to look up the real owner and attach
476 * the new pi_state to it, but bail out when the owner died bit is set
477 * and TID = 0:
c87e2837
IM
478 */
479 pid = uval & FUTEX_TID_MASK;
e3f2ddea
IM
480 if (!pid && (uval & FUTEX_OWNER_DIED))
481 return -ESRCH;
c87e2837
IM
482 p = futex_find_get_task(pid);
483 if (!p)
484 return -ESRCH;
485
486 pi_state = alloc_pi_state();
487
488 /*
489 * Initialize the pi_mutex in locked state and make 'p'
490 * the owner of it:
491 */
492 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
493
494 /* Store the key for possible exit cleanups: */
495 pi_state->key = me->key;
496
497 spin_lock_irq(&p->pi_lock);
627371d7 498 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
499 list_add(&pi_state->list, &p->pi_state_list);
500 pi_state->owner = p;
501 spin_unlock_irq(&p->pi_lock);
502
503 put_task_struct(p);
504
505 me->pi_state = pi_state;
506
507 return 0;
508}
509
1da177e4
LT
510/*
511 * The hash bucket lock must be held when this is called.
512 * Afterwards, the futex_q must not be accessed.
513 */
514static void wake_futex(struct futex_q *q)
515{
ec92d082 516 plist_del(&q->list, &q->list.plist);
1da177e4
LT
517 if (q->filp)
518 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
519 /*
520 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 521 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
522 */
523 wake_up_all(&q->waiters);
524 /*
525 * The waiting task can free the futex_q as soon as this is written,
526 * without taking any locks. This must come last.
8e31108b
AM
527 *
528 * A memory barrier is required here to prevent the following store
529 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
530 * at the end of wake_up_all() does not prevent this store from
531 * moving.
1da177e4 532 */
ccdea2f8 533 smp_wmb();
1da177e4
LT
534 q->lock_ptr = NULL;
535}
536
c87e2837
IM
537static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
538{
539 struct task_struct *new_owner;
540 struct futex_pi_state *pi_state = this->pi_state;
541 u32 curval, newval;
542
543 if (!pi_state)
544 return -EINVAL;
545
21778867 546 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
547 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
548
549 /*
550 * This happens when we have stolen the lock and the original
551 * pending owner did not enqueue itself back on the rt_mutex.
552 * Thats not a tragedy. We know that way, that a lock waiter
553 * is on the fly. We make the futex_q waiter the pending owner.
554 */
555 if (!new_owner)
556 new_owner = this->task;
557
558 /*
559 * We pass it to the next owner. (The WAITERS bit is always
560 * kept enabled while there is PI state around. We must also
561 * preserve the owner died bit.)
562 */
e3f2ddea
IM
563 if (!(uval & FUTEX_OWNER_DIED)) {
564 newval = FUTEX_WAITERS | new_owner->pid;
565
a866374a 566 pagefault_disable();
e3f2ddea 567 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 568 pagefault_enable();
e3f2ddea
IM
569 if (curval == -EFAULT)
570 return -EFAULT;
571 if (curval != uval)
572 return -EINVAL;
573 }
c87e2837 574
627371d7
IM
575 spin_lock_irq(&pi_state->owner->pi_lock);
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
578 spin_unlock_irq(&pi_state->owner->pi_lock);
579
580 spin_lock_irq(&new_owner->pi_lock);
581 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
627371d7
IM
584 spin_unlock_irq(&new_owner->pi_lock);
585
21778867 586 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 return 0;
590}
591
592static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
593{
594 u32 oldval;
595
596 /*
597 * There is no waiter, so we unlock the futex. The owner died
598 * bit has not to be preserved here. We are the owner:
599 */
a866374a 600 pagefault_disable();
c87e2837 601 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
a866374a 602 pagefault_enable();
c87e2837
IM
603
604 if (oldval == -EFAULT)
605 return oldval;
606 if (oldval != uval)
607 return -EAGAIN;
608
609 return 0;
610}
611
8b8f319f
IM
612/*
613 * Express the locking dependencies for lockdep:
614 */
615static inline void
616double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
617{
618 if (hb1 <= hb2) {
619 spin_lock(&hb1->lock);
620 if (hb1 < hb2)
621 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
622 } else { /* hb1 > hb2 */
623 spin_lock(&hb2->lock);
624 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
625 }
626}
627
1da177e4
LT
628/*
629 * Wake up all waiters hashed on the physical page that is mapped
630 * to this virtual address:
631 */
e2970f2f 632static int futex_wake(u32 __user *uaddr, int nr_wake)
1da177e4 633{
e2970f2f 634 struct futex_hash_bucket *hb;
1da177e4 635 struct futex_q *this, *next;
ec92d082 636 struct plist_head *head;
e2970f2f 637 union futex_key key;
1da177e4
LT
638 int ret;
639
640 down_read(&current->mm->mmap_sem);
641
642 ret = get_futex_key(uaddr, &key);
643 if (unlikely(ret != 0))
644 goto out;
645
e2970f2f
IM
646 hb = hash_futex(&key);
647 spin_lock(&hb->lock);
648 head = &hb->chain;
1da177e4 649
ec92d082 650 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 651 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
652 if (this->pi_state) {
653 ret = -EINVAL;
654 break;
655 }
1da177e4
LT
656 wake_futex(this);
657 if (++ret >= nr_wake)
658 break;
659 }
660 }
661
e2970f2f 662 spin_unlock(&hb->lock);
1da177e4
LT
663out:
664 up_read(&current->mm->mmap_sem);
665 return ret;
666}
667
4732efbe
JJ
668/*
669 * Wake up all waiters hashed on the physical page that is mapped
670 * to this virtual address:
671 */
e2970f2f
IM
672static int
673futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
674 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
675{
676 union futex_key key1, key2;
e2970f2f 677 struct futex_hash_bucket *hb1, *hb2;
ec92d082 678 struct plist_head *head;
4732efbe
JJ
679 struct futex_q *this, *next;
680 int ret, op_ret, attempt = 0;
681
682retryfull:
683 down_read(&current->mm->mmap_sem);
684
685 ret = get_futex_key(uaddr1, &key1);
686 if (unlikely(ret != 0))
687 goto out;
688 ret = get_futex_key(uaddr2, &key2);
689 if (unlikely(ret != 0))
690 goto out;
691
e2970f2f
IM
692 hb1 = hash_futex(&key1);
693 hb2 = hash_futex(&key2);
4732efbe
JJ
694
695retry:
8b8f319f 696 double_lock_hb(hb1, hb2);
4732efbe 697
e2970f2f 698 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 699 if (unlikely(op_ret < 0)) {
e2970f2f 700 u32 dummy;
4732efbe 701
e2970f2f
IM
702 spin_unlock(&hb1->lock);
703 if (hb1 != hb2)
704 spin_unlock(&hb2->lock);
4732efbe 705
7ee1dd3f 706#ifndef CONFIG_MMU
e2970f2f
IM
707 /*
708 * we don't get EFAULT from MMU faults if we don't have an MMU,
709 * but we might get them from range checking
710 */
7ee1dd3f
DH
711 ret = op_ret;
712 goto out;
713#endif
714
796f8d9b
DG
715 if (unlikely(op_ret != -EFAULT)) {
716 ret = op_ret;
717 goto out;
718 }
719
e2970f2f
IM
720 /*
721 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
722 * *(int __user *)uaddr2, but we can't modify it
723 * non-atomically. Therefore, if get_user below is not
724 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
725 * still holding the mmap_sem.
726 */
4732efbe 727 if (attempt++) {
c87e2837 728 if (futex_handle_fault((unsigned long)uaddr2,
e579dcbf
JS
729 attempt)) {
730 ret = -EFAULT;
4732efbe 731 goto out;
e579dcbf 732 }
4732efbe
JJ
733 goto retry;
734 }
735
e2970f2f
IM
736 /*
737 * If we would have faulted, release mmap_sem,
738 * fault it in and start all over again.
739 */
4732efbe
JJ
740 up_read(&current->mm->mmap_sem);
741
e2970f2f 742 ret = get_user(dummy, uaddr2);
4732efbe
JJ
743 if (ret)
744 return ret;
745
746 goto retryfull;
747 }
748
e2970f2f 749 head = &hb1->chain;
4732efbe 750
ec92d082 751 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
752 if (match_futex (&this->key, &key1)) {
753 wake_futex(this);
754 if (++ret >= nr_wake)
755 break;
756 }
757 }
758
759 if (op_ret > 0) {
e2970f2f 760 head = &hb2->chain;
4732efbe
JJ
761
762 op_ret = 0;
ec92d082 763 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
764 if (match_futex (&this->key, &key2)) {
765 wake_futex(this);
766 if (++op_ret >= nr_wake2)
767 break;
768 }
769 }
770 ret += op_ret;
771 }
772
e2970f2f
IM
773 spin_unlock(&hb1->lock);
774 if (hb1 != hb2)
775 spin_unlock(&hb2->lock);
4732efbe
JJ
776out:
777 up_read(&current->mm->mmap_sem);
778 return ret;
779}
780
1da177e4
LT
781/*
782 * Requeue all waiters hashed on one physical page to another
783 * physical page.
784 */
e2970f2f
IM
785static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
786 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
787{
788 union futex_key key1, key2;
e2970f2f 789 struct futex_hash_bucket *hb1, *hb2;
ec92d082 790 struct plist_head *head1;
1da177e4
LT
791 struct futex_q *this, *next;
792 int ret, drop_count = 0;
793
794 retry:
795 down_read(&current->mm->mmap_sem);
796
797 ret = get_futex_key(uaddr1, &key1);
798 if (unlikely(ret != 0))
799 goto out;
800 ret = get_futex_key(uaddr2, &key2);
801 if (unlikely(ret != 0))
802 goto out;
803
e2970f2f
IM
804 hb1 = hash_futex(&key1);
805 hb2 = hash_futex(&key2);
1da177e4 806
8b8f319f 807 double_lock_hb(hb1, hb2);
1da177e4 808
e2970f2f
IM
809 if (likely(cmpval != NULL)) {
810 u32 curval;
1da177e4 811
e2970f2f 812 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
813
814 if (unlikely(ret)) {
e2970f2f
IM
815 spin_unlock(&hb1->lock);
816 if (hb1 != hb2)
817 spin_unlock(&hb2->lock);
1da177e4 818
e2970f2f
IM
819 /*
820 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
821 * it in and start all over again.
822 */
823 up_read(&current->mm->mmap_sem);
824
e2970f2f 825 ret = get_user(curval, uaddr1);
1da177e4
LT
826
827 if (!ret)
828 goto retry;
829
830 return ret;
831 }
e2970f2f 832 if (curval != *cmpval) {
1da177e4
LT
833 ret = -EAGAIN;
834 goto out_unlock;
835 }
836 }
837
e2970f2f 838 head1 = &hb1->chain;
ec92d082 839 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
840 if (!match_futex (&this->key, &key1))
841 continue;
842 if (++ret <= nr_wake) {
843 wake_futex(this);
844 } else {
59e0e0ac
SD
845 /*
846 * If key1 and key2 hash to the same bucket, no need to
847 * requeue.
848 */
849 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
850 plist_del(&this->list, &hb1->chain);
851 plist_add(&this->list, &hb2->chain);
59e0e0ac 852 this->lock_ptr = &hb2->lock;
ec92d082
PP
853#ifdef CONFIG_DEBUG_PI_LIST
854 this->list.plist.lock = &hb2->lock;
855#endif
856 }
1da177e4 857 this->key = key2;
9adef58b 858 get_futex_key_refs(&key2);
1da177e4
LT
859 drop_count++;
860
861 if (ret - nr_wake >= nr_requeue)
862 break;
1da177e4
LT
863 }
864 }
865
866out_unlock:
e2970f2f
IM
867 spin_unlock(&hb1->lock);
868 if (hb1 != hb2)
869 spin_unlock(&hb2->lock);
1da177e4 870
9adef58b 871 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 872 while (--drop_count >= 0)
9adef58b 873 drop_futex_key_refs(&key1);
1da177e4
LT
874
875out:
876 up_read(&current->mm->mmap_sem);
877 return ret;
878}
879
880/* The key must be already stored in q->key. */
881static inline struct futex_hash_bucket *
882queue_lock(struct futex_q *q, int fd, struct file *filp)
883{
e2970f2f 884 struct futex_hash_bucket *hb;
1da177e4
LT
885
886 q->fd = fd;
887 q->filp = filp;
888
889 init_waitqueue_head(&q->waiters);
890
9adef58b 891 get_futex_key_refs(&q->key);
e2970f2f
IM
892 hb = hash_futex(&q->key);
893 q->lock_ptr = &hb->lock;
1da177e4 894
e2970f2f
IM
895 spin_lock(&hb->lock);
896 return hb;
1da177e4
LT
897}
898
e2970f2f 899static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 900{
ec92d082
PP
901 int prio;
902
903 /*
904 * The priority used to register this element is
905 * - either the real thread-priority for the real-time threads
906 * (i.e. threads with a priority lower than MAX_RT_PRIO)
907 * - or MAX_RT_PRIO for non-RT threads.
908 * Thus, all RT-threads are woken first in priority order, and
909 * the others are woken last, in FIFO order.
910 */
911 prio = min(current->normal_prio, MAX_RT_PRIO);
912
913 plist_node_init(&q->list, prio);
914#ifdef CONFIG_DEBUG_PI_LIST
915 q->list.plist.lock = &hb->lock;
916#endif
917 plist_add(&q->list, &hb->chain);
c87e2837 918 q->task = current;
e2970f2f 919 spin_unlock(&hb->lock);
1da177e4
LT
920}
921
922static inline void
e2970f2f 923queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 924{
e2970f2f 925 spin_unlock(&hb->lock);
9adef58b 926 drop_futex_key_refs(&q->key);
1da177e4
LT
927}
928
929/*
930 * queue_me and unqueue_me must be called as a pair, each
931 * exactly once. They are called with the hashed spinlock held.
932 */
933
934/* The key must be already stored in q->key. */
935static void queue_me(struct futex_q *q, int fd, struct file *filp)
936{
e2970f2f
IM
937 struct futex_hash_bucket *hb;
938
939 hb = queue_lock(q, fd, filp);
940 __queue_me(q, hb);
1da177e4
LT
941}
942
943/* Return 1 if we were still queued (ie. 0 means we were woken) */
944static int unqueue_me(struct futex_q *q)
945{
1da177e4 946 spinlock_t *lock_ptr;
e2970f2f 947 int ret = 0;
1da177e4
LT
948
949 /* In the common case we don't take the spinlock, which is nice. */
950 retry:
951 lock_ptr = q->lock_ptr;
e91467ec 952 barrier();
1da177e4
LT
953 if (lock_ptr != 0) {
954 spin_lock(lock_ptr);
955 /*
956 * q->lock_ptr can change between reading it and
957 * spin_lock(), causing us to take the wrong lock. This
958 * corrects the race condition.
959 *
960 * Reasoning goes like this: if we have the wrong lock,
961 * q->lock_ptr must have changed (maybe several times)
962 * between reading it and the spin_lock(). It can
963 * change again after the spin_lock() but only if it was
964 * already changed before the spin_lock(). It cannot,
965 * however, change back to the original value. Therefore
966 * we can detect whether we acquired the correct lock.
967 */
968 if (unlikely(lock_ptr != q->lock_ptr)) {
969 spin_unlock(lock_ptr);
970 goto retry;
971 }
ec92d082
PP
972 WARN_ON(plist_node_empty(&q->list));
973 plist_del(&q->list, &q->list.plist);
c87e2837
IM
974
975 BUG_ON(q->pi_state);
976
1da177e4
LT
977 spin_unlock(lock_ptr);
978 ret = 1;
979 }
980
9adef58b 981 drop_futex_key_refs(&q->key);
1da177e4
LT
982 return ret;
983}
984
c87e2837
IM
985/*
986 * PI futexes can not be requeued and must remove themself from the
987 * hash bucket. The hash bucket lock is held on entry and dropped here.
988 */
989static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
990{
ec92d082
PP
991 WARN_ON(plist_node_empty(&q->list));
992 plist_del(&q->list, &q->list.plist);
c87e2837
IM
993
994 BUG_ON(!q->pi_state);
995 free_pi_state(q->pi_state);
996 q->pi_state = NULL;
997
998 spin_unlock(&hb->lock);
999
9adef58b 1000 drop_futex_key_refs(&q->key);
c87e2837
IM
1001}
1002
72c1bbf3 1003static long futex_wait_restart(struct restart_block *restart);
c19384b5 1004static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
1da177e4 1005{
c87e2837
IM
1006 struct task_struct *curr = current;
1007 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1008 struct futex_hash_bucket *hb;
1da177e4 1009 struct futex_q q;
e2970f2f
IM
1010 u32 uval;
1011 int ret;
c19384b5
PP
1012 struct hrtimer_sleeper t;
1013 int rem = 0;
1da177e4 1014
c87e2837 1015 q.pi_state = NULL;
1da177e4 1016 retry:
c87e2837 1017 down_read(&curr->mm->mmap_sem);
1da177e4
LT
1018
1019 ret = get_futex_key(uaddr, &q.key);
1020 if (unlikely(ret != 0))
1021 goto out_release_sem;
1022
e2970f2f 1023 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1024
1025 /*
1026 * Access the page AFTER the futex is queued.
1027 * Order is important:
1028 *
1029 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1030 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1031 *
1032 * The basic logical guarantee of a futex is that it blocks ONLY
1033 * if cond(var) is known to be true at the time of blocking, for
1034 * any cond. If we queued after testing *uaddr, that would open
1035 * a race condition where we could block indefinitely with
1036 * cond(var) false, which would violate the guarantee.
1037 *
1038 * A consequence is that futex_wait() can return zero and absorb
1039 * a wakeup when *uaddr != val on entry to the syscall. This is
1040 * rare, but normal.
1041 *
1042 * We hold the mmap semaphore, so the mapping cannot have changed
1043 * since we looked it up in get_futex_key.
1044 */
e2970f2f 1045 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1046
1047 if (unlikely(ret)) {
e2970f2f 1048 queue_unlock(&q, hb);
1da177e4 1049
e2970f2f
IM
1050 /*
1051 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1052 * start all over again.
1053 */
c87e2837 1054 up_read(&curr->mm->mmap_sem);
1da177e4 1055
e2970f2f 1056 ret = get_user(uval, uaddr);
1da177e4
LT
1057
1058 if (!ret)
1059 goto retry;
1060 return ret;
1061 }
c87e2837
IM
1062 ret = -EWOULDBLOCK;
1063 if (uval != val)
1064 goto out_unlock_release_sem;
1da177e4
LT
1065
1066 /* Only actually queue if *uaddr contained val. */
e2970f2f 1067 __queue_me(&q, hb);
1da177e4
LT
1068
1069 /*
1070 * Now the futex is queued and we have checked the data, we
1071 * don't want to hold mmap_sem while we sleep.
c87e2837
IM
1072 */
1073 up_read(&curr->mm->mmap_sem);
1da177e4
LT
1074
1075 /*
1076 * There might have been scheduling since the queue_me(), as we
1077 * cannot hold a spinlock across the get_user() in case it
1078 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1079 * queueing ourselves into the futex hash. This code thus has to
1080 * rely on the futex_wake() code removing us from hash when it
1081 * wakes us up.
1082 */
1083
1084 /* add_wait_queue is the barrier after __set_current_state. */
1085 __set_current_state(TASK_INTERRUPTIBLE);
1086 add_wait_queue(&q.waiters, &wait);
1087 /*
ec92d082 1088 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1089 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1090 */
ec92d082 1091 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1092 if (!abs_time)
1093 schedule();
1094 else {
1095 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096 hrtimer_init_sleeper(&t, current);
1097 t.timer.expires = *abs_time;
1098
1099 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1100
1101 /*
1102 * the timer could have already expired, in which
1103 * case current would be flagged for rescheduling.
1104 * Don't bother calling schedule.
1105 */
1106 if (likely(t.task))
1107 schedule();
1108
1109 hrtimer_cancel(&t.timer);
72c1bbf3 1110
c19384b5
PP
1111 /* Flag if a timeout occured */
1112 rem = (t.task == NULL);
1113 }
72c1bbf3 1114 }
1da177e4
LT
1115 __set_current_state(TASK_RUNNING);
1116
1117 /*
1118 * NOTE: we don't remove ourselves from the waitqueue because
1119 * we are the only user of it.
1120 */
1121
1122 /* If we were woken (and unqueued), we succeeded, whatever. */
1123 if (!unqueue_me(&q))
1124 return 0;
c19384b5 1125 if (rem)
1da177e4 1126 return -ETIMEDOUT;
72c1bbf3 1127
e2970f2f
IM
1128 /*
1129 * We expect signal_pending(current), but another thread may
1130 * have handled it for us already.
1131 */
c19384b5 1132 if (!abs_time)
72c1bbf3
NP
1133 return -ERESTARTSYS;
1134 else {
1135 struct restart_block *restart;
1136 restart = &current_thread_info()->restart_block;
1137 restart->fn = futex_wait_restart;
1138 restart->arg0 = (unsigned long)uaddr;
1139 restart->arg1 = (unsigned long)val;
c19384b5 1140 restart->arg2 = (unsigned long)abs_time;
72c1bbf3
NP
1141 return -ERESTART_RESTARTBLOCK;
1142 }
1da177e4 1143
c87e2837
IM
1144 out_unlock_release_sem:
1145 queue_unlock(&q, hb);
1146
1da177e4 1147 out_release_sem:
c87e2837
IM
1148 up_read(&curr->mm->mmap_sem);
1149 return ret;
1150}
1151
72c1bbf3
NP
1152
1153static long futex_wait_restart(struct restart_block *restart)
1154{
1155 u32 __user *uaddr = (u32 __user *)restart->arg0;
1156 u32 val = (u32)restart->arg1;
c19384b5 1157 ktime_t *abs_time = (ktime_t *)restart->arg2;
72c1bbf3
NP
1158
1159 restart->fn = do_no_restart_syscall;
c19384b5 1160 return (long)futex_wait(uaddr, val, abs_time);
72c1bbf3
NP
1161}
1162
1163
c87e2837
IM
1164/*
1165 * Userspace tried a 0 -> TID atomic transition of the futex value
1166 * and failed. The kernel side here does the whole locking operation:
1167 * if there are waiters then it will block, it does PI, etc. (Due to
1168 * races the kernel might see a 0 value of the futex too.)
1169 */
c19384b5
PP
1170static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
1171 int trylock)
c87e2837 1172{
c5780e97 1173 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1174 struct task_struct *curr = current;
1175 struct futex_hash_bucket *hb;
1176 u32 uval, newval, curval;
1177 struct futex_q q;
1178 int ret, attempt = 0;
1179
1180 if (refill_pi_state_cache())
1181 return -ENOMEM;
1182
c19384b5 1183 if (time) {
c5780e97 1184 to = &timeout;
c9cb2e3d 1185 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
c5780e97 1186 hrtimer_init_sleeper(to, current);
c19384b5 1187 to->timer.expires = *time;
c5780e97
TG
1188 }
1189
c87e2837
IM
1190 q.pi_state = NULL;
1191 retry:
1192 down_read(&curr->mm->mmap_sem);
1193
1194 ret = get_futex_key(uaddr, &q.key);
1195 if (unlikely(ret != 0))
1196 goto out_release_sem;
1197
1198 hb = queue_lock(&q, -1, NULL);
1199
1200 retry_locked:
1201 /*
1202 * To avoid races, we attempt to take the lock here again
1203 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1204 * the locks. It will most likely not succeed.
1205 */
1206 newval = current->pid;
1207
a866374a 1208 pagefault_disable();
c87e2837 1209 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
a866374a 1210 pagefault_enable();
c87e2837
IM
1211
1212 if (unlikely(curval == -EFAULT))
1213 goto uaddr_faulted;
1214
1215 /* We own the lock already */
1216 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1217 if (!detect && 0)
1218 force_sig(SIGKILL, current);
1219 ret = -EDEADLK;
1220 goto out_unlock_release_sem;
1221 }
1222
1223 /*
1224 * Surprise - we got the lock. Just return
1225 * to userspace:
1226 */
1227 if (unlikely(!curval))
1228 goto out_unlock_release_sem;
1229
1230 uval = curval;
1231 newval = uval | FUTEX_WAITERS;
1232
a866374a 1233 pagefault_disable();
c87e2837 1234 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 1235 pagefault_enable();
c87e2837
IM
1236
1237 if (unlikely(curval == -EFAULT))
1238 goto uaddr_faulted;
1239 if (unlikely(curval != uval))
1240 goto retry_locked;
1241
1242 /*
1243 * We dont have the lock. Look up the PI state (or create it if
1244 * we are the first waiter):
1245 */
1246 ret = lookup_pi_state(uval, hb, &q);
1247
1248 if (unlikely(ret)) {
1249 /*
1250 * There were no waiters and the owner task lookup
1251 * failed. When the OWNER_DIED bit is set, then we
1252 * know that this is a robust futex and we actually
1253 * take the lock. This is safe as we are protected by
1254 * the hash bucket lock. We also set the waiters bit
1255 * unconditionally here, to simplify glibc handling of
1256 * multiple tasks racing to acquire the lock and
1257 * cleanup the problems which were left by the dead
1258 * owner.
1259 */
1260 if (curval & FUTEX_OWNER_DIED) {
1261 uval = newval;
1262 newval = current->pid |
1263 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1264
a866374a 1265 pagefault_disable();
c87e2837
IM
1266 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1267 uval, newval);
a866374a 1268 pagefault_enable();
c87e2837
IM
1269
1270 if (unlikely(curval == -EFAULT))
1271 goto uaddr_faulted;
1272 if (unlikely(curval != uval))
1273 goto retry_locked;
1274 ret = 0;
1275 }
1276 goto out_unlock_release_sem;
1277 }
1278
1279 /*
1280 * Only actually queue now that the atomic ops are done:
1281 */
1282 __queue_me(&q, hb);
1283
1284 /*
1285 * Now the futex is queued and we have checked the data, we
1286 * don't want to hold mmap_sem while we sleep.
1287 */
1288 up_read(&curr->mm->mmap_sem);
1289
1290 WARN_ON(!q.pi_state);
1291 /*
1292 * Block on the PI mutex:
1293 */
1294 if (!trylock)
1295 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1296 else {
1297 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1298 /* Fixup the trylock return value: */
1299 ret = ret ? 0 : -EWOULDBLOCK;
1300 }
1301
1302 down_read(&curr->mm->mmap_sem);
a99e4e41 1303 spin_lock(q.lock_ptr);
c87e2837
IM
1304
1305 /*
1306 * Got the lock. We might not be the anticipated owner if we
1307 * did a lock-steal - fix up the PI-state in that case.
1308 */
1309 if (!ret && q.pi_state->owner != curr) {
1310 u32 newtid = current->pid | FUTEX_WAITERS;
1311
1312 /* Owner died? */
1313 if (q.pi_state->owner != NULL) {
1314 spin_lock_irq(&q.pi_state->owner->pi_lock);
627371d7 1315 WARN_ON(list_empty(&q.pi_state->list));
c87e2837
IM
1316 list_del_init(&q.pi_state->list);
1317 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1318 } else
1319 newtid |= FUTEX_OWNER_DIED;
1320
1321 q.pi_state->owner = current;
1322
1323 spin_lock_irq(&current->pi_lock);
627371d7 1324 WARN_ON(!list_empty(&q.pi_state->list));
c87e2837
IM
1325 list_add(&q.pi_state->list, &current->pi_state_list);
1326 spin_unlock_irq(&current->pi_lock);
1327
1328 /* Unqueue and drop the lock */
1329 unqueue_me_pi(&q, hb);
1330 up_read(&curr->mm->mmap_sem);
1331 /*
1332 * We own it, so we have to replace the pending owner
1333 * TID. This must be atomic as we have preserve the
1334 * owner died bit here.
1335 */
1336 ret = get_user(uval, uaddr);
1337 while (!ret) {
1338 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1339 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1340 uval, newval);
1341 if (curval == -EFAULT)
1342 ret = -EFAULT;
1343 if (curval == uval)
1344 break;
1345 uval = curval;
1346 }
1347 } else {
1348 /*
1349 * Catch the rare case, where the lock was released
1350 * when we were on the way back before we locked
1351 * the hash bucket.
1352 */
1353 if (ret && q.pi_state->owner == curr) {
1354 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1355 ret = 0;
1356 }
1357 /* Unqueue and drop the lock */
1358 unqueue_me_pi(&q, hb);
1359 up_read(&curr->mm->mmap_sem);
1360 }
1361
1362 if (!detect && ret == -EDEADLK && 0)
1363 force_sig(SIGKILL, current);
1364
c5780e97 1365 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1366
1367 out_unlock_release_sem:
1368 queue_unlock(&q, hb);
1369
1370 out_release_sem:
1371 up_read(&curr->mm->mmap_sem);
1372 return ret;
1373
1374 uaddr_faulted:
1375 /*
1376 * We have to r/w *(int __user *)uaddr, but we can't modify it
1377 * non-atomically. Therefore, if get_user below is not
1378 * enough, we need to handle the fault ourselves, while
1379 * still holding the mmap_sem.
1380 */
1381 if (attempt++) {
e579dcbf
JS
1382 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1383 ret = -EFAULT;
c87e2837 1384 goto out_unlock_release_sem;
e579dcbf 1385 }
c87e2837
IM
1386 goto retry_locked;
1387 }
1388
1389 queue_unlock(&q, hb);
1390 up_read(&curr->mm->mmap_sem);
1391
1392 ret = get_user(uval, uaddr);
1393 if (!ret && (uval != -EFAULT))
1394 goto retry;
1395
1396 return ret;
1397}
1398
c87e2837
IM
1399/*
1400 * Userspace attempted a TID -> 0 atomic transition, and failed.
1401 * This is the in-kernel slowpath: we look up the PI state (if any),
1402 * and do the rt-mutex unlock.
1403 */
1404static int futex_unlock_pi(u32 __user *uaddr)
1405{
1406 struct futex_hash_bucket *hb;
1407 struct futex_q *this, *next;
1408 u32 uval;
ec92d082 1409 struct plist_head *head;
c87e2837
IM
1410 union futex_key key;
1411 int ret, attempt = 0;
1412
1413retry:
1414 if (get_user(uval, uaddr))
1415 return -EFAULT;
1416 /*
1417 * We release only a lock we actually own:
1418 */
1419 if ((uval & FUTEX_TID_MASK) != current->pid)
1420 return -EPERM;
1421 /*
1422 * First take all the futex related locks:
1423 */
1424 down_read(&current->mm->mmap_sem);
1425
1426 ret = get_futex_key(uaddr, &key);
1427 if (unlikely(ret != 0))
1428 goto out;
1429
1430 hb = hash_futex(&key);
1431 spin_lock(&hb->lock);
1432
1433retry_locked:
1434 /*
1435 * To avoid races, try to do the TID -> 0 atomic transition
1436 * again. If it succeeds then we can return without waking
1437 * anyone else up:
1438 */
e3f2ddea 1439 if (!(uval & FUTEX_OWNER_DIED)) {
a866374a 1440 pagefault_disable();
e3f2ddea 1441 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
a866374a 1442 pagefault_enable();
e3f2ddea 1443 }
c87e2837
IM
1444
1445 if (unlikely(uval == -EFAULT))
1446 goto pi_faulted;
1447 /*
1448 * Rare case: we managed to release the lock atomically,
1449 * no need to wake anyone else up:
1450 */
1451 if (unlikely(uval == current->pid))
1452 goto out_unlock;
1453
1454 /*
1455 * Ok, other tasks may need to be woken up - check waiters
1456 * and do the wakeup if necessary:
1457 */
1458 head = &hb->chain;
1459
ec92d082 1460 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1461 if (!match_futex (&this->key, &key))
1462 continue;
1463 ret = wake_futex_pi(uaddr, uval, this);
1464 /*
1465 * The atomic access to the futex value
1466 * generated a pagefault, so retry the
1467 * user-access and the wakeup:
1468 */
1469 if (ret == -EFAULT)
1470 goto pi_faulted;
1471 goto out_unlock;
1472 }
1473 /*
1474 * No waiters - kernel unlocks the futex:
1475 */
e3f2ddea
IM
1476 if (!(uval & FUTEX_OWNER_DIED)) {
1477 ret = unlock_futex_pi(uaddr, uval);
1478 if (ret == -EFAULT)
1479 goto pi_faulted;
1480 }
c87e2837
IM
1481
1482out_unlock:
1483 spin_unlock(&hb->lock);
1484out:
1485 up_read(&current->mm->mmap_sem);
1486
1487 return ret;
1488
1489pi_faulted:
1490 /*
1491 * We have to r/w *(int __user *)uaddr, but we can't modify it
1492 * non-atomically. Therefore, if get_user below is not
1493 * enough, we need to handle the fault ourselves, while
1494 * still holding the mmap_sem.
1495 */
1496 if (attempt++) {
e579dcbf
JS
1497 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1498 ret = -EFAULT;
c87e2837 1499 goto out_unlock;
e579dcbf 1500 }
c87e2837
IM
1501 goto retry_locked;
1502 }
1503
1504 spin_unlock(&hb->lock);
1da177e4 1505 up_read(&current->mm->mmap_sem);
c87e2837
IM
1506
1507 ret = get_user(uval, uaddr);
1508 if (!ret && (uval != -EFAULT))
1509 goto retry;
1510
1da177e4
LT
1511 return ret;
1512}
1513
1514static int futex_close(struct inode *inode, struct file *filp)
1515{
1516 struct futex_q *q = filp->private_data;
1517
1518 unqueue_me(q);
1519 kfree(q);
e2970f2f 1520
1da177e4
LT
1521 return 0;
1522}
1523
1524/* This is one-shot: once it's gone off you need a new fd */
1525static unsigned int futex_poll(struct file *filp,
1526 struct poll_table_struct *wait)
1527{
1528 struct futex_q *q = filp->private_data;
1529 int ret = 0;
1530
1531 poll_wait(filp, &q->waiters, wait);
1532
1533 /*
ec92d082 1534 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1535 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1536 */
ec92d082 1537 if (plist_node_empty(&q->list))
1da177e4
LT
1538 ret = POLLIN | POLLRDNORM;
1539
1540 return ret;
1541}
1542
15ad7cdc 1543static const struct file_operations futex_fops = {
1da177e4
LT
1544 .release = futex_close,
1545 .poll = futex_poll,
1546};
1547
1548/*
1549 * Signal allows caller to avoid the race which would occur if they
1550 * set the sigio stuff up afterwards.
1551 */
e2970f2f 1552static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1553{
1554 struct futex_q *q;
1555 struct file *filp;
1556 int ret, err;
19c6b6ed
AM
1557 static unsigned long printk_interval;
1558
1559 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1560 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1561 "will be removed from the kernel in June 2007\n",
1562 current->comm);
1563 }
1da177e4
LT
1564
1565 ret = -EINVAL;
7ed20e1a 1566 if (!valid_signal(signal))
1da177e4
LT
1567 goto out;
1568
1569 ret = get_unused_fd();
1570 if (ret < 0)
1571 goto out;
1572 filp = get_empty_filp();
1573 if (!filp) {
1574 put_unused_fd(ret);
1575 ret = -ENFILE;
1576 goto out;
1577 }
1578 filp->f_op = &futex_fops;
f3a43f3f
JJS
1579 filp->f_path.mnt = mntget(futex_mnt);
1580 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1581 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1582
1583 if (signal) {
609d7fa9 1584 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1585 if (err < 0) {
39ed3fde 1586 goto error;
1da177e4
LT
1587 }
1588 filp->f_owner.signum = signal;
1589 }
1590
1591 q = kmalloc(sizeof(*q), GFP_KERNEL);
1592 if (!q) {
39ed3fde
PE
1593 err = -ENOMEM;
1594 goto error;
1da177e4 1595 }
c87e2837 1596 q->pi_state = NULL;
1da177e4
LT
1597
1598 down_read(&current->mm->mmap_sem);
1599 err = get_futex_key(uaddr, &q->key);
1600
1601 if (unlikely(err != 0)) {
1602 up_read(&current->mm->mmap_sem);
1da177e4 1603 kfree(q);
39ed3fde 1604 goto error;
1da177e4
LT
1605 }
1606
1607 /*
1608 * queue_me() must be called before releasing mmap_sem, because
1609 * key->shared.inode needs to be referenced while holding it.
1610 */
1611 filp->private_data = q;
1612
1613 queue_me(q, ret, filp);
1614 up_read(&current->mm->mmap_sem);
1615
1616 /* Now we map fd to filp, so userspace can access it */
1617 fd_install(ret, filp);
1618out:
1619 return ret;
39ed3fde
PE
1620error:
1621 put_unused_fd(ret);
1622 put_filp(filp);
1623 ret = err;
1624 goto out;
1da177e4
LT
1625}
1626
0771dfef
IM
1627/*
1628 * Support for robust futexes: the kernel cleans up held futexes at
1629 * thread exit time.
1630 *
1631 * Implementation: user-space maintains a per-thread list of locks it
1632 * is holding. Upon do_exit(), the kernel carefully walks this list,
1633 * and marks all locks that are owned by this thread with the
c87e2837 1634 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1635 * always manipulated with the lock held, so the list is private and
1636 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1637 * field, to allow the kernel to clean up if the thread dies after
1638 * acquiring the lock, but just before it could have added itself to
1639 * the list. There can only be one such pending lock.
1640 */
1641
1642/**
1643 * sys_set_robust_list - set the robust-futex list head of a task
1644 * @head: pointer to the list-head
1645 * @len: length of the list-head, as userspace expects
1646 */
1647asmlinkage long
1648sys_set_robust_list(struct robust_list_head __user *head,
1649 size_t len)
1650{
1651 /*
1652 * The kernel knows only one size for now:
1653 */
1654 if (unlikely(len != sizeof(*head)))
1655 return -EINVAL;
1656
1657 current->robust_list = head;
1658
1659 return 0;
1660}
1661
1662/**
1663 * sys_get_robust_list - get the robust-futex list head of a task
1664 * @pid: pid of the process [zero for current task]
1665 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1666 * @len_ptr: pointer to a length field, the kernel fills in the header size
1667 */
1668asmlinkage long
ba46df98 1669sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1670 size_t __user *len_ptr)
1671{
ba46df98 1672 struct robust_list_head __user *head;
0771dfef
IM
1673 unsigned long ret;
1674
1675 if (!pid)
1676 head = current->robust_list;
1677 else {
1678 struct task_struct *p;
1679
1680 ret = -ESRCH;
aaa2a97e 1681 rcu_read_lock();
0771dfef
IM
1682 p = find_task_by_pid(pid);
1683 if (!p)
1684 goto err_unlock;
1685 ret = -EPERM;
1686 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1687 !capable(CAP_SYS_PTRACE))
1688 goto err_unlock;
1689 head = p->robust_list;
aaa2a97e 1690 rcu_read_unlock();
0771dfef
IM
1691 }
1692
1693 if (put_user(sizeof(*head), len_ptr))
1694 return -EFAULT;
1695 return put_user(head, head_ptr);
1696
1697err_unlock:
aaa2a97e 1698 rcu_read_unlock();
0771dfef
IM
1699
1700 return ret;
1701}
1702
1703/*
1704 * Process a futex-list entry, check whether it's owned by the
1705 * dying task, and do notification if so:
1706 */
e3f2ddea 1707int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1708{
e3f2ddea 1709 u32 uval, nval, mval;
0771dfef 1710
8f17d3a5
IM
1711retry:
1712 if (get_user(uval, uaddr))
0771dfef
IM
1713 return -1;
1714
8f17d3a5 1715 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
1716 /*
1717 * Ok, this dying thread is truly holding a futex
1718 * of interest. Set the OWNER_DIED bit atomically
1719 * via cmpxchg, and if the value had FUTEX_WAITERS
1720 * set, wake up a waiter (if any). (We have to do a
1721 * futex_wake() even if OWNER_DIED is already set -
1722 * to handle the rare but possible case of recursive
1723 * thread-death.) The rest of the cleanup is done in
1724 * userspace.
1725 */
e3f2ddea
IM
1726 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1727 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1728
c87e2837
IM
1729 if (nval == -EFAULT)
1730 return -1;
1731
1732 if (nval != uval)
8f17d3a5 1733 goto retry;
0771dfef 1734
e3f2ddea
IM
1735 /*
1736 * Wake robust non-PI futexes here. The wakeup of
1737 * PI futexes happens in exit_pi_state():
1738 */
1739 if (!pi) {
1740 if (uval & FUTEX_WAITERS)
1741 futex_wake(uaddr, 1);
1742 }
0771dfef
IM
1743 }
1744 return 0;
1745}
1746
e3f2ddea
IM
1747/*
1748 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1749 */
1750static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1751 struct robust_list __user * __user *head,
1752 int *pi)
e3f2ddea
IM
1753{
1754 unsigned long uentry;
1755
ba46df98 1756 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1757 return -EFAULT;
1758
ba46df98 1759 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1760 *pi = uentry & 1;
1761
1762 return 0;
1763}
1764
0771dfef
IM
1765/*
1766 * Walk curr->robust_list (very carefully, it's a userspace list!)
1767 * and mark any locks found there dead, and notify any waiters.
1768 *
1769 * We silently return on any sign of list-walking problem.
1770 */
1771void exit_robust_list(struct task_struct *curr)
1772{
1773 struct robust_list_head __user *head = curr->robust_list;
1774 struct robust_list __user *entry, *pending;
e3f2ddea 1775 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
0771dfef
IM
1776 unsigned long futex_offset;
1777
1778 /*
1779 * Fetch the list head (which was registered earlier, via
1780 * sys_set_robust_list()):
1781 */
e3f2ddea 1782 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1783 return;
1784 /*
1785 * Fetch the relative futex offset:
1786 */
1787 if (get_user(futex_offset, &head->futex_offset))
1788 return;
1789 /*
1790 * Fetch any possibly pending lock-add first, and handle it
1791 * if it exists:
1792 */
e3f2ddea 1793 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1794 return;
e3f2ddea 1795
0771dfef 1796 if (pending)
ba46df98 1797 handle_futex_death((void __user *)pending + futex_offset, curr, pip);
0771dfef
IM
1798
1799 while (entry != &head->list) {
1800 /*
1801 * A pending lock might already be on the list, so
c87e2837 1802 * don't process it twice:
0771dfef
IM
1803 */
1804 if (entry != pending)
ba46df98 1805 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1806 curr, pi))
0771dfef 1807 return;
0771dfef
IM
1808 /*
1809 * Fetch the next entry in the list:
1810 */
e3f2ddea 1811 if (fetch_robust_entry(&entry, &entry->next, &pi))
0771dfef
IM
1812 return;
1813 /*
1814 * Avoid excessively long or circular lists:
1815 */
1816 if (!--limit)
1817 break;
1818
1819 cond_resched();
1820 }
1821}
1822
c19384b5 1823long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1824 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
1825{
1826 int ret;
1827
1828 switch (op) {
1829 case FUTEX_WAIT:
1830 ret = futex_wait(uaddr, val, timeout);
1831 break;
1832 case FUTEX_WAKE:
1833 ret = futex_wake(uaddr, val);
1834 break;
1835 case FUTEX_FD:
1836 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1837 ret = futex_fd(uaddr, val);
1838 break;
1839 case FUTEX_REQUEUE:
1840 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1841 break;
1842 case FUTEX_CMP_REQUEUE:
1843 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1844 break;
4732efbe
JJ
1845 case FUTEX_WAKE_OP:
1846 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1847 break;
c87e2837 1848 case FUTEX_LOCK_PI:
c19384b5 1849 ret = futex_lock_pi(uaddr, val, timeout, 0);
c87e2837
IM
1850 break;
1851 case FUTEX_UNLOCK_PI:
1852 ret = futex_unlock_pi(uaddr);
1853 break;
1854 case FUTEX_TRYLOCK_PI:
c19384b5 1855 ret = futex_lock_pi(uaddr, 0, timeout, 1);
c87e2837 1856 break;
1da177e4
LT
1857 default:
1858 ret = -ENOSYS;
1859 }
1860 return ret;
1861}
1862
1863
e2970f2f 1864asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1865 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1866 u32 val3)
1da177e4 1867{
c19384b5
PP
1868 struct timespec ts;
1869 ktime_t t, *tp = NULL;
e2970f2f 1870 u32 val2 = 0;
1da177e4 1871
c87e2837 1872 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
c19384b5 1873 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1874 return -EFAULT;
c19384b5 1875 if (!timespec_valid(&ts))
9741ef96 1876 return -EINVAL;
c19384b5
PP
1877
1878 t = timespec_to_ktime(ts);
c87e2837 1879 if (op == FUTEX_WAIT)
c19384b5
PP
1880 t = ktime_add(ktime_get(), t);
1881 tp = &t;
1da177e4
LT
1882 }
1883 /*
1884 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1885 */
c87e2837 1886 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
e2970f2f 1887 val2 = (u32) (unsigned long) utime;
1da177e4 1888
c19384b5 1889 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1890}
1891
454e2398
DH
1892static int futexfs_get_sb(struct file_system_type *fs_type,
1893 int flags, const char *dev_name, void *data,
1894 struct vfsmount *mnt)
1da177e4 1895{
454e2398 1896 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1da177e4
LT
1897}
1898
1899static struct file_system_type futex_fs_type = {
1900 .name = "futexfs",
1901 .get_sb = futexfs_get_sb,
1902 .kill_sb = kill_anon_super,
1903};
1904
1905static int __init init(void)
1906{
95362fa9
AM
1907 int i = register_filesystem(&futex_fs_type);
1908
1909 if (i)
1910 return i;
1da177e4 1911
1da177e4 1912 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
1913 if (IS_ERR(futex_mnt)) {
1914 unregister_filesystem(&futex_fs_type);
1915 return PTR_ERR(futex_mnt);
1916 }
1da177e4
LT
1917
1918 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
ec92d082 1919 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1da177e4
LT
1920 spin_lock_init(&futex_queues[i].lock);
1921 }
1922 return 0;
1923}
1924__initcall(init);