]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Fix bug in WARN_ON for NULL q.pi_state
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
b488893a 63
4732efbe 64#include <asm/futex.h>
1da177e4 65
c87e2837
IM
66#include "rtmutex_common.h"
67
a0c1e907
TG
68int __read_mostly futex_cmpxchg_enabled;
69
1da177e4
LT
70#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
71
b41277dc
DH
72/*
73 * Futex flags used to encode options to functions and preserve them across
74 * restarts.
75 */
76#define FLAGS_SHARED 0x01
77#define FLAGS_CLOCKRT 0x02
78#define FLAGS_HAS_TIMEOUT 0x04
79
c87e2837
IM
80/*
81 * Priority Inheritance state:
82 */
83struct futex_pi_state {
84 /*
85 * list of 'owned' pi_state instances - these have to be
86 * cleaned up in do_exit() if the task exits prematurely:
87 */
88 struct list_head list;
89
90 /*
91 * The PI object:
92 */
93 struct rt_mutex pi_mutex;
94
95 struct task_struct *owner;
96 atomic_t refcount;
97
98 union futex_key key;
99};
100
d8d88fbb
DH
101/**
102 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 103 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
104 * @task: the task waiting on the futex
105 * @lock_ptr: the hash bucket lock
106 * @key: the key the futex is hashed on
107 * @pi_state: optional priority inheritance state
108 * @rt_waiter: rt_waiter storage for use with requeue_pi
109 * @requeue_pi_key: the requeue_pi target futex key
110 * @bitset: bitset for the optional bitmasked wakeup
111 *
112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
113 * we can wake only the relevant ones (hashed queues may be shared).
114 *
115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 117 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
118 * the second.
119 *
120 * PI futexes are typically woken before they are removed from the hash list via
121 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
122 */
123struct futex_q {
ec92d082 124 struct plist_node list;
1da177e4 125
d8d88fbb 126 struct task_struct *task;
1da177e4 127 spinlock_t *lock_ptr;
1da177e4 128 union futex_key key;
c87e2837 129 struct futex_pi_state *pi_state;
52400ba9 130 struct rt_mutex_waiter *rt_waiter;
84bc4af5 131 union futex_key *requeue_pi_key;
cd689985 132 u32 bitset;
1da177e4
LT
133};
134
5bdb05f9
DH
135static const struct futex_q futex_q_init = {
136 /* list gets initialized in queue_me()*/
137 .key = FUTEX_KEY_INIT,
138 .bitset = FUTEX_BITSET_MATCH_ANY
139};
140
1da177e4 141/*
b2d0994b
DH
142 * Hash buckets are shared by all the futex_keys that hash to the same
143 * location. Each key may have multiple futex_q structures, one for each task
144 * waiting on a futex.
1da177e4
LT
145 */
146struct futex_hash_bucket {
ec92d082
PP
147 spinlock_t lock;
148 struct plist_head chain;
1da177e4
LT
149};
150
151static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
152
1da177e4
LT
153/*
154 * We hash on the keys returned from get_futex_key (see below).
155 */
156static struct futex_hash_bucket *hash_futex(union futex_key *key)
157{
158 u32 hash = jhash2((u32*)&key->both.word,
159 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
160 key->both.offset);
161 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
162}
163
164/*
165 * Return 1 if two futex_keys are equal, 0 otherwise.
166 */
167static inline int match_futex(union futex_key *key1, union futex_key *key2)
168{
2bc87203
DH
169 return (key1 && key2
170 && key1->both.word == key2->both.word
1da177e4
LT
171 && key1->both.ptr == key2->both.ptr
172 && key1->both.offset == key2->both.offset);
173}
174
38d47c1b
PZ
175/*
176 * Take a reference to the resource addressed by a key.
177 * Can be called while holding spinlocks.
178 *
179 */
180static void get_futex_key_refs(union futex_key *key)
181{
182 if (!key->both.ptr)
183 return;
184
185 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
186 case FUT_OFF_INODE:
7de9c6ee 187 ihold(key->shared.inode);
38d47c1b
PZ
188 break;
189 case FUT_OFF_MMSHARED:
190 atomic_inc(&key->private.mm->mm_count);
191 break;
192 }
193}
194
195/*
196 * Drop a reference to the resource addressed by a key.
197 * The hash bucket spinlock must not be held.
198 */
199static void drop_futex_key_refs(union futex_key *key)
200{
90621c40
DH
201 if (!key->both.ptr) {
202 /* If we're here then we tried to put a key we failed to get */
203 WARN_ON_ONCE(1);
38d47c1b 204 return;
90621c40 205 }
38d47c1b
PZ
206
207 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
208 case FUT_OFF_INODE:
209 iput(key->shared.inode);
210 break;
211 case FUT_OFF_MMSHARED:
212 mmdrop(key->private.mm);
213 break;
214 }
215}
216
34f01cc1 217/**
d96ee56c
DH
218 * get_futex_key() - Get parameters which are the keys for a futex
219 * @uaddr: virtual address of the futex
220 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
221 * @key: address where result is stored.
9ea71503
SB
222 * @rw: mapping needs to be read/write (values: VERIFY_READ,
223 * VERIFY_WRITE)
34f01cc1
ED
224 *
225 * Returns a negative error code or 0
226 * The key words are stored in *key on success.
1da177e4 227 *
f3a43f3f 228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
229 * offset_within_page). For private mappings, it's (uaddr, current->mm).
230 * We can usually work out the index without swapping in the page.
231 *
b2d0994b 232 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 233 */
64d1304a 234static int
9ea71503 235get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 236{
e2970f2f 237 unsigned long address = (unsigned long)uaddr;
1da177e4 238 struct mm_struct *mm = current->mm;
a5b338f2 239 struct page *page, *page_head;
9ea71503 240 int err, ro = 0;
1da177e4
LT
241
242 /*
243 * The futex address must be "naturally" aligned.
244 */
e2970f2f 245 key->both.offset = address % PAGE_SIZE;
34f01cc1 246 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 247 return -EINVAL;
e2970f2f 248 address -= key->both.offset;
1da177e4 249
34f01cc1
ED
250 /*
251 * PROCESS_PRIVATE futexes are fast.
252 * As the mm cannot disappear under us and the 'key' only needs
253 * virtual address, we dont even have to find the underlying vma.
254 * Note : We do have to check 'uaddr' is a valid user address,
255 * but access_ok() should be faster than find_vma()
256 */
257 if (!fshared) {
7485d0d3 258 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
259 return -EFAULT;
260 key->private.mm = mm;
261 key->private.address = address;
42569c39 262 get_futex_key_refs(key);
34f01cc1
ED
263 return 0;
264 }
1da177e4 265
38d47c1b 266again:
7485d0d3 267 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
268 /*
269 * If write access is not required (eg. FUTEX_WAIT), try
270 * and get read-only access.
271 */
272 if (err == -EFAULT && rw == VERIFY_READ) {
273 err = get_user_pages_fast(address, 1, 0, &page);
274 ro = 1;
275 }
38d47c1b
PZ
276 if (err < 0)
277 return err;
9ea71503
SB
278 else
279 err = 0;
38d47c1b 280
a5b338f2
AA
281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
282 page_head = page;
283 if (unlikely(PageTail(page))) {
38d47c1b 284 put_page(page);
a5b338f2
AA
285 /* serialize against __split_huge_page_splitting() */
286 local_irq_disable();
287 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
288 page_head = compound_head(page);
289 /*
290 * page_head is valid pointer but we must pin
291 * it before taking the PG_lock and/or
292 * PG_compound_lock. The moment we re-enable
293 * irqs __split_huge_page_splitting() can
294 * return and the head page can be freed from
295 * under us. We can't take the PG_lock and/or
296 * PG_compound_lock on a page that could be
297 * freed from under us.
298 */
299 if (page != page_head) {
300 get_page(page_head);
301 put_page(page);
302 }
303 local_irq_enable();
304 } else {
305 local_irq_enable();
306 goto again;
307 }
308 }
309#else
310 page_head = compound_head(page);
311 if (page != page_head) {
312 get_page(page_head);
313 put_page(page);
314 }
315#endif
316
317 lock_page(page_head);
e6780f72
HD
318
319 /*
320 * If page_head->mapping is NULL, then it cannot be a PageAnon
321 * page; but it might be the ZERO_PAGE or in the gate area or
322 * in a special mapping (all cases which we are happy to fail);
323 * or it may have been a good file page when get_user_pages_fast
324 * found it, but truncated or holepunched or subjected to
325 * invalidate_complete_page2 before we got the page lock (also
326 * cases which we are happy to fail). And we hold a reference,
327 * so refcount care in invalidate_complete_page's remove_mapping
328 * prevents drop_caches from setting mapping to NULL beneath us.
329 *
330 * The case we do have to guard against is when memory pressure made
331 * shmem_writepage move it from filecache to swapcache beneath us:
332 * an unlikely race, but we do need to retry for page_head->mapping.
333 */
a5b338f2 334 if (!page_head->mapping) {
e6780f72 335 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
336 unlock_page(page_head);
337 put_page(page_head);
e6780f72
HD
338 if (shmem_swizzled)
339 goto again;
340 return -EFAULT;
38d47c1b 341 }
1da177e4
LT
342
343 /*
344 * Private mappings are handled in a simple way.
345 *
346 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
347 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 348 * the object not the particular process.
1da177e4 349 */
a5b338f2 350 if (PageAnon(page_head)) {
9ea71503
SB
351 /*
352 * A RO anonymous page will never change and thus doesn't make
353 * sense for futex operations.
354 */
355 if (ro) {
356 err = -EFAULT;
357 goto out;
358 }
359
38d47c1b 360 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 361 key->private.mm = mm;
e2970f2f 362 key->private.address = address;
38d47c1b
PZ
363 } else {
364 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2
AA
365 key->shared.inode = page_head->mapping->host;
366 key->shared.pgoff = page_head->index;
1da177e4
LT
367 }
368
38d47c1b 369 get_futex_key_refs(key);
1da177e4 370
9ea71503 371out:
a5b338f2
AA
372 unlock_page(page_head);
373 put_page(page_head);
9ea71503 374 return err;
1da177e4
LT
375}
376
ae791a2d 377static inline void put_futex_key(union futex_key *key)
1da177e4 378{
38d47c1b 379 drop_futex_key_refs(key);
1da177e4
LT
380}
381
d96ee56c
DH
382/**
383 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
384 * @uaddr: pointer to faulting user space address
385 *
386 * Slow path to fixup the fault we just took in the atomic write
387 * access to @uaddr.
388 *
fb62db2b 389 * We have no generic implementation of a non-destructive write to the
d0725992
TG
390 * user address. We know that we faulted in the atomic pagefault
391 * disabled section so we can as well avoid the #PF overhead by
392 * calling get_user_pages() right away.
393 */
394static int fault_in_user_writeable(u32 __user *uaddr)
395{
722d0172
AK
396 struct mm_struct *mm = current->mm;
397 int ret;
398
399 down_read(&mm->mmap_sem);
2efaca92
BH
400 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
401 FAULT_FLAG_WRITE);
722d0172
AK
402 up_read(&mm->mmap_sem);
403
d0725992
TG
404 return ret < 0 ? ret : 0;
405}
406
4b1c486b
DH
407/**
408 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
409 * @hb: the hash bucket the futex_q's reside in
410 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
411 *
412 * Must be called with the hb lock held.
413 */
414static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
415 union futex_key *key)
416{
417 struct futex_q *this;
418
419 plist_for_each_entry(this, &hb->chain, list) {
420 if (match_futex(&this->key, key))
421 return this;
422 }
423 return NULL;
424}
425
37a9d912
ML
426static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
427 u32 uval, u32 newval)
36cf3b5c 428{
37a9d912 429 int ret;
36cf3b5c
TG
430
431 pagefault_disable();
37a9d912 432 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
433 pagefault_enable();
434
37a9d912 435 return ret;
36cf3b5c
TG
436}
437
438static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
439{
440 int ret;
441
a866374a 442 pagefault_disable();
e2970f2f 443 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 444 pagefault_enable();
1da177e4
LT
445
446 return ret ? -EFAULT : 0;
447}
448
c87e2837
IM
449
450/*
451 * PI code:
452 */
453static int refill_pi_state_cache(void)
454{
455 struct futex_pi_state *pi_state;
456
457 if (likely(current->pi_state_cache))
458 return 0;
459
4668edc3 460 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
461
462 if (!pi_state)
463 return -ENOMEM;
464
c87e2837
IM
465 INIT_LIST_HEAD(&pi_state->list);
466 /* pi_mutex gets initialized later */
467 pi_state->owner = NULL;
468 atomic_set(&pi_state->refcount, 1);
38d47c1b 469 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
470
471 current->pi_state_cache = pi_state;
472
473 return 0;
474}
475
476static struct futex_pi_state * alloc_pi_state(void)
477{
478 struct futex_pi_state *pi_state = current->pi_state_cache;
479
480 WARN_ON(!pi_state);
481 current->pi_state_cache = NULL;
482
483 return pi_state;
484}
485
486static void free_pi_state(struct futex_pi_state *pi_state)
487{
488 if (!atomic_dec_and_test(&pi_state->refcount))
489 return;
490
491 /*
492 * If pi_state->owner is NULL, the owner is most probably dying
493 * and has cleaned up the pi_state already
494 */
495 if (pi_state->owner) {
1d615482 496 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 497 list_del_init(&pi_state->list);
1d615482 498 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
499
500 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
501 }
502
503 if (current->pi_state_cache)
504 kfree(pi_state);
505 else {
506 /*
507 * pi_state->list is already empty.
508 * clear pi_state->owner.
509 * refcount is at 0 - put it back to 1.
510 */
511 pi_state->owner = NULL;
512 atomic_set(&pi_state->refcount, 1);
513 current->pi_state_cache = pi_state;
514 }
515}
516
517/*
518 * Look up the task based on what TID userspace gave us.
519 * We dont trust it.
520 */
521static struct task_struct * futex_find_get_task(pid_t pid)
522{
523 struct task_struct *p;
524
d359b549 525 rcu_read_lock();
228ebcbe 526 p = find_task_by_vpid(pid);
7a0ea09a
MH
527 if (p)
528 get_task_struct(p);
a06381fe 529
d359b549 530 rcu_read_unlock();
c87e2837
IM
531
532 return p;
533}
534
535/*
536 * This task is holding PI mutexes at exit time => bad.
537 * Kernel cleans up PI-state, but userspace is likely hosed.
538 * (Robust-futex cleanup is separate and might save the day for userspace.)
539 */
540void exit_pi_state_list(struct task_struct *curr)
541{
c87e2837
IM
542 struct list_head *next, *head = &curr->pi_state_list;
543 struct futex_pi_state *pi_state;
627371d7 544 struct futex_hash_bucket *hb;
38d47c1b 545 union futex_key key = FUTEX_KEY_INIT;
c87e2837 546
a0c1e907
TG
547 if (!futex_cmpxchg_enabled)
548 return;
c87e2837
IM
549 /*
550 * We are a ZOMBIE and nobody can enqueue itself on
551 * pi_state_list anymore, but we have to be careful
627371d7 552 * versus waiters unqueueing themselves:
c87e2837 553 */
1d615482 554 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
555 while (!list_empty(head)) {
556
557 next = head->next;
558 pi_state = list_entry(next, struct futex_pi_state, list);
559 key = pi_state->key;
627371d7 560 hb = hash_futex(&key);
1d615482 561 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 562
c87e2837
IM
563 spin_lock(&hb->lock);
564
1d615482 565 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
566 /*
567 * We dropped the pi-lock, so re-check whether this
568 * task still owns the PI-state:
569 */
c87e2837
IM
570 if (head->next != next) {
571 spin_unlock(&hb->lock);
572 continue;
573 }
574
c87e2837 575 WARN_ON(pi_state->owner != curr);
627371d7
IM
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
c87e2837 578 pi_state->owner = NULL;
1d615482 579 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
580
581 rt_mutex_unlock(&pi_state->pi_mutex);
582
583 spin_unlock(&hb->lock);
584
1d615482 585 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 586 }
1d615482 587 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
588}
589
590static int
d0aa7a70
PP
591lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
592 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
593{
594 struct futex_pi_state *pi_state = NULL;
595 struct futex_q *this, *next;
ec92d082 596 struct plist_head *head;
c87e2837 597 struct task_struct *p;
778e9a9c 598 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
599
600 head = &hb->chain;
601
ec92d082 602 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 603 if (match_futex(&this->key, key)) {
c87e2837
IM
604 /*
605 * Another waiter already exists - bump up
606 * the refcount and return its pi_state:
607 */
608 pi_state = this->pi_state;
06a9ec29 609 /*
fb62db2b 610 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
611 */
612 if (unlikely(!pi_state))
613 return -EINVAL;
614
627371d7 615 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
616
617 /*
618 * When pi_state->owner is NULL then the owner died
619 * and another waiter is on the fly. pi_state->owner
620 * is fixed up by the task which acquires
621 * pi_state->rt_mutex.
622 *
623 * We do not check for pid == 0 which can happen when
624 * the owner died and robust_list_exit() cleared the
625 * TID.
626 */
627 if (pid && pi_state->owner) {
628 /*
629 * Bail out if user space manipulated the
630 * futex value.
631 */
632 if (pid != task_pid_vnr(pi_state->owner))
633 return -EINVAL;
634 }
627371d7 635
c87e2837 636 atomic_inc(&pi_state->refcount);
d0aa7a70 637 *ps = pi_state;
c87e2837
IM
638
639 return 0;
640 }
641 }
642
643 /*
e3f2ddea 644 * We are the first waiter - try to look up the real owner and attach
778e9a9c 645 * the new pi_state to it, but bail out when TID = 0
c87e2837 646 */
778e9a9c 647 if (!pid)
e3f2ddea 648 return -ESRCH;
c87e2837 649 p = futex_find_get_task(pid);
7a0ea09a
MH
650 if (!p)
651 return -ESRCH;
778e9a9c
AK
652
653 /*
654 * We need to look at the task state flags to figure out,
655 * whether the task is exiting. To protect against the do_exit
656 * change of the task flags, we do this protected by
657 * p->pi_lock:
658 */
1d615482 659 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
660 if (unlikely(p->flags & PF_EXITING)) {
661 /*
662 * The task is on the way out. When PF_EXITPIDONE is
663 * set, we know that the task has finished the
664 * cleanup:
665 */
666 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
667
1d615482 668 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
669 put_task_struct(p);
670 return ret;
671 }
c87e2837
IM
672
673 pi_state = alloc_pi_state();
674
675 /*
676 * Initialize the pi_mutex in locked state and make 'p'
677 * the owner of it:
678 */
679 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
680
681 /* Store the key for possible exit cleanups: */
d0aa7a70 682 pi_state->key = *key;
c87e2837 683
627371d7 684 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
685 list_add(&pi_state->list, &p->pi_state_list);
686 pi_state->owner = p;
1d615482 687 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
688
689 put_task_struct(p);
690
d0aa7a70 691 *ps = pi_state;
c87e2837
IM
692
693 return 0;
694}
695
1a52084d 696/**
d96ee56c 697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
698 * @uaddr: the pi futex user address
699 * @hb: the pi futex hash bucket
700 * @key: the futex key associated with uaddr and hb
701 * @ps: the pi_state pointer where we store the result of the
702 * lookup
703 * @task: the task to perform the atomic lock work for. This will
704 * be "current" except in the case of requeue pi.
705 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
706 *
707 * Returns:
708 * 0 - ready to wait
709 * 1 - acquired the lock
710 * <0 - error
711 *
712 * The hb->lock and futex_key refs shall be held by the caller.
713 */
714static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
715 union futex_key *key,
716 struct futex_pi_state **ps,
bab5bc9e 717 struct task_struct *task, int set_waiters)
1a52084d
DH
718{
719 int lock_taken, ret, ownerdied = 0;
c0c9ed15 720 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
721
722retry:
723 ret = lock_taken = 0;
724
725 /*
726 * To avoid races, we attempt to take the lock here again
727 * (by doing a 0 -> TID atomic cmpxchg), while holding all
728 * the locks. It will most likely not succeed.
729 */
c0c9ed15 730 newval = vpid;
bab5bc9e
DH
731 if (set_waiters)
732 newval |= FUTEX_WAITERS;
1a52084d 733
37a9d912 734 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
735 return -EFAULT;
736
737 /*
738 * Detect deadlocks.
739 */
c0c9ed15 740 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
741 return -EDEADLK;
742
743 /*
744 * Surprise - we got the lock. Just return to userspace:
745 */
746 if (unlikely(!curval))
747 return 1;
748
749 uval = curval;
750
751 /*
752 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
753 * to wake at the next unlock.
754 */
755 newval = curval | FUTEX_WAITERS;
756
757 /*
758 * There are two cases, where a futex might have no owner (the
759 * owner TID is 0): OWNER_DIED. We take over the futex in this
760 * case. We also do an unconditional take over, when the owner
761 * of the futex died.
762 *
763 * This is safe as we are protected by the hash bucket lock !
764 */
765 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
766 /* Keep the OWNER_DIED bit */
c0c9ed15 767 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1a52084d
DH
768 ownerdied = 0;
769 lock_taken = 1;
770 }
771
37a9d912 772 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
773 return -EFAULT;
774 if (unlikely(curval != uval))
775 goto retry;
776
777 /*
778 * We took the lock due to owner died take over.
779 */
780 if (unlikely(lock_taken))
781 return 1;
782
783 /*
784 * We dont have the lock. Look up the PI state (or create it if
785 * we are the first waiter):
786 */
787 ret = lookup_pi_state(uval, hb, key, ps);
788
789 if (unlikely(ret)) {
790 switch (ret) {
791 case -ESRCH:
792 /*
793 * No owner found for this futex. Check if the
794 * OWNER_DIED bit is set to figure out whether
795 * this is a robust futex or not.
796 */
797 if (get_futex_value_locked(&curval, uaddr))
798 return -EFAULT;
799
800 /*
801 * We simply start over in case of a robust
802 * futex. The code above will take the futex
803 * and return happy.
804 */
805 if (curval & FUTEX_OWNER_DIED) {
806 ownerdied = 1;
807 goto retry;
808 }
809 default:
810 break;
811 }
812 }
813
814 return ret;
815}
816
2e12978a
LJ
817/**
818 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
819 * @q: The futex_q to unqueue
820 *
821 * The q->lock_ptr must not be NULL and must be held by the caller.
822 */
823static void __unqueue_futex(struct futex_q *q)
824{
825 struct futex_hash_bucket *hb;
826
29096202
SR
827 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
828 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
829 return;
830
831 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
832 plist_del(&q->list, &hb->chain);
833}
834
1da177e4
LT
835/*
836 * The hash bucket lock must be held when this is called.
837 * Afterwards, the futex_q must not be accessed.
838 */
839static void wake_futex(struct futex_q *q)
840{
f1a11e05
TG
841 struct task_struct *p = q->task;
842
1da177e4 843 /*
f1a11e05 844 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
845 * a non-futex wake up happens on another CPU then the task
846 * might exit and p would dereference a non-existing task
f1a11e05
TG
847 * struct. Prevent this by holding a reference on p across the
848 * wake up.
1da177e4 849 */
f1a11e05
TG
850 get_task_struct(p);
851
2e12978a 852 __unqueue_futex(q);
1da177e4 853 /*
f1a11e05
TG
854 * The waiting task can free the futex_q as soon as
855 * q->lock_ptr = NULL is written, without taking any locks. A
856 * memory barrier is required here to prevent the following
857 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 858 */
ccdea2f8 859 smp_wmb();
1da177e4 860 q->lock_ptr = NULL;
f1a11e05
TG
861
862 wake_up_state(p, TASK_NORMAL);
863 put_task_struct(p);
1da177e4
LT
864}
865
c87e2837
IM
866static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
867{
868 struct task_struct *new_owner;
869 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 870 u32 uninitialized_var(curval), newval;
c87e2837
IM
871
872 if (!pi_state)
873 return -EINVAL;
874
51246bfd
TG
875 /*
876 * If current does not own the pi_state then the futex is
877 * inconsistent and user space fiddled with the futex value.
878 */
879 if (pi_state->owner != current)
880 return -EINVAL;
881
d209d74d 882 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
883 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
884
885 /*
f123c98e
SR
886 * It is possible that the next waiter (the one that brought
887 * this owner to the kernel) timed out and is no longer
888 * waiting on the lock.
c87e2837
IM
889 */
890 if (!new_owner)
891 new_owner = this->task;
892
893 /*
894 * We pass it to the next owner. (The WAITERS bit is always
895 * kept enabled while there is PI state around. We must also
896 * preserve the owner died bit.)
897 */
e3f2ddea 898 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
899 int ret = 0;
900
b488893a 901 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 902
37a9d912 903 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 904 ret = -EFAULT;
cde898fa 905 else if (curval != uval)
778e9a9c
AK
906 ret = -EINVAL;
907 if (ret) {
d209d74d 908 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
909 return ret;
910 }
e3f2ddea 911 }
c87e2837 912
1d615482 913 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
914 WARN_ON(list_empty(&pi_state->list));
915 list_del_init(&pi_state->list);
1d615482 916 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 917
1d615482 918 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 919 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
920 list_add(&pi_state->list, &new_owner->pi_state_list);
921 pi_state->owner = new_owner;
1d615482 922 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 923
d209d74d 924 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
925 rt_mutex_unlock(&pi_state->pi_mutex);
926
927 return 0;
928}
929
930static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
931{
7cfdaf38 932 u32 uninitialized_var(oldval);
c87e2837
IM
933
934 /*
935 * There is no waiter, so we unlock the futex. The owner died
936 * bit has not to be preserved here. We are the owner:
937 */
37a9d912
ML
938 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
939 return -EFAULT;
c87e2837
IM
940 if (oldval != uval)
941 return -EAGAIN;
942
943 return 0;
944}
945
8b8f319f
IM
946/*
947 * Express the locking dependencies for lockdep:
948 */
949static inline void
950double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
951{
952 if (hb1 <= hb2) {
953 spin_lock(&hb1->lock);
954 if (hb1 < hb2)
955 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
956 } else { /* hb1 > hb2 */
957 spin_lock(&hb2->lock);
958 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
959 }
960}
961
5eb3dc62
DH
962static inline void
963double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
964{
f061d351 965 spin_unlock(&hb1->lock);
88f502fe
IM
966 if (hb1 != hb2)
967 spin_unlock(&hb2->lock);
5eb3dc62
DH
968}
969
1da177e4 970/*
b2d0994b 971 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 972 */
b41277dc
DH
973static int
974futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 975{
e2970f2f 976 struct futex_hash_bucket *hb;
1da177e4 977 struct futex_q *this, *next;
ec92d082 978 struct plist_head *head;
38d47c1b 979 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
980 int ret;
981
cd689985
TG
982 if (!bitset)
983 return -EINVAL;
984
9ea71503 985 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
986 if (unlikely(ret != 0))
987 goto out;
988
e2970f2f
IM
989 hb = hash_futex(&key);
990 spin_lock(&hb->lock);
991 head = &hb->chain;
1da177e4 992
ec92d082 993 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 994 if (match_futex (&this->key, &key)) {
52400ba9 995 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
996 ret = -EINVAL;
997 break;
998 }
cd689985
TG
999
1000 /* Check if one of the bits is set in both bitsets */
1001 if (!(this->bitset & bitset))
1002 continue;
1003
1da177e4
LT
1004 wake_futex(this);
1005 if (++ret >= nr_wake)
1006 break;
1007 }
1008 }
1009
e2970f2f 1010 spin_unlock(&hb->lock);
ae791a2d 1011 put_futex_key(&key);
42d35d48 1012out:
1da177e4
LT
1013 return ret;
1014}
1015
4732efbe
JJ
1016/*
1017 * Wake up all waiters hashed on the physical page that is mapped
1018 * to this virtual address:
1019 */
e2970f2f 1020static int
b41277dc 1021futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1022 int nr_wake, int nr_wake2, int op)
4732efbe 1023{
38d47c1b 1024 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1025 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1026 struct plist_head *head;
4732efbe 1027 struct futex_q *this, *next;
e4dc5b7a 1028 int ret, op_ret;
4732efbe 1029
e4dc5b7a 1030retry:
9ea71503 1031 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1032 if (unlikely(ret != 0))
1033 goto out;
9ea71503 1034 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1035 if (unlikely(ret != 0))
42d35d48 1036 goto out_put_key1;
4732efbe 1037
e2970f2f
IM
1038 hb1 = hash_futex(&key1);
1039 hb2 = hash_futex(&key2);
4732efbe 1040
e4dc5b7a 1041retry_private:
eaaea803 1042 double_lock_hb(hb1, hb2);
e2970f2f 1043 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1044 if (unlikely(op_ret < 0)) {
4732efbe 1045
5eb3dc62 1046 double_unlock_hb(hb1, hb2);
4732efbe 1047
7ee1dd3f 1048#ifndef CONFIG_MMU
e2970f2f
IM
1049 /*
1050 * we don't get EFAULT from MMU faults if we don't have an MMU,
1051 * but we might get them from range checking
1052 */
7ee1dd3f 1053 ret = op_ret;
42d35d48 1054 goto out_put_keys;
7ee1dd3f
DH
1055#endif
1056
796f8d9b
DG
1057 if (unlikely(op_ret != -EFAULT)) {
1058 ret = op_ret;
42d35d48 1059 goto out_put_keys;
796f8d9b
DG
1060 }
1061
d0725992 1062 ret = fault_in_user_writeable(uaddr2);
4732efbe 1063 if (ret)
de87fcc1 1064 goto out_put_keys;
4732efbe 1065
b41277dc 1066 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1067 goto retry_private;
1068
ae791a2d
TG
1069 put_futex_key(&key2);
1070 put_futex_key(&key1);
e4dc5b7a 1071 goto retry;
4732efbe
JJ
1072 }
1073
e2970f2f 1074 head = &hb1->chain;
4732efbe 1075
ec92d082 1076 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1077 if (match_futex (&this->key, &key1)) {
1078 wake_futex(this);
1079 if (++ret >= nr_wake)
1080 break;
1081 }
1082 }
1083
1084 if (op_ret > 0) {
e2970f2f 1085 head = &hb2->chain;
4732efbe
JJ
1086
1087 op_ret = 0;
ec92d082 1088 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1089 if (match_futex (&this->key, &key2)) {
1090 wake_futex(this);
1091 if (++op_ret >= nr_wake2)
1092 break;
1093 }
1094 }
1095 ret += op_ret;
1096 }
1097
5eb3dc62 1098 double_unlock_hb(hb1, hb2);
42d35d48 1099out_put_keys:
ae791a2d 1100 put_futex_key(&key2);
42d35d48 1101out_put_key1:
ae791a2d 1102 put_futex_key(&key1);
42d35d48 1103out:
4732efbe
JJ
1104 return ret;
1105}
1106
9121e478
DH
1107/**
1108 * requeue_futex() - Requeue a futex_q from one hb to another
1109 * @q: the futex_q to requeue
1110 * @hb1: the source hash_bucket
1111 * @hb2: the target hash_bucket
1112 * @key2: the new key for the requeued futex_q
1113 */
1114static inline
1115void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116 struct futex_hash_bucket *hb2, union futex_key *key2)
1117{
1118
1119 /*
1120 * If key1 and key2 hash to the same bucket, no need to
1121 * requeue.
1122 */
1123 if (likely(&hb1->chain != &hb2->chain)) {
1124 plist_del(&q->list, &hb1->chain);
1125 plist_add(&q->list, &hb2->chain);
1126 q->lock_ptr = &hb2->lock;
9121e478
DH
1127 }
1128 get_futex_key_refs(key2);
1129 q->key = *key2;
1130}
1131
52400ba9
DH
1132/**
1133 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1134 * @q: the futex_q
1135 * @key: the key of the requeue target futex
1136 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1137 *
1138 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1140 * to the requeue target futex so the waiter can detect the wakeup on the right
1141 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1142 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1143 * to protect access to the pi_state to fixup the owner later. Must be called
1144 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1145 */
1146static inline
beda2c7e
DH
1147void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148 struct futex_hash_bucket *hb)
52400ba9 1149{
52400ba9
DH
1150 get_futex_key_refs(key);
1151 q->key = *key;
1152
2e12978a 1153 __unqueue_futex(q);
52400ba9
DH
1154
1155 WARN_ON(!q->rt_waiter);
1156 q->rt_waiter = NULL;
1157
beda2c7e 1158 q->lock_ptr = &hb->lock;
beda2c7e 1159
f1a11e05 1160 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1161}
1162
1163/**
1164 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1165 * @pifutex: the user address of the to futex
1166 * @hb1: the from futex hash bucket, must be locked by the caller
1167 * @hb2: the to futex hash bucket, must be locked by the caller
1168 * @key1: the from futex key
1169 * @key2: the to futex key
1170 * @ps: address to store the pi_state pointer
1171 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1172 *
1173 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1174 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1175 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1177 *
1178 * Returns:
1179 * 0 - failed to acquire the lock atomicly
1180 * 1 - acquired the lock
1181 * <0 - error
1182 */
1183static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184 struct futex_hash_bucket *hb1,
1185 struct futex_hash_bucket *hb2,
1186 union futex_key *key1, union futex_key *key2,
bab5bc9e 1187 struct futex_pi_state **ps, int set_waiters)
52400ba9 1188{
bab5bc9e 1189 struct futex_q *top_waiter = NULL;
52400ba9
DH
1190 u32 curval;
1191 int ret;
1192
1193 if (get_futex_value_locked(&curval, pifutex))
1194 return -EFAULT;
1195
bab5bc9e
DH
1196 /*
1197 * Find the top_waiter and determine if there are additional waiters.
1198 * If the caller intends to requeue more than 1 waiter to pifutex,
1199 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200 * as we have means to handle the possible fault. If not, don't set
1201 * the bit unecessarily as it will force the subsequent unlock to enter
1202 * the kernel.
1203 */
52400ba9
DH
1204 top_waiter = futex_top_waiter(hb1, key1);
1205
1206 /* There are no waiters, nothing for us to do. */
1207 if (!top_waiter)
1208 return 0;
1209
84bc4af5
DH
1210 /* Ensure we requeue to the expected futex. */
1211 if (!match_futex(top_waiter->requeue_pi_key, key2))
1212 return -EINVAL;
1213
52400ba9 1214 /*
bab5bc9e
DH
1215 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1216 * the contended case or if set_waiters is 1. The pi_state is returned
1217 * in ps in contended cases.
52400ba9 1218 */
bab5bc9e
DH
1219 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220 set_waiters);
52400ba9 1221 if (ret == 1)
beda2c7e 1222 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1223
1224 return ret;
1225}
1226
1227/**
1228 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1229 * @uaddr1: source futex user address
b41277dc 1230 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1231 * @uaddr2: target futex user address
1232 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1233 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1234 * @cmpval: @uaddr1 expected value (or %NULL)
1235 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1236 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1237 *
1238 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239 * uaddr2 atomically on behalf of the top waiter.
1240 *
1241 * Returns:
1242 * >=0 - on success, the number of tasks requeued or woken
1243 * <0 - on error
1da177e4 1244 */
b41277dc
DH
1245static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247 u32 *cmpval, int requeue_pi)
1da177e4 1248{
38d47c1b 1249 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1250 int drop_count = 0, task_count = 0, ret;
1251 struct futex_pi_state *pi_state = NULL;
e2970f2f 1252 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1253 struct plist_head *head1;
1da177e4 1254 struct futex_q *this, *next;
52400ba9
DH
1255 u32 curval2;
1256
1257 if (requeue_pi) {
1258 /*
1259 * requeue_pi requires a pi_state, try to allocate it now
1260 * without any locks in case it fails.
1261 */
1262 if (refill_pi_state_cache())
1263 return -ENOMEM;
1264 /*
1265 * requeue_pi must wake as many tasks as it can, up to nr_wake
1266 * + nr_requeue, since it acquires the rt_mutex prior to
1267 * returning to userspace, so as to not leave the rt_mutex with
1268 * waiters and no owner. However, second and third wake-ups
1269 * cannot be predicted as they involve race conditions with the
1270 * first wake and a fault while looking up the pi_state. Both
1271 * pthread_cond_signal() and pthread_cond_broadcast() should
1272 * use nr_wake=1.
1273 */
1274 if (nr_wake != 1)
1275 return -EINVAL;
1276 }
1da177e4 1277
42d35d48 1278retry:
52400ba9
DH
1279 if (pi_state != NULL) {
1280 /*
1281 * We will have to lookup the pi_state again, so free this one
1282 * to keep the accounting correct.
1283 */
1284 free_pi_state(pi_state);
1285 pi_state = NULL;
1286 }
1287
9ea71503 1288 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1289 if (unlikely(ret != 0))
1290 goto out;
9ea71503
SB
1291 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1293 if (unlikely(ret != 0))
42d35d48 1294 goto out_put_key1;
1da177e4 1295
e2970f2f
IM
1296 hb1 = hash_futex(&key1);
1297 hb2 = hash_futex(&key2);
1da177e4 1298
e4dc5b7a 1299retry_private:
8b8f319f 1300 double_lock_hb(hb1, hb2);
1da177e4 1301
e2970f2f
IM
1302 if (likely(cmpval != NULL)) {
1303 u32 curval;
1da177e4 1304
e2970f2f 1305 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1306
1307 if (unlikely(ret)) {
5eb3dc62 1308 double_unlock_hb(hb1, hb2);
1da177e4 1309
e2970f2f 1310 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1311 if (ret)
1312 goto out_put_keys;
1da177e4 1313
b41277dc 1314 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1315 goto retry_private;
1da177e4 1316
ae791a2d
TG
1317 put_futex_key(&key2);
1318 put_futex_key(&key1);
e4dc5b7a 1319 goto retry;
1da177e4 1320 }
e2970f2f 1321 if (curval != *cmpval) {
1da177e4
LT
1322 ret = -EAGAIN;
1323 goto out_unlock;
1324 }
1325 }
1326
52400ba9 1327 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1328 /*
1329 * Attempt to acquire uaddr2 and wake the top waiter. If we
1330 * intend to requeue waiters, force setting the FUTEX_WAITERS
1331 * bit. We force this here where we are able to easily handle
1332 * faults rather in the requeue loop below.
1333 */
52400ba9 1334 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1335 &key2, &pi_state, nr_requeue);
52400ba9
DH
1336
1337 /*
1338 * At this point the top_waiter has either taken uaddr2 or is
1339 * waiting on it. If the former, then the pi_state will not
1340 * exist yet, look it up one more time to ensure we have a
1341 * reference to it.
1342 */
1343 if (ret == 1) {
1344 WARN_ON(pi_state);
89061d3d 1345 drop_count++;
52400ba9
DH
1346 task_count++;
1347 ret = get_futex_value_locked(&curval2, uaddr2);
1348 if (!ret)
1349 ret = lookup_pi_state(curval2, hb2, &key2,
1350 &pi_state);
1351 }
1352
1353 switch (ret) {
1354 case 0:
1355 break;
1356 case -EFAULT:
1357 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1358 put_futex_key(&key2);
1359 put_futex_key(&key1);
d0725992 1360 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1361 if (!ret)
1362 goto retry;
1363 goto out;
1364 case -EAGAIN:
1365 /* The owner was exiting, try again. */
1366 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1367 put_futex_key(&key2);
1368 put_futex_key(&key1);
52400ba9
DH
1369 cond_resched();
1370 goto retry;
1371 default:
1372 goto out_unlock;
1373 }
1374 }
1375
e2970f2f 1376 head1 = &hb1->chain;
ec92d082 1377 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1378 if (task_count - nr_wake >= nr_requeue)
1379 break;
1380
1381 if (!match_futex(&this->key, &key1))
1da177e4 1382 continue;
52400ba9 1383
392741e0
DH
1384 /*
1385 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386 * be paired with each other and no other futex ops.
1387 */
1388 if ((requeue_pi && !this->rt_waiter) ||
1389 (!requeue_pi && this->rt_waiter)) {
1390 ret = -EINVAL;
1391 break;
1392 }
52400ba9
DH
1393
1394 /*
1395 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1396 * lock, we already woke the top_waiter. If not, it will be
1397 * woken by futex_unlock_pi().
1398 */
1399 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1400 wake_futex(this);
52400ba9
DH
1401 continue;
1402 }
1da177e4 1403
84bc4af5
DH
1404 /* Ensure we requeue to the expected futex for requeue_pi. */
1405 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406 ret = -EINVAL;
1407 break;
1408 }
1409
52400ba9
DH
1410 /*
1411 * Requeue nr_requeue waiters and possibly one more in the case
1412 * of requeue_pi if we couldn't acquire the lock atomically.
1413 */
1414 if (requeue_pi) {
1415 /* Prepare the waiter to take the rt_mutex. */
1416 atomic_inc(&pi_state->refcount);
1417 this->pi_state = pi_state;
1418 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419 this->rt_waiter,
1420 this->task, 1);
1421 if (ret == 1) {
1422 /* We got the lock. */
beda2c7e 1423 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1424 drop_count++;
52400ba9
DH
1425 continue;
1426 } else if (ret) {
1427 /* -EDEADLK */
1428 this->pi_state = NULL;
1429 free_pi_state(pi_state);
1430 goto out_unlock;
1431 }
1da177e4 1432 }
52400ba9
DH
1433 requeue_futex(this, hb1, hb2, &key2);
1434 drop_count++;
1da177e4
LT
1435 }
1436
1437out_unlock:
5eb3dc62 1438 double_unlock_hb(hb1, hb2);
1da177e4 1439
cd84a42f
DH
1440 /*
1441 * drop_futex_key_refs() must be called outside the spinlocks. During
1442 * the requeue we moved futex_q's from the hash bucket at key1 to the
1443 * one at key2 and updated their key pointer. We no longer need to
1444 * hold the references to key1.
1445 */
1da177e4 1446 while (--drop_count >= 0)
9adef58b 1447 drop_futex_key_refs(&key1);
1da177e4 1448
42d35d48 1449out_put_keys:
ae791a2d 1450 put_futex_key(&key2);
42d35d48 1451out_put_key1:
ae791a2d 1452 put_futex_key(&key1);
42d35d48 1453out:
52400ba9
DH
1454 if (pi_state != NULL)
1455 free_pi_state(pi_state);
1456 return ret ? ret : task_count;
1da177e4
LT
1457}
1458
1459/* The key must be already stored in q->key. */
82af7aca 1460static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1461 __acquires(&hb->lock)
1da177e4 1462{
e2970f2f 1463 struct futex_hash_bucket *hb;
1da177e4 1464
e2970f2f
IM
1465 hb = hash_futex(&q->key);
1466 q->lock_ptr = &hb->lock;
1da177e4 1467
e2970f2f
IM
1468 spin_lock(&hb->lock);
1469 return hb;
1da177e4
LT
1470}
1471
d40d65c8
DH
1472static inline void
1473queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1474 __releases(&hb->lock)
d40d65c8
DH
1475{
1476 spin_unlock(&hb->lock);
d40d65c8
DH
1477}
1478
1479/**
1480 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481 * @q: The futex_q to enqueue
1482 * @hb: The destination hash bucket
1483 *
1484 * The hb->lock must be held by the caller, and is released here. A call to
1485 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1486 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487 * or nothing if the unqueue is done as part of the wake process and the unqueue
1488 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489 * an example).
1490 */
82af7aca 1491static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1492 __releases(&hb->lock)
1da177e4 1493{
ec92d082
PP
1494 int prio;
1495
1496 /*
1497 * The priority used to register this element is
1498 * - either the real thread-priority for the real-time threads
1499 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500 * - or MAX_RT_PRIO for non-RT threads.
1501 * Thus, all RT-threads are woken first in priority order, and
1502 * the others are woken last, in FIFO order.
1503 */
1504 prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506 plist_node_init(&q->list, prio);
ec92d082 1507 plist_add(&q->list, &hb->chain);
c87e2837 1508 q->task = current;
e2970f2f 1509 spin_unlock(&hb->lock);
1da177e4
LT
1510}
1511
d40d65c8
DH
1512/**
1513 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514 * @q: The futex_q to unqueue
1515 *
1516 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517 * be paired with exactly one earlier call to queue_me().
1518 *
1519 * Returns:
1520 * 1 - if the futex_q was still queued (and we removed unqueued it)
1521 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1522 */
1da177e4
LT
1523static int unqueue_me(struct futex_q *q)
1524{
1da177e4 1525 spinlock_t *lock_ptr;
e2970f2f 1526 int ret = 0;
1da177e4
LT
1527
1528 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1529retry:
1da177e4 1530 lock_ptr = q->lock_ptr;
e91467ec 1531 barrier();
c80544dc 1532 if (lock_ptr != NULL) {
1da177e4
LT
1533 spin_lock(lock_ptr);
1534 /*
1535 * q->lock_ptr can change between reading it and
1536 * spin_lock(), causing us to take the wrong lock. This
1537 * corrects the race condition.
1538 *
1539 * Reasoning goes like this: if we have the wrong lock,
1540 * q->lock_ptr must have changed (maybe several times)
1541 * between reading it and the spin_lock(). It can
1542 * change again after the spin_lock() but only if it was
1543 * already changed before the spin_lock(). It cannot,
1544 * however, change back to the original value. Therefore
1545 * we can detect whether we acquired the correct lock.
1546 */
1547 if (unlikely(lock_ptr != q->lock_ptr)) {
1548 spin_unlock(lock_ptr);
1549 goto retry;
1550 }
2e12978a 1551 __unqueue_futex(q);
c87e2837
IM
1552
1553 BUG_ON(q->pi_state);
1554
1da177e4
LT
1555 spin_unlock(lock_ptr);
1556 ret = 1;
1557 }
1558
9adef58b 1559 drop_futex_key_refs(&q->key);
1da177e4
LT
1560 return ret;
1561}
1562
c87e2837
IM
1563/*
1564 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1565 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566 * and dropped here.
c87e2837 1567 */
d0aa7a70 1568static void unqueue_me_pi(struct futex_q *q)
15e408cd 1569 __releases(q->lock_ptr)
c87e2837 1570{
2e12978a 1571 __unqueue_futex(q);
c87e2837
IM
1572
1573 BUG_ON(!q->pi_state);
1574 free_pi_state(q->pi_state);
1575 q->pi_state = NULL;
1576
d0aa7a70 1577 spin_unlock(q->lock_ptr);
c87e2837
IM
1578}
1579
d0aa7a70 1580/*
cdf71a10 1581 * Fixup the pi_state owner with the new owner.
d0aa7a70 1582 *
778e9a9c
AK
1583 * Must be called with hash bucket lock held and mm->sem held for non
1584 * private futexes.
d0aa7a70 1585 */
778e9a9c 1586static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1587 struct task_struct *newowner)
d0aa7a70 1588{
cdf71a10 1589 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1590 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1591 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1592 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1593 int ret;
d0aa7a70
PP
1594
1595 /* Owner died? */
1b7558e4
TG
1596 if (!pi_state->owner)
1597 newtid |= FUTEX_OWNER_DIED;
1598
1599 /*
1600 * We are here either because we stole the rtmutex from the
8161239a
LJ
1601 * previous highest priority waiter or we are the highest priority
1602 * waiter but failed to get the rtmutex the first time.
1603 * We have to replace the newowner TID in the user space variable.
1604 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1605 *
b2d0994b
DH
1606 * Note: We write the user space value _before_ changing the pi_state
1607 * because we can fault here. Imagine swapped out pages or a fork
1608 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1609 *
1610 * Modifying pi_state _before_ the user space value would
1611 * leave the pi_state in an inconsistent state when we fault
1612 * here, because we need to drop the hash bucket lock to
1613 * handle the fault. This might be observed in the PID check
1614 * in lookup_pi_state.
1615 */
1616retry:
1617 if (get_futex_value_locked(&uval, uaddr))
1618 goto handle_fault;
1619
1620 while (1) {
1621 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
37a9d912 1623 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1624 goto handle_fault;
1625 if (curval == uval)
1626 break;
1627 uval = curval;
1628 }
1629
1630 /*
1631 * We fixed up user space. Now we need to fix the pi_state
1632 * itself.
1633 */
d0aa7a70 1634 if (pi_state->owner != NULL) {
1d615482 1635 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1636 WARN_ON(list_empty(&pi_state->list));
1637 list_del_init(&pi_state->list);
1d615482 1638 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1639 }
d0aa7a70 1640
cdf71a10 1641 pi_state->owner = newowner;
d0aa7a70 1642
1d615482 1643 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1644 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1645 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1646 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1647 return 0;
d0aa7a70 1648
d0aa7a70 1649 /*
1b7558e4 1650 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1651 * lock here. That gives the other task (either the highest priority
1652 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1653 * chance to try the fixup of the pi_state. So once we are
1654 * back from handling the fault we need to check the pi_state
1655 * after reacquiring the hash bucket lock and before trying to
1656 * do another fixup. When the fixup has been done already we
1657 * simply return.
d0aa7a70 1658 */
1b7558e4
TG
1659handle_fault:
1660 spin_unlock(q->lock_ptr);
778e9a9c 1661
d0725992 1662 ret = fault_in_user_writeable(uaddr);
778e9a9c 1663
1b7558e4 1664 spin_lock(q->lock_ptr);
778e9a9c 1665
1b7558e4
TG
1666 /*
1667 * Check if someone else fixed it for us:
1668 */
1669 if (pi_state->owner != oldowner)
1670 return 0;
1671
1672 if (ret)
1673 return ret;
1674
1675 goto retry;
d0aa7a70
PP
1676}
1677
72c1bbf3 1678static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1679
dd973998
DH
1680/**
1681 * fixup_owner() - Post lock pi_state and corner case management
1682 * @uaddr: user address of the futex
dd973998
DH
1683 * @q: futex_q (contains pi_state and access to the rt_mutex)
1684 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1685 *
1686 * After attempting to lock an rt_mutex, this function is called to cleanup
1687 * the pi_state owner as well as handle race conditions that may allow us to
1688 * acquire the lock. Must be called with the hb lock held.
1689 *
1690 * Returns:
1691 * 1 - success, lock taken
1692 * 0 - success, lock not taken
1693 * <0 - on error (-EFAULT)
1694 */
ae791a2d 1695static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1696{
1697 struct task_struct *owner;
1698 int ret = 0;
1699
1700 if (locked) {
1701 /*
1702 * Got the lock. We might not be the anticipated owner if we
1703 * did a lock-steal - fix up the PI-state in that case:
1704 */
1705 if (q->pi_state->owner != current)
ae791a2d 1706 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1707 goto out;
1708 }
1709
1710 /*
1711 * Catch the rare case, where the lock was released when we were on the
1712 * way back before we locked the hash bucket.
1713 */
1714 if (q->pi_state->owner == current) {
1715 /*
1716 * Try to get the rt_mutex now. This might fail as some other
1717 * task acquired the rt_mutex after we removed ourself from the
1718 * rt_mutex waiters list.
1719 */
1720 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721 locked = 1;
1722 goto out;
1723 }
1724
1725 /*
1726 * pi_state is incorrect, some other task did a lock steal and
1727 * we returned due to timeout or signal without taking the
8161239a 1728 * rt_mutex. Too late.
dd973998 1729 */
8161239a 1730 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1731 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1732 if (!owner)
1733 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1735 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1736 goto out;
1737 }
1738
1739 /*
1740 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1741 * the owner of the rt_mutex.
dd973998
DH
1742 */
1743 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745 "pi-state %p\n", ret,
1746 q->pi_state->pi_mutex.owner,
1747 q->pi_state->owner);
1748
1749out:
1750 return ret ? ret : locked;
1751}
1752
ca5f9524
DH
1753/**
1754 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755 * @hb: the futex hash bucket, must be locked by the caller
1756 * @q: the futex_q to queue up on
1757 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1758 */
1759static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1760 struct hrtimer_sleeper *timeout)
ca5f9524 1761{
9beba3c5
DH
1762 /*
1763 * The task state is guaranteed to be set before another task can
1764 * wake it. set_current_state() is implemented using set_mb() and
1765 * queue_me() calls spin_unlock() upon completion, both serializing
1766 * access to the hash list and forcing another memory barrier.
1767 */
f1a11e05 1768 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1769 queue_me(q, hb);
ca5f9524
DH
1770
1771 /* Arm the timer */
1772 if (timeout) {
1773 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774 if (!hrtimer_active(&timeout->timer))
1775 timeout->task = NULL;
1776 }
1777
1778 /*
0729e196
DH
1779 * If we have been removed from the hash list, then another task
1780 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1781 */
1782 if (likely(!plist_node_empty(&q->list))) {
1783 /*
1784 * If the timer has already expired, current will already be
1785 * flagged for rescheduling. Only call schedule if there
1786 * is no timeout, or if it has yet to expire.
1787 */
1788 if (!timeout || timeout->task)
1789 schedule();
1790 }
1791 __set_current_state(TASK_RUNNING);
1792}
1793
f801073f
DH
1794/**
1795 * futex_wait_setup() - Prepare to wait on a futex
1796 * @uaddr: the futex userspace address
1797 * @val: the expected value
b41277dc 1798 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1799 * @q: the associated futex_q
1800 * @hb: storage for hash_bucket pointer to be returned to caller
1801 *
1802 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1803 * compare it with the expected value. Handle atomic faults internally.
1804 * Return with the hb lock held and a q.key reference on success, and unlocked
1805 * with no q.key reference on failure.
1806 *
1807 * Returns:
1808 * 0 - uaddr contains val and hb has been locked
ca4a04cf 1809 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1810 */
b41277dc 1811static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1812 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1813{
e2970f2f
IM
1814 u32 uval;
1815 int ret;
1da177e4 1816
1da177e4 1817 /*
b2d0994b 1818 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1819 * Order is important:
1820 *
1821 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1823 *
1824 * The basic logical guarantee of a futex is that it blocks ONLY
1825 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1826 * any cond. If we locked the hash-bucket after testing *uaddr, that
1827 * would open a race condition where we could block indefinitely with
1da177e4
LT
1828 * cond(var) false, which would violate the guarantee.
1829 *
8fe8f545
ML
1830 * On the other hand, we insert q and release the hash-bucket only
1831 * after testing *uaddr. This guarantees that futex_wait() will NOT
1832 * absorb a wakeup if *uaddr does not match the desired values
1833 * while the syscall executes.
1da177e4 1834 */
f801073f 1835retry:
9ea71503 1836 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1837 if (unlikely(ret != 0))
a5a2a0c7 1838 return ret;
f801073f
DH
1839
1840retry_private:
1841 *hb = queue_lock(q);
1842
e2970f2f 1843 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1844
f801073f
DH
1845 if (ret) {
1846 queue_unlock(q, *hb);
1da177e4 1847
e2970f2f 1848 ret = get_user(uval, uaddr);
e4dc5b7a 1849 if (ret)
f801073f 1850 goto out;
1da177e4 1851
b41277dc 1852 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1853 goto retry_private;
1854
ae791a2d 1855 put_futex_key(&q->key);
e4dc5b7a 1856 goto retry;
1da177e4 1857 }
ca5f9524 1858
f801073f
DH
1859 if (uval != val) {
1860 queue_unlock(q, *hb);
1861 ret = -EWOULDBLOCK;
2fff78c7 1862 }
1da177e4 1863
f801073f
DH
1864out:
1865 if (ret)
ae791a2d 1866 put_futex_key(&q->key);
f801073f
DH
1867 return ret;
1868}
1869
b41277dc
DH
1870static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871 ktime_t *abs_time, u32 bitset)
f801073f
DH
1872{
1873 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1874 struct restart_block *restart;
1875 struct futex_hash_bucket *hb;
5bdb05f9 1876 struct futex_q q = futex_q_init;
f801073f
DH
1877 int ret;
1878
1879 if (!bitset)
1880 return -EINVAL;
f801073f
DH
1881 q.bitset = bitset;
1882
1883 if (abs_time) {
1884 to = &timeout;
1885
b41277dc
DH
1886 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887 CLOCK_REALTIME : CLOCK_MONOTONIC,
1888 HRTIMER_MODE_ABS);
f801073f
DH
1889 hrtimer_init_sleeper(to, current);
1890 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891 current->timer_slack_ns);
1892 }
1893
d58e6576 1894retry:
7ada876a
DH
1895 /*
1896 * Prepare to wait on uaddr. On success, holds hb lock and increments
1897 * q.key refs.
1898 */
b41277dc 1899 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1900 if (ret)
1901 goto out;
1902
ca5f9524 1903 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1904 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1905
1906 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1907 ret = 0;
7ada876a 1908 /* unqueue_me() drops q.key ref */
1da177e4 1909 if (!unqueue_me(&q))
7ada876a 1910 goto out;
2fff78c7 1911 ret = -ETIMEDOUT;
ca5f9524 1912 if (to && !to->task)
7ada876a 1913 goto out;
72c1bbf3 1914
e2970f2f 1915 /*
d58e6576
TG
1916 * We expect signal_pending(current), but we might be the
1917 * victim of a spurious wakeup as well.
e2970f2f 1918 */
7ada876a 1919 if (!signal_pending(current))
d58e6576 1920 goto retry;
d58e6576 1921
2fff78c7 1922 ret = -ERESTARTSYS;
c19384b5 1923 if (!abs_time)
7ada876a 1924 goto out;
1da177e4 1925
2fff78c7
PZ
1926 restart = &current_thread_info()->restart_block;
1927 restart->fn = futex_wait_restart;
a3c74c52 1928 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1929 restart->futex.val = val;
1930 restart->futex.time = abs_time->tv64;
1931 restart->futex.bitset = bitset;
0cd9c649 1932 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1933
2fff78c7
PZ
1934 ret = -ERESTART_RESTARTBLOCK;
1935
42d35d48 1936out:
ca5f9524
DH
1937 if (to) {
1938 hrtimer_cancel(&to->timer);
1939 destroy_hrtimer_on_stack(&to->timer);
1940 }
c87e2837
IM
1941 return ret;
1942}
1943
72c1bbf3
NP
1944
1945static long futex_wait_restart(struct restart_block *restart)
1946{
a3c74c52 1947 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1948 ktime_t t, *tp = NULL;
72c1bbf3 1949
a72188d8
DH
1950 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951 t.tv64 = restart->futex.time;
1952 tp = &t;
1953 }
72c1bbf3 1954 restart->fn = do_no_restart_syscall;
b41277dc
DH
1955
1956 return (long)futex_wait(uaddr, restart->futex.flags,
1957 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1958}
1959
1960
c87e2837
IM
1961/*
1962 * Userspace tried a 0 -> TID atomic transition of the futex value
1963 * and failed. The kernel side here does the whole locking operation:
1964 * if there are waiters then it will block, it does PI, etc. (Due to
1965 * races the kernel might see a 0 value of the futex too.)
1966 */
b41277dc
DH
1967static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968 ktime_t *time, int trylock)
c87e2837 1969{
c5780e97 1970 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1971 struct futex_hash_bucket *hb;
5bdb05f9 1972 struct futex_q q = futex_q_init;
dd973998 1973 int res, ret;
c87e2837
IM
1974
1975 if (refill_pi_state_cache())
1976 return -ENOMEM;
1977
c19384b5 1978 if (time) {
c5780e97 1979 to = &timeout;
237fc6e7
TG
1980 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981 HRTIMER_MODE_ABS);
c5780e97 1982 hrtimer_init_sleeper(to, current);
cc584b21 1983 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1984 }
1985
42d35d48 1986retry:
9ea71503 1987 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 1988 if (unlikely(ret != 0))
42d35d48 1989 goto out;
c87e2837 1990
e4dc5b7a 1991retry_private:
82af7aca 1992 hb = queue_lock(&q);
c87e2837 1993
bab5bc9e 1994 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1995 if (unlikely(ret)) {
778e9a9c 1996 switch (ret) {
1a52084d
DH
1997 case 1:
1998 /* We got the lock. */
1999 ret = 0;
2000 goto out_unlock_put_key;
2001 case -EFAULT:
2002 goto uaddr_faulted;
778e9a9c
AK
2003 case -EAGAIN:
2004 /*
2005 * Task is exiting and we just wait for the
2006 * exit to complete.
2007 */
2008 queue_unlock(&q, hb);
ae791a2d 2009 put_futex_key(&q.key);
778e9a9c
AK
2010 cond_resched();
2011 goto retry;
778e9a9c 2012 default:
42d35d48 2013 goto out_unlock_put_key;
c87e2837 2014 }
c87e2837
IM
2015 }
2016
2017 /*
2018 * Only actually queue now that the atomic ops are done:
2019 */
82af7aca 2020 queue_me(&q, hb);
c87e2837 2021
c87e2837
IM
2022 WARN_ON(!q.pi_state);
2023 /*
2024 * Block on the PI mutex:
2025 */
2026 if (!trylock)
2027 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028 else {
2029 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030 /* Fixup the trylock return value: */
2031 ret = ret ? 0 : -EWOULDBLOCK;
2032 }
2033
a99e4e41 2034 spin_lock(q.lock_ptr);
dd973998
DH
2035 /*
2036 * Fixup the pi_state owner and possibly acquire the lock if we
2037 * haven't already.
2038 */
ae791a2d 2039 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2040 /*
2041 * If fixup_owner() returned an error, proprogate that. If it acquired
2042 * the lock, clear our -ETIMEDOUT or -EINTR.
2043 */
2044 if (res)
2045 ret = (res < 0) ? res : 0;
c87e2837 2046
e8f6386c 2047 /*
dd973998
DH
2048 * If fixup_owner() faulted and was unable to handle the fault, unlock
2049 * it and return the fault to userspace.
e8f6386c
DH
2050 */
2051 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052 rt_mutex_unlock(&q.pi_state->pi_mutex);
2053
778e9a9c
AK
2054 /* Unqueue and drop the lock */
2055 unqueue_me_pi(&q);
c87e2837 2056
5ecb01cf 2057 goto out_put_key;
c87e2837 2058
42d35d48 2059out_unlock_put_key:
c87e2837
IM
2060 queue_unlock(&q, hb);
2061
42d35d48 2062out_put_key:
ae791a2d 2063 put_futex_key(&q.key);
42d35d48 2064out:
237fc6e7
TG
2065 if (to)
2066 destroy_hrtimer_on_stack(&to->timer);
dd973998 2067 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2068
42d35d48 2069uaddr_faulted:
778e9a9c
AK
2070 queue_unlock(&q, hb);
2071
d0725992 2072 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2073 if (ret)
2074 goto out_put_key;
c87e2837 2075
b41277dc 2076 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2077 goto retry_private;
2078
ae791a2d 2079 put_futex_key(&q.key);
e4dc5b7a 2080 goto retry;
c87e2837
IM
2081}
2082
c87e2837
IM
2083/*
2084 * Userspace attempted a TID -> 0 atomic transition, and failed.
2085 * This is the in-kernel slowpath: we look up the PI state (if any),
2086 * and do the rt-mutex unlock.
2087 */
b41277dc 2088static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2089{
2090 struct futex_hash_bucket *hb;
2091 struct futex_q *this, *next;
ec92d082 2092 struct plist_head *head;
38d47c1b 2093 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2094 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2095 int ret;
c87e2837
IM
2096
2097retry:
2098 if (get_user(uval, uaddr))
2099 return -EFAULT;
2100 /*
2101 * We release only a lock we actually own:
2102 */
c0c9ed15 2103 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2104 return -EPERM;
c87e2837 2105
9ea71503 2106 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2107 if (unlikely(ret != 0))
2108 goto out;
2109
2110 hb = hash_futex(&key);
2111 spin_lock(&hb->lock);
2112
c87e2837
IM
2113 /*
2114 * To avoid races, try to do the TID -> 0 atomic transition
2115 * again. If it succeeds then we can return without waking
2116 * anyone else up:
2117 */
37a9d912
ML
2118 if (!(uval & FUTEX_OWNER_DIED) &&
2119 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2120 goto pi_faulted;
2121 /*
2122 * Rare case: we managed to release the lock atomically,
2123 * no need to wake anyone else up:
2124 */
c0c9ed15 2125 if (unlikely(uval == vpid))
c87e2837
IM
2126 goto out_unlock;
2127
2128 /*
2129 * Ok, other tasks may need to be woken up - check waiters
2130 * and do the wakeup if necessary:
2131 */
2132 head = &hb->chain;
2133
ec92d082 2134 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2135 if (!match_futex (&this->key, &key))
2136 continue;
2137 ret = wake_futex_pi(uaddr, uval, this);
2138 /*
2139 * The atomic access to the futex value
2140 * generated a pagefault, so retry the
2141 * user-access and the wakeup:
2142 */
2143 if (ret == -EFAULT)
2144 goto pi_faulted;
2145 goto out_unlock;
2146 }
2147 /*
2148 * No waiters - kernel unlocks the futex:
2149 */
e3f2ddea
IM
2150 if (!(uval & FUTEX_OWNER_DIED)) {
2151 ret = unlock_futex_pi(uaddr, uval);
2152 if (ret == -EFAULT)
2153 goto pi_faulted;
2154 }
c87e2837
IM
2155
2156out_unlock:
2157 spin_unlock(&hb->lock);
ae791a2d 2158 put_futex_key(&key);
c87e2837 2159
42d35d48 2160out:
c87e2837
IM
2161 return ret;
2162
2163pi_faulted:
778e9a9c 2164 spin_unlock(&hb->lock);
ae791a2d 2165 put_futex_key(&key);
c87e2837 2166
d0725992 2167 ret = fault_in_user_writeable(uaddr);
b5686363 2168 if (!ret)
c87e2837
IM
2169 goto retry;
2170
1da177e4
LT
2171 return ret;
2172}
2173
52400ba9
DH
2174/**
2175 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176 * @hb: the hash_bucket futex_q was original enqueued on
2177 * @q: the futex_q woken while waiting to be requeued
2178 * @key2: the futex_key of the requeue target futex
2179 * @timeout: the timeout associated with the wait (NULL if none)
2180 *
2181 * Detect if the task was woken on the initial futex as opposed to the requeue
2182 * target futex. If so, determine if it was a timeout or a signal that caused
2183 * the wakeup and return the appropriate error code to the caller. Must be
2184 * called with the hb lock held.
2185 *
2186 * Returns
2187 * 0 - no early wakeup detected
1c840c14 2188 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2189 */
2190static inline
2191int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192 struct futex_q *q, union futex_key *key2,
2193 struct hrtimer_sleeper *timeout)
2194{
2195 int ret = 0;
2196
2197 /*
2198 * With the hb lock held, we avoid races while we process the wakeup.
2199 * We only need to hold hb (and not hb2) to ensure atomicity as the
2200 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201 * It can't be requeued from uaddr2 to something else since we don't
2202 * support a PI aware source futex for requeue.
2203 */
2204 if (!match_futex(&q->key, key2)) {
2205 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206 /*
2207 * We were woken prior to requeue by a timeout or a signal.
2208 * Unqueue the futex_q and determine which it was.
2209 */
2e12978a 2210 plist_del(&q->list, &hb->chain);
52400ba9 2211
d58e6576 2212 /* Handle spurious wakeups gracefully */
11df6ddd 2213 ret = -EWOULDBLOCK;
52400ba9
DH
2214 if (timeout && !timeout->task)
2215 ret = -ETIMEDOUT;
d58e6576 2216 else if (signal_pending(current))
1c840c14 2217 ret = -ERESTARTNOINTR;
52400ba9
DH
2218 }
2219 return ret;
2220}
2221
2222/**
2223 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2224 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2225 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2226 * the same type, no requeueing from private to shared, etc.
2227 * @val: the expected value of uaddr
2228 * @abs_time: absolute timeout
56ec1607 2229 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2230 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231 * @uaddr2: the pi futex we will take prior to returning to user-space
2232 *
2233 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2235 * complete the acquisition of the rt_mutex prior to returning to userspace.
2236 * This ensures the rt_mutex maintains an owner when it has waiters; without
2237 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2238 * need to.
2239 *
2240 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241 * via the following:
2242 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2243 * 2) wakeup on uaddr2 after a requeue
2244 * 3) signal
2245 * 4) timeout
52400ba9 2246 *
cc6db4e6 2247 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2248 *
2249 * If 2, we may then block on trying to take the rt_mutex and return via:
2250 * 5) successful lock
2251 * 6) signal
2252 * 7) timeout
2253 * 8) other lock acquisition failure
2254 *
cc6db4e6 2255 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2256 *
2257 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258 *
2259 * Returns:
2260 * 0 - On success
2261 * <0 - On error
2262 */
b41277dc 2263static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2264 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2265 u32 __user *uaddr2)
52400ba9
DH
2266{
2267 struct hrtimer_sleeper timeout, *to = NULL;
2268 struct rt_mutex_waiter rt_waiter;
2269 struct rt_mutex *pi_mutex = NULL;
52400ba9 2270 struct futex_hash_bucket *hb;
5bdb05f9
DH
2271 union futex_key key2 = FUTEX_KEY_INIT;
2272 struct futex_q q = futex_q_init;
52400ba9 2273 int res, ret;
52400ba9
DH
2274
2275 if (!bitset)
2276 return -EINVAL;
2277
2278 if (abs_time) {
2279 to = &timeout;
b41277dc
DH
2280 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2281 CLOCK_REALTIME : CLOCK_MONOTONIC,
2282 HRTIMER_MODE_ABS);
52400ba9
DH
2283 hrtimer_init_sleeper(to, current);
2284 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2285 current->timer_slack_ns);
2286 }
2287
2288 /*
2289 * The waiter is allocated on our stack, manipulated by the requeue
2290 * code while we sleep on uaddr.
2291 */
2292 debug_rt_mutex_init_waiter(&rt_waiter);
2293 rt_waiter.task = NULL;
2294
9ea71503 2295 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2296 if (unlikely(ret != 0))
2297 goto out;
2298
84bc4af5
DH
2299 q.bitset = bitset;
2300 q.rt_waiter = &rt_waiter;
2301 q.requeue_pi_key = &key2;
2302
7ada876a
DH
2303 /*
2304 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2305 * count.
2306 */
b41277dc 2307 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2308 if (ret)
2309 goto out_key2;
52400ba9
DH
2310
2311 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2312 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2313
2314 spin_lock(&hb->lock);
2315 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2316 spin_unlock(&hb->lock);
2317 if (ret)
2318 goto out_put_keys;
2319
2320 /*
2321 * In order for us to be here, we know our q.key == key2, and since
2322 * we took the hb->lock above, we also know that futex_requeue() has
2323 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2324 * race with the atomic proxy lock acquisition by the requeue code. The
2325 * futex_requeue dropped our key1 reference and incremented our key2
2326 * reference count.
52400ba9
DH
2327 */
2328
2329 /* Check if the requeue code acquired the second futex for us. */
2330 if (!q.rt_waiter) {
2331 /*
2332 * Got the lock. We might not be the anticipated owner if we
2333 * did a lock-steal - fix up the PI-state in that case.
2334 */
2335 if (q.pi_state && (q.pi_state->owner != current)) {
2336 spin_lock(q.lock_ptr);
ae791a2d 2337 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2338 spin_unlock(q.lock_ptr);
2339 }
2340 } else {
2341 /*
2342 * We have been woken up by futex_unlock_pi(), a timeout, or a
2343 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2344 * the pi_state.
2345 */
f27071cb 2346 WARN_ON(!q.pi_state);
52400ba9
DH
2347 pi_mutex = &q.pi_state->pi_mutex;
2348 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2349 debug_rt_mutex_free_waiter(&rt_waiter);
2350
2351 spin_lock(q.lock_ptr);
2352 /*
2353 * Fixup the pi_state owner and possibly acquire the lock if we
2354 * haven't already.
2355 */
ae791a2d 2356 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2357 /*
2358 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2359 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2360 */
2361 if (res)
2362 ret = (res < 0) ? res : 0;
2363
2364 /* Unqueue and drop the lock. */
2365 unqueue_me_pi(&q);
2366 }
2367
2368 /*
2369 * If fixup_pi_state_owner() faulted and was unable to handle the
2370 * fault, unlock the rt_mutex and return the fault to userspace.
2371 */
2372 if (ret == -EFAULT) {
b6070a8d 2373 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2374 rt_mutex_unlock(pi_mutex);
2375 } else if (ret == -EINTR) {
52400ba9 2376 /*
cc6db4e6
DH
2377 * We've already been requeued, but cannot restart by calling
2378 * futex_lock_pi() directly. We could restart this syscall, but
2379 * it would detect that the user space "val" changed and return
2380 * -EWOULDBLOCK. Save the overhead of the restart and return
2381 * -EWOULDBLOCK directly.
52400ba9 2382 */
2070887f 2383 ret = -EWOULDBLOCK;
52400ba9
DH
2384 }
2385
2386out_put_keys:
ae791a2d 2387 put_futex_key(&q.key);
c8b15a70 2388out_key2:
ae791a2d 2389 put_futex_key(&key2);
52400ba9
DH
2390
2391out:
2392 if (to) {
2393 hrtimer_cancel(&to->timer);
2394 destroy_hrtimer_on_stack(&to->timer);
2395 }
2396 return ret;
2397}
2398
0771dfef
IM
2399/*
2400 * Support for robust futexes: the kernel cleans up held futexes at
2401 * thread exit time.
2402 *
2403 * Implementation: user-space maintains a per-thread list of locks it
2404 * is holding. Upon do_exit(), the kernel carefully walks this list,
2405 * and marks all locks that are owned by this thread with the
c87e2837 2406 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2407 * always manipulated with the lock held, so the list is private and
2408 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2409 * field, to allow the kernel to clean up if the thread dies after
2410 * acquiring the lock, but just before it could have added itself to
2411 * the list. There can only be one such pending lock.
2412 */
2413
2414/**
d96ee56c
DH
2415 * sys_set_robust_list() - Set the robust-futex list head of a task
2416 * @head: pointer to the list-head
2417 * @len: length of the list-head, as userspace expects
0771dfef 2418 */
836f92ad
HC
2419SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2420 size_t, len)
0771dfef 2421{
a0c1e907
TG
2422 if (!futex_cmpxchg_enabled)
2423 return -ENOSYS;
0771dfef
IM
2424 /*
2425 * The kernel knows only one size for now:
2426 */
2427 if (unlikely(len != sizeof(*head)))
2428 return -EINVAL;
2429
2430 current->robust_list = head;
2431
2432 return 0;
2433}
2434
2435/**
d96ee56c
DH
2436 * sys_get_robust_list() - Get the robust-futex list head of a task
2437 * @pid: pid of the process [zero for current task]
2438 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2439 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2440 */
836f92ad
HC
2441SYSCALL_DEFINE3(get_robust_list, int, pid,
2442 struct robust_list_head __user * __user *, head_ptr,
2443 size_t __user *, len_ptr)
0771dfef 2444{
ba46df98 2445 struct robust_list_head __user *head;
0771dfef 2446 unsigned long ret;
bdbb776f 2447 struct task_struct *p;
0771dfef 2448
a0c1e907
TG
2449 if (!futex_cmpxchg_enabled)
2450 return -ENOSYS;
2451
ec0c4274
KC
2452 WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2453
bdbb776f
KC
2454 rcu_read_lock();
2455
2456 ret = -ESRCH;
0771dfef 2457 if (!pid)
bdbb776f 2458 p = current;
0771dfef 2459 else {
228ebcbe 2460 p = find_task_by_vpid(pid);
0771dfef
IM
2461 if (!p)
2462 goto err_unlock;
0771dfef
IM
2463 }
2464
bdbb776f
KC
2465 ret = -EPERM;
2466 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2467 goto err_unlock;
2468
2469 head = p->robust_list;
2470 rcu_read_unlock();
2471
0771dfef
IM
2472 if (put_user(sizeof(*head), len_ptr))
2473 return -EFAULT;
2474 return put_user(head, head_ptr);
2475
2476err_unlock:
aaa2a97e 2477 rcu_read_unlock();
0771dfef
IM
2478
2479 return ret;
2480}
2481
2482/*
2483 * Process a futex-list entry, check whether it's owned by the
2484 * dying task, and do notification if so:
2485 */
e3f2ddea 2486int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2487{
7cfdaf38 2488 u32 uval, uninitialized_var(nval), mval;
0771dfef 2489
8f17d3a5
IM
2490retry:
2491 if (get_user(uval, uaddr))
0771dfef
IM
2492 return -1;
2493
b488893a 2494 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2495 /*
2496 * Ok, this dying thread is truly holding a futex
2497 * of interest. Set the OWNER_DIED bit atomically
2498 * via cmpxchg, and if the value had FUTEX_WAITERS
2499 * set, wake up a waiter (if any). (We have to do a
2500 * futex_wake() even if OWNER_DIED is already set -
2501 * to handle the rare but possible case of recursive
2502 * thread-death.) The rest of the cleanup is done in
2503 * userspace.
2504 */
e3f2ddea 2505 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2506 /*
2507 * We are not holding a lock here, but we want to have
2508 * the pagefault_disable/enable() protection because
2509 * we want to handle the fault gracefully. If the
2510 * access fails we try to fault in the futex with R/W
2511 * verification via get_user_pages. get_user() above
2512 * does not guarantee R/W access. If that fails we
2513 * give up and leave the futex locked.
2514 */
2515 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2516 if (fault_in_user_writeable(uaddr))
2517 return -1;
2518 goto retry;
2519 }
c87e2837 2520 if (nval != uval)
8f17d3a5 2521 goto retry;
0771dfef 2522
e3f2ddea
IM
2523 /*
2524 * Wake robust non-PI futexes here. The wakeup of
2525 * PI futexes happens in exit_pi_state():
2526 */
36cf3b5c 2527 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2528 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2529 }
2530 return 0;
2531}
2532
e3f2ddea
IM
2533/*
2534 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2535 */
2536static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2537 struct robust_list __user * __user *head,
1dcc41bb 2538 unsigned int *pi)
e3f2ddea
IM
2539{
2540 unsigned long uentry;
2541
ba46df98 2542 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2543 return -EFAULT;
2544
ba46df98 2545 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2546 *pi = uentry & 1;
2547
2548 return 0;
2549}
2550
0771dfef
IM
2551/*
2552 * Walk curr->robust_list (very carefully, it's a userspace list!)
2553 * and mark any locks found there dead, and notify any waiters.
2554 *
2555 * We silently return on any sign of list-walking problem.
2556 */
2557void exit_robust_list(struct task_struct *curr)
2558{
2559 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2560 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2561 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2562 unsigned int uninitialized_var(next_pi);
0771dfef 2563 unsigned long futex_offset;
9f96cb1e 2564 int rc;
0771dfef 2565
a0c1e907
TG
2566 if (!futex_cmpxchg_enabled)
2567 return;
2568
0771dfef
IM
2569 /*
2570 * Fetch the list head (which was registered earlier, via
2571 * sys_set_robust_list()):
2572 */
e3f2ddea 2573 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2574 return;
2575 /*
2576 * Fetch the relative futex offset:
2577 */
2578 if (get_user(futex_offset, &head->futex_offset))
2579 return;
2580 /*
2581 * Fetch any possibly pending lock-add first, and handle it
2582 * if it exists:
2583 */
e3f2ddea 2584 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2585 return;
e3f2ddea 2586
9f96cb1e 2587 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2588 while (entry != &head->list) {
9f96cb1e
MS
2589 /*
2590 * Fetch the next entry in the list before calling
2591 * handle_futex_death:
2592 */
2593 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2594 /*
2595 * A pending lock might already be on the list, so
c87e2837 2596 * don't process it twice:
0771dfef
IM
2597 */
2598 if (entry != pending)
ba46df98 2599 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2600 curr, pi))
0771dfef 2601 return;
9f96cb1e 2602 if (rc)
0771dfef 2603 return;
9f96cb1e
MS
2604 entry = next_entry;
2605 pi = next_pi;
0771dfef
IM
2606 /*
2607 * Avoid excessively long or circular lists:
2608 */
2609 if (!--limit)
2610 break;
2611
2612 cond_resched();
2613 }
9f96cb1e
MS
2614
2615 if (pending)
2616 handle_futex_death((void __user *)pending + futex_offset,
2617 curr, pip);
0771dfef
IM
2618}
2619
c19384b5 2620long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2621 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2622{
81b40539 2623 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2624 unsigned int flags = 0;
34f01cc1
ED
2625
2626 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2627 flags |= FLAGS_SHARED;
1da177e4 2628
b41277dc
DH
2629 if (op & FUTEX_CLOCK_REALTIME) {
2630 flags |= FLAGS_CLOCKRT;
2631 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2632 return -ENOSYS;
2633 }
1da177e4 2634
59263b51
TG
2635 switch (cmd) {
2636 case FUTEX_LOCK_PI:
2637 case FUTEX_UNLOCK_PI:
2638 case FUTEX_TRYLOCK_PI:
2639 case FUTEX_WAIT_REQUEUE_PI:
2640 case FUTEX_CMP_REQUEUE_PI:
2641 if (!futex_cmpxchg_enabled)
2642 return -ENOSYS;
2643 }
2644
34f01cc1 2645 switch (cmd) {
1da177e4 2646 case FUTEX_WAIT:
cd689985
TG
2647 val3 = FUTEX_BITSET_MATCH_ANY;
2648 case FUTEX_WAIT_BITSET:
81b40539 2649 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2650 case FUTEX_WAKE:
cd689985
TG
2651 val3 = FUTEX_BITSET_MATCH_ANY;
2652 case FUTEX_WAKE_BITSET:
81b40539 2653 return futex_wake(uaddr, flags, val, val3);
1da177e4 2654 case FUTEX_REQUEUE:
81b40539 2655 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2656 case FUTEX_CMP_REQUEUE:
81b40539 2657 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2658 case FUTEX_WAKE_OP:
81b40539 2659 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2660 case FUTEX_LOCK_PI:
81b40539 2661 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2662 case FUTEX_UNLOCK_PI:
81b40539 2663 return futex_unlock_pi(uaddr, flags);
c87e2837 2664 case FUTEX_TRYLOCK_PI:
81b40539 2665 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2666 case FUTEX_WAIT_REQUEUE_PI:
2667 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2668 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2669 uaddr2);
52400ba9 2670 case FUTEX_CMP_REQUEUE_PI:
81b40539 2671 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2672 }
81b40539 2673 return -ENOSYS;
1da177e4
LT
2674}
2675
2676
17da2bd9
HC
2677SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2678 struct timespec __user *, utime, u32 __user *, uaddr2,
2679 u32, val3)
1da177e4 2680{
c19384b5
PP
2681 struct timespec ts;
2682 ktime_t t, *tp = NULL;
e2970f2f 2683 u32 val2 = 0;
34f01cc1 2684 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2685
cd689985 2686 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2687 cmd == FUTEX_WAIT_BITSET ||
2688 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2689 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2690 return -EFAULT;
c19384b5 2691 if (!timespec_valid(&ts))
9741ef96 2692 return -EINVAL;
c19384b5
PP
2693
2694 t = timespec_to_ktime(ts);
34f01cc1 2695 if (cmd == FUTEX_WAIT)
5a7780e7 2696 t = ktime_add_safe(ktime_get(), t);
c19384b5 2697 tp = &t;
1da177e4
LT
2698 }
2699 /*
52400ba9 2700 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2701 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2702 */
f54f0986 2703 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2704 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2705 val2 = (u32) (unsigned long) utime;
1da177e4 2706
c19384b5 2707 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2708}
2709
f6d107fb 2710static int __init futex_init(void)
1da177e4 2711{
a0c1e907 2712 u32 curval;
3e4ab747 2713 int i;
95362fa9 2714
a0c1e907
TG
2715 /*
2716 * This will fail and we want it. Some arch implementations do
2717 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2718 * functionality. We want to know that before we call in any
2719 * of the complex code paths. Also we want to prevent
2720 * registration of robust lists in that case. NULL is
2721 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2722 * implementation, the non-functional ones will return
a0c1e907
TG
2723 * -ENOSYS.
2724 */
37a9d912 2725 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2726 futex_cmpxchg_enabled = 1;
2727
3e4ab747 2728 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2729 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2730 spin_lock_init(&futex_queues[i].lock);
2731 }
2732
1da177e4
LT
2733 return 0;
2734}
f6d107fb 2735__initcall(futex_init);