]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/hpa/linux-2.6-inttypes
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
1da177e4
LT
99 wait_queue_head_t waiters;
100
e2970f2f 101 /* Which hash list lock to use: */
1da177e4
LT
102 spinlock_t *lock_ptr;
103
e2970f2f 104 /* Key which the futex is hashed on: */
1da177e4
LT
105 union futex_key key;
106
e2970f2f 107 /* For fd, sigio sent using these: */
1da177e4
LT
108 int fd;
109 struct file *filp;
c87e2837
IM
110
111 /* Optional priority inheritance state: */
112 struct futex_pi_state *pi_state;
113 struct task_struct *task;
cd689985
TG
114
115 /* Bitset for the optional bitmasked wakeup */
116 u32 bitset;
1da177e4
LT
117};
118
119/*
120 * Split the global futex_lock into every hash list lock.
121 */
122struct futex_hash_bucket {
ec92d082
PP
123 spinlock_t lock;
124 struct plist_head chain;
1da177e4
LT
125};
126
127static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
128
129/* Futex-fs vfsmount entry: */
130static struct vfsmount *futex_mnt;
131
36cf3b5c
TG
132/*
133 * Take mm->mmap_sem, when futex is shared
134 */
135static inline void futex_lock_mm(struct rw_semaphore *fshared)
136{
137 if (fshared)
138 down_read(fshared);
139}
140
141/*
142 * Release mm->mmap_sem, when the futex is shared
143 */
144static inline void futex_unlock_mm(struct rw_semaphore *fshared)
145{
146 if (fshared)
147 up_read(fshared);
148}
149
1da177e4
LT
150/*
151 * We hash on the keys returned from get_futex_key (see below).
152 */
153static struct futex_hash_bucket *hash_futex(union futex_key *key)
154{
155 u32 hash = jhash2((u32*)&key->both.word,
156 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
157 key->both.offset);
158 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
159}
160
161/*
162 * Return 1 if two futex_keys are equal, 0 otherwise.
163 */
164static inline int match_futex(union futex_key *key1, union futex_key *key2)
165{
166 return (key1->both.word == key2->both.word
167 && key1->both.ptr == key2->both.ptr
168 && key1->both.offset == key2->both.offset);
169}
170
34f01cc1
ED
171/**
172 * get_futex_key - Get parameters which are the keys for a futex.
173 * @uaddr: virtual address of the futex
174 * @shared: NULL for a PROCESS_PRIVATE futex,
175 * &current->mm->mmap_sem for a PROCESS_SHARED futex
176 * @key: address where result is stored.
177 *
178 * Returns a negative error code or 0
179 * The key words are stored in *key on success.
1da177e4 180 *
f3a43f3f 181 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
182 * offset_within_page). For private mappings, it's (uaddr, current->mm).
183 * We can usually work out the index without swapping in the page.
184 *
34f01cc1
ED
185 * fshared is NULL for PROCESS_PRIVATE futexes
186 * For other futexes, it points to &current->mm->mmap_sem and
187 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 188 */
fad23fc7
AB
189static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
190 union futex_key *key)
1da177e4 191{
e2970f2f 192 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *vma;
195 struct page *page;
196 int err;
197
198 /*
199 * The futex address must be "naturally" aligned.
200 */
e2970f2f 201 key->both.offset = address % PAGE_SIZE;
34f01cc1 202 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 203 return -EINVAL;
e2970f2f 204 address -= key->both.offset;
1da177e4 205
34f01cc1
ED
206 /*
207 * PROCESS_PRIVATE futexes are fast.
208 * As the mm cannot disappear under us and the 'key' only needs
209 * virtual address, we dont even have to find the underlying vma.
210 * Note : We do have to check 'uaddr' is a valid user address,
211 * but access_ok() should be faster than find_vma()
212 */
213 if (!fshared) {
214 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
215 return -EFAULT;
216 key->private.mm = mm;
217 key->private.address = address;
218 return 0;
219 }
1da177e4
LT
220 /*
221 * The futex is hashed differently depending on whether
222 * it's in a shared or private mapping. So check vma first.
223 */
e2970f2f 224 vma = find_extend_vma(mm, address);
1da177e4
LT
225 if (unlikely(!vma))
226 return -EFAULT;
227
228 /*
229 * Permissions.
230 */
231 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
232 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
233
234 /*
235 * Private mappings are handled in a simple way.
236 *
237 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
238 * it's a read-only handle, it's expected that futexes attach to
239 * the object not the particular process. Therefore we use
240 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
241 * mappings of _writable_ handles.
242 */
243 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
34f01cc1 244 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
1da177e4 245 key->private.mm = mm;
e2970f2f 246 key->private.address = address;
1da177e4
LT
247 return 0;
248 }
249
250 /*
251 * Linear file mappings are also simple.
252 */
f3a43f3f 253 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
34f01cc1 254 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
1da177e4 255 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 256 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
257 + vma->vm_pgoff);
258 return 0;
259 }
260
261 /*
262 * We could walk the page table to read the non-linear
263 * pte, and get the page index without fetching the page
264 * from swap. But that's a lot of code to duplicate here
265 * for a rare case, so we simply fetch the page.
266 */
e2970f2f 267 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
268 if (err >= 0) {
269 key->shared.pgoff =
270 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
271 put_page(page);
272 return 0;
273 }
274 return err;
275}
276
277/*
278 * Take a reference to the resource addressed by a key.
279 * Can be called while holding spinlocks.
280 *
1da177e4 281 */
fad23fc7 282static void get_futex_key_refs(union futex_key *key)
1da177e4 283{
9dce07f1 284 if (key->both.ptr == NULL)
34f01cc1
ED
285 return;
286 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
287 case FUT_OFF_INODE:
1da177e4 288 atomic_inc(&key->shared.inode->i_count);
34f01cc1
ED
289 break;
290 case FUT_OFF_MMSHARED:
1da177e4 291 atomic_inc(&key->private.mm->mm_count);
34f01cc1 292 break;
1da177e4
LT
293 }
294}
295
296/*
297 * Drop a reference to the resource addressed by a key.
298 * The hash bucket spinlock must not be held.
299 */
fad23fc7 300static void drop_futex_key_refs(union futex_key *key)
1da177e4 301{
c80544dc 302 if (!key->both.ptr)
34f01cc1
ED
303 return;
304 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
305 case FUT_OFF_INODE:
1da177e4 306 iput(key->shared.inode);
34f01cc1
ED
307 break;
308 case FUT_OFF_MMSHARED:
1da177e4 309 mmdrop(key->private.mm);
34f01cc1 310 break;
1da177e4
LT
311 }
312}
313
36cf3b5c
TG
314static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
315{
316 u32 curval;
317
318 pagefault_disable();
319 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
320 pagefault_enable();
321
322 return curval;
323}
324
325static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
326{
327 int ret;
328
a866374a 329 pagefault_disable();
e2970f2f 330 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 331 pagefault_enable();
1da177e4
LT
332
333 return ret ? -EFAULT : 0;
334}
335
c87e2837 336/*
34f01cc1
ED
337 * Fault handling.
338 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 339 */
34f01cc1
ED
340static int futex_handle_fault(unsigned long address,
341 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
342{
343 struct vm_area_struct * vma;
344 struct mm_struct *mm = current->mm;
34f01cc1 345 int ret = -EFAULT;
c87e2837 346
34f01cc1
ED
347 if (attempt > 2)
348 return ret;
c87e2837 349
34f01cc1
ED
350 if (!fshared)
351 down_read(&mm->mmap_sem);
352 vma = find_vma(mm, address);
353 if (vma && address >= vma->vm_start &&
354 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
355 int fault;
356 fault = handle_mm_fault(mm, vma, address, 1);
357 if (unlikely((fault & VM_FAULT_ERROR))) {
358#if 0
359 /* XXX: let's do this when we verify it is OK */
360 if (ret & VM_FAULT_OOM)
361 ret = -ENOMEM;
362#endif
363 } else {
34f01cc1 364 ret = 0;
83c54070
NP
365 if (fault & VM_FAULT_MAJOR)
366 current->maj_flt++;
367 else
368 current->min_flt++;
34f01cc1 369 }
c87e2837 370 }
34f01cc1
ED
371 if (!fshared)
372 up_read(&mm->mmap_sem);
373 return ret;
c87e2837
IM
374}
375
376/*
377 * PI code:
378 */
379static int refill_pi_state_cache(void)
380{
381 struct futex_pi_state *pi_state;
382
383 if (likely(current->pi_state_cache))
384 return 0;
385
4668edc3 386 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
387
388 if (!pi_state)
389 return -ENOMEM;
390
c87e2837
IM
391 INIT_LIST_HEAD(&pi_state->list);
392 /* pi_mutex gets initialized later */
393 pi_state->owner = NULL;
394 atomic_set(&pi_state->refcount, 1);
395
396 current->pi_state_cache = pi_state;
397
398 return 0;
399}
400
401static struct futex_pi_state * alloc_pi_state(void)
402{
403 struct futex_pi_state *pi_state = current->pi_state_cache;
404
405 WARN_ON(!pi_state);
406 current->pi_state_cache = NULL;
407
408 return pi_state;
409}
410
411static void free_pi_state(struct futex_pi_state *pi_state)
412{
413 if (!atomic_dec_and_test(&pi_state->refcount))
414 return;
415
416 /*
417 * If pi_state->owner is NULL, the owner is most probably dying
418 * and has cleaned up the pi_state already
419 */
420 if (pi_state->owner) {
421 spin_lock_irq(&pi_state->owner->pi_lock);
422 list_del_init(&pi_state->list);
423 spin_unlock_irq(&pi_state->owner->pi_lock);
424
425 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
426 }
427
428 if (current->pi_state_cache)
429 kfree(pi_state);
430 else {
431 /*
432 * pi_state->list is already empty.
433 * clear pi_state->owner.
434 * refcount is at 0 - put it back to 1.
435 */
436 pi_state->owner = NULL;
437 atomic_set(&pi_state->refcount, 1);
438 current->pi_state_cache = pi_state;
439 }
440}
441
442/*
443 * Look up the task based on what TID userspace gave us.
444 * We dont trust it.
445 */
446static struct task_struct * futex_find_get_task(pid_t pid)
447{
448 struct task_struct *p;
449
d359b549 450 rcu_read_lock();
228ebcbe 451 p = find_task_by_vpid(pid);
a06381fe
TG
452 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
453 p = ERR_PTR(-ESRCH);
454 else
455 get_task_struct(p);
456
d359b549 457 rcu_read_unlock();
c87e2837
IM
458
459 return p;
460}
461
462/*
463 * This task is holding PI mutexes at exit time => bad.
464 * Kernel cleans up PI-state, but userspace is likely hosed.
465 * (Robust-futex cleanup is separate and might save the day for userspace.)
466 */
467void exit_pi_state_list(struct task_struct *curr)
468{
c87e2837
IM
469 struct list_head *next, *head = &curr->pi_state_list;
470 struct futex_pi_state *pi_state;
627371d7 471 struct futex_hash_bucket *hb;
c87e2837
IM
472 union futex_key key;
473
a0c1e907
TG
474 if (!futex_cmpxchg_enabled)
475 return;
c87e2837
IM
476 /*
477 * We are a ZOMBIE and nobody can enqueue itself on
478 * pi_state_list anymore, but we have to be careful
627371d7 479 * versus waiters unqueueing themselves:
c87e2837
IM
480 */
481 spin_lock_irq(&curr->pi_lock);
482 while (!list_empty(head)) {
483
484 next = head->next;
485 pi_state = list_entry(next, struct futex_pi_state, list);
486 key = pi_state->key;
627371d7 487 hb = hash_futex(&key);
c87e2837
IM
488 spin_unlock_irq(&curr->pi_lock);
489
c87e2837
IM
490 spin_lock(&hb->lock);
491
492 spin_lock_irq(&curr->pi_lock);
627371d7
IM
493 /*
494 * We dropped the pi-lock, so re-check whether this
495 * task still owns the PI-state:
496 */
c87e2837
IM
497 if (head->next != next) {
498 spin_unlock(&hb->lock);
499 continue;
500 }
501
c87e2837 502 WARN_ON(pi_state->owner != curr);
627371d7
IM
503 WARN_ON(list_empty(&pi_state->list));
504 list_del_init(&pi_state->list);
c87e2837
IM
505 pi_state->owner = NULL;
506 spin_unlock_irq(&curr->pi_lock);
507
508 rt_mutex_unlock(&pi_state->pi_mutex);
509
510 spin_unlock(&hb->lock);
511
512 spin_lock_irq(&curr->pi_lock);
513 }
514 spin_unlock_irq(&curr->pi_lock);
515}
516
517static int
d0aa7a70
PP
518lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
519 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
520{
521 struct futex_pi_state *pi_state = NULL;
522 struct futex_q *this, *next;
ec92d082 523 struct plist_head *head;
c87e2837 524 struct task_struct *p;
778e9a9c 525 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
526
527 head = &hb->chain;
528
ec92d082 529 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 530 if (match_futex(&this->key, key)) {
c87e2837
IM
531 /*
532 * Another waiter already exists - bump up
533 * the refcount and return its pi_state:
534 */
535 pi_state = this->pi_state;
06a9ec29
TG
536 /*
537 * Userspace might have messed up non PI and PI futexes
538 */
539 if (unlikely(!pi_state))
540 return -EINVAL;
541
627371d7 542 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
543 WARN_ON(pid && pi_state->owner &&
544 pi_state->owner->pid != pid);
627371d7 545
c87e2837 546 atomic_inc(&pi_state->refcount);
d0aa7a70 547 *ps = pi_state;
c87e2837
IM
548
549 return 0;
550 }
551 }
552
553 /*
e3f2ddea 554 * We are the first waiter - try to look up the real owner and attach
778e9a9c 555 * the new pi_state to it, but bail out when TID = 0
c87e2837 556 */
778e9a9c 557 if (!pid)
e3f2ddea 558 return -ESRCH;
c87e2837 559 p = futex_find_get_task(pid);
778e9a9c
AK
560 if (IS_ERR(p))
561 return PTR_ERR(p);
562
563 /*
564 * We need to look at the task state flags to figure out,
565 * whether the task is exiting. To protect against the do_exit
566 * change of the task flags, we do this protected by
567 * p->pi_lock:
568 */
569 spin_lock_irq(&p->pi_lock);
570 if (unlikely(p->flags & PF_EXITING)) {
571 /*
572 * The task is on the way out. When PF_EXITPIDONE is
573 * set, we know that the task has finished the
574 * cleanup:
575 */
576 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
577
578 spin_unlock_irq(&p->pi_lock);
579 put_task_struct(p);
580 return ret;
581 }
c87e2837
IM
582
583 pi_state = alloc_pi_state();
584
585 /*
586 * Initialize the pi_mutex in locked state and make 'p'
587 * the owner of it:
588 */
589 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
590
591 /* Store the key for possible exit cleanups: */
d0aa7a70 592 pi_state->key = *key;
c87e2837 593
627371d7 594 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
595 list_add(&pi_state->list, &p->pi_state_list);
596 pi_state->owner = p;
597 spin_unlock_irq(&p->pi_lock);
598
599 put_task_struct(p);
600
d0aa7a70 601 *ps = pi_state;
c87e2837
IM
602
603 return 0;
604}
605
1da177e4
LT
606/*
607 * The hash bucket lock must be held when this is called.
608 * Afterwards, the futex_q must not be accessed.
609 */
610static void wake_futex(struct futex_q *q)
611{
ec92d082 612 plist_del(&q->list, &q->list.plist);
1da177e4
LT
613 if (q->filp)
614 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
615 /*
616 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 617 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
618 */
619 wake_up_all(&q->waiters);
620 /*
621 * The waiting task can free the futex_q as soon as this is written,
622 * without taking any locks. This must come last.
8e31108b
AM
623 *
624 * A memory barrier is required here to prevent the following store
625 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
626 * at the end of wake_up_all() does not prevent this store from
627 * moving.
1da177e4 628 */
ccdea2f8 629 smp_wmb();
1da177e4
LT
630 q->lock_ptr = NULL;
631}
632
c87e2837
IM
633static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
634{
635 struct task_struct *new_owner;
636 struct futex_pi_state *pi_state = this->pi_state;
637 u32 curval, newval;
638
639 if (!pi_state)
640 return -EINVAL;
641
21778867 642 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
643 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
644
645 /*
646 * This happens when we have stolen the lock and the original
647 * pending owner did not enqueue itself back on the rt_mutex.
648 * Thats not a tragedy. We know that way, that a lock waiter
649 * is on the fly. We make the futex_q waiter the pending owner.
650 */
651 if (!new_owner)
652 new_owner = this->task;
653
654 /*
655 * We pass it to the next owner. (The WAITERS bit is always
656 * kept enabled while there is PI state around. We must also
657 * preserve the owner died bit.)
658 */
e3f2ddea 659 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
660 int ret = 0;
661
b488893a 662 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 663
36cf3b5c 664 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 665
e3f2ddea 666 if (curval == -EFAULT)
778e9a9c 667 ret = -EFAULT;
cde898fa 668 else if (curval != uval)
778e9a9c
AK
669 ret = -EINVAL;
670 if (ret) {
671 spin_unlock(&pi_state->pi_mutex.wait_lock);
672 return ret;
673 }
e3f2ddea 674 }
c87e2837 675
627371d7
IM
676 spin_lock_irq(&pi_state->owner->pi_lock);
677 WARN_ON(list_empty(&pi_state->list));
678 list_del_init(&pi_state->list);
679 spin_unlock_irq(&pi_state->owner->pi_lock);
680
681 spin_lock_irq(&new_owner->pi_lock);
682 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
683 list_add(&pi_state->list, &new_owner->pi_state_list);
684 pi_state->owner = new_owner;
627371d7
IM
685 spin_unlock_irq(&new_owner->pi_lock);
686
21778867 687 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
688 rt_mutex_unlock(&pi_state->pi_mutex);
689
690 return 0;
691}
692
693static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
694{
695 u32 oldval;
696
697 /*
698 * There is no waiter, so we unlock the futex. The owner died
699 * bit has not to be preserved here. We are the owner:
700 */
36cf3b5c 701 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
702
703 if (oldval == -EFAULT)
704 return oldval;
705 if (oldval != uval)
706 return -EAGAIN;
707
708 return 0;
709}
710
8b8f319f
IM
711/*
712 * Express the locking dependencies for lockdep:
713 */
714static inline void
715double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
716{
717 if (hb1 <= hb2) {
718 spin_lock(&hb1->lock);
719 if (hb1 < hb2)
720 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
721 } else { /* hb1 > hb2 */
722 spin_lock(&hb2->lock);
723 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
724 }
725}
726
1da177e4
LT
727/*
728 * Wake up all waiters hashed on the physical page that is mapped
729 * to this virtual address:
730 */
34f01cc1 731static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 732 int nr_wake, u32 bitset)
1da177e4 733{
e2970f2f 734 struct futex_hash_bucket *hb;
1da177e4 735 struct futex_q *this, *next;
ec92d082 736 struct plist_head *head;
e2970f2f 737 union futex_key key;
1da177e4
LT
738 int ret;
739
cd689985
TG
740 if (!bitset)
741 return -EINVAL;
742
36cf3b5c 743 futex_lock_mm(fshared);
1da177e4 744
34f01cc1 745 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
746 if (unlikely(ret != 0))
747 goto out;
748
e2970f2f
IM
749 hb = hash_futex(&key);
750 spin_lock(&hb->lock);
751 head = &hb->chain;
1da177e4 752
ec92d082 753 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 754 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
755 if (this->pi_state) {
756 ret = -EINVAL;
757 break;
758 }
cd689985
TG
759
760 /* Check if one of the bits is set in both bitsets */
761 if (!(this->bitset & bitset))
762 continue;
763
1da177e4
LT
764 wake_futex(this);
765 if (++ret >= nr_wake)
766 break;
767 }
768 }
769
e2970f2f 770 spin_unlock(&hb->lock);
1da177e4 771out:
36cf3b5c 772 futex_unlock_mm(fshared);
1da177e4
LT
773 return ret;
774}
775
4732efbe
JJ
776/*
777 * Wake up all waiters hashed on the physical page that is mapped
778 * to this virtual address:
779 */
e2970f2f 780static int
34f01cc1
ED
781futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
782 u32 __user *uaddr2,
e2970f2f 783 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
784{
785 union futex_key key1, key2;
e2970f2f 786 struct futex_hash_bucket *hb1, *hb2;
ec92d082 787 struct plist_head *head;
4732efbe
JJ
788 struct futex_q *this, *next;
789 int ret, op_ret, attempt = 0;
790
791retryfull:
36cf3b5c 792 futex_lock_mm(fshared);
4732efbe 793
34f01cc1 794 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
795 if (unlikely(ret != 0))
796 goto out;
34f01cc1 797 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
798 if (unlikely(ret != 0))
799 goto out;
800
e2970f2f
IM
801 hb1 = hash_futex(&key1);
802 hb2 = hash_futex(&key2);
4732efbe
JJ
803
804retry:
8b8f319f 805 double_lock_hb(hb1, hb2);
4732efbe 806
e2970f2f 807 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 808 if (unlikely(op_ret < 0)) {
e2970f2f 809 u32 dummy;
4732efbe 810
e2970f2f
IM
811 spin_unlock(&hb1->lock);
812 if (hb1 != hb2)
813 spin_unlock(&hb2->lock);
4732efbe 814
7ee1dd3f 815#ifndef CONFIG_MMU
e2970f2f
IM
816 /*
817 * we don't get EFAULT from MMU faults if we don't have an MMU,
818 * but we might get them from range checking
819 */
7ee1dd3f
DH
820 ret = op_ret;
821 goto out;
822#endif
823
796f8d9b
DG
824 if (unlikely(op_ret != -EFAULT)) {
825 ret = op_ret;
826 goto out;
827 }
828
e2970f2f
IM
829 /*
830 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
831 * *(int __user *)uaddr2, but we can't modify it
832 * non-atomically. Therefore, if get_user below is not
833 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
834 * still holding the mmap_sem.
835 */
4732efbe 836 if (attempt++) {
34f01cc1 837 ret = futex_handle_fault((unsigned long)uaddr2,
36cf3b5c 838 fshared, attempt);
34f01cc1 839 if (ret)
4732efbe 840 goto out;
4732efbe
JJ
841 goto retry;
842 }
843
e2970f2f
IM
844 /*
845 * If we would have faulted, release mmap_sem,
846 * fault it in and start all over again.
847 */
36cf3b5c 848 futex_unlock_mm(fshared);
4732efbe 849
e2970f2f 850 ret = get_user(dummy, uaddr2);
4732efbe
JJ
851 if (ret)
852 return ret;
853
854 goto retryfull;
855 }
856
e2970f2f 857 head = &hb1->chain;
4732efbe 858
ec92d082 859 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
860 if (match_futex (&this->key, &key1)) {
861 wake_futex(this);
862 if (++ret >= nr_wake)
863 break;
864 }
865 }
866
867 if (op_ret > 0) {
e2970f2f 868 head = &hb2->chain;
4732efbe
JJ
869
870 op_ret = 0;
ec92d082 871 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
872 if (match_futex (&this->key, &key2)) {
873 wake_futex(this);
874 if (++op_ret >= nr_wake2)
875 break;
876 }
877 }
878 ret += op_ret;
879 }
880
e2970f2f
IM
881 spin_unlock(&hb1->lock);
882 if (hb1 != hb2)
883 spin_unlock(&hb2->lock);
4732efbe 884out:
36cf3b5c
TG
885 futex_unlock_mm(fshared);
886
4732efbe
JJ
887 return ret;
888}
889
1da177e4
LT
890/*
891 * Requeue all waiters hashed on one physical page to another
892 * physical page.
893 */
34f01cc1
ED
894static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
895 u32 __user *uaddr2,
e2970f2f 896 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
897{
898 union futex_key key1, key2;
e2970f2f 899 struct futex_hash_bucket *hb1, *hb2;
ec92d082 900 struct plist_head *head1;
1da177e4
LT
901 struct futex_q *this, *next;
902 int ret, drop_count = 0;
903
904 retry:
36cf3b5c 905 futex_lock_mm(fshared);
1da177e4 906
34f01cc1 907 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
908 if (unlikely(ret != 0))
909 goto out;
34f01cc1 910 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
911 if (unlikely(ret != 0))
912 goto out;
913
e2970f2f
IM
914 hb1 = hash_futex(&key1);
915 hb2 = hash_futex(&key2);
1da177e4 916
8b8f319f 917 double_lock_hb(hb1, hb2);
1da177e4 918
e2970f2f
IM
919 if (likely(cmpval != NULL)) {
920 u32 curval;
1da177e4 921
e2970f2f 922 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
923
924 if (unlikely(ret)) {
e2970f2f
IM
925 spin_unlock(&hb1->lock);
926 if (hb1 != hb2)
927 spin_unlock(&hb2->lock);
1da177e4 928
e2970f2f
IM
929 /*
930 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
931 * it in and start all over again.
932 */
36cf3b5c 933 futex_unlock_mm(fshared);
1da177e4 934
e2970f2f 935 ret = get_user(curval, uaddr1);
1da177e4
LT
936
937 if (!ret)
938 goto retry;
939
940 return ret;
941 }
e2970f2f 942 if (curval != *cmpval) {
1da177e4
LT
943 ret = -EAGAIN;
944 goto out_unlock;
945 }
946 }
947
e2970f2f 948 head1 = &hb1->chain;
ec92d082 949 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
950 if (!match_futex (&this->key, &key1))
951 continue;
952 if (++ret <= nr_wake) {
953 wake_futex(this);
954 } else {
59e0e0ac
SD
955 /*
956 * If key1 and key2 hash to the same bucket, no need to
957 * requeue.
958 */
959 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
960 plist_del(&this->list, &hb1->chain);
961 plist_add(&this->list, &hb2->chain);
59e0e0ac 962 this->lock_ptr = &hb2->lock;
ec92d082
PP
963#ifdef CONFIG_DEBUG_PI_LIST
964 this->list.plist.lock = &hb2->lock;
965#endif
778e9a9c 966 }
1da177e4 967 this->key = key2;
9adef58b 968 get_futex_key_refs(&key2);
1da177e4
LT
969 drop_count++;
970
971 if (ret - nr_wake >= nr_requeue)
972 break;
1da177e4
LT
973 }
974 }
975
976out_unlock:
e2970f2f
IM
977 spin_unlock(&hb1->lock);
978 if (hb1 != hb2)
979 spin_unlock(&hb2->lock);
1da177e4 980
9adef58b 981 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 982 while (--drop_count >= 0)
9adef58b 983 drop_futex_key_refs(&key1);
1da177e4
LT
984
985out:
36cf3b5c 986 futex_unlock_mm(fshared);
1da177e4
LT
987 return ret;
988}
989
990/* The key must be already stored in q->key. */
991static inline struct futex_hash_bucket *
992queue_lock(struct futex_q *q, int fd, struct file *filp)
993{
e2970f2f 994 struct futex_hash_bucket *hb;
1da177e4
LT
995
996 q->fd = fd;
997 q->filp = filp;
998
999 init_waitqueue_head(&q->waiters);
1000
9adef58b 1001 get_futex_key_refs(&q->key);
e2970f2f
IM
1002 hb = hash_futex(&q->key);
1003 q->lock_ptr = &hb->lock;
1da177e4 1004
e2970f2f
IM
1005 spin_lock(&hb->lock);
1006 return hb;
1da177e4
LT
1007}
1008
e2970f2f 1009static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1010{
ec92d082
PP
1011 int prio;
1012
1013 /*
1014 * The priority used to register this element is
1015 * - either the real thread-priority for the real-time threads
1016 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1017 * - or MAX_RT_PRIO for non-RT threads.
1018 * Thus, all RT-threads are woken first in priority order, and
1019 * the others are woken last, in FIFO order.
1020 */
1021 prio = min(current->normal_prio, MAX_RT_PRIO);
1022
1023 plist_node_init(&q->list, prio);
1024#ifdef CONFIG_DEBUG_PI_LIST
1025 q->list.plist.lock = &hb->lock;
1026#endif
1027 plist_add(&q->list, &hb->chain);
c87e2837 1028 q->task = current;
e2970f2f 1029 spin_unlock(&hb->lock);
1da177e4
LT
1030}
1031
1032static inline void
e2970f2f 1033queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1034{
e2970f2f 1035 spin_unlock(&hb->lock);
9adef58b 1036 drop_futex_key_refs(&q->key);
1da177e4
LT
1037}
1038
1039/*
1040 * queue_me and unqueue_me must be called as a pair, each
1041 * exactly once. They are called with the hashed spinlock held.
1042 */
1043
1044/* The key must be already stored in q->key. */
1045static void queue_me(struct futex_q *q, int fd, struct file *filp)
1046{
e2970f2f
IM
1047 struct futex_hash_bucket *hb;
1048
1049 hb = queue_lock(q, fd, filp);
1050 __queue_me(q, hb);
1da177e4
LT
1051}
1052
1053/* Return 1 if we were still queued (ie. 0 means we were woken) */
1054static int unqueue_me(struct futex_q *q)
1055{
1da177e4 1056 spinlock_t *lock_ptr;
e2970f2f 1057 int ret = 0;
1da177e4
LT
1058
1059 /* In the common case we don't take the spinlock, which is nice. */
1060 retry:
1061 lock_ptr = q->lock_ptr;
e91467ec 1062 barrier();
c80544dc 1063 if (lock_ptr != NULL) {
1da177e4
LT
1064 spin_lock(lock_ptr);
1065 /*
1066 * q->lock_ptr can change between reading it and
1067 * spin_lock(), causing us to take the wrong lock. This
1068 * corrects the race condition.
1069 *
1070 * Reasoning goes like this: if we have the wrong lock,
1071 * q->lock_ptr must have changed (maybe several times)
1072 * between reading it and the spin_lock(). It can
1073 * change again after the spin_lock() but only if it was
1074 * already changed before the spin_lock(). It cannot,
1075 * however, change back to the original value. Therefore
1076 * we can detect whether we acquired the correct lock.
1077 */
1078 if (unlikely(lock_ptr != q->lock_ptr)) {
1079 spin_unlock(lock_ptr);
1080 goto retry;
1081 }
ec92d082
PP
1082 WARN_ON(plist_node_empty(&q->list));
1083 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1084
1085 BUG_ON(q->pi_state);
1086
1da177e4
LT
1087 spin_unlock(lock_ptr);
1088 ret = 1;
1089 }
1090
9adef58b 1091 drop_futex_key_refs(&q->key);
1da177e4
LT
1092 return ret;
1093}
1094
c87e2837
IM
1095/*
1096 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1097 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1098 * and dropped here.
c87e2837 1099 */
d0aa7a70 1100static void unqueue_me_pi(struct futex_q *q)
c87e2837 1101{
ec92d082
PP
1102 WARN_ON(plist_node_empty(&q->list));
1103 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1104
1105 BUG_ON(!q->pi_state);
1106 free_pi_state(q->pi_state);
1107 q->pi_state = NULL;
1108
d0aa7a70 1109 spin_unlock(q->lock_ptr);
c87e2837 1110
9adef58b 1111 drop_futex_key_refs(&q->key);
c87e2837
IM
1112}
1113
d0aa7a70 1114/*
cdf71a10 1115 * Fixup the pi_state owner with the new owner.
d0aa7a70 1116 *
778e9a9c
AK
1117 * Must be called with hash bucket lock held and mm->sem held for non
1118 * private futexes.
d0aa7a70 1119 */
778e9a9c 1120static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
cdf71a10 1121 struct task_struct *newowner)
d0aa7a70 1122{
cdf71a10 1123 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70
PP
1124 struct futex_pi_state *pi_state = q->pi_state;
1125 u32 uval, curval, newval;
1126 int ret;
1127
1128 /* Owner died? */
1129 if (pi_state->owner != NULL) {
1130 spin_lock_irq(&pi_state->owner->pi_lock);
1131 WARN_ON(list_empty(&pi_state->list));
1132 list_del_init(&pi_state->list);
1133 spin_unlock_irq(&pi_state->owner->pi_lock);
1134 } else
1135 newtid |= FUTEX_OWNER_DIED;
1136
cdf71a10 1137 pi_state->owner = newowner;
d0aa7a70 1138
cdf71a10 1139 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1140 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1141 list_add(&pi_state->list, &newowner->pi_state_list);
1142 spin_unlock_irq(&newowner->pi_lock);
d0aa7a70 1143
d0aa7a70
PP
1144 /*
1145 * We own it, so we have to replace the pending owner
1146 * TID. This must be atomic as we have preserve the
1147 * owner died bit here.
1148 */
778e9a9c
AK
1149 ret = get_futex_value_locked(&uval, uaddr);
1150
d0aa7a70
PP
1151 while (!ret) {
1152 newval = (uval & FUTEX_OWNER_DIED) | newtid;
778e9a9c 1153
36cf3b5c 1154 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 1155
d0aa7a70 1156 if (curval == -EFAULT)
778e9a9c 1157 ret = -EFAULT;
d0aa7a70
PP
1158 if (curval == uval)
1159 break;
1160 uval = curval;
1161 }
1162 return ret;
1163}
1164
34f01cc1
ED
1165/*
1166 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1167 * we encode in the 'flags' shared capability
34f01cc1 1168 */
ce6bd420 1169#define FLAGS_SHARED 1
34f01cc1 1170
72c1bbf3 1171static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1172
34f01cc1 1173static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 1174 u32 val, ktime_t *abs_time, u32 bitset)
1da177e4 1175{
c87e2837
IM
1176 struct task_struct *curr = current;
1177 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1178 struct futex_hash_bucket *hb;
1da177e4 1179 struct futex_q q;
e2970f2f
IM
1180 u32 uval;
1181 int ret;
bd197234 1182 struct hrtimer_sleeper t;
c19384b5 1183 int rem = 0;
1da177e4 1184
cd689985
TG
1185 if (!bitset)
1186 return -EINVAL;
1187
c87e2837 1188 q.pi_state = NULL;
cd689985 1189 q.bitset = bitset;
1da177e4 1190 retry:
36cf3b5c 1191 futex_lock_mm(fshared);
1da177e4 1192
34f01cc1 1193 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1194 if (unlikely(ret != 0))
1195 goto out_release_sem;
1196
e2970f2f 1197 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1198
1199 /*
1200 * Access the page AFTER the futex is queued.
1201 * Order is important:
1202 *
1203 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1204 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1205 *
1206 * The basic logical guarantee of a futex is that it blocks ONLY
1207 * if cond(var) is known to be true at the time of blocking, for
1208 * any cond. If we queued after testing *uaddr, that would open
1209 * a race condition where we could block indefinitely with
1210 * cond(var) false, which would violate the guarantee.
1211 *
1212 * A consequence is that futex_wait() can return zero and absorb
1213 * a wakeup when *uaddr != val on entry to the syscall. This is
1214 * rare, but normal.
1215 *
34f01cc1
ED
1216 * for shared futexes, we hold the mmap semaphore, so the mapping
1217 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1218 */
e2970f2f 1219 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1220
1221 if (unlikely(ret)) {
e2970f2f 1222 queue_unlock(&q, hb);
1da177e4 1223
e2970f2f
IM
1224 /*
1225 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1226 * start all over again.
1227 */
36cf3b5c 1228 futex_unlock_mm(fshared);
1da177e4 1229
e2970f2f 1230 ret = get_user(uval, uaddr);
1da177e4
LT
1231
1232 if (!ret)
1233 goto retry;
1234 return ret;
1235 }
c87e2837
IM
1236 ret = -EWOULDBLOCK;
1237 if (uval != val)
1238 goto out_unlock_release_sem;
1da177e4
LT
1239
1240 /* Only actually queue if *uaddr contained val. */
e2970f2f 1241 __queue_me(&q, hb);
1da177e4
LT
1242
1243 /*
1244 * Now the futex is queued and we have checked the data, we
1245 * don't want to hold mmap_sem while we sleep.
c87e2837 1246 */
36cf3b5c 1247 futex_unlock_mm(fshared);
1da177e4
LT
1248
1249 /*
1250 * There might have been scheduling since the queue_me(), as we
1251 * cannot hold a spinlock across the get_user() in case it
1252 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1253 * queueing ourselves into the futex hash. This code thus has to
1254 * rely on the futex_wake() code removing us from hash when it
1255 * wakes us up.
1256 */
1257
1258 /* add_wait_queue is the barrier after __set_current_state. */
1259 __set_current_state(TASK_INTERRUPTIBLE);
1260 add_wait_queue(&q.waiters, &wait);
1261 /*
ec92d082 1262 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1263 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1264 */
ec92d082 1265 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1266 if (!abs_time)
1267 schedule();
1268 else {
237fc6e7
TG
1269 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1270 HRTIMER_MODE_ABS);
c19384b5
PP
1271 hrtimer_init_sleeper(&t, current);
1272 t.timer.expires = *abs_time;
1273
237fc6e7
TG
1274 hrtimer_start(&t.timer, t.timer.expires,
1275 HRTIMER_MODE_ABS);
3588a085
PZ
1276 if (!hrtimer_active(&t.timer))
1277 t.task = NULL;
c19384b5
PP
1278
1279 /*
1280 * the timer could have already expired, in which
1281 * case current would be flagged for rescheduling.
1282 * Don't bother calling schedule.
1283 */
1284 if (likely(t.task))
1285 schedule();
1286
1287 hrtimer_cancel(&t.timer);
72c1bbf3 1288
c19384b5
PP
1289 /* Flag if a timeout occured */
1290 rem = (t.task == NULL);
237fc6e7
TG
1291
1292 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1293 }
72c1bbf3 1294 }
1da177e4
LT
1295 __set_current_state(TASK_RUNNING);
1296
1297 /*
1298 * NOTE: we don't remove ourselves from the waitqueue because
1299 * we are the only user of it.
1300 */
1301
1302 /* If we were woken (and unqueued), we succeeded, whatever. */
1303 if (!unqueue_me(&q))
1304 return 0;
c19384b5 1305 if (rem)
1da177e4 1306 return -ETIMEDOUT;
72c1bbf3 1307
e2970f2f
IM
1308 /*
1309 * We expect signal_pending(current), but another thread may
1310 * have handled it for us already.
1311 */
c19384b5 1312 if (!abs_time)
72c1bbf3
NP
1313 return -ERESTARTSYS;
1314 else {
1315 struct restart_block *restart;
1316 restart = &current_thread_info()->restart_block;
1317 restart->fn = futex_wait_restart;
ce6bd420
SR
1318 restart->futex.uaddr = (u32 *)uaddr;
1319 restart->futex.val = val;
1320 restart->futex.time = abs_time->tv64;
cd689985 1321 restart->futex.bitset = bitset;
ce6bd420
SR
1322 restart->futex.flags = 0;
1323
34f01cc1 1324 if (fshared)
ce6bd420 1325 restart->futex.flags |= FLAGS_SHARED;
72c1bbf3
NP
1326 return -ERESTART_RESTARTBLOCK;
1327 }
1da177e4 1328
c87e2837
IM
1329 out_unlock_release_sem:
1330 queue_unlock(&q, hb);
1331
1da177e4 1332 out_release_sem:
36cf3b5c 1333 futex_unlock_mm(fshared);
c87e2837
IM
1334 return ret;
1335}
1336
72c1bbf3
NP
1337
1338static long futex_wait_restart(struct restart_block *restart)
1339{
ce6bd420 1340 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
34f01cc1 1341 struct rw_semaphore *fshared = NULL;
ce6bd420 1342 ktime_t t;
72c1bbf3 1343
ce6bd420 1344 t.tv64 = restart->futex.time;
72c1bbf3 1345 restart->fn = do_no_restart_syscall;
ce6bd420 1346 if (restart->futex.flags & FLAGS_SHARED)
34f01cc1 1347 fshared = &current->mm->mmap_sem;
cd689985
TG
1348 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1349 restart->futex.bitset);
72c1bbf3
NP
1350}
1351
1352
c87e2837
IM
1353/*
1354 * Userspace tried a 0 -> TID atomic transition of the futex value
1355 * and failed. The kernel side here does the whole locking operation:
1356 * if there are waiters then it will block, it does PI, etc. (Due to
1357 * races the kernel might see a 0 value of the futex too.)
1358 */
34f01cc1
ED
1359static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1360 int detect, ktime_t *time, int trylock)
c87e2837 1361{
c5780e97 1362 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1363 struct task_struct *curr = current;
1364 struct futex_hash_bucket *hb;
1365 u32 uval, newval, curval;
1366 struct futex_q q;
778e9a9c 1367 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1368
1369 if (refill_pi_state_cache())
1370 return -ENOMEM;
1371
c19384b5 1372 if (time) {
c5780e97 1373 to = &timeout;
237fc6e7
TG
1374 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1375 HRTIMER_MODE_ABS);
c5780e97 1376 hrtimer_init_sleeper(to, current);
c19384b5 1377 to->timer.expires = *time;
c5780e97
TG
1378 }
1379
c87e2837
IM
1380 q.pi_state = NULL;
1381 retry:
36cf3b5c 1382 futex_lock_mm(fshared);
c87e2837 1383
34f01cc1 1384 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1385 if (unlikely(ret != 0))
1386 goto out_release_sem;
1387
778e9a9c 1388 retry_unlocked:
c87e2837
IM
1389 hb = queue_lock(&q, -1, NULL);
1390
1391 retry_locked:
778e9a9c 1392 ret = lock_taken = 0;
d0aa7a70 1393
c87e2837
IM
1394 /*
1395 * To avoid races, we attempt to take the lock here again
1396 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1397 * the locks. It will most likely not succeed.
1398 */
b488893a 1399 newval = task_pid_vnr(current);
c87e2837 1400
36cf3b5c 1401 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1402
1403 if (unlikely(curval == -EFAULT))
1404 goto uaddr_faulted;
1405
778e9a9c
AK
1406 /*
1407 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1408 * situation and we return success to user space.
1409 */
b488893a 1410 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1411 ret = -EDEADLK;
c87e2837
IM
1412 goto out_unlock_release_sem;
1413 }
1414
1415 /*
778e9a9c 1416 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1417 */
1418 if (unlikely(!curval))
1419 goto out_unlock_release_sem;
1420
1421 uval = curval;
778e9a9c 1422
d0aa7a70 1423 /*
778e9a9c
AK
1424 * Set the WAITERS flag, so the owner will know it has someone
1425 * to wake at next unlock
d0aa7a70 1426 */
778e9a9c
AK
1427 newval = curval | FUTEX_WAITERS;
1428
1429 /*
1430 * There are two cases, where a futex might have no owner (the
bd197234
TG
1431 * owner TID is 0): OWNER_DIED. We take over the futex in this
1432 * case. We also do an unconditional take over, when the owner
1433 * of the futex died.
778e9a9c
AK
1434 *
1435 * This is safe as we are protected by the hash bucket lock !
1436 */
1437 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1438 /* Keep the OWNER_DIED bit */
b488893a 1439 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1440 ownerdied = 0;
1441 lock_taken = 1;
1442 }
c87e2837 1443
36cf3b5c 1444 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1445
1446 if (unlikely(curval == -EFAULT))
1447 goto uaddr_faulted;
1448 if (unlikely(curval != uval))
1449 goto retry_locked;
1450
778e9a9c 1451 /*
bd197234 1452 * We took the lock due to owner died take over.
778e9a9c 1453 */
bd197234 1454 if (unlikely(lock_taken))
d0aa7a70 1455 goto out_unlock_release_sem;
d0aa7a70 1456
c87e2837
IM
1457 /*
1458 * We dont have the lock. Look up the PI state (or create it if
1459 * we are the first waiter):
1460 */
d0aa7a70 1461 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1462
1463 if (unlikely(ret)) {
778e9a9c 1464 switch (ret) {
c87e2837 1465
778e9a9c
AK
1466 case -EAGAIN:
1467 /*
1468 * Task is exiting and we just wait for the
1469 * exit to complete.
1470 */
1471 queue_unlock(&q, hb);
36cf3b5c 1472 futex_unlock_mm(fshared);
778e9a9c
AK
1473 cond_resched();
1474 goto retry;
c87e2837 1475
778e9a9c
AK
1476 case -ESRCH:
1477 /*
1478 * No owner found for this futex. Check if the
1479 * OWNER_DIED bit is set to figure out whether
1480 * this is a robust futex or not.
1481 */
1482 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1483 goto uaddr_faulted;
778e9a9c
AK
1484
1485 /*
1486 * We simply start over in case of a robust
1487 * futex. The code above will take the futex
1488 * and return happy.
1489 */
1490 if (curval & FUTEX_OWNER_DIED) {
1491 ownerdied = 1;
c87e2837 1492 goto retry_locked;
778e9a9c
AK
1493 }
1494 default:
1495 goto out_unlock_release_sem;
c87e2837 1496 }
c87e2837
IM
1497 }
1498
1499 /*
1500 * Only actually queue now that the atomic ops are done:
1501 */
1502 __queue_me(&q, hb);
1503
1504 /*
1505 * Now the futex is queued and we have checked the data, we
1506 * don't want to hold mmap_sem while we sleep.
1507 */
36cf3b5c 1508 futex_unlock_mm(fshared);
c87e2837
IM
1509
1510 WARN_ON(!q.pi_state);
1511 /*
1512 * Block on the PI mutex:
1513 */
1514 if (!trylock)
1515 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1516 else {
1517 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1518 /* Fixup the trylock return value: */
1519 ret = ret ? 0 : -EWOULDBLOCK;
1520 }
1521
36cf3b5c 1522 futex_lock_mm(fshared);
a99e4e41 1523 spin_lock(q.lock_ptr);
c87e2837 1524
778e9a9c
AK
1525 if (!ret) {
1526 /*
1527 * Got the lock. We might not be the anticipated owner
1528 * if we did a lock-steal - fix up the PI-state in
1529 * that case:
1530 */
1531 if (q.pi_state->owner != curr)
1532 ret = fixup_pi_state_owner(uaddr, &q, curr);
1533 } else {
c87e2837
IM
1534 /*
1535 * Catch the rare case, where the lock was released
778e9a9c
AK
1536 * when we were on the way back before we locked the
1537 * hash bucket.
c87e2837 1538 */
cdf71a10
TG
1539 if (q.pi_state->owner == curr) {
1540 /*
1541 * Try to get the rt_mutex now. This might
1542 * fail as some other task acquired the
1543 * rt_mutex after we removed ourself from the
1544 * rt_mutex waiters list.
1545 */
1546 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1547 ret = 0;
1548 else {
1549 /*
1550 * pi_state is incorrect, some other
1551 * task did a lock steal and we
1552 * returned due to timeout or signal
1553 * without taking the rt_mutex. Too
1554 * late. We can access the
1555 * rt_mutex_owner without locking, as
1556 * the other task is now blocked on
1557 * the hash bucket lock. Fix the state
1558 * up.
1559 */
1560 struct task_struct *owner;
1561 int res;
1562
1563 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1564 res = fixup_pi_state_owner(uaddr, &q, owner);
1565
cdf71a10
TG
1566 /* propagate -EFAULT, if the fixup failed */
1567 if (res)
1568 ret = res;
1569 }
778e9a9c
AK
1570 } else {
1571 /*
1572 * Paranoia check. If we did not take the lock
1573 * in the trylock above, then we should not be
1574 * the owner of the rtmutex, neither the real
1575 * nor the pending one:
1576 */
1577 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1578 printk(KERN_ERR "futex_lock_pi: ret = %d "
1579 "pi-mutex: %p pi-state %p\n", ret,
1580 q.pi_state->pi_mutex.owner,
1581 q.pi_state->owner);
c87e2837 1582 }
c87e2837
IM
1583 }
1584
778e9a9c
AK
1585 /* Unqueue and drop the lock */
1586 unqueue_me_pi(&q);
36cf3b5c 1587 futex_unlock_mm(fshared);
c87e2837 1588
237fc6e7
TG
1589 if (to)
1590 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1591 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1592
1593 out_unlock_release_sem:
1594 queue_unlock(&q, hb);
1595
1596 out_release_sem:
36cf3b5c 1597 futex_unlock_mm(fshared);
237fc6e7
TG
1598 if (to)
1599 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1600 return ret;
1601
1602 uaddr_faulted:
1603 /*
1604 * We have to r/w *(int __user *)uaddr, but we can't modify it
1605 * non-atomically. Therefore, if get_user below is not
1606 * enough, we need to handle the fault ourselves, while
1607 * still holding the mmap_sem.
778e9a9c
AK
1608 *
1609 * ... and hb->lock. :-) --ANK
c87e2837 1610 */
778e9a9c
AK
1611 queue_unlock(&q, hb);
1612
c87e2837 1613 if (attempt++) {
34f01cc1
ED
1614 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1615 attempt);
1616 if (ret)
778e9a9c
AK
1617 goto out_release_sem;
1618 goto retry_unlocked;
c87e2837
IM
1619 }
1620
36cf3b5c 1621 futex_unlock_mm(fshared);
c87e2837
IM
1622
1623 ret = get_user(uval, uaddr);
1624 if (!ret && (uval != -EFAULT))
1625 goto retry;
1626
237fc6e7
TG
1627 if (to)
1628 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1629 return ret;
1630}
1631
c87e2837
IM
1632/*
1633 * Userspace attempted a TID -> 0 atomic transition, and failed.
1634 * This is the in-kernel slowpath: we look up the PI state (if any),
1635 * and do the rt-mutex unlock.
1636 */
34f01cc1 1637static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1638{
1639 struct futex_hash_bucket *hb;
1640 struct futex_q *this, *next;
1641 u32 uval;
ec92d082 1642 struct plist_head *head;
c87e2837
IM
1643 union futex_key key;
1644 int ret, attempt = 0;
1645
1646retry:
1647 if (get_user(uval, uaddr))
1648 return -EFAULT;
1649 /*
1650 * We release only a lock we actually own:
1651 */
b488893a 1652 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837
IM
1653 return -EPERM;
1654 /*
1655 * First take all the futex related locks:
1656 */
36cf3b5c 1657 futex_lock_mm(fshared);
c87e2837 1658
34f01cc1 1659 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1660 if (unlikely(ret != 0))
1661 goto out;
1662
1663 hb = hash_futex(&key);
778e9a9c 1664retry_unlocked:
c87e2837
IM
1665 spin_lock(&hb->lock);
1666
c87e2837
IM
1667 /*
1668 * To avoid races, try to do the TID -> 0 atomic transition
1669 * again. If it succeeds then we can return without waking
1670 * anyone else up:
1671 */
36cf3b5c 1672 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1673 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1674
c87e2837
IM
1675
1676 if (unlikely(uval == -EFAULT))
1677 goto pi_faulted;
1678 /*
1679 * Rare case: we managed to release the lock atomically,
1680 * no need to wake anyone else up:
1681 */
b488893a 1682 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1683 goto out_unlock;
1684
1685 /*
1686 * Ok, other tasks may need to be woken up - check waiters
1687 * and do the wakeup if necessary:
1688 */
1689 head = &hb->chain;
1690
ec92d082 1691 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1692 if (!match_futex (&this->key, &key))
1693 continue;
1694 ret = wake_futex_pi(uaddr, uval, this);
1695 /*
1696 * The atomic access to the futex value
1697 * generated a pagefault, so retry the
1698 * user-access and the wakeup:
1699 */
1700 if (ret == -EFAULT)
1701 goto pi_faulted;
1702 goto out_unlock;
1703 }
1704 /*
1705 * No waiters - kernel unlocks the futex:
1706 */
e3f2ddea
IM
1707 if (!(uval & FUTEX_OWNER_DIED)) {
1708 ret = unlock_futex_pi(uaddr, uval);
1709 if (ret == -EFAULT)
1710 goto pi_faulted;
1711 }
c87e2837
IM
1712
1713out_unlock:
1714 spin_unlock(&hb->lock);
1715out:
36cf3b5c 1716 futex_unlock_mm(fshared);
c87e2837
IM
1717
1718 return ret;
1719
1720pi_faulted:
1721 /*
1722 * We have to r/w *(int __user *)uaddr, but we can't modify it
1723 * non-atomically. Therefore, if get_user below is not
1724 * enough, we need to handle the fault ourselves, while
1725 * still holding the mmap_sem.
778e9a9c
AK
1726 *
1727 * ... and hb->lock. --ANK
c87e2837 1728 */
778e9a9c
AK
1729 spin_unlock(&hb->lock);
1730
c87e2837 1731 if (attempt++) {
34f01cc1
ED
1732 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1733 attempt);
1734 if (ret)
778e9a9c 1735 goto out;
187226f5 1736 uval = 0;
778e9a9c 1737 goto retry_unlocked;
c87e2837
IM
1738 }
1739
36cf3b5c 1740 futex_unlock_mm(fshared);
c87e2837
IM
1741
1742 ret = get_user(uval, uaddr);
1743 if (!ret && (uval != -EFAULT))
1744 goto retry;
1745
1da177e4
LT
1746 return ret;
1747}
1748
1749static int futex_close(struct inode *inode, struct file *filp)
1750{
1751 struct futex_q *q = filp->private_data;
1752
1753 unqueue_me(q);
1754 kfree(q);
e2970f2f 1755
1da177e4
LT
1756 return 0;
1757}
1758
1759/* This is one-shot: once it's gone off you need a new fd */
1760static unsigned int futex_poll(struct file *filp,
1761 struct poll_table_struct *wait)
1762{
1763 struct futex_q *q = filp->private_data;
1764 int ret = 0;
1765
1766 poll_wait(filp, &q->waiters, wait);
1767
1768 /*
ec92d082 1769 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1770 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1771 */
ec92d082 1772 if (plist_node_empty(&q->list))
1da177e4
LT
1773 ret = POLLIN | POLLRDNORM;
1774
1775 return ret;
1776}
1777
15ad7cdc 1778static const struct file_operations futex_fops = {
1da177e4
LT
1779 .release = futex_close,
1780 .poll = futex_poll,
1781};
1782
1783/*
1784 * Signal allows caller to avoid the race which would occur if they
1785 * set the sigio stuff up afterwards.
1786 */
e2970f2f 1787static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1788{
1789 struct futex_q *q;
1790 struct file *filp;
1791 int ret, err;
34f01cc1 1792 struct rw_semaphore *fshared;
19c6b6ed
AM
1793 static unsigned long printk_interval;
1794
1795 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1796 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
36cf3b5c
TG
1797 "will be removed from the kernel in June 2007\n",
1798 current->comm);
19c6b6ed 1799 }
1da177e4
LT
1800
1801 ret = -EINVAL;
7ed20e1a 1802 if (!valid_signal(signal))
1da177e4
LT
1803 goto out;
1804
1805 ret = get_unused_fd();
1806 if (ret < 0)
1807 goto out;
1808 filp = get_empty_filp();
1809 if (!filp) {
1810 put_unused_fd(ret);
1811 ret = -ENFILE;
1812 goto out;
1813 }
1814 filp->f_op = &futex_fops;
f3a43f3f
JJS
1815 filp->f_path.mnt = mntget(futex_mnt);
1816 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1817 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1818
1819 if (signal) {
609d7fa9 1820 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1821 if (err < 0) {
39ed3fde 1822 goto error;
1da177e4
LT
1823 }
1824 filp->f_owner.signum = signal;
1825 }
1826
1827 q = kmalloc(sizeof(*q), GFP_KERNEL);
1828 if (!q) {
39ed3fde
PE
1829 err = -ENOMEM;
1830 goto error;
1da177e4 1831 }
c87e2837 1832 q->pi_state = NULL;
1da177e4 1833
34f01cc1
ED
1834 fshared = &current->mm->mmap_sem;
1835 down_read(fshared);
1836 err = get_futex_key(uaddr, fshared, &q->key);
1da177e4
LT
1837
1838 if (unlikely(err != 0)) {
34f01cc1 1839 up_read(fshared);
1da177e4 1840 kfree(q);
39ed3fde 1841 goto error;
1da177e4
LT
1842 }
1843
1844 /*
1845 * queue_me() must be called before releasing mmap_sem, because
1846 * key->shared.inode needs to be referenced while holding it.
1847 */
1848 filp->private_data = q;
1849
1850 queue_me(q, ret, filp);
34f01cc1 1851 up_read(fshared);
1da177e4
LT
1852
1853 /* Now we map fd to filp, so userspace can access it */
1854 fd_install(ret, filp);
1855out:
1856 return ret;
39ed3fde
PE
1857error:
1858 put_unused_fd(ret);
1859 put_filp(filp);
1860 ret = err;
1861 goto out;
1da177e4
LT
1862}
1863
0771dfef
IM
1864/*
1865 * Support for robust futexes: the kernel cleans up held futexes at
1866 * thread exit time.
1867 *
1868 * Implementation: user-space maintains a per-thread list of locks it
1869 * is holding. Upon do_exit(), the kernel carefully walks this list,
1870 * and marks all locks that are owned by this thread with the
c87e2837 1871 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1872 * always manipulated with the lock held, so the list is private and
1873 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1874 * field, to allow the kernel to clean up if the thread dies after
1875 * acquiring the lock, but just before it could have added itself to
1876 * the list. There can only be one such pending lock.
1877 */
1878
1879/**
1880 * sys_set_robust_list - set the robust-futex list head of a task
1881 * @head: pointer to the list-head
1882 * @len: length of the list-head, as userspace expects
1883 */
1884asmlinkage long
1885sys_set_robust_list(struct robust_list_head __user *head,
1886 size_t len)
1887{
a0c1e907
TG
1888 if (!futex_cmpxchg_enabled)
1889 return -ENOSYS;
0771dfef
IM
1890 /*
1891 * The kernel knows only one size for now:
1892 */
1893 if (unlikely(len != sizeof(*head)))
1894 return -EINVAL;
1895
1896 current->robust_list = head;
1897
1898 return 0;
1899}
1900
1901/**
1902 * sys_get_robust_list - get the robust-futex list head of a task
1903 * @pid: pid of the process [zero for current task]
1904 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1905 * @len_ptr: pointer to a length field, the kernel fills in the header size
1906 */
1907asmlinkage long
ba46df98 1908sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1909 size_t __user *len_ptr)
1910{
ba46df98 1911 struct robust_list_head __user *head;
0771dfef
IM
1912 unsigned long ret;
1913
a0c1e907
TG
1914 if (!futex_cmpxchg_enabled)
1915 return -ENOSYS;
1916
0771dfef
IM
1917 if (!pid)
1918 head = current->robust_list;
1919 else {
1920 struct task_struct *p;
1921
1922 ret = -ESRCH;
aaa2a97e 1923 rcu_read_lock();
228ebcbe 1924 p = find_task_by_vpid(pid);
0771dfef
IM
1925 if (!p)
1926 goto err_unlock;
1927 ret = -EPERM;
1928 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1929 !capable(CAP_SYS_PTRACE))
1930 goto err_unlock;
1931 head = p->robust_list;
aaa2a97e 1932 rcu_read_unlock();
0771dfef
IM
1933 }
1934
1935 if (put_user(sizeof(*head), len_ptr))
1936 return -EFAULT;
1937 return put_user(head, head_ptr);
1938
1939err_unlock:
aaa2a97e 1940 rcu_read_unlock();
0771dfef
IM
1941
1942 return ret;
1943}
1944
1945/*
1946 * Process a futex-list entry, check whether it's owned by the
1947 * dying task, and do notification if so:
1948 */
e3f2ddea 1949int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1950{
e3f2ddea 1951 u32 uval, nval, mval;
0771dfef 1952
8f17d3a5
IM
1953retry:
1954 if (get_user(uval, uaddr))
0771dfef
IM
1955 return -1;
1956
b488893a 1957 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1958 /*
1959 * Ok, this dying thread is truly holding a futex
1960 * of interest. Set the OWNER_DIED bit atomically
1961 * via cmpxchg, and if the value had FUTEX_WAITERS
1962 * set, wake up a waiter (if any). (We have to do a
1963 * futex_wake() even if OWNER_DIED is already set -
1964 * to handle the rare but possible case of recursive
1965 * thread-death.) The rest of the cleanup is done in
1966 * userspace.
1967 */
e3f2ddea
IM
1968 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1969 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1970
c87e2837
IM
1971 if (nval == -EFAULT)
1972 return -1;
1973
1974 if (nval != uval)
8f17d3a5 1975 goto retry;
0771dfef 1976
e3f2ddea
IM
1977 /*
1978 * Wake robust non-PI futexes here. The wakeup of
1979 * PI futexes happens in exit_pi_state():
1980 */
36cf3b5c 1981 if (!pi && (uval & FUTEX_WAITERS))
cd689985
TG
1982 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1983 FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1984 }
1985 return 0;
1986}
1987
e3f2ddea
IM
1988/*
1989 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1990 */
1991static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1992 struct robust_list __user * __user *head,
1993 int *pi)
e3f2ddea
IM
1994{
1995 unsigned long uentry;
1996
ba46df98 1997 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1998 return -EFAULT;
1999
ba46df98 2000 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2001 *pi = uentry & 1;
2002
2003 return 0;
2004}
2005
0771dfef
IM
2006/*
2007 * Walk curr->robust_list (very carefully, it's a userspace list!)
2008 * and mark any locks found there dead, and notify any waiters.
2009 *
2010 * We silently return on any sign of list-walking problem.
2011 */
2012void exit_robust_list(struct task_struct *curr)
2013{
2014 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2015 struct robust_list __user *entry, *next_entry, *pending;
2016 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2017 unsigned long futex_offset;
9f96cb1e 2018 int rc;
0771dfef 2019
a0c1e907
TG
2020 if (!futex_cmpxchg_enabled)
2021 return;
2022
0771dfef
IM
2023 /*
2024 * Fetch the list head (which was registered earlier, via
2025 * sys_set_robust_list()):
2026 */
e3f2ddea 2027 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2028 return;
2029 /*
2030 * Fetch the relative futex offset:
2031 */
2032 if (get_user(futex_offset, &head->futex_offset))
2033 return;
2034 /*
2035 * Fetch any possibly pending lock-add first, and handle it
2036 * if it exists:
2037 */
e3f2ddea 2038 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2039 return;
e3f2ddea 2040
9f96cb1e 2041 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2042 while (entry != &head->list) {
9f96cb1e
MS
2043 /*
2044 * Fetch the next entry in the list before calling
2045 * handle_futex_death:
2046 */
2047 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2048 /*
2049 * A pending lock might already be on the list, so
c87e2837 2050 * don't process it twice:
0771dfef
IM
2051 */
2052 if (entry != pending)
ba46df98 2053 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2054 curr, pi))
0771dfef 2055 return;
9f96cb1e 2056 if (rc)
0771dfef 2057 return;
9f96cb1e
MS
2058 entry = next_entry;
2059 pi = next_pi;
0771dfef
IM
2060 /*
2061 * Avoid excessively long or circular lists:
2062 */
2063 if (!--limit)
2064 break;
2065
2066 cond_resched();
2067 }
9f96cb1e
MS
2068
2069 if (pending)
2070 handle_futex_death((void __user *)pending + futex_offset,
2071 curr, pip);
0771dfef
IM
2072}
2073
c19384b5 2074long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2075 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2076{
a0c1e907 2077 int ret = -ENOSYS;
34f01cc1
ED
2078 int cmd = op & FUTEX_CMD_MASK;
2079 struct rw_semaphore *fshared = NULL;
2080
2081 if (!(op & FUTEX_PRIVATE_FLAG))
2082 fshared = &current->mm->mmap_sem;
1da177e4 2083
34f01cc1 2084 switch (cmd) {
1da177e4 2085 case FUTEX_WAIT:
cd689985
TG
2086 val3 = FUTEX_BITSET_MATCH_ANY;
2087 case FUTEX_WAIT_BITSET:
2088 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1da177e4
LT
2089 break;
2090 case FUTEX_WAKE:
cd689985
TG
2091 val3 = FUTEX_BITSET_MATCH_ANY;
2092 case FUTEX_WAKE_BITSET:
2093 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4
LT
2094 break;
2095 case FUTEX_FD:
2096 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2097 ret = futex_fd(uaddr, val);
2098 break;
2099 case FUTEX_REQUEUE:
34f01cc1 2100 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
2101 break;
2102 case FUTEX_CMP_REQUEUE:
34f01cc1 2103 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2104 break;
4732efbe 2105 case FUTEX_WAKE_OP:
34f01cc1 2106 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2107 break;
c87e2837 2108 case FUTEX_LOCK_PI:
a0c1e907
TG
2109 if (futex_cmpxchg_enabled)
2110 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2111 break;
2112 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2113 if (futex_cmpxchg_enabled)
2114 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2115 break;
2116 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2117 if (futex_cmpxchg_enabled)
2118 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2119 break;
1da177e4
LT
2120 default:
2121 ret = -ENOSYS;
2122 }
2123 return ret;
2124}
2125
2126
e2970f2f 2127asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 2128 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 2129 u32 val3)
1da177e4 2130{
c19384b5
PP
2131 struct timespec ts;
2132 ktime_t t, *tp = NULL;
e2970f2f 2133 u32 val2 = 0;
34f01cc1 2134 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2135
cd689985
TG
2136 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2137 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 2138 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2139 return -EFAULT;
c19384b5 2140 if (!timespec_valid(&ts))
9741ef96 2141 return -EINVAL;
c19384b5
PP
2142
2143 t = timespec_to_ktime(ts);
34f01cc1 2144 if (cmd == FUTEX_WAIT)
5a7780e7 2145 t = ktime_add_safe(ktime_get(), t);
c19384b5 2146 tp = &t;
1da177e4
LT
2147 }
2148 /*
34f01cc1 2149 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2150 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2151 */
f54f0986
AS
2152 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2153 cmd == FUTEX_WAKE_OP)
e2970f2f 2154 val2 = (u32) (unsigned long) utime;
1da177e4 2155
c19384b5 2156 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2157}
2158
454e2398
DH
2159static int futexfs_get_sb(struct file_system_type *fs_type,
2160 int flags, const char *dev_name, void *data,
2161 struct vfsmount *mnt)
1da177e4 2162{
fd5eea42 2163 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
1da177e4
LT
2164}
2165
2166static struct file_system_type futex_fs_type = {
2167 .name = "futexfs",
2168 .get_sb = futexfs_get_sb,
2169 .kill_sb = kill_anon_super,
2170};
2171
f6d107fb 2172static int __init futex_init(void)
1da177e4 2173{
a0c1e907 2174 u32 curval;
3e4ab747 2175 int i;
95362fa9 2176
a0c1e907
TG
2177 /*
2178 * This will fail and we want it. Some arch implementations do
2179 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2180 * functionality. We want to know that before we call in any
2181 * of the complex code paths. Also we want to prevent
2182 * registration of robust lists in that case. NULL is
2183 * guaranteed to fault and we get -EFAULT on functional
2184 * implementation, the non functional ones will return
2185 * -ENOSYS.
2186 */
2187 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2188 if (curval == -EFAULT)
2189 futex_cmpxchg_enabled = 1;
2190
3e4ab747
TG
2191 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2192 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2193 spin_lock_init(&futex_queues[i].lock);
2194 }
2195
2196 i = register_filesystem(&futex_fs_type);
95362fa9
AM
2197 if (i)
2198 return i;
1da177e4 2199
1da177e4 2200 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
2201 if (IS_ERR(futex_mnt)) {
2202 unregister_filesystem(&futex_fs_type);
2203 return PTR_ERR(futex_mnt);
2204 }
1da177e4 2205
1da177e4
LT
2206 return 0;
2207}
f6d107fb 2208__initcall(futex_init);