]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/futex.c
futex: Remove needless goto's
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4
LT
35#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
7ed20e1a 45#include <linux/signal.h>
9984de1a 46#include <linux/export.h>
fd5eea42 47#include <linux/magic.h>
b488893a
PE
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
bdbb776f 50#include <linux/ptrace.h>
8bd75c77 51#include <linux/sched/rt.h>
84f001e1 52#include <linux/sched/wake_q.h>
6e84f315 53#include <linux/sched/mm.h>
13d60f4b 54#include <linux/hugetlb.h>
88c8004f 55#include <linux/freezer.h>
57c8a661 56#include <linux/memblock.h>
ab51fbab 57#include <linux/fault-inject.h>
49262de2 58#include <linux/refcount.h>
b488893a 59
4732efbe 60#include <asm/futex.h>
1da177e4 61
1696a8be 62#include "locking/rtmutex_common.h"
c87e2837 63
99b60ce6 64/*
d7e8af1a
DB
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
99b60ce6
TG
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
99b60ce6
TG
76 *
77 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
99b60ce6 81 *
b0c29f79
DB
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 107 *
b0c29f79
DB
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
99b60ce6
TG
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
b0c29f79 116 *
d7e8af1a 117 * waiters++; (a)
8ad7b378
DB
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
99b60ce6 128 * if (uval == val)
b0c29f79 129 * queue();
99b60ce6 130 * unlock(hash_bucket(futex));
b0c29f79
DB
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
d7e8af1a
DB
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 135 *
d7e8af1a
DB
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 138 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
139 *
140 * This yields the following case (where X:=waiters, Y:=futex):
141 *
142 * X = Y = 0
143 *
144 * w[X]=1 w[Y]=1
145 * MB MB
146 * r[Y]=y r[X]=x
147 *
148 * Which guarantees that x==0 && y==0 is impossible; which translates back into
149 * the guarantee that we cannot both miss the futex variable change and the
150 * enqueue.
d7e8af1a
DB
151 *
152 * Note that a new waiter is accounted for in (a) even when it is possible that
153 * the wait call can return error, in which case we backtrack from it in (b).
154 * Refer to the comment in queue_lock().
155 *
156 * Similarly, in order to account for waiters being requeued on another
157 * address we always increment the waiters for the destination bucket before
158 * acquiring the lock. It then decrements them again after releasing it -
159 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
160 * will do the additional required waiter count housekeeping. This is done for
161 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
162 */
163
04e7712f
AB
164#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
165#define futex_cmpxchg_enabled 1
166#else
167static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 168#endif
a0c1e907 169
b41277dc
DH
170/*
171 * Futex flags used to encode options to functions and preserve them across
172 * restarts.
173 */
784bdf3b
TG
174#ifdef CONFIG_MMU
175# define FLAGS_SHARED 0x01
176#else
177/*
178 * NOMMU does not have per process address space. Let the compiler optimize
179 * code away.
180 */
181# define FLAGS_SHARED 0x00
182#endif
b41277dc
DH
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
49262de2 202 refcount_t refcount;
c87e2837
IM
203
204 union futex_key key;
3859a271 205} __randomize_layout;
c87e2837 206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
ac6424b9 218 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
3859a271 239} __randomize_layout;
1da177e4 240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
ac742d37
RV
258/*
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
262 */
263static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266} __futex_data __read_mostly __aligned(2*sizeof(long));
267#define futex_queues (__futex_data.queues)
268#define futex_hashsize (__futex_data.hashsize)
a52b89eb 269
1da177e4 270
ab51fbab
DB
271/*
272 * Fault injections for futexes.
273 */
274#ifdef CONFIG_FAIL_FUTEX
275
276static struct {
277 struct fault_attr attr;
278
621a5f7a 279 bool ignore_private;
ab51fbab
DB
280} fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 282 .ignore_private = false,
ab51fbab
DB
283};
284
285static int __init setup_fail_futex(char *str)
286{
287 return setup_fault_attr(&fail_futex.attr, str);
288}
289__setup("fail_futex=", setup_fail_futex);
290
5d285a7f 291static bool should_fail_futex(bool fshared)
ab51fbab
DB
292{
293 if (fail_futex.ignore_private && !fshared)
294 return false;
295
296 return should_fail(&fail_futex.attr, 1);
297}
298
299#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301static int __init fail_futex_debugfs(void)
302{
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
305
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
310
0365aeba
GKH
311 debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private);
ab51fbab
DB
313 return 0;
314}
315
316late_initcall(fail_futex_debugfs);
317
318#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
319
320#else
321static inline bool should_fail_futex(bool fshared)
322{
323 return false;
324}
325#endif /* CONFIG_FAIL_FUTEX */
326
ba31c1a4
TG
327#ifdef CONFIG_COMPAT
328static void compat_exit_robust_list(struct task_struct *curr);
329#else
330static inline void compat_exit_robust_list(struct task_struct *curr) { }
331#endif
332
11d4616b
LT
333/*
334 * Reflects a new waiter being added to the waitqueue.
335 */
336static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
337{
338#ifdef CONFIG_SMP
11d4616b 339 atomic_inc(&hb->waiters);
b0c29f79 340 /*
11d4616b 341 * Full barrier (A), see the ordering comment above.
b0c29f79 342 */
4e857c58 343 smp_mb__after_atomic();
11d4616b
LT
344#endif
345}
346
347/*
348 * Reflects a waiter being removed from the waitqueue by wakeup
349 * paths.
350 */
351static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
352{
353#ifdef CONFIG_SMP
354 atomic_dec(&hb->waiters);
355#endif
356}
b0c29f79 357
11d4616b
LT
358static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
359{
360#ifdef CONFIG_SMP
4b39f99c
PZ
361 /*
362 * Full barrier (B), see the ordering comment above.
363 */
364 smp_mb();
11d4616b 365 return atomic_read(&hb->waiters);
b0c29f79 366#else
11d4616b 367 return 1;
b0c29f79
DB
368#endif
369}
370
e8b61b3f
TG
371/**
372 * hash_futex - Return the hash bucket in the global hash
373 * @key: Pointer to the futex key for which the hash is calculated
374 *
375 * We hash on the keys returned from get_futex_key (see below) and return the
376 * corresponding hash bucket in the global hash.
1da177e4
LT
377 */
378static struct futex_hash_bucket *hash_futex(union futex_key *key)
379{
8d677436 380 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 381 key->both.offset);
8d677436 382
a52b89eb 383 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
384}
385
e8b61b3f
TG
386
387/**
388 * match_futex - Check whether two futex keys are equal
389 * @key1: Pointer to key1
390 * @key2: Pointer to key2
391 *
1da177e4
LT
392 * Return 1 if two futex_keys are equal, 0 otherwise.
393 */
394static inline int match_futex(union futex_key *key1, union futex_key *key2)
395{
2bc87203
DH
396 return (key1 && key2
397 && key1->both.word == key2->both.word
1da177e4
LT
398 && key1->both.ptr == key2->both.ptr
399 && key1->both.offset == key2->both.offset);
400}
401
96d4f267
LT
402enum futex_access {
403 FUTEX_READ,
404 FUTEX_WRITE
405};
406
5ca584d9
WL
407/**
408 * futex_setup_timer - set up the sleeping hrtimer.
409 * @time: ptr to the given timeout value
410 * @timeout: the hrtimer_sleeper structure to be set up
411 * @flags: futex flags
412 * @range_ns: optional range in ns
413 *
414 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
415 * value given
416 */
417static inline struct hrtimer_sleeper *
418futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
419 int flags, u64 range_ns)
420{
421 if (!time)
422 return NULL;
423
dbc1625f
SAS
424 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
425 CLOCK_REALTIME : CLOCK_MONOTONIC,
426 HRTIMER_MODE_ABS);
5ca584d9
WL
427 /*
428 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
429 * effectively the same as calling hrtimer_set_expires().
430 */
431 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
432
433 return timeout;
434}
435
8019ad13
PZ
436/*
437 * Generate a machine wide unique identifier for this inode.
438 *
439 * This relies on u64 not wrapping in the life-time of the machine; which with
440 * 1ns resolution means almost 585 years.
441 *
442 * This further relies on the fact that a well formed program will not unmap
443 * the file while it has a (shared) futex waiting on it. This mapping will have
444 * a file reference which pins the mount and inode.
445 *
446 * If for some reason an inode gets evicted and read back in again, it will get
447 * a new sequence number and will _NOT_ match, even though it is the exact same
448 * file.
449 *
450 * It is important that match_futex() will never have a false-positive, esp.
451 * for PI futexes that can mess up the state. The above argues that false-negatives
452 * are only possible for malformed programs.
453 */
454static u64 get_inode_sequence_number(struct inode *inode)
455{
456 static atomic64_t i_seq;
457 u64 old;
458
459 /* Does the inode already have a sequence number? */
460 old = atomic64_read(&inode->i_sequence);
461 if (likely(old))
462 return old;
463
464 for (;;) {
465 u64 new = atomic64_add_return(1, &i_seq);
466 if (WARN_ON_ONCE(!new))
467 continue;
468
469 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
470 if (old)
471 return old;
472 return new;
473 }
474}
475
34f01cc1 476/**
d96ee56c
DH
477 * get_futex_key() - Get parameters which are the keys for a futex
478 * @uaddr: virtual address of the futex
479 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
480 * @key: address where result is stored.
96d4f267
LT
481 * @rw: mapping needs to be read/write (values: FUTEX_READ,
482 * FUTEX_WRITE)
34f01cc1 483 *
6c23cbbd
RD
484 * Return: a negative error code or 0
485 *
7b4ff1ad 486 * The key words are stored in @key on success.
1da177e4 487 *
8019ad13 488 * For shared mappings (when @fshared), the key is:
03c109d6 489 *
8019ad13 490 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 491 *
8019ad13
PZ
492 * [ also see get_inode_sequence_number() ]
493 *
494 * For private mappings (or when !@fshared), the key is:
03c109d6 495 *
8019ad13
PZ
496 * ( current->mm, address, 0 )
497 *
498 * This allows (cross process, where applicable) identification of the futex
499 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 500 *
b2d0994b 501 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 502 */
64d1304a 503static int
96d4f267 504get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 505{
e2970f2f 506 unsigned long address = (unsigned long)uaddr;
1da177e4 507 struct mm_struct *mm = current->mm;
077fa7ae 508 struct page *page, *tail;
14d27abd 509 struct address_space *mapping;
9ea71503 510 int err, ro = 0;
1da177e4
LT
511
512 /*
513 * The futex address must be "naturally" aligned.
514 */
e2970f2f 515 key->both.offset = address % PAGE_SIZE;
34f01cc1 516 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 517 return -EINVAL;
e2970f2f 518 address -= key->both.offset;
1da177e4 519
96d4f267 520 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
521 return -EFAULT;
522
ab51fbab
DB
523 if (unlikely(should_fail_futex(fshared)))
524 return -EFAULT;
525
34f01cc1
ED
526 /*
527 * PROCESS_PRIVATE futexes are fast.
528 * As the mm cannot disappear under us and the 'key' only needs
529 * virtual address, we dont even have to find the underlying vma.
530 * Note : We do have to check 'uaddr' is a valid user address,
531 * but access_ok() should be faster than find_vma()
532 */
533 if (!fshared) {
34f01cc1
ED
534 key->private.mm = mm;
535 key->private.address = address;
536 return 0;
537 }
1da177e4 538
38d47c1b 539again:
ab51fbab
DB
540 /* Ignore any VERIFY_READ mapping (futex common case) */
541 if (unlikely(should_fail_futex(fshared)))
542 return -EFAULT;
543
73b0140b 544 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
545 /*
546 * If write access is not required (eg. FUTEX_WAIT), try
547 * and get read-only access.
548 */
96d4f267 549 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
550 err = get_user_pages_fast(address, 1, 0, &page);
551 ro = 1;
552 }
38d47c1b
PZ
553 if (err < 0)
554 return err;
9ea71503
SB
555 else
556 err = 0;
38d47c1b 557
65d8fc77
MG
558 /*
559 * The treatment of mapping from this point on is critical. The page
560 * lock protects many things but in this context the page lock
561 * stabilizes mapping, prevents inode freeing in the shared
562 * file-backed region case and guards against movement to swap cache.
563 *
564 * Strictly speaking the page lock is not needed in all cases being
565 * considered here and page lock forces unnecessarily serialization
566 * From this point on, mapping will be re-verified if necessary and
567 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
568 *
569 * Mapping checks require the head page for any compound page so the
570 * head page and mapping is looked up now. For anonymous pages, it
571 * does not matter if the page splits in the future as the key is
572 * based on the address. For filesystem-backed pages, the tail is
573 * required as the index of the page determines the key. For
574 * base pages, there is no tail page and tail == page.
65d8fc77 575 */
077fa7ae 576 tail = page;
65d8fc77
MG
577 page = compound_head(page);
578 mapping = READ_ONCE(page->mapping);
579
e6780f72 580 /*
14d27abd 581 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
582 * page; but it might be the ZERO_PAGE or in the gate area or
583 * in a special mapping (all cases which we are happy to fail);
584 * or it may have been a good file page when get_user_pages_fast
585 * found it, but truncated or holepunched or subjected to
586 * invalidate_complete_page2 before we got the page lock (also
587 * cases which we are happy to fail). And we hold a reference,
588 * so refcount care in invalidate_complete_page's remove_mapping
589 * prevents drop_caches from setting mapping to NULL beneath us.
590 *
591 * The case we do have to guard against is when memory pressure made
592 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 593 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 594 */
65d8fc77
MG
595 if (unlikely(!mapping)) {
596 int shmem_swizzled;
597
598 /*
599 * Page lock is required to identify which special case above
600 * applies. If this is really a shmem page then the page lock
601 * will prevent unexpected transitions.
602 */
603 lock_page(page);
604 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
605 unlock_page(page);
606 put_page(page);
65d8fc77 607
e6780f72
HD
608 if (shmem_swizzled)
609 goto again;
65d8fc77 610
e6780f72 611 return -EFAULT;
38d47c1b 612 }
1da177e4
LT
613
614 /*
615 * Private mappings are handled in a simple way.
616 *
65d8fc77
MG
617 * If the futex key is stored on an anonymous page, then the associated
618 * object is the mm which is implicitly pinned by the calling process.
619 *
1da177e4
LT
620 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 622 * the object not the particular process.
1da177e4 623 */
14d27abd 624 if (PageAnon(page)) {
9ea71503
SB
625 /*
626 * A RO anonymous page will never change and thus doesn't make
627 * sense for futex operations.
628 */
ab51fbab 629 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
630 err = -EFAULT;
631 goto out;
632 }
633
38d47c1b 634 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 635 key->private.mm = mm;
e2970f2f 636 key->private.address = address;
65d8fc77 637
38d47c1b 638 } else {
65d8fc77
MG
639 struct inode *inode;
640
641 /*
642 * The associated futex object in this case is the inode and
643 * the page->mapping must be traversed. Ordinarily this should
644 * be stabilised under page lock but it's not strictly
645 * necessary in this case as we just want to pin the inode, not
646 * update the radix tree or anything like that.
647 *
648 * The RCU read lock is taken as the inode is finally freed
649 * under RCU. If the mapping still matches expectations then the
650 * mapping->host can be safely accessed as being a valid inode.
651 */
652 rcu_read_lock();
653
654 if (READ_ONCE(page->mapping) != mapping) {
655 rcu_read_unlock();
656 put_page(page);
657
658 goto again;
659 }
660
661 inode = READ_ONCE(mapping->host);
662 if (!inode) {
663 rcu_read_unlock();
664 put_page(page);
665
666 goto again;
667 }
668
38d47c1b 669 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 670 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 671 key->shared.pgoff = basepage_index(tail);
65d8fc77 672 rcu_read_unlock();
1da177e4
LT
673 }
674
9ea71503 675out:
14d27abd 676 put_page(page);
9ea71503 677 return err;
1da177e4
LT
678}
679
d96ee56c
DH
680/**
681 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
682 * @uaddr: pointer to faulting user space address
683 *
684 * Slow path to fixup the fault we just took in the atomic write
685 * access to @uaddr.
686 *
fb62db2b 687 * We have no generic implementation of a non-destructive write to the
d0725992
TG
688 * user address. We know that we faulted in the atomic pagefault
689 * disabled section so we can as well avoid the #PF overhead by
690 * calling get_user_pages() right away.
691 */
692static int fault_in_user_writeable(u32 __user *uaddr)
693{
722d0172
AK
694 struct mm_struct *mm = current->mm;
695 int ret;
696
d8ed45c5 697 mmap_read_lock(mm);
2efaca92 698 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 699 FAULT_FLAG_WRITE, NULL);
d8ed45c5 700 mmap_read_unlock(mm);
722d0172 701
d0725992
TG
702 return ret < 0 ? ret : 0;
703}
704
4b1c486b
DH
705/**
706 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
707 * @hb: the hash bucket the futex_q's reside in
708 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
709 *
710 * Must be called with the hb lock held.
711 */
712static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
713 union futex_key *key)
714{
715 struct futex_q *this;
716
717 plist_for_each_entry(this, &hb->chain, list) {
718 if (match_futex(&this->key, key))
719 return this;
720 }
721 return NULL;
722}
723
37a9d912
ML
724static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
725 u32 uval, u32 newval)
36cf3b5c 726{
37a9d912 727 int ret;
36cf3b5c
TG
728
729 pagefault_disable();
37a9d912 730 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
731 pagefault_enable();
732
37a9d912 733 return ret;
36cf3b5c
TG
734}
735
736static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
737{
738 int ret;
739
a866374a 740 pagefault_disable();
bd28b145 741 ret = __get_user(*dest, from);
a866374a 742 pagefault_enable();
1da177e4
LT
743
744 return ret ? -EFAULT : 0;
745}
746
c87e2837
IM
747
748/*
749 * PI code:
750 */
751static int refill_pi_state_cache(void)
752{
753 struct futex_pi_state *pi_state;
754
755 if (likely(current->pi_state_cache))
756 return 0;
757
4668edc3 758 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
759
760 if (!pi_state)
761 return -ENOMEM;
762
c87e2837
IM
763 INIT_LIST_HEAD(&pi_state->list);
764 /* pi_mutex gets initialized later */
765 pi_state->owner = NULL;
49262de2 766 refcount_set(&pi_state->refcount, 1);
38d47c1b 767 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
768
769 current->pi_state_cache = pi_state;
770
771 return 0;
772}
773
bf92cf3a 774static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
775{
776 struct futex_pi_state *pi_state = current->pi_state_cache;
777
778 WARN_ON(!pi_state);
779 current->pi_state_cache = NULL;
780
781 return pi_state;
782}
783
bf92cf3a
PZ
784static void get_pi_state(struct futex_pi_state *pi_state)
785{
49262de2 786 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
787}
788
30a6b803 789/*
29e9ee5d
TG
790 * Drops a reference to the pi_state object and frees or caches it
791 * when the last reference is gone.
30a6b803 792 */
29e9ee5d 793static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 794{
30a6b803
BS
795 if (!pi_state)
796 return;
797
49262de2 798 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
799 return;
800
801 /*
802 * If pi_state->owner is NULL, the owner is most probably dying
803 * and has cleaned up the pi_state already
804 */
805 if (pi_state->owner) {
c74aef2d 806 struct task_struct *owner;
c87e2837 807
c74aef2d
PZ
808 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
809 owner = pi_state->owner;
810 if (owner) {
811 raw_spin_lock(&owner->pi_lock);
812 list_del_init(&pi_state->list);
813 raw_spin_unlock(&owner->pi_lock);
814 }
815 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
816 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
817 }
818
c74aef2d 819 if (current->pi_state_cache) {
c87e2837 820 kfree(pi_state);
c74aef2d 821 } else {
c87e2837
IM
822 /*
823 * pi_state->list is already empty.
824 * clear pi_state->owner.
825 * refcount is at 0 - put it back to 1.
826 */
827 pi_state->owner = NULL;
49262de2 828 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
829 current->pi_state_cache = pi_state;
830 }
831}
832
bc2eecd7
NP
833#ifdef CONFIG_FUTEX_PI
834
c87e2837
IM
835/*
836 * This task is holding PI mutexes at exit time => bad.
837 * Kernel cleans up PI-state, but userspace is likely hosed.
838 * (Robust-futex cleanup is separate and might save the day for userspace.)
839 */
ba31c1a4 840static void exit_pi_state_list(struct task_struct *curr)
c87e2837 841{
c87e2837
IM
842 struct list_head *next, *head = &curr->pi_state_list;
843 struct futex_pi_state *pi_state;
627371d7 844 struct futex_hash_bucket *hb;
38d47c1b 845 union futex_key key = FUTEX_KEY_INIT;
c87e2837 846
a0c1e907
TG
847 if (!futex_cmpxchg_enabled)
848 return;
c87e2837
IM
849 /*
850 * We are a ZOMBIE and nobody can enqueue itself on
851 * pi_state_list anymore, but we have to be careful
627371d7 852 * versus waiters unqueueing themselves:
c87e2837 853 */
1d615482 854 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 855 while (!list_empty(head)) {
c87e2837
IM
856 next = head->next;
857 pi_state = list_entry(next, struct futex_pi_state, list);
858 key = pi_state->key;
627371d7 859 hb = hash_futex(&key);
153fbd12
PZ
860
861 /*
862 * We can race against put_pi_state() removing itself from the
863 * list (a waiter going away). put_pi_state() will first
864 * decrement the reference count and then modify the list, so
865 * its possible to see the list entry but fail this reference
866 * acquire.
867 *
868 * In that case; drop the locks to let put_pi_state() make
869 * progress and retry the loop.
870 */
49262de2 871 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
872 raw_spin_unlock_irq(&curr->pi_lock);
873 cpu_relax();
874 raw_spin_lock_irq(&curr->pi_lock);
875 continue;
876 }
1d615482 877 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 878
c87e2837 879 spin_lock(&hb->lock);
c74aef2d
PZ
880 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
881 raw_spin_lock(&curr->pi_lock);
627371d7
IM
882 /*
883 * We dropped the pi-lock, so re-check whether this
884 * task still owns the PI-state:
885 */
c87e2837 886 if (head->next != next) {
153fbd12 887 /* retain curr->pi_lock for the loop invariant */
c74aef2d 888 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 889 spin_unlock(&hb->lock);
153fbd12 890 put_pi_state(pi_state);
c87e2837
IM
891 continue;
892 }
893
c87e2837 894 WARN_ON(pi_state->owner != curr);
627371d7
IM
895 WARN_ON(list_empty(&pi_state->list));
896 list_del_init(&pi_state->list);
c87e2837 897 pi_state->owner = NULL;
c87e2837 898
153fbd12 899 raw_spin_unlock(&curr->pi_lock);
c74aef2d 900 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
901 spin_unlock(&hb->lock);
902
16ffa12d
PZ
903 rt_mutex_futex_unlock(&pi_state->pi_mutex);
904 put_pi_state(pi_state);
905
1d615482 906 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 907 }
1d615482 908 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 909}
ba31c1a4
TG
910#else
911static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
912#endif
913
54a21788
TG
914/*
915 * We need to check the following states:
916 *
917 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
918 *
919 * [1] NULL | --- | --- | 0 | 0/1 | Valid
920 * [2] NULL | --- | --- | >0 | 0/1 | Valid
921 *
922 * [3] Found | NULL | -- | Any | 0/1 | Invalid
923 *
924 * [4] Found | Found | NULL | 0 | 1 | Valid
925 * [5] Found | Found | NULL | >0 | 1 | Invalid
926 *
927 * [6] Found | Found | task | 0 | 1 | Valid
928 *
929 * [7] Found | Found | NULL | Any | 0 | Invalid
930 *
931 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
932 * [9] Found | Found | task | 0 | 0 | Invalid
933 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
934 *
935 * [1] Indicates that the kernel can acquire the futex atomically. We
936 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
937 *
938 * [2] Valid, if TID does not belong to a kernel thread. If no matching
939 * thread is found then it indicates that the owner TID has died.
940 *
941 * [3] Invalid. The waiter is queued on a non PI futex
942 *
943 * [4] Valid state after exit_robust_list(), which sets the user space
944 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
945 *
946 * [5] The user space value got manipulated between exit_robust_list()
947 * and exit_pi_state_list()
948 *
949 * [6] Valid state after exit_pi_state_list() which sets the new owner in
950 * the pi_state but cannot access the user space value.
951 *
952 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
953 *
954 * [8] Owner and user space value match
955 *
956 * [9] There is no transient state which sets the user space TID to 0
957 * except exit_robust_list(), but this is indicated by the
958 * FUTEX_OWNER_DIED bit. See [4]
959 *
960 * [10] There is no transient state which leaves owner and user space
961 * TID out of sync.
734009e9
PZ
962 *
963 *
964 * Serialization and lifetime rules:
965 *
966 * hb->lock:
967 *
968 * hb -> futex_q, relation
969 * futex_q -> pi_state, relation
970 *
971 * (cannot be raw because hb can contain arbitrary amount
972 * of futex_q's)
973 *
974 * pi_mutex->wait_lock:
975 *
976 * {uval, pi_state}
977 *
978 * (and pi_mutex 'obviously')
979 *
980 * p->pi_lock:
981 *
982 * p->pi_state_list -> pi_state->list, relation
983 *
984 * pi_state->refcount:
985 *
986 * pi_state lifetime
987 *
988 *
989 * Lock order:
990 *
991 * hb->lock
992 * pi_mutex->wait_lock
993 * p->pi_lock
994 *
54a21788 995 */
e60cbc5c
TG
996
997/*
998 * Validate that the existing waiter has a pi_state and sanity check
999 * the pi_state against the user space value. If correct, attach to
1000 * it.
1001 */
734009e9
PZ
1002static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1003 struct futex_pi_state *pi_state,
e60cbc5c 1004 struct futex_pi_state **ps)
c87e2837 1005{
778e9a9c 1006 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1007 u32 uval2;
1008 int ret;
c87e2837 1009
e60cbc5c
TG
1010 /*
1011 * Userspace might have messed up non-PI and PI futexes [3]
1012 */
1013 if (unlikely(!pi_state))
1014 return -EINVAL;
06a9ec29 1015
734009e9
PZ
1016 /*
1017 * We get here with hb->lock held, and having found a
1018 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1019 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1020 * which in turn means that futex_lock_pi() still has a reference on
1021 * our pi_state.
16ffa12d
PZ
1022 *
1023 * The waiter holding a reference on @pi_state also protects against
1024 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1025 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1026 * free pi_state before we can take a reference ourselves.
734009e9 1027 */
49262de2 1028 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1029
734009e9
PZ
1030 /*
1031 * Now that we have a pi_state, we can acquire wait_lock
1032 * and do the state validation.
1033 */
1034 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1035
1036 /*
1037 * Since {uval, pi_state} is serialized by wait_lock, and our current
1038 * uval was read without holding it, it can have changed. Verify it
1039 * still is what we expect it to be, otherwise retry the entire
1040 * operation.
1041 */
1042 if (get_futex_value_locked(&uval2, uaddr))
1043 goto out_efault;
1044
1045 if (uval != uval2)
1046 goto out_eagain;
1047
e60cbc5c
TG
1048 /*
1049 * Handle the owner died case:
1050 */
1051 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1052 /*
e60cbc5c
TG
1053 * exit_pi_state_list sets owner to NULL and wakes the
1054 * topmost waiter. The task which acquires the
1055 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1056 */
e60cbc5c 1057 if (!pi_state->owner) {
59647b6a 1058 /*
e60cbc5c
TG
1059 * No pi state owner, but the user space TID
1060 * is not 0. Inconsistent state. [5]
59647b6a 1061 */
e60cbc5c 1062 if (pid)
734009e9 1063 goto out_einval;
bd1dbcc6 1064 /*
e60cbc5c 1065 * Take a ref on the state and return success. [4]
866293ee 1066 */
734009e9 1067 goto out_attach;
c87e2837 1068 }
bd1dbcc6
TG
1069
1070 /*
e60cbc5c
TG
1071 * If TID is 0, then either the dying owner has not
1072 * yet executed exit_pi_state_list() or some waiter
1073 * acquired the rtmutex in the pi state, but did not
1074 * yet fixup the TID in user space.
1075 *
1076 * Take a ref on the state and return success. [6]
1077 */
1078 if (!pid)
734009e9 1079 goto out_attach;
e60cbc5c
TG
1080 } else {
1081 /*
1082 * If the owner died bit is not set, then the pi_state
1083 * must have an owner. [7]
bd1dbcc6 1084 */
e60cbc5c 1085 if (!pi_state->owner)
734009e9 1086 goto out_einval;
c87e2837
IM
1087 }
1088
e60cbc5c
TG
1089 /*
1090 * Bail out if user space manipulated the futex value. If pi
1091 * state exists then the owner TID must be the same as the
1092 * user space TID. [9/10]
1093 */
1094 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1095 goto out_einval;
1096
1097out_attach:
bf92cf3a 1098 get_pi_state(pi_state);
734009e9 1099 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1100 *ps = pi_state;
1101 return 0;
734009e9
PZ
1102
1103out_einval:
1104 ret = -EINVAL;
1105 goto out_error;
1106
1107out_eagain:
1108 ret = -EAGAIN;
1109 goto out_error;
1110
1111out_efault:
1112 ret = -EFAULT;
1113 goto out_error;
1114
1115out_error:
1116 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1117 return ret;
e60cbc5c
TG
1118}
1119
3ef240ea
TG
1120/**
1121 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1122 * @ret: owner's current futex lock status
3ef240ea
TG
1123 * @exiting: Pointer to the exiting task
1124 *
1125 * Caller must hold a refcount on @exiting.
1126 */
1127static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1128{
1129 if (ret != -EBUSY) {
1130 WARN_ON_ONCE(exiting);
1131 return;
1132 }
1133
1134 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1135 return;
1136
1137 mutex_lock(&exiting->futex_exit_mutex);
1138 /*
1139 * No point in doing state checking here. If the waiter got here
1140 * while the task was in exec()->exec_futex_release() then it can
1141 * have any FUTEX_STATE_* value when the waiter has acquired the
1142 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1143 * already. Highly unlikely and not a problem. Just one more round
1144 * through the futex maze.
1145 */
1146 mutex_unlock(&exiting->futex_exit_mutex);
1147
1148 put_task_struct(exiting);
1149}
1150
da791a66
TG
1151static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152 struct task_struct *tsk)
1153{
1154 u32 uval2;
1155
1156 /*
ac31c7ff
TG
1157 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1158 * caller that the alleged owner is busy.
da791a66 1159 */
3d4775df 1160 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1161 return -EBUSY;
da791a66
TG
1162
1163 /*
1164 * Reread the user space value to handle the following situation:
1165 *
1166 * CPU0 CPU1
1167 *
1168 * sys_exit() sys_futex()
1169 * do_exit() futex_lock_pi()
1170 * futex_lock_pi_atomic()
1171 * exit_signals(tsk) No waiters:
1172 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1173 * mm_release(tsk) Set waiter bit
1174 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1175 * Set owner died attach_to_pi_owner() {
1176 * *uaddr = 0xC0000000; tsk = get_task(PID);
1177 * } if (!tsk->flags & PF_EXITING) {
1178 * ... attach();
3d4775df
TG
1179 * tsk->futex_state = } else {
1180 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1181 * FUTEX_STATE_DEAD)
da791a66
TG
1182 * return -EAGAIN;
1183 * return -ESRCH; <--- FAIL
1184 * }
1185 *
1186 * Returning ESRCH unconditionally is wrong here because the
1187 * user space value has been changed by the exiting task.
1188 *
1189 * The same logic applies to the case where the exiting task is
1190 * already gone.
1191 */
1192 if (get_futex_value_locked(&uval2, uaddr))
1193 return -EFAULT;
1194
1195 /* If the user space value has changed, try again. */
1196 if (uval2 != uval)
1197 return -EAGAIN;
1198
1199 /*
1200 * The exiting task did not have a robust list, the robust list was
1201 * corrupted or the user space value in *uaddr is simply bogus.
1202 * Give up and tell user space.
1203 */
1204 return -ESRCH;
1205}
1206
04e1b2e5
TG
1207/*
1208 * Lookup the task for the TID provided from user space and attach to
1209 * it after doing proper sanity checks.
1210 */
da791a66 1211static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1212 struct futex_pi_state **ps,
1213 struct task_struct **exiting)
e60cbc5c 1214{
e60cbc5c 1215 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1216 struct futex_pi_state *pi_state;
1217 struct task_struct *p;
e60cbc5c 1218
c87e2837 1219 /*
e3f2ddea 1220 * We are the first waiter - try to look up the real owner and attach
54a21788 1221 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1222 *
1223 * The !pid check is paranoid. None of the call sites should end up
1224 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1225 */
778e9a9c 1226 if (!pid)
da791a66 1227 return -EAGAIN;
2ee08260 1228 p = find_get_task_by_vpid(pid);
7a0ea09a 1229 if (!p)
da791a66 1230 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1231
a2129464 1232 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1233 put_task_struct(p);
1234 return -EPERM;
1235 }
1236
778e9a9c 1237 /*
3d4775df
TG
1238 * We need to look at the task state to figure out, whether the
1239 * task is exiting. To protect against the change of the task state
1240 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1241 */
1d615482 1242 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1243 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1244 /*
3d4775df
TG
1245 * The task is on the way out. When the futex state is
1246 * FUTEX_STATE_DEAD, we know that the task has finished
1247 * the cleanup:
778e9a9c 1248 */
da791a66 1249 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1250
1d615482 1251 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1252 /*
1253 * If the owner task is between FUTEX_STATE_EXITING and
1254 * FUTEX_STATE_DEAD then store the task pointer and keep
1255 * the reference on the task struct. The calling code will
1256 * drop all locks, wait for the task to reach
1257 * FUTEX_STATE_DEAD and then drop the refcount. This is
1258 * required to prevent a live lock when the current task
1259 * preempted the exiting task between the two states.
1260 */
1261 if (ret == -EBUSY)
1262 *exiting = p;
1263 else
1264 put_task_struct(p);
778e9a9c
AK
1265 return ret;
1266 }
c87e2837 1267
54a21788
TG
1268 /*
1269 * No existing pi state. First waiter. [2]
734009e9
PZ
1270 *
1271 * This creates pi_state, we have hb->lock held, this means nothing can
1272 * observe this state, wait_lock is irrelevant.
54a21788 1273 */
c87e2837
IM
1274 pi_state = alloc_pi_state();
1275
1276 /*
04e1b2e5 1277 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1278 * the owner of it:
1279 */
1280 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1281
1282 /* Store the key for possible exit cleanups: */
d0aa7a70 1283 pi_state->key = *key;
c87e2837 1284
627371d7 1285 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1286 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1287 /*
1288 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1289 * because there is no concurrency as the object is not published yet.
1290 */
c87e2837 1291 pi_state->owner = p;
1d615482 1292 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1293
1294 put_task_struct(p);
1295
d0aa7a70 1296 *ps = pi_state;
c87e2837
IM
1297
1298 return 0;
1299}
1300
734009e9
PZ
1301static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1302 struct futex_hash_bucket *hb,
3ef240ea
TG
1303 union futex_key *key, struct futex_pi_state **ps,
1304 struct task_struct **exiting)
04e1b2e5 1305{
499f5aca 1306 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1307
1308 /*
1309 * If there is a waiter on that futex, validate it and
1310 * attach to the pi_state when the validation succeeds.
1311 */
499f5aca 1312 if (top_waiter)
734009e9 1313 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1314
1315 /*
1316 * We are the first waiter - try to look up the owner based on
1317 * @uval and attach to it.
1318 */
3ef240ea 1319 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1320}
1321
af54d6a1
TG
1322static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1323{
6b4f4bc9 1324 int err;
af54d6a1
TG
1325 u32 uninitialized_var(curval);
1326
ab51fbab
DB
1327 if (unlikely(should_fail_futex(true)))
1328 return -EFAULT;
1329
6b4f4bc9
WD
1330 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1331 if (unlikely(err))
1332 return err;
af54d6a1 1333
734009e9 1334 /* If user space value changed, let the caller retry */
af54d6a1
TG
1335 return curval != uval ? -EAGAIN : 0;
1336}
1337
1a52084d 1338/**
d96ee56c 1339 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1340 * @uaddr: the pi futex user address
1341 * @hb: the pi futex hash bucket
1342 * @key: the futex key associated with uaddr and hb
1343 * @ps: the pi_state pointer where we store the result of the
1344 * lookup
1345 * @task: the task to perform the atomic lock work for. This will
1346 * be "current" except in the case of requeue pi.
3ef240ea
TG
1347 * @exiting: Pointer to store the task pointer of the owner task
1348 * which is in the middle of exiting
bab5bc9e 1349 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1350 *
6c23cbbd 1351 * Return:
7b4ff1ad
MCC
1352 * - 0 - ready to wait;
1353 * - 1 - acquired the lock;
1354 * - <0 - error
1a52084d
DH
1355 *
1356 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1357 *
1358 * @exiting is only set when the return value is -EBUSY. If so, this holds
1359 * a refcount on the exiting task on return and the caller needs to drop it
1360 * after waiting for the exit to complete.
1a52084d
DH
1361 */
1362static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363 union futex_key *key,
1364 struct futex_pi_state **ps,
3ef240ea
TG
1365 struct task_struct *task,
1366 struct task_struct **exiting,
1367 int set_waiters)
1a52084d 1368{
af54d6a1 1369 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1370 struct futex_q *top_waiter;
af54d6a1 1371 int ret;
1a52084d
DH
1372
1373 /*
af54d6a1
TG
1374 * Read the user space value first so we can validate a few
1375 * things before proceeding further.
1a52084d 1376 */
af54d6a1 1377 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1378 return -EFAULT;
1379
ab51fbab
DB
1380 if (unlikely(should_fail_futex(true)))
1381 return -EFAULT;
1382
1a52084d
DH
1383 /*
1384 * Detect deadlocks.
1385 */
af54d6a1 1386 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1387 return -EDEADLK;
1388
ab51fbab
DB
1389 if ((unlikely(should_fail_futex(true))))
1390 return -EDEADLK;
1391
1a52084d 1392 /*
af54d6a1
TG
1393 * Lookup existing state first. If it exists, try to attach to
1394 * its pi_state.
1a52084d 1395 */
499f5aca
PZ
1396 top_waiter = futex_top_waiter(hb, key);
1397 if (top_waiter)
734009e9 1398 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1399
1400 /*
af54d6a1
TG
1401 * No waiter and user TID is 0. We are here because the
1402 * waiters or the owner died bit is set or called from
1403 * requeue_cmp_pi or for whatever reason something took the
1404 * syscall.
1a52084d 1405 */
af54d6a1 1406 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1407 /*
af54d6a1
TG
1408 * We take over the futex. No other waiters and the user space
1409 * TID is 0. We preserve the owner died bit.
59fa6245 1410 */
af54d6a1
TG
1411 newval = uval & FUTEX_OWNER_DIED;
1412 newval |= vpid;
1a52084d 1413
af54d6a1
TG
1414 /* The futex requeue_pi code can enforce the waiters bit */
1415 if (set_waiters)
1416 newval |= FUTEX_WAITERS;
1417
1418 ret = lock_pi_update_atomic(uaddr, uval, newval);
1419 /* If the take over worked, return 1 */
1420 return ret < 0 ? ret : 1;
1421 }
1a52084d
DH
1422
1423 /*
af54d6a1
TG
1424 * First waiter. Set the waiters bit before attaching ourself to
1425 * the owner. If owner tries to unlock, it will be forced into
1426 * the kernel and blocked on hb->lock.
1a52084d 1427 */
af54d6a1
TG
1428 newval = uval | FUTEX_WAITERS;
1429 ret = lock_pi_update_atomic(uaddr, uval, newval);
1430 if (ret)
1431 return ret;
1a52084d 1432 /*
af54d6a1
TG
1433 * If the update of the user space value succeeded, we try to
1434 * attach to the owner. If that fails, no harm done, we only
1435 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1436 */
3ef240ea 1437 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1438}
1439
2e12978a
LJ
1440/**
1441 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1442 * @q: The futex_q to unqueue
1443 *
1444 * The q->lock_ptr must not be NULL and must be held by the caller.
1445 */
1446static void __unqueue_futex(struct futex_q *q)
1447{
1448 struct futex_hash_bucket *hb;
1449
4de1a293 1450 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1451 return;
4de1a293 1452 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1453
1454 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1455 plist_del(&q->list, &hb->chain);
11d4616b 1456 hb_waiters_dec(hb);
2e12978a
LJ
1457}
1458
1da177e4
LT
1459/*
1460 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1461 * Afterwards, the futex_q must not be accessed. Callers
1462 * must ensure to later call wake_up_q() for the actual
1463 * wakeups to occur.
1da177e4 1464 */
1d0dcb3a 1465static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1466{
f1a11e05
TG
1467 struct task_struct *p = q->task;
1468
aa10990e
DH
1469 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1470 return;
1471
b061c38b 1472 get_task_struct(p);
2e12978a 1473 __unqueue_futex(q);
1da177e4 1474 /*
38fcd06e
DHV
1475 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1476 * is written, without taking any locks. This is possible in the event
1477 * of a spurious wakeup, for example. A memory barrier is required here
1478 * to prevent the following store to lock_ptr from getting ahead of the
1479 * plist_del in __unqueue_futex().
1da177e4 1480 */
1b367ece 1481 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1482
1483 /*
1484 * Queue the task for later wakeup for after we've released
75145904 1485 * the hb->lock.
b061c38b 1486 */
07879c6a 1487 wake_q_add_safe(wake_q, p);
1da177e4
LT
1488}
1489
16ffa12d
PZ
1490/*
1491 * Caller must hold a reference on @pi_state.
1492 */
1493static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1494{
7cfdaf38 1495 u32 uninitialized_var(curval), newval;
16ffa12d 1496 struct task_struct *new_owner;
aa2bfe55 1497 bool postunlock = false;
194a6b5b 1498 DEFINE_WAKE_Q(wake_q);
13fbca4c 1499 int ret = 0;
c87e2837 1500
c87e2837 1501 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1502 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1503 /*
bebe5b51 1504 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1505 *
1506 * When this happens, give up our locks and try again, giving
1507 * the futex_lock_pi() instance time to complete, either by
1508 * waiting on the rtmutex or removing itself from the futex
1509 * queue.
1510 */
1511 ret = -EAGAIN;
1512 goto out_unlock;
73d786bd 1513 }
c87e2837
IM
1514
1515 /*
16ffa12d
PZ
1516 * We pass it to the next owner. The WAITERS bit is always kept
1517 * enabled while there is PI state around. We cleanup the owner
1518 * died bit, because we are the owner.
c87e2837 1519 */
13fbca4c 1520 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1521
ab51fbab
DB
1522 if (unlikely(should_fail_futex(true)))
1523 ret = -EFAULT;
1524
6b4f4bc9
WD
1525 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1526 if (!ret && (curval != uval)) {
89e9e66b
SAS
1527 /*
1528 * If a unconditional UNLOCK_PI operation (user space did not
1529 * try the TID->0 transition) raced with a waiter setting the
1530 * FUTEX_WAITERS flag between get_user() and locking the hash
1531 * bucket lock, retry the operation.
1532 */
1533 if ((FUTEX_TID_MASK & curval) == uval)
1534 ret = -EAGAIN;
1535 else
1536 ret = -EINVAL;
1537 }
734009e9 1538
16ffa12d
PZ
1539 if (ret)
1540 goto out_unlock;
c87e2837 1541
94ffac5d
PZ
1542 /*
1543 * This is a point of no return; once we modify the uval there is no
1544 * going back and subsequent operations must not fail.
1545 */
1546
b4abf910 1547 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1548 WARN_ON(list_empty(&pi_state->list));
1549 list_del_init(&pi_state->list);
b4abf910 1550 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1551
b4abf910 1552 raw_spin_lock(&new_owner->pi_lock);
627371d7 1553 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1554 list_add(&pi_state->list, &new_owner->pi_state_list);
1555 pi_state->owner = new_owner;
b4abf910 1556 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1557
aa2bfe55 1558 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1559
16ffa12d 1560out_unlock:
5293c2ef 1561 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1562
aa2bfe55
PZ
1563 if (postunlock)
1564 rt_mutex_postunlock(&wake_q);
c87e2837 1565
16ffa12d 1566 return ret;
c87e2837
IM
1567}
1568
8b8f319f
IM
1569/*
1570 * Express the locking dependencies for lockdep:
1571 */
1572static inline void
1573double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1574{
1575 if (hb1 <= hb2) {
1576 spin_lock(&hb1->lock);
1577 if (hb1 < hb2)
1578 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1579 } else { /* hb1 > hb2 */
1580 spin_lock(&hb2->lock);
1581 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1582 }
1583}
1584
5eb3dc62
DH
1585static inline void
1586double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1587{
f061d351 1588 spin_unlock(&hb1->lock);
88f502fe
IM
1589 if (hb1 != hb2)
1590 spin_unlock(&hb2->lock);
5eb3dc62
DH
1591}
1592
1da177e4 1593/*
b2d0994b 1594 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1595 */
b41277dc
DH
1596static int
1597futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1598{
e2970f2f 1599 struct futex_hash_bucket *hb;
1da177e4 1600 struct futex_q *this, *next;
38d47c1b 1601 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1602 int ret;
194a6b5b 1603 DEFINE_WAKE_Q(wake_q);
1da177e4 1604
cd689985
TG
1605 if (!bitset)
1606 return -EINVAL;
1607
96d4f267 1608 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1609 if (unlikely(ret != 0))
d7c5ed73 1610 return ret;
1da177e4 1611
e2970f2f 1612 hb = hash_futex(&key);
b0c29f79
DB
1613
1614 /* Make sure we really have tasks to wakeup */
1615 if (!hb_waiters_pending(hb))
d7c5ed73 1616 return ret;
b0c29f79 1617
e2970f2f 1618 spin_lock(&hb->lock);
1da177e4 1619
0d00c7b2 1620 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1621 if (match_futex (&this->key, &key)) {
52400ba9 1622 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1623 ret = -EINVAL;
1624 break;
1625 }
cd689985
TG
1626
1627 /* Check if one of the bits is set in both bitsets */
1628 if (!(this->bitset & bitset))
1629 continue;
1630
1d0dcb3a 1631 mark_wake_futex(&wake_q, this);
1da177e4
LT
1632 if (++ret >= nr_wake)
1633 break;
1634 }
1635 }
1636
e2970f2f 1637 spin_unlock(&hb->lock);
1d0dcb3a 1638 wake_up_q(&wake_q);
1da177e4
LT
1639 return ret;
1640}
1641
30d6e0a4
JS
1642static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1643{
1644 unsigned int op = (encoded_op & 0x70000000) >> 28;
1645 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1646 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1647 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1648 int oldval, ret;
1649
1650 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1651 if (oparg < 0 || oparg > 31) {
1652 char comm[sizeof(current->comm)];
1653 /*
1654 * kill this print and return -EINVAL when userspace
1655 * is sane again
1656 */
1657 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1658 get_task_comm(comm, current), oparg);
1659 oparg &= 31;
1660 }
30d6e0a4
JS
1661 oparg = 1 << oparg;
1662 }
1663
a08971e9 1664 pagefault_disable();
30d6e0a4 1665 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1666 pagefault_enable();
30d6e0a4
JS
1667 if (ret)
1668 return ret;
1669
1670 switch (cmp) {
1671 case FUTEX_OP_CMP_EQ:
1672 return oldval == cmparg;
1673 case FUTEX_OP_CMP_NE:
1674 return oldval != cmparg;
1675 case FUTEX_OP_CMP_LT:
1676 return oldval < cmparg;
1677 case FUTEX_OP_CMP_GE:
1678 return oldval >= cmparg;
1679 case FUTEX_OP_CMP_LE:
1680 return oldval <= cmparg;
1681 case FUTEX_OP_CMP_GT:
1682 return oldval > cmparg;
1683 default:
1684 return -ENOSYS;
1685 }
1686}
1687
4732efbe
JJ
1688/*
1689 * Wake up all waiters hashed on the physical page that is mapped
1690 * to this virtual address:
1691 */
e2970f2f 1692static int
b41277dc 1693futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1694 int nr_wake, int nr_wake2, int op)
4732efbe 1695{
38d47c1b 1696 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1697 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1698 struct futex_q *this, *next;
e4dc5b7a 1699 int ret, op_ret;
194a6b5b 1700 DEFINE_WAKE_Q(wake_q);
4732efbe 1701
e4dc5b7a 1702retry:
96d4f267 1703 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1704 if (unlikely(ret != 0))
d7c5ed73 1705 return ret;
96d4f267 1706 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1707 if (unlikely(ret != 0))
d7c5ed73 1708 return ret;
4732efbe 1709
e2970f2f
IM
1710 hb1 = hash_futex(&key1);
1711 hb2 = hash_futex(&key2);
4732efbe 1712
e4dc5b7a 1713retry_private:
eaaea803 1714 double_lock_hb(hb1, hb2);
e2970f2f 1715 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1716 if (unlikely(op_ret < 0)) {
5eb3dc62 1717 double_unlock_hb(hb1, hb2);
4732efbe 1718
6b4f4bc9
WD
1719 if (!IS_ENABLED(CONFIG_MMU) ||
1720 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1721 /*
1722 * we don't get EFAULT from MMU faults if we don't have
1723 * an MMU, but we might get them from range checking
1724 */
796f8d9b 1725 ret = op_ret;
d7c5ed73 1726 return ret;
796f8d9b
DG
1727 }
1728
6b4f4bc9
WD
1729 if (op_ret == -EFAULT) {
1730 ret = fault_in_user_writeable(uaddr2);
1731 if (ret)
d7c5ed73 1732 return ret;
6b4f4bc9 1733 }
4732efbe 1734
6b4f4bc9
WD
1735 if (!(flags & FLAGS_SHARED)) {
1736 cond_resched();
e4dc5b7a 1737 goto retry_private;
6b4f4bc9 1738 }
e4dc5b7a 1739
6b4f4bc9 1740 cond_resched();
e4dc5b7a 1741 goto retry;
4732efbe
JJ
1742 }
1743
0d00c7b2 1744 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1745 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1746 if (this->pi_state || this->rt_waiter) {
1747 ret = -EINVAL;
1748 goto out_unlock;
1749 }
1d0dcb3a 1750 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1751 if (++ret >= nr_wake)
1752 break;
1753 }
1754 }
1755
1756 if (op_ret > 0) {
4732efbe 1757 op_ret = 0;
0d00c7b2 1758 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1759 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1760 if (this->pi_state || this->rt_waiter) {
1761 ret = -EINVAL;
1762 goto out_unlock;
1763 }
1d0dcb3a 1764 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1765 if (++op_ret >= nr_wake2)
1766 break;
1767 }
1768 }
1769 ret += op_ret;
1770 }
1771
aa10990e 1772out_unlock:
5eb3dc62 1773 double_unlock_hb(hb1, hb2);
1d0dcb3a 1774 wake_up_q(&wake_q);
4732efbe
JJ
1775 return ret;
1776}
1777
9121e478
DH
1778/**
1779 * requeue_futex() - Requeue a futex_q from one hb to another
1780 * @q: the futex_q to requeue
1781 * @hb1: the source hash_bucket
1782 * @hb2: the target hash_bucket
1783 * @key2: the new key for the requeued futex_q
1784 */
1785static inline
1786void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1787 struct futex_hash_bucket *hb2, union futex_key *key2)
1788{
1789
1790 /*
1791 * If key1 and key2 hash to the same bucket, no need to
1792 * requeue.
1793 */
1794 if (likely(&hb1->chain != &hb2->chain)) {
1795 plist_del(&q->list, &hb1->chain);
11d4616b 1796 hb_waiters_dec(hb1);
11d4616b 1797 hb_waiters_inc(hb2);
fe1bce9e 1798 plist_add(&q->list, &hb2->chain);
9121e478 1799 q->lock_ptr = &hb2->lock;
9121e478 1800 }
9121e478
DH
1801 q->key = *key2;
1802}
1803
52400ba9
DH
1804/**
1805 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1806 * @q: the futex_q
1807 * @key: the key of the requeue target futex
1808 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1809 *
1810 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1811 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1812 * to the requeue target futex so the waiter can detect the wakeup on the right
1813 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1814 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1815 * to protect access to the pi_state to fixup the owner later. Must be called
1816 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1817 */
1818static inline
beda2c7e
DH
1819void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1820 struct futex_hash_bucket *hb)
52400ba9 1821{
52400ba9
DH
1822 q->key = *key;
1823
2e12978a 1824 __unqueue_futex(q);
52400ba9
DH
1825
1826 WARN_ON(!q->rt_waiter);
1827 q->rt_waiter = NULL;
1828
beda2c7e 1829 q->lock_ptr = &hb->lock;
beda2c7e 1830
f1a11e05 1831 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1832}
1833
1834/**
1835 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1836 * @pifutex: the user address of the to futex
1837 * @hb1: the from futex hash bucket, must be locked by the caller
1838 * @hb2: the to futex hash bucket, must be locked by the caller
1839 * @key1: the from futex key
1840 * @key2: the to futex key
1841 * @ps: address to store the pi_state pointer
3ef240ea
TG
1842 * @exiting: Pointer to store the task pointer of the owner task
1843 * which is in the middle of exiting
bab5bc9e 1844 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1845 *
1846 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1847 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1848 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1849 * hb1 and hb2 must be held by the caller.
52400ba9 1850 *
3ef240ea
TG
1851 * @exiting is only set when the return value is -EBUSY. If so, this holds
1852 * a refcount on the exiting task on return and the caller needs to drop it
1853 * after waiting for the exit to complete.
1854 *
6c23cbbd 1855 * Return:
7b4ff1ad
MCC
1856 * - 0 - failed to acquire the lock atomically;
1857 * - >0 - acquired the lock, return value is vpid of the top_waiter
1858 * - <0 - error
52400ba9 1859 */
3ef240ea
TG
1860static int
1861futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1862 struct futex_hash_bucket *hb2, union futex_key *key1,
1863 union futex_key *key2, struct futex_pi_state **ps,
1864 struct task_struct **exiting, int set_waiters)
52400ba9 1865{
bab5bc9e 1866 struct futex_q *top_waiter = NULL;
52400ba9 1867 u32 curval;
866293ee 1868 int ret, vpid;
52400ba9
DH
1869
1870 if (get_futex_value_locked(&curval, pifutex))
1871 return -EFAULT;
1872
ab51fbab
DB
1873 if (unlikely(should_fail_futex(true)))
1874 return -EFAULT;
1875
bab5bc9e
DH
1876 /*
1877 * Find the top_waiter and determine if there are additional waiters.
1878 * If the caller intends to requeue more than 1 waiter to pifutex,
1879 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1880 * as we have means to handle the possible fault. If not, don't set
1881 * the bit unecessarily as it will force the subsequent unlock to enter
1882 * the kernel.
1883 */
52400ba9
DH
1884 top_waiter = futex_top_waiter(hb1, key1);
1885
1886 /* There are no waiters, nothing for us to do. */
1887 if (!top_waiter)
1888 return 0;
1889
84bc4af5
DH
1890 /* Ensure we requeue to the expected futex. */
1891 if (!match_futex(top_waiter->requeue_pi_key, key2))
1892 return -EINVAL;
1893
52400ba9 1894 /*
bab5bc9e
DH
1895 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1896 * the contended case or if set_waiters is 1. The pi_state is returned
1897 * in ps in contended cases.
52400ba9 1898 */
866293ee 1899 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1900 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1901 exiting, set_waiters);
866293ee 1902 if (ret == 1) {
beda2c7e 1903 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1904 return vpid;
1905 }
52400ba9
DH
1906 return ret;
1907}
1908
1909/**
1910 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1911 * @uaddr1: source futex user address
b41277dc 1912 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1913 * @uaddr2: target futex user address
1914 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1915 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1916 * @cmpval: @uaddr1 expected value (or %NULL)
1917 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1918 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1919 *
1920 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1921 * uaddr2 atomically on behalf of the top waiter.
1922 *
6c23cbbd 1923 * Return:
7b4ff1ad
MCC
1924 * - >=0 - on success, the number of tasks requeued or woken;
1925 * - <0 - on error
1da177e4 1926 */
b41277dc
DH
1927static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1928 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1929 u32 *cmpval, int requeue_pi)
1da177e4 1930{
38d47c1b 1931 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1932 int task_count = 0, ret;
52400ba9 1933 struct futex_pi_state *pi_state = NULL;
e2970f2f 1934 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1935 struct futex_q *this, *next;
194a6b5b 1936 DEFINE_WAKE_Q(wake_q);
52400ba9 1937
fbe0e839
LJ
1938 if (nr_wake < 0 || nr_requeue < 0)
1939 return -EINVAL;
1940
bc2eecd7
NP
1941 /*
1942 * When PI not supported: return -ENOSYS if requeue_pi is true,
1943 * consequently the compiler knows requeue_pi is always false past
1944 * this point which will optimize away all the conditional code
1945 * further down.
1946 */
1947 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1948 return -ENOSYS;
1949
52400ba9 1950 if (requeue_pi) {
e9c243a5
TG
1951 /*
1952 * Requeue PI only works on two distinct uaddrs. This
1953 * check is only valid for private futexes. See below.
1954 */
1955 if (uaddr1 == uaddr2)
1956 return -EINVAL;
1957
52400ba9
DH
1958 /*
1959 * requeue_pi requires a pi_state, try to allocate it now
1960 * without any locks in case it fails.
1961 */
1962 if (refill_pi_state_cache())
1963 return -ENOMEM;
1964 /*
1965 * requeue_pi must wake as many tasks as it can, up to nr_wake
1966 * + nr_requeue, since it acquires the rt_mutex prior to
1967 * returning to userspace, so as to not leave the rt_mutex with
1968 * waiters and no owner. However, second and third wake-ups
1969 * cannot be predicted as they involve race conditions with the
1970 * first wake and a fault while looking up the pi_state. Both
1971 * pthread_cond_signal() and pthread_cond_broadcast() should
1972 * use nr_wake=1.
1973 */
1974 if (nr_wake != 1)
1975 return -EINVAL;
1976 }
1da177e4 1977
42d35d48 1978retry:
96d4f267 1979 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1980 if (unlikely(ret != 0))
d7c5ed73 1981 return ret;
9ea71503 1982 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1983 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1984 if (unlikely(ret != 0))
d7c5ed73 1985 return ret;
1da177e4 1986
e9c243a5
TG
1987 /*
1988 * The check above which compares uaddrs is not sufficient for
1989 * shared futexes. We need to compare the keys:
1990 */
d7c5ed73
AA
1991 if (requeue_pi && match_futex(&key1, &key2))
1992 return -EINVAL;
e9c243a5 1993
e2970f2f
IM
1994 hb1 = hash_futex(&key1);
1995 hb2 = hash_futex(&key2);
1da177e4 1996
e4dc5b7a 1997retry_private:
69cd9eba 1998 hb_waiters_inc(hb2);
8b8f319f 1999 double_lock_hb(hb1, hb2);
1da177e4 2000
e2970f2f
IM
2001 if (likely(cmpval != NULL)) {
2002 u32 curval;
1da177e4 2003
e2970f2f 2004 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2005
2006 if (unlikely(ret)) {
5eb3dc62 2007 double_unlock_hb(hb1, hb2);
69cd9eba 2008 hb_waiters_dec(hb2);
1da177e4 2009
e2970f2f 2010 ret = get_user(curval, uaddr1);
e4dc5b7a 2011 if (ret)
d7c5ed73 2012 return ret;
1da177e4 2013
b41277dc 2014 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2015 goto retry_private;
1da177e4 2016
e4dc5b7a 2017 goto retry;
1da177e4 2018 }
e2970f2f 2019 if (curval != *cmpval) {
1da177e4
LT
2020 ret = -EAGAIN;
2021 goto out_unlock;
2022 }
2023 }
2024
52400ba9 2025 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2026 struct task_struct *exiting = NULL;
2027
bab5bc9e
DH
2028 /*
2029 * Attempt to acquire uaddr2 and wake the top waiter. If we
2030 * intend to requeue waiters, force setting the FUTEX_WAITERS
2031 * bit. We force this here where we are able to easily handle
2032 * faults rather in the requeue loop below.
2033 */
52400ba9 2034 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2035 &key2, &pi_state,
2036 &exiting, nr_requeue);
52400ba9
DH
2037
2038 /*
2039 * At this point the top_waiter has either taken uaddr2 or is
2040 * waiting on it. If the former, then the pi_state will not
2041 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2042 * reference to it. If the lock was taken, ret contains the
2043 * vpid of the top waiter task.
ecb38b78
TG
2044 * If the lock was not taken, we have pi_state and an initial
2045 * refcount on it. In case of an error we have nothing.
52400ba9 2046 */
866293ee 2047 if (ret > 0) {
52400ba9
DH
2048 WARN_ON(pi_state);
2049 task_count++;
866293ee 2050 /*
ecb38b78
TG
2051 * If we acquired the lock, then the user space value
2052 * of uaddr2 should be vpid. It cannot be changed by
2053 * the top waiter as it is blocked on hb2 lock if it
2054 * tries to do so. If something fiddled with it behind
2055 * our back the pi state lookup might unearth it. So
2056 * we rather use the known value than rereading and
2057 * handing potential crap to lookup_pi_state.
2058 *
2059 * If that call succeeds then we have pi_state and an
2060 * initial refcount on it.
866293ee 2061 */
3ef240ea
TG
2062 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2063 &pi_state, &exiting);
52400ba9
DH
2064 }
2065
2066 switch (ret) {
2067 case 0:
ecb38b78 2068 /* We hold a reference on the pi state. */
52400ba9 2069 break;
4959f2de
TG
2070
2071 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2072 case -EFAULT:
2073 double_unlock_hb(hb1, hb2);
69cd9eba 2074 hb_waiters_dec(hb2);
d0725992 2075 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2076 if (!ret)
2077 goto retry;
d7c5ed73 2078 return ret;
ac31c7ff 2079 case -EBUSY:
52400ba9 2080 case -EAGAIN:
af54d6a1
TG
2081 /*
2082 * Two reasons for this:
ac31c7ff 2083 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2084 * exit to complete.
ac31c7ff 2085 * - EAGAIN: The user space value changed.
af54d6a1 2086 */
52400ba9 2087 double_unlock_hb(hb1, hb2);
69cd9eba 2088 hb_waiters_dec(hb2);
3ef240ea
TG
2089 /*
2090 * Handle the case where the owner is in the middle of
2091 * exiting. Wait for the exit to complete otherwise
2092 * this task might loop forever, aka. live lock.
2093 */
2094 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2095 cond_resched();
2096 goto retry;
2097 default:
2098 goto out_unlock;
2099 }
2100 }
2101
0d00c7b2 2102 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2103 if (task_count - nr_wake >= nr_requeue)
2104 break;
2105
2106 if (!match_futex(&this->key, &key1))
1da177e4 2107 continue;
52400ba9 2108
392741e0
DH
2109 /*
2110 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2111 * be paired with each other and no other futex ops.
aa10990e
DH
2112 *
2113 * We should never be requeueing a futex_q with a pi_state,
2114 * which is awaiting a futex_unlock_pi().
392741e0
DH
2115 */
2116 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2117 (!requeue_pi && this->rt_waiter) ||
2118 this->pi_state) {
392741e0
DH
2119 ret = -EINVAL;
2120 break;
2121 }
52400ba9
DH
2122
2123 /*
2124 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2125 * lock, we already woke the top_waiter. If not, it will be
2126 * woken by futex_unlock_pi().
2127 */
2128 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2129 mark_wake_futex(&wake_q, this);
52400ba9
DH
2130 continue;
2131 }
1da177e4 2132
84bc4af5
DH
2133 /* Ensure we requeue to the expected futex for requeue_pi. */
2134 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2135 ret = -EINVAL;
2136 break;
2137 }
2138
52400ba9
DH
2139 /*
2140 * Requeue nr_requeue waiters and possibly one more in the case
2141 * of requeue_pi if we couldn't acquire the lock atomically.
2142 */
2143 if (requeue_pi) {
ecb38b78
TG
2144 /*
2145 * Prepare the waiter to take the rt_mutex. Take a
2146 * refcount on the pi_state and store the pointer in
2147 * the futex_q object of the waiter.
2148 */
bf92cf3a 2149 get_pi_state(pi_state);
52400ba9
DH
2150 this->pi_state = pi_state;
2151 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2152 this->rt_waiter,
c051b21f 2153 this->task);
52400ba9 2154 if (ret == 1) {
ecb38b78
TG
2155 /*
2156 * We got the lock. We do neither drop the
2157 * refcount on pi_state nor clear
2158 * this->pi_state because the waiter needs the
2159 * pi_state for cleaning up the user space
2160 * value. It will drop the refcount after
2161 * doing so.
2162 */
beda2c7e 2163 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2164 continue;
2165 } else if (ret) {
ecb38b78
TG
2166 /*
2167 * rt_mutex_start_proxy_lock() detected a
2168 * potential deadlock when we tried to queue
2169 * that waiter. Drop the pi_state reference
2170 * which we took above and remove the pointer
2171 * to the state from the waiters futex_q
2172 * object.
2173 */
52400ba9 2174 this->pi_state = NULL;
29e9ee5d 2175 put_pi_state(pi_state);
885c2cb7
TG
2176 /*
2177 * We stop queueing more waiters and let user
2178 * space deal with the mess.
2179 */
2180 break;
52400ba9 2181 }
1da177e4 2182 }
52400ba9 2183 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2184 }
2185
ecb38b78
TG
2186 /*
2187 * We took an extra initial reference to the pi_state either
2188 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2189 * need to drop it here again.
2190 */
29e9ee5d 2191 put_pi_state(pi_state);
885c2cb7
TG
2192
2193out_unlock:
5eb3dc62 2194 double_unlock_hb(hb1, hb2);
1d0dcb3a 2195 wake_up_q(&wake_q);
69cd9eba 2196 hb_waiters_dec(hb2);
52400ba9 2197 return ret ? ret : task_count;
1da177e4
LT
2198}
2199
2200/* The key must be already stored in q->key. */
82af7aca 2201static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2202 __acquires(&hb->lock)
1da177e4 2203{
e2970f2f 2204 struct futex_hash_bucket *hb;
1da177e4 2205
e2970f2f 2206 hb = hash_futex(&q->key);
11d4616b
LT
2207
2208 /*
2209 * Increment the counter before taking the lock so that
2210 * a potential waker won't miss a to-be-slept task that is
2211 * waiting for the spinlock. This is safe as all queue_lock()
2212 * users end up calling queue_me(). Similarly, for housekeeping,
2213 * decrement the counter at queue_unlock() when some error has
2214 * occurred and we don't end up adding the task to the list.
2215 */
6f568ebe 2216 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2217
e2970f2f 2218 q->lock_ptr = &hb->lock;
1da177e4 2219
6f568ebe 2220 spin_lock(&hb->lock);
e2970f2f 2221 return hb;
1da177e4
LT
2222}
2223
d40d65c8 2224static inline void
0d00c7b2 2225queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2226 __releases(&hb->lock)
d40d65c8
DH
2227{
2228 spin_unlock(&hb->lock);
11d4616b 2229 hb_waiters_dec(hb);
d40d65c8
DH
2230}
2231
cfafcd11 2232static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2233{
ec92d082
PP
2234 int prio;
2235
2236 /*
2237 * The priority used to register this element is
2238 * - either the real thread-priority for the real-time threads
2239 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2240 * - or MAX_RT_PRIO for non-RT threads.
2241 * Thus, all RT-threads are woken first in priority order, and
2242 * the others are woken last, in FIFO order.
2243 */
2244 prio = min(current->normal_prio, MAX_RT_PRIO);
2245
2246 plist_node_init(&q->list, prio);
ec92d082 2247 plist_add(&q->list, &hb->chain);
c87e2837 2248 q->task = current;
cfafcd11
PZ
2249}
2250
2251/**
2252 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2253 * @q: The futex_q to enqueue
2254 * @hb: The destination hash bucket
2255 *
2256 * The hb->lock must be held by the caller, and is released here. A call to
2257 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2258 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2259 * or nothing if the unqueue is done as part of the wake process and the unqueue
2260 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2261 * an example).
2262 */
2263static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2264 __releases(&hb->lock)
2265{
2266 __queue_me(q, hb);
e2970f2f 2267 spin_unlock(&hb->lock);
1da177e4
LT
2268}
2269
d40d65c8
DH
2270/**
2271 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2272 * @q: The futex_q to unqueue
2273 *
2274 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2275 * be paired with exactly one earlier call to queue_me().
2276 *
6c23cbbd 2277 * Return:
7b4ff1ad
MCC
2278 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2279 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2280 */
1da177e4
LT
2281static int unqueue_me(struct futex_q *q)
2282{
1da177e4 2283 spinlock_t *lock_ptr;
e2970f2f 2284 int ret = 0;
1da177e4
LT
2285
2286 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2287retry:
29b75eb2
JZ
2288 /*
2289 * q->lock_ptr can change between this read and the following spin_lock.
2290 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2291 * optimizing lock_ptr out of the logic below.
2292 */
2293 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2294 if (lock_ptr != NULL) {
1da177e4
LT
2295 spin_lock(lock_ptr);
2296 /*
2297 * q->lock_ptr can change between reading it and
2298 * spin_lock(), causing us to take the wrong lock. This
2299 * corrects the race condition.
2300 *
2301 * Reasoning goes like this: if we have the wrong lock,
2302 * q->lock_ptr must have changed (maybe several times)
2303 * between reading it and the spin_lock(). It can
2304 * change again after the spin_lock() but only if it was
2305 * already changed before the spin_lock(). It cannot,
2306 * however, change back to the original value. Therefore
2307 * we can detect whether we acquired the correct lock.
2308 */
2309 if (unlikely(lock_ptr != q->lock_ptr)) {
2310 spin_unlock(lock_ptr);
2311 goto retry;
2312 }
2e12978a 2313 __unqueue_futex(q);
c87e2837
IM
2314
2315 BUG_ON(q->pi_state);
2316
1da177e4
LT
2317 spin_unlock(lock_ptr);
2318 ret = 1;
2319 }
2320
1da177e4
LT
2321 return ret;
2322}
2323
c87e2837
IM
2324/*
2325 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2326 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2327 * and dropped here.
c87e2837 2328 */
d0aa7a70 2329static void unqueue_me_pi(struct futex_q *q)
15e408cd 2330 __releases(q->lock_ptr)
c87e2837 2331{
2e12978a 2332 __unqueue_futex(q);
c87e2837
IM
2333
2334 BUG_ON(!q->pi_state);
29e9ee5d 2335 put_pi_state(q->pi_state);
c87e2837
IM
2336 q->pi_state = NULL;
2337
d0aa7a70 2338 spin_unlock(q->lock_ptr);
c87e2837
IM
2339}
2340
778e9a9c 2341static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2342 struct task_struct *argowner)
d0aa7a70 2343{
d0aa7a70 2344 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2345 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2346 struct task_struct *oldowner, *newowner;
2347 u32 newtid;
6b4f4bc9 2348 int ret, err = 0;
d0aa7a70 2349
c1e2f0ea
PZ
2350 lockdep_assert_held(q->lock_ptr);
2351
734009e9
PZ
2352 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2353
2354 oldowner = pi_state->owner;
1b7558e4
TG
2355
2356 /*
c1e2f0ea 2357 * We are here because either:
16ffa12d 2358 *
c1e2f0ea
PZ
2359 * - we stole the lock and pi_state->owner needs updating to reflect
2360 * that (@argowner == current),
2361 *
2362 * or:
2363 *
2364 * - someone stole our lock and we need to fix things to point to the
2365 * new owner (@argowner == NULL).
2366 *
2367 * Either way, we have to replace the TID in the user space variable.
8161239a 2368 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2369 *
b2d0994b
DH
2370 * Note: We write the user space value _before_ changing the pi_state
2371 * because we can fault here. Imagine swapped out pages or a fork
2372 * that marked all the anonymous memory readonly for cow.
1b7558e4 2373 *
734009e9
PZ
2374 * Modifying pi_state _before_ the user space value would leave the
2375 * pi_state in an inconsistent state when we fault here, because we
2376 * need to drop the locks to handle the fault. This might be observed
2377 * in the PID check in lookup_pi_state.
1b7558e4
TG
2378 */
2379retry:
c1e2f0ea
PZ
2380 if (!argowner) {
2381 if (oldowner != current) {
2382 /*
2383 * We raced against a concurrent self; things are
2384 * already fixed up. Nothing to do.
2385 */
2386 ret = 0;
2387 goto out_unlock;
2388 }
2389
2390 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2391 /* We got the lock after all, nothing to fix. */
2392 ret = 0;
2393 goto out_unlock;
2394 }
2395
2396 /*
2397 * Since we just failed the trylock; there must be an owner.
2398 */
2399 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2400 BUG_ON(!newowner);
2401 } else {
2402 WARN_ON_ONCE(argowner != current);
2403 if (oldowner == current) {
2404 /*
2405 * We raced against a concurrent self; things are
2406 * already fixed up. Nothing to do.
2407 */
2408 ret = 0;
2409 goto out_unlock;
2410 }
2411 newowner = argowner;
2412 }
2413
2414 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2415 /* Owner died? */
2416 if (!pi_state->owner)
2417 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2418
6b4f4bc9
WD
2419 err = get_futex_value_locked(&uval, uaddr);
2420 if (err)
2421 goto handle_err;
1b7558e4 2422
16ffa12d 2423 for (;;) {
1b7558e4
TG
2424 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2425
6b4f4bc9
WD
2426 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2427 if (err)
2428 goto handle_err;
2429
1b7558e4
TG
2430 if (curval == uval)
2431 break;
2432 uval = curval;
2433 }
2434
2435 /*
2436 * We fixed up user space. Now we need to fix the pi_state
2437 * itself.
2438 */
d0aa7a70 2439 if (pi_state->owner != NULL) {
734009e9 2440 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2441 WARN_ON(list_empty(&pi_state->list));
2442 list_del_init(&pi_state->list);
734009e9 2443 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2444 }
d0aa7a70 2445
cdf71a10 2446 pi_state->owner = newowner;
d0aa7a70 2447
734009e9 2448 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2449 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2450 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2451 raw_spin_unlock(&newowner->pi_lock);
2452 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2453
1b7558e4 2454 return 0;
d0aa7a70 2455
d0aa7a70 2456 /*
6b4f4bc9
WD
2457 * In order to reschedule or handle a page fault, we need to drop the
2458 * locks here. In the case of a fault, this gives the other task
2459 * (either the highest priority waiter itself or the task which stole
2460 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2461 * are back from handling the fault we need to check the pi_state after
2462 * reacquiring the locks and before trying to do another fixup. When
2463 * the fixup has been done already we simply return.
734009e9
PZ
2464 *
2465 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2466 * drop hb->lock since the caller owns the hb -> futex_q relation.
2467 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2468 */
6b4f4bc9 2469handle_err:
734009e9 2470 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2471 spin_unlock(q->lock_ptr);
778e9a9c 2472
6b4f4bc9
WD
2473 switch (err) {
2474 case -EFAULT:
2475 ret = fault_in_user_writeable(uaddr);
2476 break;
2477
2478 case -EAGAIN:
2479 cond_resched();
2480 ret = 0;
2481 break;
2482
2483 default:
2484 WARN_ON_ONCE(1);
2485 ret = err;
2486 break;
2487 }
778e9a9c 2488
1b7558e4 2489 spin_lock(q->lock_ptr);
734009e9 2490 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2491
1b7558e4
TG
2492 /*
2493 * Check if someone else fixed it for us:
2494 */
734009e9
PZ
2495 if (pi_state->owner != oldowner) {
2496 ret = 0;
2497 goto out_unlock;
2498 }
1b7558e4
TG
2499
2500 if (ret)
734009e9 2501 goto out_unlock;
1b7558e4
TG
2502
2503 goto retry;
734009e9
PZ
2504
2505out_unlock:
2506 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2507 return ret;
d0aa7a70
PP
2508}
2509
72c1bbf3 2510static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2511
dd973998
DH
2512/**
2513 * fixup_owner() - Post lock pi_state and corner case management
2514 * @uaddr: user address of the futex
dd973998
DH
2515 * @q: futex_q (contains pi_state and access to the rt_mutex)
2516 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2517 *
2518 * After attempting to lock an rt_mutex, this function is called to cleanup
2519 * the pi_state owner as well as handle race conditions that may allow us to
2520 * acquire the lock. Must be called with the hb lock held.
2521 *
6c23cbbd 2522 * Return:
7b4ff1ad
MCC
2523 * - 1 - success, lock taken;
2524 * - 0 - success, lock not taken;
2525 * - <0 - on error (-EFAULT)
dd973998 2526 */
ae791a2d 2527static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2528{
dd973998
DH
2529 int ret = 0;
2530
2531 if (locked) {
2532 /*
2533 * Got the lock. We might not be the anticipated owner if we
2534 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2535 *
c1e2f0ea
PZ
2536 * Speculative pi_state->owner read (we don't hold wait_lock);
2537 * since we own the lock pi_state->owner == current is the
2538 * stable state, anything else needs more attention.
dd973998
DH
2539 */
2540 if (q->pi_state->owner != current)
ae791a2d 2541 ret = fixup_pi_state_owner(uaddr, q, current);
d7c5ed73 2542 return ret ? ret : locked;
dd973998
DH
2543 }
2544
c1e2f0ea
PZ
2545 /*
2546 * If we didn't get the lock; check if anybody stole it from us. In
2547 * that case, we need to fix up the uval to point to them instead of
2548 * us, otherwise bad things happen. [10]
2549 *
2550 * Another speculative read; pi_state->owner == current is unstable
2551 * but needs our attention.
2552 */
2553 if (q->pi_state->owner == current) {
2554 ret = fixup_pi_state_owner(uaddr, q, NULL);
d7c5ed73 2555 return ret;
c1e2f0ea
PZ
2556 }
2557
dd973998
DH
2558 /*
2559 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2560 * the owner of the rt_mutex.
dd973998 2561 */
73d786bd 2562 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2563 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2564 "pi-state %p\n", ret,
2565 q->pi_state->pi_mutex.owner,
2566 q->pi_state->owner);
73d786bd 2567 }
dd973998 2568
d7c5ed73 2569 return ret;
dd973998
DH
2570}
2571
ca5f9524
DH
2572/**
2573 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2574 * @hb: the futex hash bucket, must be locked by the caller
2575 * @q: the futex_q to queue up on
2576 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2577 */
2578static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2579 struct hrtimer_sleeper *timeout)
ca5f9524 2580{
9beba3c5
DH
2581 /*
2582 * The task state is guaranteed to be set before another task can
b92b8b35 2583 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2584 * queue_me() calls spin_unlock() upon completion, both serializing
2585 * access to the hash list and forcing another memory barrier.
2586 */
f1a11e05 2587 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2588 queue_me(q, hb);
ca5f9524
DH
2589
2590 /* Arm the timer */
2e4b0d3f 2591 if (timeout)
9dd8813e 2592 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2593
2594 /*
0729e196
DH
2595 * If we have been removed from the hash list, then another task
2596 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2597 */
2598 if (likely(!plist_node_empty(&q->list))) {
2599 /*
2600 * If the timer has already expired, current will already be
2601 * flagged for rescheduling. Only call schedule if there
2602 * is no timeout, or if it has yet to expire.
2603 */
2604 if (!timeout || timeout->task)
88c8004f 2605 freezable_schedule();
ca5f9524
DH
2606 }
2607 __set_current_state(TASK_RUNNING);
2608}
2609
f801073f
DH
2610/**
2611 * futex_wait_setup() - Prepare to wait on a futex
2612 * @uaddr: the futex userspace address
2613 * @val: the expected value
b41277dc 2614 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2615 * @q: the associated futex_q
2616 * @hb: storage for hash_bucket pointer to be returned to caller
2617 *
2618 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2619 * compare it with the expected value. Handle atomic faults internally.
2620 * Return with the hb lock held and a q.key reference on success, and unlocked
2621 * with no q.key reference on failure.
2622 *
6c23cbbd 2623 * Return:
7b4ff1ad
MCC
2624 * - 0 - uaddr contains val and hb has been locked;
2625 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2626 */
b41277dc 2627static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2628 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2629{
e2970f2f
IM
2630 u32 uval;
2631 int ret;
1da177e4 2632
1da177e4 2633 /*
b2d0994b 2634 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2635 * Order is important:
2636 *
2637 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2638 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2639 *
2640 * The basic logical guarantee of a futex is that it blocks ONLY
2641 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2642 * any cond. If we locked the hash-bucket after testing *uaddr, that
2643 * would open a race condition where we could block indefinitely with
1da177e4
LT
2644 * cond(var) false, which would violate the guarantee.
2645 *
8fe8f545
ML
2646 * On the other hand, we insert q and release the hash-bucket only
2647 * after testing *uaddr. This guarantees that futex_wait() will NOT
2648 * absorb a wakeup if *uaddr does not match the desired values
2649 * while the syscall executes.
1da177e4 2650 */
f801073f 2651retry:
96d4f267 2652 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2653 if (unlikely(ret != 0))
a5a2a0c7 2654 return ret;
f801073f
DH
2655
2656retry_private:
2657 *hb = queue_lock(q);
2658
e2970f2f 2659 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2660
f801073f 2661 if (ret) {
0d00c7b2 2662 queue_unlock(*hb);
1da177e4 2663
e2970f2f 2664 ret = get_user(uval, uaddr);
e4dc5b7a 2665 if (ret)
d7c5ed73 2666 return ret;
1da177e4 2667
b41277dc 2668 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2669 goto retry_private;
2670
e4dc5b7a 2671 goto retry;
1da177e4 2672 }
ca5f9524 2673
f801073f 2674 if (uval != val) {
0d00c7b2 2675 queue_unlock(*hb);
f801073f 2676 ret = -EWOULDBLOCK;
2fff78c7 2677 }
1da177e4 2678
f801073f
DH
2679 return ret;
2680}
2681
b41277dc
DH
2682static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2683 ktime_t *abs_time, u32 bitset)
f801073f 2684{
5ca584d9 2685 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2686 struct restart_block *restart;
2687 struct futex_hash_bucket *hb;
5bdb05f9 2688 struct futex_q q = futex_q_init;
f801073f
DH
2689 int ret;
2690
2691 if (!bitset)
2692 return -EINVAL;
f801073f
DH
2693 q.bitset = bitset;
2694
5ca584d9
WL
2695 to = futex_setup_timer(abs_time, &timeout, flags,
2696 current->timer_slack_ns);
d58e6576 2697retry:
7ada876a
DH
2698 /*
2699 * Prepare to wait on uaddr. On success, holds hb lock and increments
2700 * q.key refs.
2701 */
b41277dc 2702 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2703 if (ret)
2704 goto out;
2705
ca5f9524 2706 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2707 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2708
2709 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2710 ret = 0;
7ada876a 2711 /* unqueue_me() drops q.key ref */
1da177e4 2712 if (!unqueue_me(&q))
7ada876a 2713 goto out;
2fff78c7 2714 ret = -ETIMEDOUT;
ca5f9524 2715 if (to && !to->task)
7ada876a 2716 goto out;
72c1bbf3 2717
e2970f2f 2718 /*
d58e6576
TG
2719 * We expect signal_pending(current), but we might be the
2720 * victim of a spurious wakeup as well.
e2970f2f 2721 */
7ada876a 2722 if (!signal_pending(current))
d58e6576 2723 goto retry;
d58e6576 2724
2fff78c7 2725 ret = -ERESTARTSYS;
c19384b5 2726 if (!abs_time)
7ada876a 2727 goto out;
1da177e4 2728
f56141e3 2729 restart = &current->restart_block;
2fff78c7 2730 restart->fn = futex_wait_restart;
a3c74c52 2731 restart->futex.uaddr = uaddr;
2fff78c7 2732 restart->futex.val = val;
2456e855 2733 restart->futex.time = *abs_time;
2fff78c7 2734 restart->futex.bitset = bitset;
0cd9c649 2735 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2736
2fff78c7
PZ
2737 ret = -ERESTART_RESTARTBLOCK;
2738
42d35d48 2739out:
ca5f9524
DH
2740 if (to) {
2741 hrtimer_cancel(&to->timer);
2742 destroy_hrtimer_on_stack(&to->timer);
2743 }
c87e2837
IM
2744 return ret;
2745}
2746
72c1bbf3
NP
2747
2748static long futex_wait_restart(struct restart_block *restart)
2749{
a3c74c52 2750 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2751 ktime_t t, *tp = NULL;
72c1bbf3 2752
a72188d8 2753 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2754 t = restart->futex.time;
a72188d8
DH
2755 tp = &t;
2756 }
72c1bbf3 2757 restart->fn = do_no_restart_syscall;
b41277dc
DH
2758
2759 return (long)futex_wait(uaddr, restart->futex.flags,
2760 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2761}
2762
2763
c87e2837
IM
2764/*
2765 * Userspace tried a 0 -> TID atomic transition of the futex value
2766 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2767 * if there are waiters then it will block as a consequence of relying
2768 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2769 * a 0 value of the futex too.).
2770 *
2771 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2772 */
996636dd 2773static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2774 ktime_t *time, int trylock)
c87e2837 2775{
5ca584d9 2776 struct hrtimer_sleeper timeout, *to;
16ffa12d 2777 struct futex_pi_state *pi_state = NULL;
3ef240ea 2778 struct task_struct *exiting = NULL;
cfafcd11 2779 struct rt_mutex_waiter rt_waiter;
c87e2837 2780 struct futex_hash_bucket *hb;
5bdb05f9 2781 struct futex_q q = futex_q_init;
dd973998 2782 int res, ret;
c87e2837 2783
bc2eecd7
NP
2784 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2785 return -ENOSYS;
2786
c87e2837
IM
2787 if (refill_pi_state_cache())
2788 return -ENOMEM;
2789
5ca584d9 2790 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2791
42d35d48 2792retry:
96d4f267 2793 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2794 if (unlikely(ret != 0))
42d35d48 2795 goto out;
c87e2837 2796
e4dc5b7a 2797retry_private:
82af7aca 2798 hb = queue_lock(&q);
c87e2837 2799
3ef240ea
TG
2800 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2801 &exiting, 0);
c87e2837 2802 if (unlikely(ret)) {
767f509c
DB
2803 /*
2804 * Atomic work succeeded and we got the lock,
2805 * or failed. Either way, we do _not_ block.
2806 */
778e9a9c 2807 switch (ret) {
1a52084d
DH
2808 case 1:
2809 /* We got the lock. */
2810 ret = 0;
2811 goto out_unlock_put_key;
2812 case -EFAULT:
2813 goto uaddr_faulted;
ac31c7ff 2814 case -EBUSY:
778e9a9c
AK
2815 case -EAGAIN:
2816 /*
af54d6a1 2817 * Two reasons for this:
ac31c7ff 2818 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2819 * exit to complete.
ac31c7ff 2820 * - EAGAIN: The user space value changed.
778e9a9c 2821 */
0d00c7b2 2822 queue_unlock(hb);
3ef240ea
TG
2823 /*
2824 * Handle the case where the owner is in the middle of
2825 * exiting. Wait for the exit to complete otherwise
2826 * this task might loop forever, aka. live lock.
2827 */
2828 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2829 cond_resched();
2830 goto retry;
778e9a9c 2831 default:
42d35d48 2832 goto out_unlock_put_key;
c87e2837 2833 }
c87e2837
IM
2834 }
2835
cfafcd11
PZ
2836 WARN_ON(!q.pi_state);
2837
c87e2837
IM
2838 /*
2839 * Only actually queue now that the atomic ops are done:
2840 */
cfafcd11 2841 __queue_me(&q, hb);
c87e2837 2842
cfafcd11 2843 if (trylock) {
5293c2ef 2844 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2845 /* Fixup the trylock return value: */
2846 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2847 goto no_block;
c87e2837
IM
2848 }
2849
56222b21
PZ
2850 rt_mutex_init_waiter(&rt_waiter);
2851
cfafcd11 2852 /*
56222b21
PZ
2853 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2854 * hold it while doing rt_mutex_start_proxy(), because then it will
2855 * include hb->lock in the blocking chain, even through we'll not in
2856 * fact hold it while blocking. This will lead it to report -EDEADLK
2857 * and BUG when futex_unlock_pi() interleaves with this.
2858 *
2859 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2860 * latter before calling __rt_mutex_start_proxy_lock(). This
2861 * interleaves with futex_unlock_pi() -- which does a similar lock
2862 * handoff -- such that the latter can observe the futex_q::pi_state
2863 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2864 */
56222b21
PZ
2865 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866 spin_unlock(q.lock_ptr);
1a1fb985
TG
2867 /*
2868 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2869 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2870 * it sees the futex_q::pi_state.
2871 */
56222b21
PZ
2872 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2873 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2874
cfafcd11
PZ
2875 if (ret) {
2876 if (ret == 1)
2877 ret = 0;
1a1fb985 2878 goto cleanup;
cfafcd11
PZ
2879 }
2880
cfafcd11 2881 if (unlikely(to))
9dd8813e 2882 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2883
2884 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2885
1a1fb985 2886cleanup:
a99e4e41 2887 spin_lock(q.lock_ptr);
cfafcd11 2888 /*
1a1fb985 2889 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2890 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2891 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2892 * lists consistent.
56222b21
PZ
2893 *
2894 * In particular; it is important that futex_unlock_pi() can not
2895 * observe this inconsistency.
cfafcd11
PZ
2896 */
2897 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2898 ret = 0;
2899
2900no_block:
dd973998
DH
2901 /*
2902 * Fixup the pi_state owner and possibly acquire the lock if we
2903 * haven't already.
2904 */
ae791a2d 2905 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2906 /*
2907 * If fixup_owner() returned an error, proprogate that. If it acquired
2908 * the lock, clear our -ETIMEDOUT or -EINTR.
2909 */
2910 if (res)
2911 ret = (res < 0) ? res : 0;
c87e2837 2912
e8f6386c 2913 /*
dd973998
DH
2914 * If fixup_owner() faulted and was unable to handle the fault, unlock
2915 * it and return the fault to userspace.
e8f6386c 2916 */
16ffa12d
PZ
2917 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2918 pi_state = q.pi_state;
2919 get_pi_state(pi_state);
2920 }
e8f6386c 2921
778e9a9c
AK
2922 /* Unqueue and drop the lock */
2923 unqueue_me_pi(&q);
c87e2837 2924
16ffa12d
PZ
2925 if (pi_state) {
2926 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2927 put_pi_state(pi_state);
2928 }
2929
9180bd46 2930 goto out;
c87e2837 2931
42d35d48 2932out_unlock_put_key:
0d00c7b2 2933 queue_unlock(hb);
c87e2837 2934
42d35d48 2935out:
97181f9b
TG
2936 if (to) {
2937 hrtimer_cancel(&to->timer);
237fc6e7 2938 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2939 }
dd973998 2940 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2941
42d35d48 2942uaddr_faulted:
0d00c7b2 2943 queue_unlock(hb);
778e9a9c 2944
d0725992 2945 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2946 if (ret)
9180bd46 2947 goto out;
c87e2837 2948
b41277dc 2949 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2950 goto retry_private;
2951
e4dc5b7a 2952 goto retry;
c87e2837
IM
2953}
2954
c87e2837
IM
2955/*
2956 * Userspace attempted a TID -> 0 atomic transition, and failed.
2957 * This is the in-kernel slowpath: we look up the PI state (if any),
2958 * and do the rt-mutex unlock.
2959 */
b41277dc 2960static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2961{
ccf9e6a8 2962 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2963 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2964 struct futex_hash_bucket *hb;
499f5aca 2965 struct futex_q *top_waiter;
e4dc5b7a 2966 int ret;
c87e2837 2967
bc2eecd7
NP
2968 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2969 return -ENOSYS;
2970
c87e2837
IM
2971retry:
2972 if (get_user(uval, uaddr))
2973 return -EFAULT;
2974 /*
2975 * We release only a lock we actually own:
2976 */
c0c9ed15 2977 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2978 return -EPERM;
c87e2837 2979
96d4f267 2980 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2981 if (ret)
2982 return ret;
c87e2837
IM
2983
2984 hb = hash_futex(&key);
2985 spin_lock(&hb->lock);
2986
c87e2837 2987 /*
ccf9e6a8
TG
2988 * Check waiters first. We do not trust user space values at
2989 * all and we at least want to know if user space fiddled
2990 * with the futex value instead of blindly unlocking.
c87e2837 2991 */
499f5aca
PZ
2992 top_waiter = futex_top_waiter(hb, &key);
2993 if (top_waiter) {
16ffa12d
PZ
2994 struct futex_pi_state *pi_state = top_waiter->pi_state;
2995
2996 ret = -EINVAL;
2997 if (!pi_state)
2998 goto out_unlock;
2999
3000 /*
3001 * If current does not own the pi_state then the futex is
3002 * inconsistent and user space fiddled with the futex value.
3003 */
3004 if (pi_state->owner != current)
3005 goto out_unlock;
3006
bebe5b51 3007 get_pi_state(pi_state);
802ab58d 3008 /*
bebe5b51
PZ
3009 * By taking wait_lock while still holding hb->lock, we ensure
3010 * there is no point where we hold neither; and therefore
3011 * wake_futex_pi() must observe a state consistent with what we
3012 * observed.
1a1fb985
TG
3013 *
3014 * In particular; this forces __rt_mutex_start_proxy() to
3015 * complete such that we're guaranteed to observe the
3016 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3017 */
bebe5b51 3018 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3019 spin_unlock(&hb->lock);
3020
c74aef2d 3021 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3022 ret = wake_futex_pi(uaddr, uval, pi_state);
3023
3024 put_pi_state(pi_state);
3025
3026 /*
3027 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3028 */
3029 if (!ret)
3030 goto out_putkey;
c87e2837 3031 /*
ccf9e6a8
TG
3032 * The atomic access to the futex value generated a
3033 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3034 */
3035 if (ret == -EFAULT)
3036 goto pi_faulted;
89e9e66b
SAS
3037 /*
3038 * A unconditional UNLOCK_PI op raced against a waiter
3039 * setting the FUTEX_WAITERS bit. Try again.
3040 */
6b4f4bc9
WD
3041 if (ret == -EAGAIN)
3042 goto pi_retry;
802ab58d
SAS
3043 /*
3044 * wake_futex_pi has detected invalid state. Tell user
3045 * space.
3046 */
16ffa12d 3047 goto out_putkey;
c87e2837 3048 }
ccf9e6a8 3049
c87e2837 3050 /*
ccf9e6a8
TG
3051 * We have no kernel internal state, i.e. no waiters in the
3052 * kernel. Waiters which are about to queue themselves are stuck
3053 * on hb->lock. So we can safely ignore them. We do neither
3054 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3055 * owner.
c87e2837 3056 */
6b4f4bc9 3057 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3058 spin_unlock(&hb->lock);
6b4f4bc9
WD
3059 switch (ret) {
3060 case -EFAULT:
3061 goto pi_faulted;
3062
3063 case -EAGAIN:
3064 goto pi_retry;
3065
3066 default:
3067 WARN_ON_ONCE(1);
3068 goto out_putkey;
3069 }
16ffa12d 3070 }
c87e2837 3071
ccf9e6a8
TG
3072 /*
3073 * If uval has changed, let user space handle it.
3074 */
3075 ret = (curval == uval) ? 0 : -EAGAIN;
3076
c87e2837
IM
3077out_unlock:
3078 spin_unlock(&hb->lock);
802ab58d 3079out_putkey:
c87e2837
IM
3080 return ret;
3081
6b4f4bc9 3082pi_retry:
6b4f4bc9
WD
3083 cond_resched();
3084 goto retry;
3085
c87e2837 3086pi_faulted:
c87e2837 3087
d0725992 3088 ret = fault_in_user_writeable(uaddr);
b5686363 3089 if (!ret)
c87e2837
IM
3090 goto retry;
3091
1da177e4
LT
3092 return ret;
3093}
3094
52400ba9
DH
3095/**
3096 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3097 * @hb: the hash_bucket futex_q was original enqueued on
3098 * @q: the futex_q woken while waiting to be requeued
3099 * @key2: the futex_key of the requeue target futex
3100 * @timeout: the timeout associated with the wait (NULL if none)
3101 *
3102 * Detect if the task was woken on the initial futex as opposed to the requeue
3103 * target futex. If so, determine if it was a timeout or a signal that caused
3104 * the wakeup and return the appropriate error code to the caller. Must be
3105 * called with the hb lock held.
3106 *
6c23cbbd 3107 * Return:
7b4ff1ad
MCC
3108 * - 0 = no early wakeup detected;
3109 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3110 */
3111static inline
3112int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3113 struct futex_q *q, union futex_key *key2,
3114 struct hrtimer_sleeper *timeout)
3115{
3116 int ret = 0;
3117
3118 /*
3119 * With the hb lock held, we avoid races while we process the wakeup.
3120 * We only need to hold hb (and not hb2) to ensure atomicity as the
3121 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3122 * It can't be requeued from uaddr2 to something else since we don't
3123 * support a PI aware source futex for requeue.
3124 */
3125 if (!match_futex(&q->key, key2)) {
3126 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3127 /*
3128 * We were woken prior to requeue by a timeout or a signal.
3129 * Unqueue the futex_q and determine which it was.
3130 */
2e12978a 3131 plist_del(&q->list, &hb->chain);
11d4616b 3132 hb_waiters_dec(hb);
52400ba9 3133
d58e6576 3134 /* Handle spurious wakeups gracefully */
11df6ddd 3135 ret = -EWOULDBLOCK;
52400ba9
DH
3136 if (timeout && !timeout->task)
3137 ret = -ETIMEDOUT;
d58e6576 3138 else if (signal_pending(current))
1c840c14 3139 ret = -ERESTARTNOINTR;
52400ba9
DH
3140 }
3141 return ret;
3142}
3143
3144/**
3145 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3146 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3147 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3148 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3149 * @val: the expected value of uaddr
3150 * @abs_time: absolute timeout
56ec1607 3151 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3152 * @uaddr2: the pi futex we will take prior to returning to user-space
3153 *
3154 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3155 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3156 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3157 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3158 * without one, the pi logic would not know which task to boost/deboost, if
3159 * there was a need to.
52400ba9
DH
3160 *
3161 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3162 * via the following--
52400ba9 3163 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3164 * 2) wakeup on uaddr2 after a requeue
3165 * 3) signal
3166 * 4) timeout
52400ba9 3167 *
cc6db4e6 3168 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3169 *
3170 * If 2, we may then block on trying to take the rt_mutex and return via:
3171 * 5) successful lock
3172 * 6) signal
3173 * 7) timeout
3174 * 8) other lock acquisition failure
3175 *
cc6db4e6 3176 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3177 *
3178 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3179 *
6c23cbbd 3180 * Return:
7b4ff1ad
MCC
3181 * - 0 - On success;
3182 * - <0 - On error
52400ba9 3183 */
b41277dc 3184static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3185 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3186 u32 __user *uaddr2)
52400ba9 3187{
5ca584d9 3188 struct hrtimer_sleeper timeout, *to;
16ffa12d 3189 struct futex_pi_state *pi_state = NULL;
52400ba9 3190 struct rt_mutex_waiter rt_waiter;
52400ba9 3191 struct futex_hash_bucket *hb;
5bdb05f9
DH
3192 union futex_key key2 = FUTEX_KEY_INIT;
3193 struct futex_q q = futex_q_init;
52400ba9 3194 int res, ret;
52400ba9 3195
bc2eecd7
NP
3196 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3197 return -ENOSYS;
3198
6f7b0a2a
DH
3199 if (uaddr == uaddr2)
3200 return -EINVAL;
3201
52400ba9
DH
3202 if (!bitset)
3203 return -EINVAL;
3204
5ca584d9
WL
3205 to = futex_setup_timer(abs_time, &timeout, flags,
3206 current->timer_slack_ns);
52400ba9
DH
3207
3208 /*
3209 * The waiter is allocated on our stack, manipulated by the requeue
3210 * code while we sleep on uaddr.
3211 */
50809358 3212 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3213
96d4f267 3214 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3215 if (unlikely(ret != 0))
3216 goto out;
3217
84bc4af5
DH
3218 q.bitset = bitset;
3219 q.rt_waiter = &rt_waiter;
3220 q.requeue_pi_key = &key2;
3221
7ada876a
DH
3222 /*
3223 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3224 * count.
3225 */
b41277dc 3226 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3227 if (ret)
9180bd46 3228 goto out;
52400ba9 3229
e9c243a5
TG
3230 /*
3231 * The check above which compares uaddrs is not sufficient for
3232 * shared futexes. We need to compare the keys:
3233 */
3234 if (match_futex(&q.key, &key2)) {
13c42c2f 3235 queue_unlock(hb);
e9c243a5 3236 ret = -EINVAL;
9180bd46 3237 goto out;
e9c243a5
TG
3238 }
3239
52400ba9 3240 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3241 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3242
3243 spin_lock(&hb->lock);
3244 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3245 spin_unlock(&hb->lock);
3246 if (ret)
9180bd46 3247 goto out;
52400ba9
DH
3248
3249 /*
3250 * In order for us to be here, we know our q.key == key2, and since
3251 * we took the hb->lock above, we also know that futex_requeue() has
3252 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3253 * race with the atomic proxy lock acquisition by the requeue code. The
3254 * futex_requeue dropped our key1 reference and incremented our key2
3255 * reference count.
52400ba9
DH
3256 */
3257
3258 /* Check if the requeue code acquired the second futex for us. */
3259 if (!q.rt_waiter) {
3260 /*
3261 * Got the lock. We might not be the anticipated owner if we
3262 * did a lock-steal - fix up the PI-state in that case.
3263 */
3264 if (q.pi_state && (q.pi_state->owner != current)) {
3265 spin_lock(q.lock_ptr);
ae791a2d 3266 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3267 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3268 pi_state = q.pi_state;
3269 get_pi_state(pi_state);
3270 }
fb75a428
TG
3271 /*
3272 * Drop the reference to the pi state which
3273 * the requeue_pi() code acquired for us.
3274 */
29e9ee5d 3275 put_pi_state(q.pi_state);
52400ba9
DH
3276 spin_unlock(q.lock_ptr);
3277 }
3278 } else {
c236c8e9
PZ
3279 struct rt_mutex *pi_mutex;
3280
52400ba9
DH
3281 /*
3282 * We have been woken up by futex_unlock_pi(), a timeout, or a
3283 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3284 * the pi_state.
3285 */
f27071cb 3286 WARN_ON(!q.pi_state);
52400ba9 3287 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3288 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3289
3290 spin_lock(q.lock_ptr);
38d589f2
PZ
3291 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3292 ret = 0;
3293
3294 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3295 /*
3296 * Fixup the pi_state owner and possibly acquire the lock if we
3297 * haven't already.
3298 */
ae791a2d 3299 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3300 /*
3301 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3302 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3303 */
3304 if (res)
3305 ret = (res < 0) ? res : 0;
3306
c236c8e9
PZ
3307 /*
3308 * If fixup_pi_state_owner() faulted and was unable to handle
3309 * the fault, unlock the rt_mutex and return the fault to
3310 * userspace.
3311 */
16ffa12d
PZ
3312 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3313 pi_state = q.pi_state;
3314 get_pi_state(pi_state);
3315 }
c236c8e9 3316
52400ba9
DH
3317 /* Unqueue and drop the lock. */
3318 unqueue_me_pi(&q);
3319 }
3320
16ffa12d
PZ
3321 if (pi_state) {
3322 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3323 put_pi_state(pi_state);
3324 }
3325
c236c8e9 3326 if (ret == -EINTR) {
52400ba9 3327 /*
cc6db4e6
DH
3328 * We've already been requeued, but cannot restart by calling
3329 * futex_lock_pi() directly. We could restart this syscall, but
3330 * it would detect that the user space "val" changed and return
3331 * -EWOULDBLOCK. Save the overhead of the restart and return
3332 * -EWOULDBLOCK directly.
52400ba9 3333 */
2070887f 3334 ret = -EWOULDBLOCK;
52400ba9
DH
3335 }
3336
52400ba9
DH
3337out:
3338 if (to) {
3339 hrtimer_cancel(&to->timer);
3340 destroy_hrtimer_on_stack(&to->timer);
3341 }
3342 return ret;
3343}
3344
0771dfef
IM
3345/*
3346 * Support for robust futexes: the kernel cleans up held futexes at
3347 * thread exit time.
3348 *
3349 * Implementation: user-space maintains a per-thread list of locks it
3350 * is holding. Upon do_exit(), the kernel carefully walks this list,
3351 * and marks all locks that are owned by this thread with the
c87e2837 3352 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3353 * always manipulated with the lock held, so the list is private and
3354 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3355 * field, to allow the kernel to clean up if the thread dies after
3356 * acquiring the lock, but just before it could have added itself to
3357 * the list. There can only be one such pending lock.
3358 */
3359
3360/**
d96ee56c
DH
3361 * sys_set_robust_list() - Set the robust-futex list head of a task
3362 * @head: pointer to the list-head
3363 * @len: length of the list-head, as userspace expects
0771dfef 3364 */
836f92ad
HC
3365SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3366 size_t, len)
0771dfef 3367{
a0c1e907
TG
3368 if (!futex_cmpxchg_enabled)
3369 return -ENOSYS;
0771dfef
IM
3370 /*
3371 * The kernel knows only one size for now:
3372 */
3373 if (unlikely(len != sizeof(*head)))
3374 return -EINVAL;
3375
3376 current->robust_list = head;
3377
3378 return 0;
3379}
3380
3381/**
d96ee56c
DH
3382 * sys_get_robust_list() - Get the robust-futex list head of a task
3383 * @pid: pid of the process [zero for current task]
3384 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3385 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3386 */
836f92ad
HC
3387SYSCALL_DEFINE3(get_robust_list, int, pid,
3388 struct robust_list_head __user * __user *, head_ptr,
3389 size_t __user *, len_ptr)
0771dfef 3390{
ba46df98 3391 struct robust_list_head __user *head;
0771dfef 3392 unsigned long ret;
bdbb776f 3393 struct task_struct *p;
0771dfef 3394
a0c1e907
TG
3395 if (!futex_cmpxchg_enabled)
3396 return -ENOSYS;
3397
bdbb776f
KC
3398 rcu_read_lock();
3399
3400 ret = -ESRCH;
0771dfef 3401 if (!pid)
bdbb776f 3402 p = current;
0771dfef 3403 else {
228ebcbe 3404 p = find_task_by_vpid(pid);
0771dfef
IM
3405 if (!p)
3406 goto err_unlock;
0771dfef
IM
3407 }
3408
bdbb776f 3409 ret = -EPERM;
caaee623 3410 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3411 goto err_unlock;
3412
3413 head = p->robust_list;
3414 rcu_read_unlock();
3415
0771dfef
IM
3416 if (put_user(sizeof(*head), len_ptr))
3417 return -EFAULT;
3418 return put_user(head, head_ptr);
3419
3420err_unlock:
aaa2a97e 3421 rcu_read_unlock();
0771dfef
IM
3422
3423 return ret;
3424}
3425
ca16d5be
YT
3426/* Constants for the pending_op argument of handle_futex_death */
3427#define HANDLE_DEATH_PENDING true
3428#define HANDLE_DEATH_LIST false
3429
0771dfef
IM
3430/*
3431 * Process a futex-list entry, check whether it's owned by the
3432 * dying task, and do notification if so:
3433 */
ca16d5be
YT
3434static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3435 bool pi, bool pending_op)
0771dfef 3436{
7cfdaf38 3437 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3438 int err;
0771dfef 3439
5a07168d
CJ
3440 /* Futex address must be 32bit aligned */
3441 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3442 return -1;
3443
8f17d3a5
IM
3444retry:
3445 if (get_user(uval, uaddr))
0771dfef
IM
3446 return -1;
3447
ca16d5be
YT
3448 /*
3449 * Special case for regular (non PI) futexes. The unlock path in
3450 * user space has two race scenarios:
3451 *
3452 * 1. The unlock path releases the user space futex value and
3453 * before it can execute the futex() syscall to wake up
3454 * waiters it is killed.
3455 *
3456 * 2. A woken up waiter is killed before it can acquire the
3457 * futex in user space.
3458 *
3459 * In both cases the TID validation below prevents a wakeup of
3460 * potential waiters which can cause these waiters to block
3461 * forever.
3462 *
3463 * In both cases the following conditions are met:
3464 *
3465 * 1) task->robust_list->list_op_pending != NULL
3466 * @pending_op == true
3467 * 2) User space futex value == 0
3468 * 3) Regular futex: @pi == false
3469 *
3470 * If these conditions are met, it is safe to attempt waking up a
3471 * potential waiter without touching the user space futex value and
3472 * trying to set the OWNER_DIED bit. The user space futex value is
3473 * uncontended and the rest of the user space mutex state is
3474 * consistent, so a woken waiter will just take over the
3475 * uncontended futex. Setting the OWNER_DIED bit would create
3476 * inconsistent state and malfunction of the user space owner died
3477 * handling.
3478 */
3479 if (pending_op && !pi && !uval) {
3480 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3481 return 0;
3482 }
3483
6b4f4bc9
WD
3484 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3485 return 0;
3486
3487 /*
3488 * Ok, this dying thread is truly holding a futex
3489 * of interest. Set the OWNER_DIED bit atomically
3490 * via cmpxchg, and if the value had FUTEX_WAITERS
3491 * set, wake up a waiter (if any). (We have to do a
3492 * futex_wake() even if OWNER_DIED is already set -
3493 * to handle the rare but possible case of recursive
3494 * thread-death.) The rest of the cleanup is done in
3495 * userspace.
3496 */
3497 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3498
3499 /*
3500 * We are not holding a lock here, but we want to have
3501 * the pagefault_disable/enable() protection because
3502 * we want to handle the fault gracefully. If the
3503 * access fails we try to fault in the futex with R/W
3504 * verification via get_user_pages. get_user() above
3505 * does not guarantee R/W access. If that fails we
3506 * give up and leave the futex locked.
3507 */
3508 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3509 switch (err) {
3510 case -EFAULT:
6e0aa9f8
TG
3511 if (fault_in_user_writeable(uaddr))
3512 return -1;
3513 goto retry;
6b4f4bc9
WD
3514
3515 case -EAGAIN:
3516 cond_resched();
8f17d3a5 3517 goto retry;
0771dfef 3518
6b4f4bc9
WD
3519 default:
3520 WARN_ON_ONCE(1);
3521 return err;
3522 }
0771dfef 3523 }
6b4f4bc9
WD
3524
3525 if (nval != uval)
3526 goto retry;
3527
3528 /*
3529 * Wake robust non-PI futexes here. The wakeup of
3530 * PI futexes happens in exit_pi_state():
3531 */
3532 if (!pi && (uval & FUTEX_WAITERS))
3533 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3534
0771dfef
IM
3535 return 0;
3536}
3537
e3f2ddea
IM
3538/*
3539 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3540 */
3541static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3542 struct robust_list __user * __user *head,
1dcc41bb 3543 unsigned int *pi)
e3f2ddea
IM
3544{
3545 unsigned long uentry;
3546
ba46df98 3547 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3548 return -EFAULT;
3549
ba46df98 3550 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3551 *pi = uentry & 1;
3552
3553 return 0;
3554}
3555
0771dfef
IM
3556/*
3557 * Walk curr->robust_list (very carefully, it's a userspace list!)
3558 * and mark any locks found there dead, and notify any waiters.
3559 *
3560 * We silently return on any sign of list-walking problem.
3561 */
ba31c1a4 3562static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3563{
3564 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3565 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3566 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3567 unsigned int uninitialized_var(next_pi);
0771dfef 3568 unsigned long futex_offset;
9f96cb1e 3569 int rc;
0771dfef 3570
a0c1e907
TG
3571 if (!futex_cmpxchg_enabled)
3572 return;
3573
0771dfef
IM
3574 /*
3575 * Fetch the list head (which was registered earlier, via
3576 * sys_set_robust_list()):
3577 */
e3f2ddea 3578 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3579 return;
3580 /*
3581 * Fetch the relative futex offset:
3582 */
3583 if (get_user(futex_offset, &head->futex_offset))
3584 return;
3585 /*
3586 * Fetch any possibly pending lock-add first, and handle it
3587 * if it exists:
3588 */
e3f2ddea 3589 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3590 return;
e3f2ddea 3591
9f96cb1e 3592 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3593 while (entry != &head->list) {
9f96cb1e
MS
3594 /*
3595 * Fetch the next entry in the list before calling
3596 * handle_futex_death:
3597 */
3598 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3599 /*
3600 * A pending lock might already be on the list, so
c87e2837 3601 * don't process it twice:
0771dfef 3602 */
ca16d5be 3603 if (entry != pending) {
ba46df98 3604 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3605 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3606 return;
ca16d5be 3607 }
9f96cb1e 3608 if (rc)
0771dfef 3609 return;
9f96cb1e
MS
3610 entry = next_entry;
3611 pi = next_pi;
0771dfef
IM
3612 /*
3613 * Avoid excessively long or circular lists:
3614 */
3615 if (!--limit)
3616 break;
3617
3618 cond_resched();
3619 }
9f96cb1e 3620
ca16d5be 3621 if (pending) {
9f96cb1e 3622 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3623 curr, pip, HANDLE_DEATH_PENDING);
3624 }
0771dfef
IM
3625}
3626
af8cbda2 3627static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3628{
3629 if (unlikely(tsk->robust_list)) {
3630 exit_robust_list(tsk);
3631 tsk->robust_list = NULL;
3632 }
3633
3634#ifdef CONFIG_COMPAT
3635 if (unlikely(tsk->compat_robust_list)) {
3636 compat_exit_robust_list(tsk);
3637 tsk->compat_robust_list = NULL;
3638 }
3639#endif
3640
3641 if (unlikely(!list_empty(&tsk->pi_state_list)))
3642 exit_pi_state_list(tsk);
3643}
3644
18f69438
TG
3645/**
3646 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3647 * @tsk: task to set the state on
3648 *
3649 * Set the futex exit state of the task lockless. The futex waiter code
3650 * observes that state when a task is exiting and loops until the task has
3651 * actually finished the futex cleanup. The worst case for this is that the
3652 * waiter runs through the wait loop until the state becomes visible.
3653 *
3654 * This is called from the recursive fault handling path in do_exit().
3655 *
3656 * This is best effort. Either the futex exit code has run already or
3657 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3658 * take it over. If not, the problem is pushed back to user space. If the
3659 * futex exit code did not run yet, then an already queued waiter might
3660 * block forever, but there is nothing which can be done about that.
3661 */
3662void futex_exit_recursive(struct task_struct *tsk)
3663{
3f186d97
TG
3664 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3665 if (tsk->futex_state == FUTEX_STATE_EXITING)
3666 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3667 tsk->futex_state = FUTEX_STATE_DEAD;
3668}
3669
af8cbda2 3670static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3671{
3f186d97
TG
3672 /*
3673 * Prevent various race issues against a concurrent incoming waiter
3674 * including live locks by forcing the waiter to block on
3675 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3676 * attach_to_pi_owner().
3677 */
3678 mutex_lock(&tsk->futex_exit_mutex);
3679
18f69438 3680 /*
4a8e991b
TG
3681 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3682 *
3683 * This ensures that all subsequent checks of tsk->futex_state in
3684 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3685 * tsk->pi_lock held.
3686 *
3687 * It guarantees also that a pi_state which was queued right before
3688 * the state change under tsk->pi_lock by a concurrent waiter must
3689 * be observed in exit_pi_state_list().
18f69438
TG
3690 */
3691 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3692 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3693 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3694}
18f69438 3695
af8cbda2
TG
3696static void futex_cleanup_end(struct task_struct *tsk, int state)
3697{
3698 /*
3699 * Lockless store. The only side effect is that an observer might
3700 * take another loop until it becomes visible.
3701 */
3702 tsk->futex_state = state;
3f186d97
TG
3703 /*
3704 * Drop the exit protection. This unblocks waiters which observed
3705 * FUTEX_STATE_EXITING to reevaluate the state.
3706 */
3707 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3708}
18f69438 3709
af8cbda2
TG
3710void futex_exec_release(struct task_struct *tsk)
3711{
3712 /*
3713 * The state handling is done for consistency, but in the case of
3714 * exec() there is no way to prevent futher damage as the PID stays
3715 * the same. But for the unlikely and arguably buggy case that a
3716 * futex is held on exec(), this provides at least as much state
3717 * consistency protection which is possible.
3718 */
3719 futex_cleanup_begin(tsk);
3720 futex_cleanup(tsk);
3721 /*
3722 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3723 * exec a new binary.
3724 */
3725 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3726}
3727
3728void futex_exit_release(struct task_struct *tsk)
3729{
3730 futex_cleanup_begin(tsk);
3731 futex_cleanup(tsk);
3732 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3733}
3734
c19384b5 3735long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3736 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3737{
81b40539 3738 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3739 unsigned int flags = 0;
34f01cc1
ED
3740
3741 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3742 flags |= FLAGS_SHARED;
1da177e4 3743
b41277dc
DH
3744 if (op & FUTEX_CLOCK_REALTIME) {
3745 flags |= FLAGS_CLOCKRT;
337f1304
DH
3746 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3747 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3748 return -ENOSYS;
3749 }
1da177e4 3750
59263b51
TG
3751 switch (cmd) {
3752 case FUTEX_LOCK_PI:
3753 case FUTEX_UNLOCK_PI:
3754 case FUTEX_TRYLOCK_PI:
3755 case FUTEX_WAIT_REQUEUE_PI:
3756 case FUTEX_CMP_REQUEUE_PI:
3757 if (!futex_cmpxchg_enabled)
3758 return -ENOSYS;
3759 }
3760
34f01cc1 3761 switch (cmd) {
1da177e4 3762 case FUTEX_WAIT:
cd689985 3763 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3764 /* fall through */
cd689985 3765 case FUTEX_WAIT_BITSET:
81b40539 3766 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3767 case FUTEX_WAKE:
cd689985 3768 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3769 /* fall through */
cd689985 3770 case FUTEX_WAKE_BITSET:
81b40539 3771 return futex_wake(uaddr, flags, val, val3);
1da177e4 3772 case FUTEX_REQUEUE:
81b40539 3773 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3774 case FUTEX_CMP_REQUEUE:
81b40539 3775 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3776 case FUTEX_WAKE_OP:
81b40539 3777 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3778 case FUTEX_LOCK_PI:
996636dd 3779 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3780 case FUTEX_UNLOCK_PI:
81b40539 3781 return futex_unlock_pi(uaddr, flags);
c87e2837 3782 case FUTEX_TRYLOCK_PI:
996636dd 3783 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3784 case FUTEX_WAIT_REQUEUE_PI:
3785 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3786 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3787 uaddr2);
52400ba9 3788 case FUTEX_CMP_REQUEUE_PI:
81b40539 3789 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3790 }
81b40539 3791 return -ENOSYS;
1da177e4
LT
3792}
3793
3794
17da2bd9 3795SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3796 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3797 u32, val3)
1da177e4 3798{
bec2f7cb 3799 struct timespec64 ts;
c19384b5 3800 ktime_t t, *tp = NULL;
e2970f2f 3801 u32 val2 = 0;
34f01cc1 3802 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3803
cd689985 3804 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3805 cmd == FUTEX_WAIT_BITSET ||
3806 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3807 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3808 return -EFAULT;
bec2f7cb 3809 if (get_timespec64(&ts, utime))
1da177e4 3810 return -EFAULT;
bec2f7cb 3811 if (!timespec64_valid(&ts))
9741ef96 3812 return -EINVAL;
c19384b5 3813
bec2f7cb 3814 t = timespec64_to_ktime(ts);
34f01cc1 3815 if (cmd == FUTEX_WAIT)
5a7780e7 3816 t = ktime_add_safe(ktime_get(), t);
c19384b5 3817 tp = &t;
1da177e4
LT
3818 }
3819 /*
52400ba9 3820 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3821 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3822 */
f54f0986 3823 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3824 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3825 val2 = (u32) (unsigned long) utime;
1da177e4 3826
c19384b5 3827 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3828}
3829
04e7712f
AB
3830#ifdef CONFIG_COMPAT
3831/*
3832 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3833 */
3834static inline int
3835compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3836 compat_uptr_t __user *head, unsigned int *pi)
3837{
3838 if (get_user(*uentry, head))
3839 return -EFAULT;
3840
3841 *entry = compat_ptr((*uentry) & ~1);
3842 *pi = (unsigned int)(*uentry) & 1;
3843
3844 return 0;
3845}
3846
3847static void __user *futex_uaddr(struct robust_list __user *entry,
3848 compat_long_t futex_offset)
3849{
3850 compat_uptr_t base = ptr_to_compat(entry);
3851 void __user *uaddr = compat_ptr(base + futex_offset);
3852
3853 return uaddr;
3854}
3855
3856/*
3857 * Walk curr->robust_list (very carefully, it's a userspace list!)
3858 * and mark any locks found there dead, and notify any waiters.
3859 *
3860 * We silently return on any sign of list-walking problem.
3861 */
ba31c1a4 3862static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3863{
3864 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3865 struct robust_list __user *entry, *next_entry, *pending;
3866 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3867 unsigned int uninitialized_var(next_pi);
3868 compat_uptr_t uentry, next_uentry, upending;
3869 compat_long_t futex_offset;
3870 int rc;
3871
3872 if (!futex_cmpxchg_enabled)
3873 return;
3874
3875 /*
3876 * Fetch the list head (which was registered earlier, via
3877 * sys_set_robust_list()):
3878 */
3879 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3880 return;
3881 /*
3882 * Fetch the relative futex offset:
3883 */
3884 if (get_user(futex_offset, &head->futex_offset))
3885 return;
3886 /*
3887 * Fetch any possibly pending lock-add first, and handle it
3888 * if it exists:
3889 */
3890 if (compat_fetch_robust_entry(&upending, &pending,
3891 &head->list_op_pending, &pip))
3892 return;
3893
3894 next_entry = NULL; /* avoid warning with gcc */
3895 while (entry != (struct robust_list __user *) &head->list) {
3896 /*
3897 * Fetch the next entry in the list before calling
3898 * handle_futex_death:
3899 */
3900 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3901 (compat_uptr_t __user *)&entry->next, &next_pi);
3902 /*
3903 * A pending lock might already be on the list, so
3904 * dont process it twice:
3905 */
3906 if (entry != pending) {
3907 void __user *uaddr = futex_uaddr(entry, futex_offset);
3908
ca16d5be
YT
3909 if (handle_futex_death(uaddr, curr, pi,
3910 HANDLE_DEATH_LIST))
04e7712f
AB
3911 return;
3912 }
3913 if (rc)
3914 return;
3915 uentry = next_uentry;
3916 entry = next_entry;
3917 pi = next_pi;
3918 /*
3919 * Avoid excessively long or circular lists:
3920 */
3921 if (!--limit)
3922 break;
3923
3924 cond_resched();
3925 }
3926 if (pending) {
3927 void __user *uaddr = futex_uaddr(pending, futex_offset);
3928
ca16d5be 3929 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3930 }
3931}
3932
3933COMPAT_SYSCALL_DEFINE2(set_robust_list,
3934 struct compat_robust_list_head __user *, head,
3935 compat_size_t, len)
3936{
3937 if (!futex_cmpxchg_enabled)
3938 return -ENOSYS;
3939
3940 if (unlikely(len != sizeof(*head)))
3941 return -EINVAL;
3942
3943 current->compat_robust_list = head;
3944
3945 return 0;
3946}
3947
3948COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3949 compat_uptr_t __user *, head_ptr,
3950 compat_size_t __user *, len_ptr)
3951{
3952 struct compat_robust_list_head __user *head;
3953 unsigned long ret;
3954 struct task_struct *p;
3955
3956 if (!futex_cmpxchg_enabled)
3957 return -ENOSYS;
3958
3959 rcu_read_lock();
3960
3961 ret = -ESRCH;
3962 if (!pid)
3963 p = current;
3964 else {
3965 p = find_task_by_vpid(pid);
3966 if (!p)
3967 goto err_unlock;
3968 }
3969
3970 ret = -EPERM;
3971 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3972 goto err_unlock;
3973
3974 head = p->compat_robust_list;
3975 rcu_read_unlock();
3976
3977 if (put_user(sizeof(*head), len_ptr))
3978 return -EFAULT;
3979 return put_user(ptr_to_compat(head), head_ptr);
3980
3981err_unlock:
3982 rcu_read_unlock();
3983
3984 return ret;
3985}
bec2f7cb 3986#endif /* CONFIG_COMPAT */
04e7712f 3987
bec2f7cb 3988#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3989SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3990 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3991 u32, val3)
3992{
bec2f7cb 3993 struct timespec64 ts;
04e7712f
AB
3994 ktime_t t, *tp = NULL;
3995 int val2 = 0;
3996 int cmd = op & FUTEX_CMD_MASK;
3997
3998 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3999 cmd == FUTEX_WAIT_BITSET ||
4000 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 4001 if (get_old_timespec32(&ts, utime))
04e7712f 4002 return -EFAULT;
bec2f7cb 4003 if (!timespec64_valid(&ts))
04e7712f
AB
4004 return -EINVAL;
4005
bec2f7cb 4006 t = timespec64_to_ktime(ts);
04e7712f
AB
4007 if (cmd == FUTEX_WAIT)
4008 t = ktime_add_safe(ktime_get(), t);
4009 tp = &t;
4010 }
4011 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4012 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4013 val2 = (int) (unsigned long) utime;
4014
4015 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4016}
bec2f7cb 4017#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 4018
03b8c7b6 4019static void __init futex_detect_cmpxchg(void)
1da177e4 4020{
03b8c7b6 4021#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 4022 u32 curval;
03b8c7b6
HC
4023
4024 /*
4025 * This will fail and we want it. Some arch implementations do
4026 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4027 * functionality. We want to know that before we call in any
4028 * of the complex code paths. Also we want to prevent
4029 * registration of robust lists in that case. NULL is
4030 * guaranteed to fault and we get -EFAULT on functional
4031 * implementation, the non-functional ones will return
4032 * -ENOSYS.
4033 */
4034 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4035 futex_cmpxchg_enabled = 1;
4036#endif
4037}
4038
4039static int __init futex_init(void)
4040{
63b1a816 4041 unsigned int futex_shift;
a52b89eb
DB
4042 unsigned long i;
4043
4044#if CONFIG_BASE_SMALL
4045 futex_hashsize = 16;
4046#else
4047 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4048#endif
4049
4050 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4051 futex_hashsize, 0,
4052 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4053 &futex_shift, NULL,
4054 futex_hashsize, futex_hashsize);
4055 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4056
4057 futex_detect_cmpxchg();
a0c1e907 4058
a52b89eb 4059 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4060 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4061 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4062 spin_lock_init(&futex_queues[i].lock);
4063 }
4064
1da177e4
LT
4065 return 0;
4066}
25f71d1c 4067core_initcall(futex_init);