]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: split out futex value validation code
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
b2d0994b
DH
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
1da177e4
LT
120 */
121struct futex_hash_bucket {
ec92d082
PP
122 spinlock_t lock;
123 struct plist_head chain;
1da177e4
LT
124};
125
126static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
1da177e4
LT
128/*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131static struct futex_hash_bucket *hash_futex(union futex_key *key)
132{
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137}
138
139/*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142static inline int match_futex(union futex_key *key1, union futex_key *key2)
143{
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147}
148
38d47c1b
PZ
149/*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154static void get_futex_key_refs(union futex_key *key)
155{
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167}
168
169/*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173static void drop_futex_key_refs(union futex_key *key)
174{
90621c40
DH
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
38d47c1b 178 return;
90621c40 179 }
38d47c1b
PZ
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189}
190
34f01cc1
ED
191/**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
b2d0994b 194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1
ED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
1da177e4 199 *
f3a43f3f 200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
b2d0994b 204 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 205 */
c2f9f201 206static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 207{
e2970f2f 208 unsigned long address = (unsigned long)uaddr;
1da177e4 209 struct mm_struct *mm = current->mm;
1da177e4
LT
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
e2970f2f 216 key->both.offset = address % PAGE_SIZE;
34f01cc1 217 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 218 return -EINVAL;
e2970f2f 219 address -= key->both.offset;
1da177e4 220
34f01cc1
ED
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
42569c39 233 get_futex_key_refs(key);
34f01cc1
ED
234 return 0;
235 }
1da177e4 236
38d47c1b 237again:
734b05b1 238 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
1da177e4
LT
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 254 * the object not the particular process.
1da177e4 255 */
38d47c1b
PZ
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 258 key->private.mm = mm;
e2970f2f 259 key->private.address = address;
38d47c1b
PZ
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
1da177e4
LT
264 }
265
38d47c1b 266 get_futex_key_refs(key);
1da177e4 267
38d47c1b
PZ
268 unlock_page(page);
269 put_page(page);
270 return 0;
1da177e4
LT
271}
272
38d47c1b 273static inline
c2f9f201 274void put_futex_key(int fshared, union futex_key *key)
1da177e4 275{
38d47c1b 276 drop_futex_key_refs(key);
1da177e4
LT
277}
278
4b1c486b
DH
279/**
280 * futex_top_waiter() - Return the highest priority waiter on a futex
281 * @hb: the hash bucket the futex_q's reside in
282 * @key: the futex key (to distinguish it from other futex futex_q's)
283 *
284 * Must be called with the hb lock held.
285 */
286static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
287 union futex_key *key)
288{
289 struct futex_q *this;
290
291 plist_for_each_entry(this, &hb->chain, list) {
292 if (match_futex(&this->key, key))
293 return this;
294 }
295 return NULL;
296}
297
36cf3b5c
TG
298static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
299{
300 u32 curval;
301
302 pagefault_disable();
303 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
304 pagefault_enable();
305
306 return curval;
307}
308
309static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
310{
311 int ret;
312
a866374a 313 pagefault_disable();
e2970f2f 314 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 315 pagefault_enable();
1da177e4
LT
316
317 return ret ? -EFAULT : 0;
318}
319
c87e2837
IM
320
321/*
322 * PI code:
323 */
324static int refill_pi_state_cache(void)
325{
326 struct futex_pi_state *pi_state;
327
328 if (likely(current->pi_state_cache))
329 return 0;
330
4668edc3 331 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
332
333 if (!pi_state)
334 return -ENOMEM;
335
c87e2837
IM
336 INIT_LIST_HEAD(&pi_state->list);
337 /* pi_mutex gets initialized later */
338 pi_state->owner = NULL;
339 atomic_set(&pi_state->refcount, 1);
38d47c1b 340 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
341
342 current->pi_state_cache = pi_state;
343
344 return 0;
345}
346
347static struct futex_pi_state * alloc_pi_state(void)
348{
349 struct futex_pi_state *pi_state = current->pi_state_cache;
350
351 WARN_ON(!pi_state);
352 current->pi_state_cache = NULL;
353
354 return pi_state;
355}
356
357static void free_pi_state(struct futex_pi_state *pi_state)
358{
359 if (!atomic_dec_and_test(&pi_state->refcount))
360 return;
361
362 /*
363 * If pi_state->owner is NULL, the owner is most probably dying
364 * and has cleaned up the pi_state already
365 */
366 if (pi_state->owner) {
367 spin_lock_irq(&pi_state->owner->pi_lock);
368 list_del_init(&pi_state->list);
369 spin_unlock_irq(&pi_state->owner->pi_lock);
370
371 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
372 }
373
374 if (current->pi_state_cache)
375 kfree(pi_state);
376 else {
377 /*
378 * pi_state->list is already empty.
379 * clear pi_state->owner.
380 * refcount is at 0 - put it back to 1.
381 */
382 pi_state->owner = NULL;
383 atomic_set(&pi_state->refcount, 1);
384 current->pi_state_cache = pi_state;
385 }
386}
387
388/*
389 * Look up the task based on what TID userspace gave us.
390 * We dont trust it.
391 */
392static struct task_struct * futex_find_get_task(pid_t pid)
393{
394 struct task_struct *p;
c69e8d9c 395 const struct cred *cred = current_cred(), *pcred;
c87e2837 396
d359b549 397 rcu_read_lock();
228ebcbe 398 p = find_task_by_vpid(pid);
c69e8d9c 399 if (!p) {
a06381fe 400 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
401 } else {
402 pcred = __task_cred(p);
403 if (cred->euid != pcred->euid &&
404 cred->euid != pcred->uid)
405 p = ERR_PTR(-ESRCH);
406 else
407 get_task_struct(p);
408 }
a06381fe 409
d359b549 410 rcu_read_unlock();
c87e2837
IM
411
412 return p;
413}
414
415/*
416 * This task is holding PI mutexes at exit time => bad.
417 * Kernel cleans up PI-state, but userspace is likely hosed.
418 * (Robust-futex cleanup is separate and might save the day for userspace.)
419 */
420void exit_pi_state_list(struct task_struct *curr)
421{
c87e2837
IM
422 struct list_head *next, *head = &curr->pi_state_list;
423 struct futex_pi_state *pi_state;
627371d7 424 struct futex_hash_bucket *hb;
38d47c1b 425 union futex_key key = FUTEX_KEY_INIT;
c87e2837 426
a0c1e907
TG
427 if (!futex_cmpxchg_enabled)
428 return;
c87e2837
IM
429 /*
430 * We are a ZOMBIE and nobody can enqueue itself on
431 * pi_state_list anymore, but we have to be careful
627371d7 432 * versus waiters unqueueing themselves:
c87e2837
IM
433 */
434 spin_lock_irq(&curr->pi_lock);
435 while (!list_empty(head)) {
436
437 next = head->next;
438 pi_state = list_entry(next, struct futex_pi_state, list);
439 key = pi_state->key;
627371d7 440 hb = hash_futex(&key);
c87e2837
IM
441 spin_unlock_irq(&curr->pi_lock);
442
c87e2837
IM
443 spin_lock(&hb->lock);
444
445 spin_lock_irq(&curr->pi_lock);
627371d7
IM
446 /*
447 * We dropped the pi-lock, so re-check whether this
448 * task still owns the PI-state:
449 */
c87e2837
IM
450 if (head->next != next) {
451 spin_unlock(&hb->lock);
452 continue;
453 }
454
c87e2837 455 WARN_ON(pi_state->owner != curr);
627371d7
IM
456 WARN_ON(list_empty(&pi_state->list));
457 list_del_init(&pi_state->list);
c87e2837
IM
458 pi_state->owner = NULL;
459 spin_unlock_irq(&curr->pi_lock);
460
461 rt_mutex_unlock(&pi_state->pi_mutex);
462
463 spin_unlock(&hb->lock);
464
465 spin_lock_irq(&curr->pi_lock);
466 }
467 spin_unlock_irq(&curr->pi_lock);
468}
469
470static int
d0aa7a70
PP
471lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
472 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
473{
474 struct futex_pi_state *pi_state = NULL;
475 struct futex_q *this, *next;
ec92d082 476 struct plist_head *head;
c87e2837 477 struct task_struct *p;
778e9a9c 478 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
479
480 head = &hb->chain;
481
ec92d082 482 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 483 if (match_futex(&this->key, key)) {
c87e2837
IM
484 /*
485 * Another waiter already exists - bump up
486 * the refcount and return its pi_state:
487 */
488 pi_state = this->pi_state;
06a9ec29
TG
489 /*
490 * Userspace might have messed up non PI and PI futexes
491 */
492 if (unlikely(!pi_state))
493 return -EINVAL;
494
627371d7 495 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
496 WARN_ON(pid && pi_state->owner &&
497 pi_state->owner->pid != pid);
627371d7 498
c87e2837 499 atomic_inc(&pi_state->refcount);
d0aa7a70 500 *ps = pi_state;
c87e2837
IM
501
502 return 0;
503 }
504 }
505
506 /*
e3f2ddea 507 * We are the first waiter - try to look up the real owner and attach
778e9a9c 508 * the new pi_state to it, but bail out when TID = 0
c87e2837 509 */
778e9a9c 510 if (!pid)
e3f2ddea 511 return -ESRCH;
c87e2837 512 p = futex_find_get_task(pid);
778e9a9c
AK
513 if (IS_ERR(p))
514 return PTR_ERR(p);
515
516 /*
517 * We need to look at the task state flags to figure out,
518 * whether the task is exiting. To protect against the do_exit
519 * change of the task flags, we do this protected by
520 * p->pi_lock:
521 */
522 spin_lock_irq(&p->pi_lock);
523 if (unlikely(p->flags & PF_EXITING)) {
524 /*
525 * The task is on the way out. When PF_EXITPIDONE is
526 * set, we know that the task has finished the
527 * cleanup:
528 */
529 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
530
531 spin_unlock_irq(&p->pi_lock);
532 put_task_struct(p);
533 return ret;
534 }
c87e2837
IM
535
536 pi_state = alloc_pi_state();
537
538 /*
539 * Initialize the pi_mutex in locked state and make 'p'
540 * the owner of it:
541 */
542 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
543
544 /* Store the key for possible exit cleanups: */
d0aa7a70 545 pi_state->key = *key;
c87e2837 546
627371d7 547 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
548 list_add(&pi_state->list, &p->pi_state_list);
549 pi_state->owner = p;
550 spin_unlock_irq(&p->pi_lock);
551
552 put_task_struct(p);
553
d0aa7a70 554 *ps = pi_state;
c87e2837
IM
555
556 return 0;
557}
558
1a52084d
DH
559/**
560 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
561 * @uaddr: the pi futex user address
562 * @hb: the pi futex hash bucket
563 * @key: the futex key associated with uaddr and hb
564 * @ps: the pi_state pointer where we store the result of the lookup
565 * @task: the task to perform the atomic lock work for. This will be
566 * "current" except in the case of requeue pi.
567 *
568 * Returns:
569 * 0 - ready to wait
570 * 1 - acquired the lock
571 * <0 - error
572 *
573 * The hb->lock and futex_key refs shall be held by the caller.
574 */
575static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
576 union futex_key *key,
577 struct futex_pi_state **ps,
578 struct task_struct *task)
579{
580 int lock_taken, ret, ownerdied = 0;
581 u32 uval, newval, curval;
582
583retry:
584 ret = lock_taken = 0;
585
586 /*
587 * To avoid races, we attempt to take the lock here again
588 * (by doing a 0 -> TID atomic cmpxchg), while holding all
589 * the locks. It will most likely not succeed.
590 */
591 newval = task_pid_vnr(task);
592
593 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
594
595 if (unlikely(curval == -EFAULT))
596 return -EFAULT;
597
598 /*
599 * Detect deadlocks.
600 */
601 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
602 return -EDEADLK;
603
604 /*
605 * Surprise - we got the lock. Just return to userspace:
606 */
607 if (unlikely(!curval))
608 return 1;
609
610 uval = curval;
611
612 /*
613 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
614 * to wake at the next unlock.
615 */
616 newval = curval | FUTEX_WAITERS;
617
618 /*
619 * There are two cases, where a futex might have no owner (the
620 * owner TID is 0): OWNER_DIED. We take over the futex in this
621 * case. We also do an unconditional take over, when the owner
622 * of the futex died.
623 *
624 * This is safe as we are protected by the hash bucket lock !
625 */
626 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
627 /* Keep the OWNER_DIED bit */
628 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
629 ownerdied = 0;
630 lock_taken = 1;
631 }
632
633 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
634
635 if (unlikely(curval == -EFAULT))
636 return -EFAULT;
637 if (unlikely(curval != uval))
638 goto retry;
639
640 /*
641 * We took the lock due to owner died take over.
642 */
643 if (unlikely(lock_taken))
644 return 1;
645
646 /*
647 * We dont have the lock. Look up the PI state (or create it if
648 * we are the first waiter):
649 */
650 ret = lookup_pi_state(uval, hb, key, ps);
651
652 if (unlikely(ret)) {
653 switch (ret) {
654 case -ESRCH:
655 /*
656 * No owner found for this futex. Check if the
657 * OWNER_DIED bit is set to figure out whether
658 * this is a robust futex or not.
659 */
660 if (get_futex_value_locked(&curval, uaddr))
661 return -EFAULT;
662
663 /*
664 * We simply start over in case of a robust
665 * futex. The code above will take the futex
666 * and return happy.
667 */
668 if (curval & FUTEX_OWNER_DIED) {
669 ownerdied = 1;
670 goto retry;
671 }
672 default:
673 break;
674 }
675 }
676
677 return ret;
678}
679
1da177e4
LT
680/*
681 * The hash bucket lock must be held when this is called.
682 * Afterwards, the futex_q must not be accessed.
683 */
684static void wake_futex(struct futex_q *q)
685{
ec92d082 686 plist_del(&q->list, &q->list.plist);
1da177e4
LT
687 /*
688 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 689 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 690 */
73500ac5 691 wake_up(&q->waiter);
1da177e4
LT
692 /*
693 * The waiting task can free the futex_q as soon as this is written,
694 * without taking any locks. This must come last.
8e31108b 695 *
b2d0994b
DH
696 * A memory barrier is required here to prevent the following store to
697 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
698 * end of wake_up() does not prevent this store from moving.
1da177e4 699 */
ccdea2f8 700 smp_wmb();
1da177e4
LT
701 q->lock_ptr = NULL;
702}
703
c87e2837
IM
704static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
705{
706 struct task_struct *new_owner;
707 struct futex_pi_state *pi_state = this->pi_state;
708 u32 curval, newval;
709
710 if (!pi_state)
711 return -EINVAL;
712
21778867 713 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
714 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
715
716 /*
717 * This happens when we have stolen the lock and the original
718 * pending owner did not enqueue itself back on the rt_mutex.
719 * Thats not a tragedy. We know that way, that a lock waiter
720 * is on the fly. We make the futex_q waiter the pending owner.
721 */
722 if (!new_owner)
723 new_owner = this->task;
724
725 /*
726 * We pass it to the next owner. (The WAITERS bit is always
727 * kept enabled while there is PI state around. We must also
728 * preserve the owner died bit.)
729 */
e3f2ddea 730 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
731 int ret = 0;
732
b488893a 733 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 734
36cf3b5c 735 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 736
e3f2ddea 737 if (curval == -EFAULT)
778e9a9c 738 ret = -EFAULT;
cde898fa 739 else if (curval != uval)
778e9a9c
AK
740 ret = -EINVAL;
741 if (ret) {
742 spin_unlock(&pi_state->pi_mutex.wait_lock);
743 return ret;
744 }
e3f2ddea 745 }
c87e2837 746
627371d7
IM
747 spin_lock_irq(&pi_state->owner->pi_lock);
748 WARN_ON(list_empty(&pi_state->list));
749 list_del_init(&pi_state->list);
750 spin_unlock_irq(&pi_state->owner->pi_lock);
751
752 spin_lock_irq(&new_owner->pi_lock);
753 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
754 list_add(&pi_state->list, &new_owner->pi_state_list);
755 pi_state->owner = new_owner;
627371d7
IM
756 spin_unlock_irq(&new_owner->pi_lock);
757
21778867 758 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
759 rt_mutex_unlock(&pi_state->pi_mutex);
760
761 return 0;
762}
763
764static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
765{
766 u32 oldval;
767
768 /*
769 * There is no waiter, so we unlock the futex. The owner died
770 * bit has not to be preserved here. We are the owner:
771 */
36cf3b5c 772 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
773
774 if (oldval == -EFAULT)
775 return oldval;
776 if (oldval != uval)
777 return -EAGAIN;
778
779 return 0;
780}
781
8b8f319f
IM
782/*
783 * Express the locking dependencies for lockdep:
784 */
785static inline void
786double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
787{
788 if (hb1 <= hb2) {
789 spin_lock(&hb1->lock);
790 if (hb1 < hb2)
791 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
792 } else { /* hb1 > hb2 */
793 spin_lock(&hb2->lock);
794 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
795 }
796}
797
5eb3dc62
DH
798static inline void
799double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
800{
f061d351 801 spin_unlock(&hb1->lock);
88f502fe
IM
802 if (hb1 != hb2)
803 spin_unlock(&hb2->lock);
5eb3dc62
DH
804}
805
1da177e4 806/*
b2d0994b 807 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 808 */
c2f9f201 809static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 810{
e2970f2f 811 struct futex_hash_bucket *hb;
1da177e4 812 struct futex_q *this, *next;
ec92d082 813 struct plist_head *head;
38d47c1b 814 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
815 int ret;
816
cd689985
TG
817 if (!bitset)
818 return -EINVAL;
819
34f01cc1 820 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
821 if (unlikely(ret != 0))
822 goto out;
823
e2970f2f
IM
824 hb = hash_futex(&key);
825 spin_lock(&hb->lock);
826 head = &hb->chain;
1da177e4 827
ec92d082 828 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 829 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
830 if (this->pi_state) {
831 ret = -EINVAL;
832 break;
833 }
cd689985
TG
834
835 /* Check if one of the bits is set in both bitsets */
836 if (!(this->bitset & bitset))
837 continue;
838
1da177e4
LT
839 wake_futex(this);
840 if (++ret >= nr_wake)
841 break;
842 }
843 }
844
e2970f2f 845 spin_unlock(&hb->lock);
38d47c1b 846 put_futex_key(fshared, &key);
42d35d48 847out:
1da177e4
LT
848 return ret;
849}
850
4732efbe
JJ
851/*
852 * Wake up all waiters hashed on the physical page that is mapped
853 * to this virtual address:
854 */
e2970f2f 855static int
c2f9f201 856futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 857 int nr_wake, int nr_wake2, int op)
4732efbe 858{
38d47c1b 859 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 860 struct futex_hash_bucket *hb1, *hb2;
ec92d082 861 struct plist_head *head;
4732efbe 862 struct futex_q *this, *next;
e4dc5b7a 863 int ret, op_ret;
4732efbe 864
e4dc5b7a 865retry:
34f01cc1 866 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
867 if (unlikely(ret != 0))
868 goto out;
34f01cc1 869 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 870 if (unlikely(ret != 0))
42d35d48 871 goto out_put_key1;
4732efbe 872
e2970f2f
IM
873 hb1 = hash_futex(&key1);
874 hb2 = hash_futex(&key2);
4732efbe 875
8b8f319f 876 double_lock_hb(hb1, hb2);
e4dc5b7a 877retry_private:
e2970f2f 878 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 879 if (unlikely(op_ret < 0)) {
e2970f2f 880 u32 dummy;
4732efbe 881
5eb3dc62 882 double_unlock_hb(hb1, hb2);
4732efbe 883
7ee1dd3f 884#ifndef CONFIG_MMU
e2970f2f
IM
885 /*
886 * we don't get EFAULT from MMU faults if we don't have an MMU,
887 * but we might get them from range checking
888 */
7ee1dd3f 889 ret = op_ret;
42d35d48 890 goto out_put_keys;
7ee1dd3f
DH
891#endif
892
796f8d9b
DG
893 if (unlikely(op_ret != -EFAULT)) {
894 ret = op_ret;
42d35d48 895 goto out_put_keys;
796f8d9b
DG
896 }
897
e2970f2f 898 ret = get_user(dummy, uaddr2);
4732efbe 899 if (ret)
de87fcc1 900 goto out_put_keys;
4732efbe 901
e4dc5b7a
DH
902 if (!fshared)
903 goto retry_private;
904
de87fcc1
DH
905 put_futex_key(fshared, &key2);
906 put_futex_key(fshared, &key1);
e4dc5b7a 907 goto retry;
4732efbe
JJ
908 }
909
e2970f2f 910 head = &hb1->chain;
4732efbe 911
ec92d082 912 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
913 if (match_futex (&this->key, &key1)) {
914 wake_futex(this);
915 if (++ret >= nr_wake)
916 break;
917 }
918 }
919
920 if (op_ret > 0) {
e2970f2f 921 head = &hb2->chain;
4732efbe
JJ
922
923 op_ret = 0;
ec92d082 924 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
925 if (match_futex (&this->key, &key2)) {
926 wake_futex(this);
927 if (++op_ret >= nr_wake2)
928 break;
929 }
930 }
931 ret += op_ret;
932 }
933
5eb3dc62 934 double_unlock_hb(hb1, hb2);
42d35d48 935out_put_keys:
38d47c1b 936 put_futex_key(fshared, &key2);
42d35d48 937out_put_key1:
38d47c1b 938 put_futex_key(fshared, &key1);
42d35d48 939out:
4732efbe
JJ
940 return ret;
941}
942
9121e478
DH
943/**
944 * requeue_futex() - Requeue a futex_q from one hb to another
945 * @q: the futex_q to requeue
946 * @hb1: the source hash_bucket
947 * @hb2: the target hash_bucket
948 * @key2: the new key for the requeued futex_q
949 */
950static inline
951void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
952 struct futex_hash_bucket *hb2, union futex_key *key2)
953{
954
955 /*
956 * If key1 and key2 hash to the same bucket, no need to
957 * requeue.
958 */
959 if (likely(&hb1->chain != &hb2->chain)) {
960 plist_del(&q->list, &hb1->chain);
961 plist_add(&q->list, &hb2->chain);
962 q->lock_ptr = &hb2->lock;
963#ifdef CONFIG_DEBUG_PI_LIST
964 q->list.plist.lock = &hb2->lock;
965#endif
966 }
967 get_futex_key_refs(key2);
968 q->key = *key2;
969}
970
1da177e4
LT
971/*
972 * Requeue all waiters hashed on one physical page to another
973 * physical page.
974 */
c2f9f201 975static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 976 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 977{
38d47c1b 978 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 979 struct futex_hash_bucket *hb1, *hb2;
ec92d082 980 struct plist_head *head1;
1da177e4
LT
981 struct futex_q *this, *next;
982 int ret, drop_count = 0;
983
42d35d48 984retry:
34f01cc1 985 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
986 if (unlikely(ret != 0))
987 goto out;
34f01cc1 988 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 989 if (unlikely(ret != 0))
42d35d48 990 goto out_put_key1;
1da177e4 991
e2970f2f
IM
992 hb1 = hash_futex(&key1);
993 hb2 = hash_futex(&key2);
1da177e4 994
e4dc5b7a 995retry_private:
8b8f319f 996 double_lock_hb(hb1, hb2);
1da177e4 997
e2970f2f
IM
998 if (likely(cmpval != NULL)) {
999 u32 curval;
1da177e4 1000
e2970f2f 1001 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1002
1003 if (unlikely(ret)) {
5eb3dc62 1004 double_unlock_hb(hb1, hb2);
1da177e4 1005
e2970f2f 1006 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1007 if (ret)
1008 goto out_put_keys;
1da177e4 1009
e4dc5b7a
DH
1010 if (!fshared)
1011 goto retry_private;
1da177e4 1012
e4dc5b7a
DH
1013 put_futex_key(fshared, &key2);
1014 put_futex_key(fshared, &key1);
1015 goto retry;
1da177e4 1016 }
e2970f2f 1017 if (curval != *cmpval) {
1da177e4
LT
1018 ret = -EAGAIN;
1019 goto out_unlock;
1020 }
1021 }
1022
e2970f2f 1023 head1 = &hb1->chain;
ec92d082 1024 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
1025 if (!match_futex (&this->key, &key1))
1026 continue;
1027 if (++ret <= nr_wake) {
1028 wake_futex(this);
1029 } else {
9121e478 1030 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
1031 drop_count++;
1032
1033 if (ret - nr_wake >= nr_requeue)
1034 break;
1da177e4
LT
1035 }
1036 }
1037
1038out_unlock:
5eb3dc62 1039 double_unlock_hb(hb1, hb2);
1da177e4 1040
9adef58b 1041 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 1042 while (--drop_count >= 0)
9adef58b 1043 drop_futex_key_refs(&key1);
1da177e4 1044
42d35d48 1045out_put_keys:
38d47c1b 1046 put_futex_key(fshared, &key2);
42d35d48 1047out_put_key1:
38d47c1b 1048 put_futex_key(fshared, &key1);
42d35d48 1049out:
1da177e4
LT
1050 return ret;
1051}
1052
1053/* The key must be already stored in q->key. */
82af7aca 1054static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1055{
e2970f2f 1056 struct futex_hash_bucket *hb;
1da177e4 1057
73500ac5 1058 init_waitqueue_head(&q->waiter);
1da177e4 1059
9adef58b 1060 get_futex_key_refs(&q->key);
e2970f2f
IM
1061 hb = hash_futex(&q->key);
1062 q->lock_ptr = &hb->lock;
1da177e4 1063
e2970f2f
IM
1064 spin_lock(&hb->lock);
1065 return hb;
1da177e4
LT
1066}
1067
82af7aca 1068static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1069{
ec92d082
PP
1070 int prio;
1071
1072 /*
1073 * The priority used to register this element is
1074 * - either the real thread-priority for the real-time threads
1075 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1076 * - or MAX_RT_PRIO for non-RT threads.
1077 * Thus, all RT-threads are woken first in priority order, and
1078 * the others are woken last, in FIFO order.
1079 */
1080 prio = min(current->normal_prio, MAX_RT_PRIO);
1081
1082 plist_node_init(&q->list, prio);
1083#ifdef CONFIG_DEBUG_PI_LIST
1084 q->list.plist.lock = &hb->lock;
1085#endif
1086 plist_add(&q->list, &hb->chain);
c87e2837 1087 q->task = current;
e2970f2f 1088 spin_unlock(&hb->lock);
1da177e4
LT
1089}
1090
1091static inline void
e2970f2f 1092queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1093{
e2970f2f 1094 spin_unlock(&hb->lock);
9adef58b 1095 drop_futex_key_refs(&q->key);
1da177e4
LT
1096}
1097
1098/*
1099 * queue_me and unqueue_me must be called as a pair, each
1100 * exactly once. They are called with the hashed spinlock held.
1101 */
1102
1da177e4
LT
1103/* Return 1 if we were still queued (ie. 0 means we were woken) */
1104static int unqueue_me(struct futex_q *q)
1105{
1da177e4 1106 spinlock_t *lock_ptr;
e2970f2f 1107 int ret = 0;
1da177e4
LT
1108
1109 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1110retry:
1da177e4 1111 lock_ptr = q->lock_ptr;
e91467ec 1112 barrier();
c80544dc 1113 if (lock_ptr != NULL) {
1da177e4
LT
1114 spin_lock(lock_ptr);
1115 /*
1116 * q->lock_ptr can change between reading it and
1117 * spin_lock(), causing us to take the wrong lock. This
1118 * corrects the race condition.
1119 *
1120 * Reasoning goes like this: if we have the wrong lock,
1121 * q->lock_ptr must have changed (maybe several times)
1122 * between reading it and the spin_lock(). It can
1123 * change again after the spin_lock() but only if it was
1124 * already changed before the spin_lock(). It cannot,
1125 * however, change back to the original value. Therefore
1126 * we can detect whether we acquired the correct lock.
1127 */
1128 if (unlikely(lock_ptr != q->lock_ptr)) {
1129 spin_unlock(lock_ptr);
1130 goto retry;
1131 }
ec92d082
PP
1132 WARN_ON(plist_node_empty(&q->list));
1133 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1134
1135 BUG_ON(q->pi_state);
1136
1da177e4
LT
1137 spin_unlock(lock_ptr);
1138 ret = 1;
1139 }
1140
9adef58b 1141 drop_futex_key_refs(&q->key);
1da177e4
LT
1142 return ret;
1143}
1144
c87e2837
IM
1145/*
1146 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1147 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1148 * and dropped here.
c87e2837 1149 */
d0aa7a70 1150static void unqueue_me_pi(struct futex_q *q)
c87e2837 1151{
ec92d082
PP
1152 WARN_ON(plist_node_empty(&q->list));
1153 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1154
1155 BUG_ON(!q->pi_state);
1156 free_pi_state(q->pi_state);
1157 q->pi_state = NULL;
1158
d0aa7a70 1159 spin_unlock(q->lock_ptr);
c87e2837 1160
9adef58b 1161 drop_futex_key_refs(&q->key);
c87e2837
IM
1162}
1163
d0aa7a70 1164/*
cdf71a10 1165 * Fixup the pi_state owner with the new owner.
d0aa7a70 1166 *
778e9a9c
AK
1167 * Must be called with hash bucket lock held and mm->sem held for non
1168 * private futexes.
d0aa7a70 1169 */
778e9a9c 1170static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1171 struct task_struct *newowner, int fshared)
d0aa7a70 1172{
cdf71a10 1173 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1174 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1175 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1176 u32 uval, curval, newval;
e4dc5b7a 1177 int ret;
d0aa7a70
PP
1178
1179 /* Owner died? */
1b7558e4
TG
1180 if (!pi_state->owner)
1181 newtid |= FUTEX_OWNER_DIED;
1182
1183 /*
1184 * We are here either because we stole the rtmutex from the
1185 * pending owner or we are the pending owner which failed to
1186 * get the rtmutex. We have to replace the pending owner TID
1187 * in the user space variable. This must be atomic as we have
1188 * to preserve the owner died bit here.
1189 *
b2d0994b
DH
1190 * Note: We write the user space value _before_ changing the pi_state
1191 * because we can fault here. Imagine swapped out pages or a fork
1192 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1193 *
1194 * Modifying pi_state _before_ the user space value would
1195 * leave the pi_state in an inconsistent state when we fault
1196 * here, because we need to drop the hash bucket lock to
1197 * handle the fault. This might be observed in the PID check
1198 * in lookup_pi_state.
1199 */
1200retry:
1201 if (get_futex_value_locked(&uval, uaddr))
1202 goto handle_fault;
1203
1204 while (1) {
1205 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1206
1207 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1208
1209 if (curval == -EFAULT)
1210 goto handle_fault;
1211 if (curval == uval)
1212 break;
1213 uval = curval;
1214 }
1215
1216 /*
1217 * We fixed up user space. Now we need to fix the pi_state
1218 * itself.
1219 */
d0aa7a70
PP
1220 if (pi_state->owner != NULL) {
1221 spin_lock_irq(&pi_state->owner->pi_lock);
1222 WARN_ON(list_empty(&pi_state->list));
1223 list_del_init(&pi_state->list);
1224 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1225 }
d0aa7a70 1226
cdf71a10 1227 pi_state->owner = newowner;
d0aa7a70 1228
cdf71a10 1229 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1230 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1231 list_add(&pi_state->list, &newowner->pi_state_list);
1232 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1233 return 0;
d0aa7a70 1234
d0aa7a70 1235 /*
1b7558e4
TG
1236 * To handle the page fault we need to drop the hash bucket
1237 * lock here. That gives the other task (either the pending
1238 * owner itself or the task which stole the rtmutex) the
1239 * chance to try the fixup of the pi_state. So once we are
1240 * back from handling the fault we need to check the pi_state
1241 * after reacquiring the hash bucket lock and before trying to
1242 * do another fixup. When the fixup has been done already we
1243 * simply return.
d0aa7a70 1244 */
1b7558e4
TG
1245handle_fault:
1246 spin_unlock(q->lock_ptr);
778e9a9c 1247
e4dc5b7a 1248 ret = get_user(uval, uaddr);
778e9a9c 1249
1b7558e4 1250 spin_lock(q->lock_ptr);
778e9a9c 1251
1b7558e4
TG
1252 /*
1253 * Check if someone else fixed it for us:
1254 */
1255 if (pi_state->owner != oldowner)
1256 return 0;
1257
1258 if (ret)
1259 return ret;
1260
1261 goto retry;
d0aa7a70
PP
1262}
1263
34f01cc1
ED
1264/*
1265 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1266 * we encode in the 'flags' shared capability
34f01cc1 1267 */
1acdac10
TG
1268#define FLAGS_SHARED 0x01
1269#define FLAGS_CLOCKRT 0x02
a72188d8 1270#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1271
72c1bbf3 1272static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1273
dd973998
DH
1274/**
1275 * fixup_owner() - Post lock pi_state and corner case management
1276 * @uaddr: user address of the futex
1277 * @fshared: whether the futex is shared (1) or not (0)
1278 * @q: futex_q (contains pi_state and access to the rt_mutex)
1279 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1280 *
1281 * After attempting to lock an rt_mutex, this function is called to cleanup
1282 * the pi_state owner as well as handle race conditions that may allow us to
1283 * acquire the lock. Must be called with the hb lock held.
1284 *
1285 * Returns:
1286 * 1 - success, lock taken
1287 * 0 - success, lock not taken
1288 * <0 - on error (-EFAULT)
1289 */
1290static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1291 int locked)
1292{
1293 struct task_struct *owner;
1294 int ret = 0;
1295
1296 if (locked) {
1297 /*
1298 * Got the lock. We might not be the anticipated owner if we
1299 * did a lock-steal - fix up the PI-state in that case:
1300 */
1301 if (q->pi_state->owner != current)
1302 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1303 goto out;
1304 }
1305
1306 /*
1307 * Catch the rare case, where the lock was released when we were on the
1308 * way back before we locked the hash bucket.
1309 */
1310 if (q->pi_state->owner == current) {
1311 /*
1312 * Try to get the rt_mutex now. This might fail as some other
1313 * task acquired the rt_mutex after we removed ourself from the
1314 * rt_mutex waiters list.
1315 */
1316 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1317 locked = 1;
1318 goto out;
1319 }
1320
1321 /*
1322 * pi_state is incorrect, some other task did a lock steal and
1323 * we returned due to timeout or signal without taking the
1324 * rt_mutex. Too late. We can access the rt_mutex_owner without
1325 * locking, as the other task is now blocked on the hash bucket
1326 * lock. Fix the state up.
1327 */
1328 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1329 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1330 goto out;
1331 }
1332
1333 /*
1334 * Paranoia check. If we did not take the lock, then we should not be
1335 * the owner, nor the pending owner, of the rt_mutex.
1336 */
1337 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1338 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1339 "pi-state %p\n", ret,
1340 q->pi_state->pi_mutex.owner,
1341 q->pi_state->owner);
1342
1343out:
1344 return ret ? ret : locked;
1345}
1346
ca5f9524
DH
1347/**
1348 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1349 * @hb: the futex hash bucket, must be locked by the caller
1350 * @q: the futex_q to queue up on
1351 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1352 * @wait: the wait_queue to add to the futex_q after queueing in the hb
1353 */
1354static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1355 struct hrtimer_sleeper *timeout,
1356 wait_queue_t *wait)
1357{
1358 queue_me(q, hb);
1359
1360 /*
1361 * There might have been scheduling since the queue_me(), as we
1362 * cannot hold a spinlock across the get_user() in case it
1363 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1364 * queueing ourselves into the futex hash. This code thus has to
1365 * rely on the futex_wake() code removing us from hash when it
1366 * wakes us up.
1367 */
1368
1369 /* add_wait_queue is the barrier after __set_current_state. */
1370 __set_current_state(TASK_INTERRUPTIBLE);
1371
1372 /*
1373 * Add current as the futex_q waiter. We don't remove ourselves from
1374 * the wait_queue because we are the only user of it.
1375 */
1376 add_wait_queue(&q->waiter, wait);
1377
1378 /* Arm the timer */
1379 if (timeout) {
1380 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1381 if (!hrtimer_active(&timeout->timer))
1382 timeout->task = NULL;
1383 }
1384
1385 /*
1386 * !plist_node_empty() is safe here without any lock.
1387 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1388 */
1389 if (likely(!plist_node_empty(&q->list))) {
1390 /*
1391 * If the timer has already expired, current will already be
1392 * flagged for rescheduling. Only call schedule if there
1393 * is no timeout, or if it has yet to expire.
1394 */
1395 if (!timeout || timeout->task)
1396 schedule();
1397 }
1398 __set_current_state(TASK_RUNNING);
1399}
1400
f801073f
DH
1401/**
1402 * futex_wait_setup() - Prepare to wait on a futex
1403 * @uaddr: the futex userspace address
1404 * @val: the expected value
1405 * @fshared: whether the futex is shared (1) or not (0)
1406 * @q: the associated futex_q
1407 * @hb: storage for hash_bucket pointer to be returned to caller
1408 *
1409 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1410 * compare it with the expected value. Handle atomic faults internally.
1411 * Return with the hb lock held and a q.key reference on success, and unlocked
1412 * with no q.key reference on failure.
1413 *
1414 * Returns:
1415 * 0 - uaddr contains val and hb has been locked
1416 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1417 */
1418static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1419 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1420{
e2970f2f
IM
1421 u32 uval;
1422 int ret;
1da177e4 1423
1da177e4 1424 /*
b2d0994b 1425 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1426 * Order is important:
1427 *
1428 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1429 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1430 *
1431 * The basic logical guarantee of a futex is that it blocks ONLY
1432 * if cond(var) is known to be true at the time of blocking, for
1433 * any cond. If we queued after testing *uaddr, that would open
1434 * a race condition where we could block indefinitely with
1435 * cond(var) false, which would violate the guarantee.
1436 *
1437 * A consequence is that futex_wait() can return zero and absorb
1438 * a wakeup when *uaddr != val on entry to the syscall. This is
1439 * rare, but normal.
1da177e4 1440 */
f801073f
DH
1441retry:
1442 q->key = FUTEX_KEY_INIT;
1443 ret = get_futex_key(uaddr, fshared, &q->key);
1444 if (unlikely(ret != 0))
1445 goto out;
1446
1447retry_private:
1448 *hb = queue_lock(q);
1449
e2970f2f 1450 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1451
f801073f
DH
1452 if (ret) {
1453 queue_unlock(q, *hb);
1da177e4 1454
e2970f2f 1455 ret = get_user(uval, uaddr);
e4dc5b7a 1456 if (ret)
f801073f 1457 goto out;
1da177e4 1458
e4dc5b7a
DH
1459 if (!fshared)
1460 goto retry_private;
1461
f801073f 1462 put_futex_key(fshared, &q->key);
e4dc5b7a 1463 goto retry;
1da177e4 1464 }
ca5f9524 1465
f801073f
DH
1466 if (uval != val) {
1467 queue_unlock(q, *hb);
1468 ret = -EWOULDBLOCK;
2fff78c7 1469 }
1da177e4 1470
f801073f
DH
1471out:
1472 if (ret)
1473 put_futex_key(fshared, &q->key);
1474 return ret;
1475}
1476
1477static int futex_wait(u32 __user *uaddr, int fshared,
1478 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1479{
1480 struct hrtimer_sleeper timeout, *to = NULL;
1481 DECLARE_WAITQUEUE(wait, current);
1482 struct restart_block *restart;
1483 struct futex_hash_bucket *hb;
1484 struct futex_q q;
1485 int ret;
1486
1487 if (!bitset)
1488 return -EINVAL;
1489
1490 q.pi_state = NULL;
1491 q.bitset = bitset;
1492
1493 if (abs_time) {
1494 to = &timeout;
1495
1496 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1497 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1498 hrtimer_init_sleeper(to, current);
1499 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1500 current->timer_slack_ns);
1501 }
1502
1503 /* Prepare to wait on uaddr. */
1504 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1505 if (ret)
1506 goto out;
1507
ca5f9524
DH
1508 /* queue_me and wait for wakeup, timeout, or a signal. */
1509 futex_wait_queue_me(hb, &q, to, &wait);
1da177e4
LT
1510
1511 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1512 ret = 0;
1da177e4 1513 if (!unqueue_me(&q))
2fff78c7
PZ
1514 goto out_put_key;
1515 ret = -ETIMEDOUT;
ca5f9524 1516 if (to && !to->task)
2fff78c7 1517 goto out_put_key;
72c1bbf3 1518
e2970f2f
IM
1519 /*
1520 * We expect signal_pending(current), but another thread may
1521 * have handled it for us already.
1522 */
2fff78c7 1523 ret = -ERESTARTSYS;
c19384b5 1524 if (!abs_time)
2fff78c7 1525 goto out_put_key;
1da177e4 1526
2fff78c7
PZ
1527 restart = &current_thread_info()->restart_block;
1528 restart->fn = futex_wait_restart;
1529 restart->futex.uaddr = (u32 *)uaddr;
1530 restart->futex.val = val;
1531 restart->futex.time = abs_time->tv64;
1532 restart->futex.bitset = bitset;
a72188d8 1533 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1534
1535 if (fshared)
1536 restart->futex.flags |= FLAGS_SHARED;
1537 if (clockrt)
1538 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1539
2fff78c7
PZ
1540 ret = -ERESTART_RESTARTBLOCK;
1541
1542out_put_key:
1543 put_futex_key(fshared, &q.key);
42d35d48 1544out:
ca5f9524
DH
1545 if (to) {
1546 hrtimer_cancel(&to->timer);
1547 destroy_hrtimer_on_stack(&to->timer);
1548 }
c87e2837
IM
1549 return ret;
1550}
1551
72c1bbf3
NP
1552
1553static long futex_wait_restart(struct restart_block *restart)
1554{
ce6bd420 1555 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1556 int fshared = 0;
a72188d8 1557 ktime_t t, *tp = NULL;
72c1bbf3 1558
a72188d8
DH
1559 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1560 t.tv64 = restart->futex.time;
1561 tp = &t;
1562 }
72c1bbf3 1563 restart->fn = do_no_restart_syscall;
ce6bd420 1564 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1565 fshared = 1;
a72188d8 1566 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1567 restart->futex.bitset,
1568 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1569}
1570
1571
c87e2837
IM
1572/*
1573 * Userspace tried a 0 -> TID atomic transition of the futex value
1574 * and failed. The kernel side here does the whole locking operation:
1575 * if there are waiters then it will block, it does PI, etc. (Due to
1576 * races the kernel might see a 0 value of the futex too.)
1577 */
c2f9f201 1578static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1579 int detect, ktime_t *time, int trylock)
c87e2837 1580{
c5780e97 1581 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1582 struct futex_hash_bucket *hb;
1a52084d 1583 u32 uval;
c87e2837 1584 struct futex_q q;
dd973998 1585 int res, ret;
c87e2837
IM
1586
1587 if (refill_pi_state_cache())
1588 return -ENOMEM;
1589
c19384b5 1590 if (time) {
c5780e97 1591 to = &timeout;
237fc6e7
TG
1592 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1593 HRTIMER_MODE_ABS);
c5780e97 1594 hrtimer_init_sleeper(to, current);
cc584b21 1595 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1596 }
1597
c87e2837 1598 q.pi_state = NULL;
42d35d48 1599retry:
38d47c1b 1600 q.key = FUTEX_KEY_INIT;
34f01cc1 1601 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1602 if (unlikely(ret != 0))
42d35d48 1603 goto out;
c87e2837 1604
e4dc5b7a 1605retry_private:
82af7aca 1606 hb = queue_lock(&q);
c87e2837 1607
1a52084d 1608 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current);
c87e2837 1609 if (unlikely(ret)) {
778e9a9c 1610 switch (ret) {
1a52084d
DH
1611 case 1:
1612 /* We got the lock. */
1613 ret = 0;
1614 goto out_unlock_put_key;
1615 case -EFAULT:
1616 goto uaddr_faulted;
778e9a9c
AK
1617 case -EAGAIN:
1618 /*
1619 * Task is exiting and we just wait for the
1620 * exit to complete.
1621 */
1622 queue_unlock(&q, hb);
de87fcc1 1623 put_futex_key(fshared, &q.key);
778e9a9c
AK
1624 cond_resched();
1625 goto retry;
778e9a9c 1626 default:
42d35d48 1627 goto out_unlock_put_key;
c87e2837 1628 }
c87e2837
IM
1629 }
1630
1631 /*
1632 * Only actually queue now that the atomic ops are done:
1633 */
82af7aca 1634 queue_me(&q, hb);
c87e2837 1635
c87e2837
IM
1636 WARN_ON(!q.pi_state);
1637 /*
1638 * Block on the PI mutex:
1639 */
1640 if (!trylock)
1641 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1642 else {
1643 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1644 /* Fixup the trylock return value: */
1645 ret = ret ? 0 : -EWOULDBLOCK;
1646 }
1647
a99e4e41 1648 spin_lock(q.lock_ptr);
dd973998
DH
1649 /*
1650 * Fixup the pi_state owner and possibly acquire the lock if we
1651 * haven't already.
1652 */
1653 res = fixup_owner(uaddr, fshared, &q, !ret);
1654 /*
1655 * If fixup_owner() returned an error, proprogate that. If it acquired
1656 * the lock, clear our -ETIMEDOUT or -EINTR.
1657 */
1658 if (res)
1659 ret = (res < 0) ? res : 0;
c87e2837 1660
e8f6386c 1661 /*
dd973998
DH
1662 * If fixup_owner() faulted and was unable to handle the fault, unlock
1663 * it and return the fault to userspace.
e8f6386c
DH
1664 */
1665 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1666 rt_mutex_unlock(&q.pi_state->pi_mutex);
1667
778e9a9c
AK
1668 /* Unqueue and drop the lock */
1669 unqueue_me_pi(&q);
c87e2837 1670
dd973998 1671 goto out;
c87e2837 1672
42d35d48 1673out_unlock_put_key:
c87e2837
IM
1674 queue_unlock(&q, hb);
1675
42d35d48 1676out_put_key:
38d47c1b 1677 put_futex_key(fshared, &q.key);
42d35d48 1678out:
237fc6e7
TG
1679 if (to)
1680 destroy_hrtimer_on_stack(&to->timer);
dd973998 1681 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1682
42d35d48 1683uaddr_faulted:
c87e2837 1684 /*
b5686363
DH
1685 * We have to r/w *(int __user *)uaddr, and we have to modify it
1686 * atomically. Therefore, if we continue to fault after get_user()
1687 * below, we need to handle the fault ourselves, while still holding
1688 * the mmap_sem. This can occur if the uaddr is under contention as
1689 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1690 */
778e9a9c
AK
1691 queue_unlock(&q, hb);
1692
c87e2837 1693 ret = get_user(uval, uaddr);
e4dc5b7a
DH
1694 if (ret)
1695 goto out_put_key;
c87e2837 1696
e4dc5b7a
DH
1697 if (!fshared)
1698 goto retry_private;
1699
1700 put_futex_key(fshared, &q.key);
1701 goto retry;
c87e2837
IM
1702}
1703
de87fcc1 1704
c87e2837
IM
1705/*
1706 * Userspace attempted a TID -> 0 atomic transition, and failed.
1707 * This is the in-kernel slowpath: we look up the PI state (if any),
1708 * and do the rt-mutex unlock.
1709 */
c2f9f201 1710static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1711{
1712 struct futex_hash_bucket *hb;
1713 struct futex_q *this, *next;
1714 u32 uval;
ec92d082 1715 struct plist_head *head;
38d47c1b 1716 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 1717 int ret;
c87e2837
IM
1718
1719retry:
1720 if (get_user(uval, uaddr))
1721 return -EFAULT;
1722 /*
1723 * We release only a lock we actually own:
1724 */
b488893a 1725 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1726 return -EPERM;
c87e2837 1727
34f01cc1 1728 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1729 if (unlikely(ret != 0))
1730 goto out;
1731
1732 hb = hash_futex(&key);
1733 spin_lock(&hb->lock);
1734
c87e2837
IM
1735 /*
1736 * To avoid races, try to do the TID -> 0 atomic transition
1737 * again. If it succeeds then we can return without waking
1738 * anyone else up:
1739 */
36cf3b5c 1740 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1741 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1742
c87e2837
IM
1743
1744 if (unlikely(uval == -EFAULT))
1745 goto pi_faulted;
1746 /*
1747 * Rare case: we managed to release the lock atomically,
1748 * no need to wake anyone else up:
1749 */
b488893a 1750 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1751 goto out_unlock;
1752
1753 /*
1754 * Ok, other tasks may need to be woken up - check waiters
1755 * and do the wakeup if necessary:
1756 */
1757 head = &hb->chain;
1758
ec92d082 1759 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1760 if (!match_futex (&this->key, &key))
1761 continue;
1762 ret = wake_futex_pi(uaddr, uval, this);
1763 /*
1764 * The atomic access to the futex value
1765 * generated a pagefault, so retry the
1766 * user-access and the wakeup:
1767 */
1768 if (ret == -EFAULT)
1769 goto pi_faulted;
1770 goto out_unlock;
1771 }
1772 /*
1773 * No waiters - kernel unlocks the futex:
1774 */
e3f2ddea
IM
1775 if (!(uval & FUTEX_OWNER_DIED)) {
1776 ret = unlock_futex_pi(uaddr, uval);
1777 if (ret == -EFAULT)
1778 goto pi_faulted;
1779 }
c87e2837
IM
1780
1781out_unlock:
1782 spin_unlock(&hb->lock);
38d47c1b 1783 put_futex_key(fshared, &key);
c87e2837 1784
42d35d48 1785out:
c87e2837
IM
1786 return ret;
1787
1788pi_faulted:
1789 /*
b5686363
DH
1790 * We have to r/w *(int __user *)uaddr, and we have to modify it
1791 * atomically. Therefore, if we continue to fault after get_user()
1792 * below, we need to handle the fault ourselves, while still holding
1793 * the mmap_sem. This can occur if the uaddr is under contention as
1794 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1795 */
778e9a9c 1796 spin_unlock(&hb->lock);
e4dc5b7a 1797 put_futex_key(fshared, &key);
c87e2837 1798
c87e2837 1799 ret = get_user(uval, uaddr);
b5686363 1800 if (!ret)
c87e2837
IM
1801 goto retry;
1802
1da177e4
LT
1803 return ret;
1804}
1805
0771dfef
IM
1806/*
1807 * Support for robust futexes: the kernel cleans up held futexes at
1808 * thread exit time.
1809 *
1810 * Implementation: user-space maintains a per-thread list of locks it
1811 * is holding. Upon do_exit(), the kernel carefully walks this list,
1812 * and marks all locks that are owned by this thread with the
c87e2837 1813 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1814 * always manipulated with the lock held, so the list is private and
1815 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1816 * field, to allow the kernel to clean up if the thread dies after
1817 * acquiring the lock, but just before it could have added itself to
1818 * the list. There can only be one such pending lock.
1819 */
1820
1821/**
1822 * sys_set_robust_list - set the robust-futex list head of a task
1823 * @head: pointer to the list-head
1824 * @len: length of the list-head, as userspace expects
1825 */
836f92ad
HC
1826SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1827 size_t, len)
0771dfef 1828{
a0c1e907
TG
1829 if (!futex_cmpxchg_enabled)
1830 return -ENOSYS;
0771dfef
IM
1831 /*
1832 * The kernel knows only one size for now:
1833 */
1834 if (unlikely(len != sizeof(*head)))
1835 return -EINVAL;
1836
1837 current->robust_list = head;
1838
1839 return 0;
1840}
1841
1842/**
1843 * sys_get_robust_list - get the robust-futex list head of a task
1844 * @pid: pid of the process [zero for current task]
1845 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1846 * @len_ptr: pointer to a length field, the kernel fills in the header size
1847 */
836f92ad
HC
1848SYSCALL_DEFINE3(get_robust_list, int, pid,
1849 struct robust_list_head __user * __user *, head_ptr,
1850 size_t __user *, len_ptr)
0771dfef 1851{
ba46df98 1852 struct robust_list_head __user *head;
0771dfef 1853 unsigned long ret;
c69e8d9c 1854 const struct cred *cred = current_cred(), *pcred;
0771dfef 1855
a0c1e907
TG
1856 if (!futex_cmpxchg_enabled)
1857 return -ENOSYS;
1858
0771dfef
IM
1859 if (!pid)
1860 head = current->robust_list;
1861 else {
1862 struct task_struct *p;
1863
1864 ret = -ESRCH;
aaa2a97e 1865 rcu_read_lock();
228ebcbe 1866 p = find_task_by_vpid(pid);
0771dfef
IM
1867 if (!p)
1868 goto err_unlock;
1869 ret = -EPERM;
c69e8d9c
DH
1870 pcred = __task_cred(p);
1871 if (cred->euid != pcred->euid &&
1872 cred->euid != pcred->uid &&
76aac0e9 1873 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1874 goto err_unlock;
1875 head = p->robust_list;
aaa2a97e 1876 rcu_read_unlock();
0771dfef
IM
1877 }
1878
1879 if (put_user(sizeof(*head), len_ptr))
1880 return -EFAULT;
1881 return put_user(head, head_ptr);
1882
1883err_unlock:
aaa2a97e 1884 rcu_read_unlock();
0771dfef
IM
1885
1886 return ret;
1887}
1888
1889/*
1890 * Process a futex-list entry, check whether it's owned by the
1891 * dying task, and do notification if so:
1892 */
e3f2ddea 1893int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1894{
e3f2ddea 1895 u32 uval, nval, mval;
0771dfef 1896
8f17d3a5
IM
1897retry:
1898 if (get_user(uval, uaddr))
0771dfef
IM
1899 return -1;
1900
b488893a 1901 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1902 /*
1903 * Ok, this dying thread is truly holding a futex
1904 * of interest. Set the OWNER_DIED bit atomically
1905 * via cmpxchg, and if the value had FUTEX_WAITERS
1906 * set, wake up a waiter (if any). (We have to do a
1907 * futex_wake() even if OWNER_DIED is already set -
1908 * to handle the rare but possible case of recursive
1909 * thread-death.) The rest of the cleanup is done in
1910 * userspace.
1911 */
e3f2ddea
IM
1912 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1913 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1914
c87e2837
IM
1915 if (nval == -EFAULT)
1916 return -1;
1917
1918 if (nval != uval)
8f17d3a5 1919 goto retry;
0771dfef 1920
e3f2ddea
IM
1921 /*
1922 * Wake robust non-PI futexes here. The wakeup of
1923 * PI futexes happens in exit_pi_state():
1924 */
36cf3b5c 1925 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1926 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1927 }
1928 return 0;
1929}
1930
e3f2ddea
IM
1931/*
1932 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1933 */
1934static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1935 struct robust_list __user * __user *head,
1936 int *pi)
e3f2ddea
IM
1937{
1938 unsigned long uentry;
1939
ba46df98 1940 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1941 return -EFAULT;
1942
ba46df98 1943 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1944 *pi = uentry & 1;
1945
1946 return 0;
1947}
1948
0771dfef
IM
1949/*
1950 * Walk curr->robust_list (very carefully, it's a userspace list!)
1951 * and mark any locks found there dead, and notify any waiters.
1952 *
1953 * We silently return on any sign of list-walking problem.
1954 */
1955void exit_robust_list(struct task_struct *curr)
1956{
1957 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1958 struct robust_list __user *entry, *next_entry, *pending;
1959 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1960 unsigned long futex_offset;
9f96cb1e 1961 int rc;
0771dfef 1962
a0c1e907
TG
1963 if (!futex_cmpxchg_enabled)
1964 return;
1965
0771dfef
IM
1966 /*
1967 * Fetch the list head (which was registered earlier, via
1968 * sys_set_robust_list()):
1969 */
e3f2ddea 1970 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1971 return;
1972 /*
1973 * Fetch the relative futex offset:
1974 */
1975 if (get_user(futex_offset, &head->futex_offset))
1976 return;
1977 /*
1978 * Fetch any possibly pending lock-add first, and handle it
1979 * if it exists:
1980 */
e3f2ddea 1981 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1982 return;
e3f2ddea 1983
9f96cb1e 1984 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1985 while (entry != &head->list) {
9f96cb1e
MS
1986 /*
1987 * Fetch the next entry in the list before calling
1988 * handle_futex_death:
1989 */
1990 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1991 /*
1992 * A pending lock might already be on the list, so
c87e2837 1993 * don't process it twice:
0771dfef
IM
1994 */
1995 if (entry != pending)
ba46df98 1996 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1997 curr, pi))
0771dfef 1998 return;
9f96cb1e 1999 if (rc)
0771dfef 2000 return;
9f96cb1e
MS
2001 entry = next_entry;
2002 pi = next_pi;
0771dfef
IM
2003 /*
2004 * Avoid excessively long or circular lists:
2005 */
2006 if (!--limit)
2007 break;
2008
2009 cond_resched();
2010 }
9f96cb1e
MS
2011
2012 if (pending)
2013 handle_futex_death((void __user *)pending + futex_offset,
2014 curr, pip);
0771dfef
IM
2015}
2016
c19384b5 2017long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2018 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2019{
1acdac10 2020 int clockrt, ret = -ENOSYS;
34f01cc1 2021 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2022 int fshared = 0;
34f01cc1
ED
2023
2024 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2025 fshared = 1;
1da177e4 2026
1acdac10
TG
2027 clockrt = op & FUTEX_CLOCK_REALTIME;
2028 if (clockrt && cmd != FUTEX_WAIT_BITSET)
2029 return -ENOSYS;
1da177e4 2030
34f01cc1 2031 switch (cmd) {
1da177e4 2032 case FUTEX_WAIT:
cd689985
TG
2033 val3 = FUTEX_BITSET_MATCH_ANY;
2034 case FUTEX_WAIT_BITSET:
1acdac10 2035 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2036 break;
2037 case FUTEX_WAKE:
cd689985
TG
2038 val3 = FUTEX_BITSET_MATCH_ANY;
2039 case FUTEX_WAKE_BITSET:
2040 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2041 break;
1da177e4 2042 case FUTEX_REQUEUE:
34f01cc1 2043 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
2044 break;
2045 case FUTEX_CMP_REQUEUE:
34f01cc1 2046 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2047 break;
4732efbe 2048 case FUTEX_WAKE_OP:
34f01cc1 2049 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2050 break;
c87e2837 2051 case FUTEX_LOCK_PI:
a0c1e907
TG
2052 if (futex_cmpxchg_enabled)
2053 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2054 break;
2055 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2056 if (futex_cmpxchg_enabled)
2057 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2058 break;
2059 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2060 if (futex_cmpxchg_enabled)
2061 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2062 break;
1da177e4
LT
2063 default:
2064 ret = -ENOSYS;
2065 }
2066 return ret;
2067}
2068
2069
17da2bd9
HC
2070SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2071 struct timespec __user *, utime, u32 __user *, uaddr2,
2072 u32, val3)
1da177e4 2073{
c19384b5
PP
2074 struct timespec ts;
2075 ktime_t t, *tp = NULL;
e2970f2f 2076 u32 val2 = 0;
34f01cc1 2077 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2078
cd689985
TG
2079 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2080 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 2081 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2082 return -EFAULT;
c19384b5 2083 if (!timespec_valid(&ts))
9741ef96 2084 return -EINVAL;
c19384b5
PP
2085
2086 t = timespec_to_ktime(ts);
34f01cc1 2087 if (cmd == FUTEX_WAIT)
5a7780e7 2088 t = ktime_add_safe(ktime_get(), t);
c19384b5 2089 tp = &t;
1da177e4
LT
2090 }
2091 /*
34f01cc1 2092 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2093 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2094 */
f54f0986
AS
2095 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2096 cmd == FUTEX_WAKE_OP)
e2970f2f 2097 val2 = (u32) (unsigned long) utime;
1da177e4 2098
c19384b5 2099 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2100}
2101
f6d107fb 2102static int __init futex_init(void)
1da177e4 2103{
a0c1e907 2104 u32 curval;
3e4ab747 2105 int i;
95362fa9 2106
a0c1e907
TG
2107 /*
2108 * This will fail and we want it. Some arch implementations do
2109 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2110 * functionality. We want to know that before we call in any
2111 * of the complex code paths. Also we want to prevent
2112 * registration of robust lists in that case. NULL is
2113 * guaranteed to fault and we get -EFAULT on functional
2114 * implementation, the non functional ones will return
2115 * -ENOSYS.
2116 */
2117 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2118 if (curval == -EFAULT)
2119 futex_cmpxchg_enabled = 1;
2120
3e4ab747
TG
2121 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2122 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2123 spin_lock_init(&futex_queues[i].lock);
2124 }
2125
1da177e4
LT
2126 return 0;
2127}
f6d107fb 2128__initcall(futex_init);