]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/hrtimer.c
time: Extend get_xtime_and_monotonic_offset() to also return sleep
[mirror_ubuntu-bionic-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c 55 *
e06383db
JS
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 60 */
54cdfdb4 61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 62{
3c8aa39d
TG
63
64 .clock_base =
c0a31329 65 {
3c8aa39d
TG
66 {
67 .index = CLOCK_REALTIME,
68 .get_time = &ktime_get_real,
54cdfdb4 69 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
70 },
71 {
72 .index = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
54cdfdb4 74 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
75 },
76 }
c0a31329
TG
77};
78
e06383db
JS
79static int hrtimer_clock_to_base_table[MAX_CLOCKS];
80
81static inline int hrtimer_clockid_to_base(clockid_t clock_id)
82{
83 return hrtimer_clock_to_base_table[clock_id];
84}
85
86
92127c7a
TG
87/*
88 * Get the coarse grained time at the softirq based on xtime and
89 * wall_to_monotonic.
90 */
3c8aa39d 91static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
92{
93 ktime_t xtim, tomono;
314ac371 94 struct timespec xts, tom, slp;
92127c7a 95
314ac371 96 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
92127c7a 97
f4304ab2 98 xtim = timespec_to_ktime(xts);
ad28d94a 99 tomono = timespec_to_ktime(tom);
e06383db
JS
100 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
101 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time =
3c8aa39d 102 ktime_add(xtim, tomono);
92127c7a
TG
103}
104
c0a31329
TG
105/*
106 * Functions and macros which are different for UP/SMP systems are kept in a
107 * single place
108 */
109#ifdef CONFIG_SMP
110
c0a31329
TG
111/*
112 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
113 * means that all timers which are tied to this base via timer->base are
114 * locked, and the base itself is locked too.
115 *
116 * So __run_timers/migrate_timers can safely modify all timers which could
117 * be found on the lists/queues.
118 *
119 * When the timer's base is locked, and the timer removed from list, it is
120 * possible to set timer->base = NULL and drop the lock: the timer remains
121 * locked.
122 */
3c8aa39d
TG
123static
124struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
125 unsigned long *flags)
c0a31329 126{
3c8aa39d 127 struct hrtimer_clock_base *base;
c0a31329
TG
128
129 for (;;) {
130 base = timer->base;
131 if (likely(base != NULL)) {
ecb49d1a 132 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
133 if (likely(base == timer->base))
134 return base;
135 /* The timer has migrated to another CPU: */
ecb49d1a 136 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
137 }
138 cpu_relax();
139 }
140}
141
6ff7041d
TG
142
143/*
144 * Get the preferred target CPU for NOHZ
145 */
146static int hrtimer_get_target(int this_cpu, int pinned)
147{
148#ifdef CONFIG_NO_HZ
83cd4fe2
VP
149 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
150 return get_nohz_timer_target();
6ff7041d
TG
151#endif
152 return this_cpu;
153}
154
155/*
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
159 *
160 * Called with cpu_base->lock of target cpu held.
161 */
162static int
163hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164{
165#ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
167
168 if (!new_base->cpu_base->hres_active)
169 return 0;
170
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173#else
174 return 0;
175#endif
176}
177
c0a31329
TG
178/*
179 * Switch the timer base to the current CPU when possible.
180 */
3c8aa39d 181static inline struct hrtimer_clock_base *
597d0275
AB
182switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
183 int pinned)
c0a31329 184{
3c8aa39d
TG
185 struct hrtimer_clock_base *new_base;
186 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
187 int this_cpu = smp_processor_id();
188 int cpu = hrtimer_get_target(this_cpu, pinned);
e06383db 189 int basenum = hrtimer_clockid_to_base(base->index);
c0a31329 190
eea08f32
AB
191again:
192 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 193 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
194
195 if (base != new_base) {
196 /*
6ff7041d 197 * We are trying to move timer to new_base.
c0a31329
TG
198 * However we can't change timer's base while it is running,
199 * so we keep it on the same CPU. No hassle vs. reprogramming
200 * the event source in the high resolution case. The softirq
201 * code will take care of this when the timer function has
202 * completed. There is no conflict as we hold the lock until
203 * the timer is enqueued.
204 */
54cdfdb4 205 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
206 return base;
207
208 /* See the comment in lock_timer_base() */
209 timer->base = NULL;
ecb49d1a
TG
210 raw_spin_unlock(&base->cpu_base->lock);
211 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 212
6ff7041d
TG
213 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
214 cpu = this_cpu;
ecb49d1a
TG
215 raw_spin_unlock(&new_base->cpu_base->lock);
216 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
217 timer->base = base;
218 goto again;
eea08f32 219 }
c0a31329
TG
220 timer->base = new_base;
221 }
222 return new_base;
223}
224
225#else /* CONFIG_SMP */
226
3c8aa39d 227static inline struct hrtimer_clock_base *
c0a31329
TG
228lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
229{
3c8aa39d 230 struct hrtimer_clock_base *base = timer->base;
c0a31329 231
ecb49d1a 232 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
233
234 return base;
235}
236
eea08f32 237# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
238
239#endif /* !CONFIG_SMP */
240
241/*
242 * Functions for the union type storage format of ktime_t which are
243 * too large for inlining:
244 */
245#if BITS_PER_LONG < 64
246# ifndef CONFIG_KTIME_SCALAR
247/**
248 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
249 * @kt: addend
250 * @nsec: the scalar nsec value to add
251 *
252 * Returns the sum of kt and nsec in ktime_t format
253 */
254ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
255{
256 ktime_t tmp;
257
258 if (likely(nsec < NSEC_PER_SEC)) {
259 tmp.tv64 = nsec;
260 } else {
261 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
262
263 tmp = ktime_set((long)nsec, rem);
264 }
265
266 return ktime_add(kt, tmp);
267}
b8b8fd2d
DH
268
269EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
270
271/**
272 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
273 * @kt: minuend
274 * @nsec: the scalar nsec value to subtract
275 *
276 * Returns the subtraction of @nsec from @kt in ktime_t format
277 */
278ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
279{
280 ktime_t tmp;
281
282 if (likely(nsec < NSEC_PER_SEC)) {
283 tmp.tv64 = nsec;
284 } else {
285 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
286
287 tmp = ktime_set((long)nsec, rem);
288 }
289
290 return ktime_sub(kt, tmp);
291}
292
293EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
294# endif /* !CONFIG_KTIME_SCALAR */
295
296/*
297 * Divide a ktime value by a nanosecond value
298 */
4d672e7a 299u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 300{
900cfa46 301 u64 dclc;
c0a31329
TG
302 int sft = 0;
303
900cfa46 304 dclc = ktime_to_ns(kt);
c0a31329
TG
305 /* Make sure the divisor is less than 2^32: */
306 while (div >> 32) {
307 sft++;
308 div >>= 1;
309 }
310 dclc >>= sft;
311 do_div(dclc, (unsigned long) div);
312
4d672e7a 313 return dclc;
c0a31329 314}
c0a31329
TG
315#endif /* BITS_PER_LONG >= 64 */
316
5a7780e7
TG
317/*
318 * Add two ktime values and do a safety check for overflow:
319 */
320ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
321{
322 ktime_t res = ktime_add(lhs, rhs);
323
324 /*
325 * We use KTIME_SEC_MAX here, the maximum timeout which we can
326 * return to user space in a timespec:
327 */
328 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
329 res = ktime_set(KTIME_SEC_MAX, 0);
330
331 return res;
332}
333
8daa21e6
AB
334EXPORT_SYMBOL_GPL(ktime_add_safe);
335
237fc6e7
TG
336#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338static struct debug_obj_descr hrtimer_debug_descr;
339
340/*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345{
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364{
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377}
378
379/*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384{
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395}
396
397static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402};
403
404static inline void debug_hrtimer_init(struct hrtimer *timer)
405{
406 debug_object_init(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_activate(struct hrtimer *timer)
410{
411 debug_object_activate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415{
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_free(struct hrtimer *timer)
420{
421 debug_object_free(timer, &hrtimer_debug_descr);
422}
423
424static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429{
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432}
2bc481cf 433EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
434
435void destroy_hrtimer_on_stack(struct hrtimer *timer)
436{
437 debug_object_free(timer, &hrtimer_debug_descr);
438}
439
440#else
441static inline void debug_hrtimer_init(struct hrtimer *timer) { }
442static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
443static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444#endif
445
c6a2a177
XG
446static inline void
447debug_init(struct hrtimer *timer, clockid_t clockid,
448 enum hrtimer_mode mode)
449{
450 debug_hrtimer_init(timer);
451 trace_hrtimer_init(timer, clockid, mode);
452}
453
454static inline void debug_activate(struct hrtimer *timer)
455{
456 debug_hrtimer_activate(timer);
457 trace_hrtimer_start(timer);
458}
459
460static inline void debug_deactivate(struct hrtimer *timer)
461{
462 debug_hrtimer_deactivate(timer);
463 trace_hrtimer_cancel(timer);
464}
465
54cdfdb4
TG
466/* High resolution timer related functions */
467#ifdef CONFIG_HIGH_RES_TIMERS
468
469/*
470 * High resolution timer enabled ?
471 */
472static int hrtimer_hres_enabled __read_mostly = 1;
473
474/*
475 * Enable / Disable high resolution mode
476 */
477static int __init setup_hrtimer_hres(char *str)
478{
479 if (!strcmp(str, "off"))
480 hrtimer_hres_enabled = 0;
481 else if (!strcmp(str, "on"))
482 hrtimer_hres_enabled = 1;
483 else
484 return 0;
485 return 1;
486}
487
488__setup("highres=", setup_hrtimer_hres);
489
490/*
491 * hrtimer_high_res_enabled - query, if the highres mode is enabled
492 */
493static inline int hrtimer_is_hres_enabled(void)
494{
495 return hrtimer_hres_enabled;
496}
497
498/*
499 * Is the high resolution mode active ?
500 */
501static inline int hrtimer_hres_active(void)
502{
909ea964 503 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
504}
505
506/*
507 * Reprogram the event source with checking both queues for the
508 * next event
509 * Called with interrupts disabled and base->lock held
510 */
7403f41f
AC
511static void
512hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
513{
514 int i;
515 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 516 ktime_t expires, expires_next;
54cdfdb4 517
7403f41f 518 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
519
520 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
521 struct hrtimer *timer;
998adc3d 522 struct timerqueue_node *next;
54cdfdb4 523
998adc3d
JS
524 next = timerqueue_getnext(&base->active);
525 if (!next)
54cdfdb4 526 continue;
998adc3d
JS
527 timer = container_of(next, struct hrtimer, node);
528
cc584b21 529 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
530 /*
531 * clock_was_set() has changed base->offset so the
532 * result might be negative. Fix it up to prevent a
533 * false positive in clockevents_program_event()
534 */
535 if (expires.tv64 < 0)
536 expires.tv64 = 0;
7403f41f
AC
537 if (expires.tv64 < expires_next.tv64)
538 expires_next = expires;
54cdfdb4
TG
539 }
540
7403f41f
AC
541 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
542 return;
543
544 cpu_base->expires_next.tv64 = expires_next.tv64;
545
54cdfdb4
TG
546 if (cpu_base->expires_next.tv64 != KTIME_MAX)
547 tick_program_event(cpu_base->expires_next, 1);
548}
549
550/*
551 * Shared reprogramming for clock_realtime and clock_monotonic
552 *
553 * When a timer is enqueued and expires earlier than the already enqueued
554 * timers, we have to check, whether it expires earlier than the timer for
555 * which the clock event device was armed.
556 *
557 * Called with interrupts disabled and base->cpu_base.lock held
558 */
559static int hrtimer_reprogram(struct hrtimer *timer,
560 struct hrtimer_clock_base *base)
561{
41d2e494 562 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 563 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
564 int res;
565
cc584b21 566 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 567
54cdfdb4
TG
568 /*
569 * When the callback is running, we do not reprogram the clock event
570 * device. The timer callback is either running on a different CPU or
3a4fa0a2 571 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
572 * reprogramming is handled either by the softirq, which called the
573 * callback or at the end of the hrtimer_interrupt.
574 */
575 if (hrtimer_callback_running(timer))
576 return 0;
577
63070a79
TG
578 /*
579 * CLOCK_REALTIME timer might be requested with an absolute
580 * expiry time which is less than base->offset. Nothing wrong
581 * about that, just avoid to call into the tick code, which
582 * has now objections against negative expiry values.
583 */
584 if (expires.tv64 < 0)
585 return -ETIME;
586
41d2e494
TG
587 if (expires.tv64 >= cpu_base->expires_next.tv64)
588 return 0;
589
590 /*
591 * If a hang was detected in the last timer interrupt then we
592 * do not schedule a timer which is earlier than the expiry
593 * which we enforced in the hang detection. We want the system
594 * to make progress.
595 */
596 if (cpu_base->hang_detected)
54cdfdb4
TG
597 return 0;
598
599 /*
600 * Clockevents returns -ETIME, when the event was in the past.
601 */
602 res = tick_program_event(expires, 0);
603 if (!IS_ERR_VALUE(res))
41d2e494 604 cpu_base->expires_next = expires;
54cdfdb4
TG
605 return res;
606}
607
608
609/*
610 * Retrigger next event is called after clock was set
611 *
612 * Called with interrupts disabled via on_each_cpu()
613 */
614static void retrigger_next_event(void *arg)
615{
616 struct hrtimer_cpu_base *base;
314ac371 617 struct timespec realtime_offset, wtm, sleep;
54cdfdb4
TG
618
619 if (!hrtimer_hres_active())
620 return;
621
314ac371
JS
622 get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm,
623 &sleep);
8ab4351a 624 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
54cdfdb4
TG
625
626 base = &__get_cpu_var(hrtimer_bases);
627
628 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 629 raw_spin_lock(&base->lock);
e06383db 630 base->clock_base[HRTIMER_BASE_REALTIME].offset =
54cdfdb4
TG
631 timespec_to_ktime(realtime_offset);
632
7403f41f 633 hrtimer_force_reprogram(base, 0);
ecb49d1a 634 raw_spin_unlock(&base->lock);
54cdfdb4
TG
635}
636
637/*
638 * Clock realtime was set
639 *
640 * Change the offset of the realtime clock vs. the monotonic
641 * clock.
642 *
643 * We might have to reprogram the high resolution timer interrupt. On
644 * SMP we call the architecture specific code to retrigger _all_ high
645 * resolution timer interrupts. On UP we just disable interrupts and
646 * call the high resolution interrupt code.
647 */
648void clock_was_set(void)
649{
650 /* Retrigger the CPU local events everywhere */
15c8b6c1 651 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
652}
653
995f054f
IM
654/*
655 * During resume we might have to reprogram the high resolution timer
656 * interrupt (on the local CPU):
657 */
658void hres_timers_resume(void)
659{
1d4a7f1c
PZ
660 WARN_ONCE(!irqs_disabled(),
661 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
662
995f054f
IM
663 retrigger_next_event(NULL);
664}
665
54cdfdb4
TG
666/*
667 * Initialize the high resolution related parts of cpu_base
668 */
669static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
670{
671 base->expires_next.tv64 = KTIME_MAX;
672 base->hres_active = 0;
54cdfdb4
TG
673}
674
675/*
676 * Initialize the high resolution related parts of a hrtimer
677 */
678static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
679{
54cdfdb4
TG
680}
681
ca109491 682
54cdfdb4
TG
683/*
684 * When High resolution timers are active, try to reprogram. Note, that in case
685 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
686 * check happens. The timer gets enqueued into the rbtree. The reprogramming
687 * and expiry check is done in the hrtimer_interrupt or in the softirq.
688 */
689static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
690 struct hrtimer_clock_base *base,
691 int wakeup)
54cdfdb4
TG
692{
693 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 694 if (wakeup) {
ecb49d1a 695 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 696 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 697 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
698 } else
699 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
700
ca109491 701 return 1;
54cdfdb4 702 }
7f1e2ca9 703
54cdfdb4
TG
704 return 0;
705}
706
707/*
708 * Switch to high resolution mode
709 */
f8953856 710static int hrtimer_switch_to_hres(void)
54cdfdb4 711{
820de5c3
IM
712 int cpu = smp_processor_id();
713 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
714 unsigned long flags;
715
716 if (base->hres_active)
f8953856 717 return 1;
54cdfdb4
TG
718
719 local_irq_save(flags);
720
721 if (tick_init_highres()) {
722 local_irq_restore(flags);
820de5c3
IM
723 printk(KERN_WARNING "Could not switch to high resolution "
724 "mode on CPU %d\n", cpu);
f8953856 725 return 0;
54cdfdb4
TG
726 }
727 base->hres_active = 1;
e06383db
JS
728 base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
729 base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
730
731 tick_setup_sched_timer();
732
733 /* "Retrigger" the interrupt to get things going */
734 retrigger_next_event(NULL);
735 local_irq_restore(flags);
f8953856 736 return 1;
54cdfdb4
TG
737}
738
739#else
740
741static inline int hrtimer_hres_active(void) { return 0; }
742static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 743static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
744static inline void
745hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 746static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
747 struct hrtimer_clock_base *base,
748 int wakeup)
54cdfdb4
TG
749{
750 return 0;
751}
54cdfdb4
TG
752static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
753static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
754
755#endif /* CONFIG_HIGH_RES_TIMERS */
756
5f201907 757static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 758{
5f201907 759#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
760 if (timer->start_site)
761 return;
5f201907 762 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
763 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
764 timer->start_pid = current->pid;
5f201907
HC
765#endif
766}
767
768static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
769{
770#ifdef CONFIG_TIMER_STATS
771 timer->start_site = NULL;
772#endif
82f67cd9 773}
5f201907
HC
774
775static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
776{
777#ifdef CONFIG_TIMER_STATS
778 if (likely(!timer_stats_active))
779 return;
780 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
781 timer->function, timer->start_comm, 0);
82f67cd9 782#endif
5f201907 783}
82f67cd9 784
c0a31329 785/*
6506f2aa 786 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
787 */
788static inline
789void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
790{
ecb49d1a 791 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
792}
793
794/**
795 * hrtimer_forward - forward the timer expiry
c0a31329 796 * @timer: hrtimer to forward
44f21475 797 * @now: forward past this time
c0a31329
TG
798 * @interval: the interval to forward
799 *
800 * Forward the timer expiry so it will expire in the future.
8dca6f33 801 * Returns the number of overruns.
c0a31329 802 */
4d672e7a 803u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 804{
4d672e7a 805 u64 orun = 1;
44f21475 806 ktime_t delta;
c0a31329 807
cc584b21 808 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
809
810 if (delta.tv64 < 0)
811 return 0;
812
c9db4fa1
TG
813 if (interval.tv64 < timer->base->resolution.tv64)
814 interval.tv64 = timer->base->resolution.tv64;
815
c0a31329 816 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 817 s64 incr = ktime_to_ns(interval);
c0a31329
TG
818
819 orun = ktime_divns(delta, incr);
cc584b21
AV
820 hrtimer_add_expires_ns(timer, incr * orun);
821 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
822 return orun;
823 /*
824 * This (and the ktime_add() below) is the
825 * correction for exact:
826 */
827 orun++;
828 }
cc584b21 829 hrtimer_add_expires(timer, interval);
c0a31329
TG
830
831 return orun;
832}
6bdb6b62 833EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
834
835/*
836 * enqueue_hrtimer - internal function to (re)start a timer
837 *
838 * The timer is inserted in expiry order. Insertion into the
839 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
840 *
841 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 842 */
a6037b61
PZ
843static int enqueue_hrtimer(struct hrtimer *timer,
844 struct hrtimer_clock_base *base)
c0a31329 845{
c6a2a177 846 debug_activate(timer);
237fc6e7 847
998adc3d 848 timerqueue_add(&base->active, &timer->node);
54cdfdb4 849
303e967f
TG
850 /*
851 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
852 * state of a possibly running callback.
853 */
854 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 855
998adc3d 856 return (&timer->node == base->active.next);
288867ec 857}
c0a31329
TG
858
859/*
860 * __remove_hrtimer - internal function to remove a timer
861 *
862 * Caller must hold the base lock.
54cdfdb4
TG
863 *
864 * High resolution timer mode reprograms the clock event device when the
865 * timer is the one which expires next. The caller can disable this by setting
866 * reprogram to zero. This is useful, when the context does a reprogramming
867 * anyway (e.g. timer interrupt)
c0a31329 868 */
3c8aa39d 869static void __remove_hrtimer(struct hrtimer *timer,
303e967f 870 struct hrtimer_clock_base *base,
54cdfdb4 871 unsigned long newstate, int reprogram)
c0a31329 872{
7403f41f
AC
873 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
874 goto out;
875
998adc3d 876 if (&timer->node == timerqueue_getnext(&base->active)) {
7403f41f
AC
877#ifdef CONFIG_HIGH_RES_TIMERS
878 /* Reprogram the clock event device. if enabled */
879 if (reprogram && hrtimer_hres_active()) {
880 ktime_t expires;
881
882 expires = ktime_sub(hrtimer_get_expires(timer),
883 base->offset);
884 if (base->cpu_base->expires_next.tv64 == expires.tv64)
885 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 886 }
7403f41f 887#endif
54cdfdb4 888 }
998adc3d 889 timerqueue_del(&base->active, &timer->node);
7403f41f 890out:
303e967f 891 timer->state = newstate;
c0a31329
TG
892}
893
894/*
895 * remove hrtimer, called with base lock held
896 */
897static inline int
3c8aa39d 898remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 899{
303e967f 900 if (hrtimer_is_queued(timer)) {
f13d4f97 901 unsigned long state;
54cdfdb4
TG
902 int reprogram;
903
904 /*
905 * Remove the timer and force reprogramming when high
906 * resolution mode is active and the timer is on the current
907 * CPU. If we remove a timer on another CPU, reprogramming is
908 * skipped. The interrupt event on this CPU is fired and
909 * reprogramming happens in the interrupt handler. This is a
910 * rare case and less expensive than a smp call.
911 */
c6a2a177 912 debug_deactivate(timer);
82f67cd9 913 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 914 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
915 /*
916 * We must preserve the CALLBACK state flag here,
917 * otherwise we could move the timer base in
918 * switch_hrtimer_base.
919 */
920 state = timer->state & HRTIMER_STATE_CALLBACK;
921 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
922 return 1;
923 }
924 return 0;
925}
926
7f1e2ca9
PZ
927int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
928 unsigned long delta_ns, const enum hrtimer_mode mode,
929 int wakeup)
c0a31329 930{
3c8aa39d 931 struct hrtimer_clock_base *base, *new_base;
c0a31329 932 unsigned long flags;
a6037b61 933 int ret, leftmost;
c0a31329
TG
934
935 base = lock_hrtimer_base(timer, &flags);
936
937 /* Remove an active timer from the queue: */
938 ret = remove_hrtimer(timer, base);
939
940 /* Switch the timer base, if necessary: */
597d0275 941 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 942
597d0275 943 if (mode & HRTIMER_MODE_REL) {
5a7780e7 944 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
945 /*
946 * CONFIG_TIME_LOW_RES is a temporary way for architectures
947 * to signal that they simply return xtime in
948 * do_gettimeoffset(). In this case we want to round up by
949 * resolution when starting a relative timer, to avoid short
950 * timeouts. This will go away with the GTOD framework.
951 */
952#ifdef CONFIG_TIME_LOW_RES
5a7780e7 953 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
954#endif
955 }
237fc6e7 956
da8f2e17 957 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 958
82f67cd9
IM
959 timer_stats_hrtimer_set_start_info(timer);
960
a6037b61
PZ
961 leftmost = enqueue_hrtimer(timer, new_base);
962
935c631d
IM
963 /*
964 * Only allow reprogramming if the new base is on this CPU.
965 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
966 *
967 * XXX send_remote_softirq() ?
935c631d 968 */
a6037b61 969 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 970 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
971
972 unlock_hrtimer_base(timer, &flags);
973
974 return ret;
975}
7f1e2ca9
PZ
976
977/**
978 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
979 * @timer: the timer to be added
980 * @tim: expiry time
981 * @delta_ns: "slack" range for the timer
982 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
983 *
984 * Returns:
985 * 0 on success
986 * 1 when the timer was active
987 */
988int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
989 unsigned long delta_ns, const enum hrtimer_mode mode)
990{
991 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
992}
da8f2e17
AV
993EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
994
995/**
e1dd7bc5 996 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
997 * @timer: the timer to be added
998 * @tim: expiry time
999 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000 *
1001 * Returns:
1002 * 0 on success
1003 * 1 when the timer was active
1004 */
1005int
1006hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1007{
7f1e2ca9 1008 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1009}
8d16b764 1010EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1011
da8f2e17 1012
c0a31329
TG
1013/**
1014 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1015 * @timer: hrtimer to stop
1016 *
1017 * Returns:
1018 * 0 when the timer was not active
1019 * 1 when the timer was active
1020 * -1 when the timer is currently excuting the callback function and
fa9799e3 1021 * cannot be stopped
c0a31329
TG
1022 */
1023int hrtimer_try_to_cancel(struct hrtimer *timer)
1024{
3c8aa39d 1025 struct hrtimer_clock_base *base;
c0a31329
TG
1026 unsigned long flags;
1027 int ret = -1;
1028
1029 base = lock_hrtimer_base(timer, &flags);
1030
303e967f 1031 if (!hrtimer_callback_running(timer))
c0a31329
TG
1032 ret = remove_hrtimer(timer, base);
1033
1034 unlock_hrtimer_base(timer, &flags);
1035
1036 return ret;
1037
1038}
8d16b764 1039EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1040
1041/**
1042 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1043 * @timer: the timer to be cancelled
1044 *
1045 * Returns:
1046 * 0 when the timer was not active
1047 * 1 when the timer was active
1048 */
1049int hrtimer_cancel(struct hrtimer *timer)
1050{
1051 for (;;) {
1052 int ret = hrtimer_try_to_cancel(timer);
1053
1054 if (ret >= 0)
1055 return ret;
5ef37b19 1056 cpu_relax();
c0a31329
TG
1057 }
1058}
8d16b764 1059EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1060
1061/**
1062 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1063 * @timer: the timer to read
1064 */
1065ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1066{
c0a31329
TG
1067 unsigned long flags;
1068 ktime_t rem;
1069
b3bd3de6 1070 lock_hrtimer_base(timer, &flags);
cc584b21 1071 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1072 unlock_hrtimer_base(timer, &flags);
1073
1074 return rem;
1075}
8d16b764 1076EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1077
ee9c5785 1078#ifdef CONFIG_NO_HZ
69239749
TL
1079/**
1080 * hrtimer_get_next_event - get the time until next expiry event
1081 *
1082 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1083 * is pending.
1084 */
1085ktime_t hrtimer_get_next_event(void)
1086{
3c8aa39d
TG
1087 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1088 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1089 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1090 unsigned long flags;
1091 int i;
1092
ecb49d1a 1093 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1094
54cdfdb4
TG
1095 if (!hrtimer_hres_active()) {
1096 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1097 struct hrtimer *timer;
998adc3d 1098 struct timerqueue_node *next;
69239749 1099
998adc3d
JS
1100 next = timerqueue_getnext(&base->active);
1101 if (!next)
54cdfdb4 1102 continue;
3c8aa39d 1103
998adc3d 1104 timer = container_of(next, struct hrtimer, node);
cc584b21 1105 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1106 delta = ktime_sub(delta, base->get_time());
1107 if (delta.tv64 < mindelta.tv64)
1108 mindelta.tv64 = delta.tv64;
1109 }
69239749 1110 }
3c8aa39d 1111
ecb49d1a 1112 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1113
69239749
TL
1114 if (mindelta.tv64 < 0)
1115 mindelta.tv64 = 0;
1116 return mindelta;
1117}
1118#endif
1119
237fc6e7
TG
1120static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 enum hrtimer_mode mode)
c0a31329 1122{
3c8aa39d 1123 struct hrtimer_cpu_base *cpu_base;
e06383db 1124 int base;
c0a31329 1125
7978672c
GA
1126 memset(timer, 0, sizeof(struct hrtimer));
1127
3c8aa39d 1128 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1129
c9cb2e3d 1130 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1131 clock_id = CLOCK_MONOTONIC;
1132
e06383db
JS
1133 base = hrtimer_clockid_to_base(clock_id);
1134 timer->base = &cpu_base->clock_base[base];
54cdfdb4 1135 hrtimer_init_timer_hres(timer);
998adc3d 1136 timerqueue_init(&timer->node);
82f67cd9
IM
1137
1138#ifdef CONFIG_TIMER_STATS
1139 timer->start_site = NULL;
1140 timer->start_pid = -1;
1141 memset(timer->start_comm, 0, TASK_COMM_LEN);
1142#endif
c0a31329 1143}
237fc6e7
TG
1144
1145/**
1146 * hrtimer_init - initialize a timer to the given clock
1147 * @timer: the timer to be initialized
1148 * @clock_id: the clock to be used
1149 * @mode: timer mode abs/rel
1150 */
1151void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1152 enum hrtimer_mode mode)
1153{
c6a2a177 1154 debug_init(timer, clock_id, mode);
237fc6e7
TG
1155 __hrtimer_init(timer, clock_id, mode);
1156}
8d16b764 1157EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1158
1159/**
1160 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1161 * @which_clock: which clock to query
1162 * @tp: pointer to timespec variable to store the resolution
1163 *
72fd4a35
RD
1164 * Store the resolution of the clock selected by @which_clock in the
1165 * variable pointed to by @tp.
c0a31329
TG
1166 */
1167int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1168{
3c8aa39d 1169 struct hrtimer_cpu_base *cpu_base;
e06383db 1170 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1171
3c8aa39d 1172 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1173 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1174
1175 return 0;
1176}
8d16b764 1177EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1178
c6a2a177 1179static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1180{
1181 struct hrtimer_clock_base *base = timer->base;
1182 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1183 enum hrtimer_restart (*fn)(struct hrtimer *);
1184 int restart;
1185
ca109491
PZ
1186 WARN_ON(!irqs_disabled());
1187
c6a2a177 1188 debug_deactivate(timer);
d3d74453
PZ
1189 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1190 timer_stats_account_hrtimer(timer);
d3d74453 1191 fn = timer->function;
ca109491
PZ
1192
1193 /*
1194 * Because we run timers from hardirq context, there is no chance
1195 * they get migrated to another cpu, therefore its safe to unlock
1196 * the timer base.
1197 */
ecb49d1a 1198 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1199 trace_hrtimer_expire_entry(timer, now);
ca109491 1200 restart = fn(timer);
c6a2a177 1201 trace_hrtimer_expire_exit(timer);
ecb49d1a 1202 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1203
1204 /*
e3f1d883
TG
1205 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1206 * we do not reprogramm the event hardware. Happens either in
1207 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1208 */
1209 if (restart != HRTIMER_NORESTART) {
1210 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1211 enqueue_hrtimer(timer, base);
d3d74453 1212 }
f13d4f97
SQ
1213
1214 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1215
d3d74453
PZ
1216 timer->state &= ~HRTIMER_STATE_CALLBACK;
1217}
1218
54cdfdb4
TG
1219#ifdef CONFIG_HIGH_RES_TIMERS
1220
1221/*
1222 * High resolution timer interrupt
1223 * Called with interrupts disabled
1224 */
1225void hrtimer_interrupt(struct clock_event_device *dev)
1226{
1227 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1228 struct hrtimer_clock_base *base;
41d2e494
TG
1229 ktime_t expires_next, now, entry_time, delta;
1230 int i, retries = 0;
54cdfdb4
TG
1231
1232 BUG_ON(!cpu_base->hres_active);
1233 cpu_base->nr_events++;
1234 dev->next_event.tv64 = KTIME_MAX;
1235
41d2e494
TG
1236 entry_time = now = ktime_get();
1237retry:
54cdfdb4
TG
1238 expires_next.tv64 = KTIME_MAX;
1239
ecb49d1a 1240 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1241 /*
1242 * We set expires_next to KTIME_MAX here with cpu_base->lock
1243 * held to prevent that a timer is enqueued in our queue via
1244 * the migration code. This does not affect enqueueing of
1245 * timers which run their callback and need to be requeued on
1246 * this CPU.
1247 */
1248 cpu_base->expires_next.tv64 = KTIME_MAX;
1249
54cdfdb4
TG
1250 base = cpu_base->clock_base;
1251
1252 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1253 ktime_t basenow;
998adc3d 1254 struct timerqueue_node *node;
54cdfdb4 1255
54cdfdb4
TG
1256 basenow = ktime_add(now, base->offset);
1257
998adc3d 1258 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1259 struct hrtimer *timer;
1260
998adc3d 1261 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1262
654c8e0b
AV
1263 /*
1264 * The immediate goal for using the softexpires is
1265 * minimizing wakeups, not running timers at the
1266 * earliest interrupt after their soft expiration.
1267 * This allows us to avoid using a Priority Search
1268 * Tree, which can answer a stabbing querry for
1269 * overlapping intervals and instead use the simple
1270 * BST we already have.
1271 * We don't add extra wakeups by delaying timers that
1272 * are right-of a not yet expired timer, because that
1273 * timer will have to trigger a wakeup anyway.
1274 */
1275
1276 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1277 ktime_t expires;
1278
cc584b21 1279 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1280 base->offset);
1281 if (expires.tv64 < expires_next.tv64)
1282 expires_next = expires;
1283 break;
1284 }
1285
c6a2a177 1286 __run_hrtimer(timer, &basenow);
54cdfdb4 1287 }
54cdfdb4
TG
1288 base++;
1289 }
1290
6ff7041d
TG
1291 /*
1292 * Store the new expiry value so the migration code can verify
1293 * against it.
1294 */
54cdfdb4 1295 cpu_base->expires_next = expires_next;
ecb49d1a 1296 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1297
1298 /* Reprogramming necessary ? */
41d2e494
TG
1299 if (expires_next.tv64 == KTIME_MAX ||
1300 !tick_program_event(expires_next, 0)) {
1301 cpu_base->hang_detected = 0;
1302 return;
54cdfdb4 1303 }
41d2e494
TG
1304
1305 /*
1306 * The next timer was already expired due to:
1307 * - tracing
1308 * - long lasting callbacks
1309 * - being scheduled away when running in a VM
1310 *
1311 * We need to prevent that we loop forever in the hrtimer
1312 * interrupt routine. We give it 3 attempts to avoid
1313 * overreacting on some spurious event.
1314 */
1315 now = ktime_get();
1316 cpu_base->nr_retries++;
1317 if (++retries < 3)
1318 goto retry;
1319 /*
1320 * Give the system a chance to do something else than looping
1321 * here. We stored the entry time, so we know exactly how long
1322 * we spent here. We schedule the next event this amount of
1323 * time away.
1324 */
1325 cpu_base->nr_hangs++;
1326 cpu_base->hang_detected = 1;
1327 delta = ktime_sub(now, entry_time);
1328 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1329 cpu_base->max_hang_time = delta;
1330 /*
1331 * Limit it to a sensible value as we enforce a longer
1332 * delay. Give the CPU at least 100ms to catch up.
1333 */
1334 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1335 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1336 else
1337 expires_next = ktime_add(now, delta);
1338 tick_program_event(expires_next, 1);
1339 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1340 ktime_to_ns(delta));
54cdfdb4
TG
1341}
1342
8bdec955
TG
1343/*
1344 * local version of hrtimer_peek_ahead_timers() called with interrupts
1345 * disabled.
1346 */
1347static void __hrtimer_peek_ahead_timers(void)
1348{
1349 struct tick_device *td;
1350
1351 if (!hrtimer_hres_active())
1352 return;
1353
1354 td = &__get_cpu_var(tick_cpu_device);
1355 if (td && td->evtdev)
1356 hrtimer_interrupt(td->evtdev);
1357}
1358
2e94d1f7
AV
1359/**
1360 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1361 *
1362 * hrtimer_peek_ahead_timers will peek at the timer queue of
1363 * the current cpu and check if there are any timers for which
1364 * the soft expires time has passed. If any such timers exist,
1365 * they are run immediately and then removed from the timer queue.
1366 *
1367 */
1368void hrtimer_peek_ahead_timers(void)
1369{
643bdf68 1370 unsigned long flags;
dc4304f7 1371
2e94d1f7 1372 local_irq_save(flags);
8bdec955 1373 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1374 local_irq_restore(flags);
1375}
1376
a6037b61
PZ
1377static void run_hrtimer_softirq(struct softirq_action *h)
1378{
1379 hrtimer_peek_ahead_timers();
1380}
1381
82c5b7b5
IM
1382#else /* CONFIG_HIGH_RES_TIMERS */
1383
1384static inline void __hrtimer_peek_ahead_timers(void) { }
1385
1386#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1387
d3d74453
PZ
1388/*
1389 * Called from timer softirq every jiffy, expire hrtimers:
1390 *
1391 * For HRT its the fall back code to run the softirq in the timer
1392 * softirq context in case the hrtimer initialization failed or has
1393 * not been done yet.
1394 */
1395void hrtimer_run_pending(void)
1396{
d3d74453
PZ
1397 if (hrtimer_hres_active())
1398 return;
54cdfdb4 1399
d3d74453
PZ
1400 /*
1401 * This _is_ ugly: We have to check in the softirq context,
1402 * whether we can switch to highres and / or nohz mode. The
1403 * clocksource switch happens in the timer interrupt with
1404 * xtime_lock held. Notification from there only sets the
1405 * check bit in the tick_oneshot code, otherwise we might
1406 * deadlock vs. xtime_lock.
1407 */
1408 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1409 hrtimer_switch_to_hres();
54cdfdb4
TG
1410}
1411
c0a31329 1412/*
d3d74453 1413 * Called from hardirq context every jiffy
c0a31329 1414 */
833883d9 1415void hrtimer_run_queues(void)
c0a31329 1416{
998adc3d 1417 struct timerqueue_node *node;
833883d9
DS
1418 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1419 struct hrtimer_clock_base *base;
1420 int index, gettime = 1;
c0a31329 1421
833883d9 1422 if (hrtimer_hres_active())
3055adda
DS
1423 return;
1424
833883d9
DS
1425 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1426 base = &cpu_base->clock_base[index];
b007c389 1427 if (!timerqueue_getnext(&base->active))
d3d74453 1428 continue;
833883d9 1429
d7cfb60c 1430 if (gettime) {
833883d9
DS
1431 hrtimer_get_softirq_time(cpu_base);
1432 gettime = 0;
b75f7a51 1433 }
d3d74453 1434
ecb49d1a 1435 raw_spin_lock(&cpu_base->lock);
c0a31329 1436
b007c389 1437 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1438 struct hrtimer *timer;
54cdfdb4 1439
998adc3d 1440 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1441 if (base->softirq_time.tv64 <=
1442 hrtimer_get_expires_tv64(timer))
833883d9
DS
1443 break;
1444
c6a2a177 1445 __run_hrtimer(timer, &base->softirq_time);
833883d9 1446 }
ecb49d1a 1447 raw_spin_unlock(&cpu_base->lock);
833883d9 1448 }
c0a31329
TG
1449}
1450
10c94ec1
TG
1451/*
1452 * Sleep related functions:
1453 */
c9cb2e3d 1454static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1455{
1456 struct hrtimer_sleeper *t =
1457 container_of(timer, struct hrtimer_sleeper, timer);
1458 struct task_struct *task = t->task;
1459
1460 t->task = NULL;
1461 if (task)
1462 wake_up_process(task);
1463
1464 return HRTIMER_NORESTART;
1465}
1466
36c8b586 1467void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1468{
1469 sl->timer.function = hrtimer_wakeup;
1470 sl->task = task;
1471}
2bc481cf 1472EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1473
669d7868 1474static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1475{
669d7868 1476 hrtimer_init_sleeper(t, current);
10c94ec1 1477
432569bb
RZ
1478 do {
1479 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1480 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1481 if (!hrtimer_active(&t->timer))
1482 t->task = NULL;
432569bb 1483
54cdfdb4
TG
1484 if (likely(t->task))
1485 schedule();
432569bb 1486
669d7868 1487 hrtimer_cancel(&t->timer);
c9cb2e3d 1488 mode = HRTIMER_MODE_ABS;
669d7868
TG
1489
1490 } while (t->task && !signal_pending(current));
432569bb 1491
3588a085
PZ
1492 __set_current_state(TASK_RUNNING);
1493
669d7868 1494 return t->task == NULL;
10c94ec1
TG
1495}
1496
080344b9
ON
1497static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1498{
1499 struct timespec rmt;
1500 ktime_t rem;
1501
cc584b21 1502 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1503 if (rem.tv64 <= 0)
1504 return 0;
1505 rmt = ktime_to_timespec(rem);
1506
1507 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1508 return -EFAULT;
1509
1510 return 1;
1511}
1512
1711ef38 1513long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1514{
669d7868 1515 struct hrtimer_sleeper t;
080344b9 1516 struct timespec __user *rmtp;
237fc6e7 1517 int ret = 0;
10c94ec1 1518
237fc6e7
TG
1519 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1520 HRTIMER_MODE_ABS);
cc584b21 1521 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1522
c9cb2e3d 1523 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1524 goto out;
10c94ec1 1525
029a07e0 1526 rmtp = restart->nanosleep.rmtp;
432569bb 1527 if (rmtp) {
237fc6e7 1528 ret = update_rmtp(&t.timer, rmtp);
080344b9 1529 if (ret <= 0)
237fc6e7 1530 goto out;
432569bb 1531 }
10c94ec1 1532
10c94ec1 1533 /* The other values in restart are already filled in */
237fc6e7
TG
1534 ret = -ERESTART_RESTARTBLOCK;
1535out:
1536 destroy_hrtimer_on_stack(&t.timer);
1537 return ret;
10c94ec1
TG
1538}
1539
080344b9 1540long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1541 const enum hrtimer_mode mode, const clockid_t clockid)
1542{
1543 struct restart_block *restart;
669d7868 1544 struct hrtimer_sleeper t;
237fc6e7 1545 int ret = 0;
3bd01206
AV
1546 unsigned long slack;
1547
1548 slack = current->timer_slack_ns;
1549 if (rt_task(current))
1550 slack = 0;
10c94ec1 1551
237fc6e7 1552 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1553 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1554 if (do_nanosleep(&t, mode))
237fc6e7 1555 goto out;
10c94ec1 1556
7978672c 1557 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1558 if (mode == HRTIMER_MODE_ABS) {
1559 ret = -ERESTARTNOHAND;
1560 goto out;
1561 }
10c94ec1 1562
432569bb 1563 if (rmtp) {
237fc6e7 1564 ret = update_rmtp(&t.timer, rmtp);
080344b9 1565 if (ret <= 0)
237fc6e7 1566 goto out;
432569bb 1567 }
10c94ec1
TG
1568
1569 restart = &current_thread_info()->restart_block;
1711ef38 1570 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1571 restart->nanosleep.index = t.timer.base->index;
1572 restart->nanosleep.rmtp = rmtp;
cc584b21 1573 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1574
237fc6e7
TG
1575 ret = -ERESTART_RESTARTBLOCK;
1576out:
1577 destroy_hrtimer_on_stack(&t.timer);
1578 return ret;
10c94ec1
TG
1579}
1580
58fd3aa2
HC
1581SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1582 struct timespec __user *, rmtp)
6ba1b912 1583{
080344b9 1584 struct timespec tu;
6ba1b912
TG
1585
1586 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1587 return -EFAULT;
1588
1589 if (!timespec_valid(&tu))
1590 return -EINVAL;
1591
080344b9 1592 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1593}
1594
c0a31329
TG
1595/*
1596 * Functions related to boot-time initialization:
1597 */
0ec160dd 1598static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1599{
3c8aa39d 1600 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1601 int i;
1602
ecb49d1a 1603 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1604
998adc3d 1605 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1606 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1607 timerqueue_init_head(&cpu_base->clock_base[i].active);
1608 }
3c8aa39d 1609
54cdfdb4 1610 hrtimer_init_hres(cpu_base);
c0a31329
TG
1611}
1612
1613#ifdef CONFIG_HOTPLUG_CPU
1614
ca109491 1615static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1616 struct hrtimer_clock_base *new_base)
c0a31329
TG
1617{
1618 struct hrtimer *timer;
998adc3d 1619 struct timerqueue_node *node;
c0a31329 1620
998adc3d
JS
1621 while ((node = timerqueue_getnext(&old_base->active))) {
1622 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1623 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1624 debug_deactivate(timer);
b00c1a99
TG
1625
1626 /*
1627 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1628 * timer could be seen as !active and just vanish away
1629 * under us on another CPU
1630 */
1631 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1632 timer->base = new_base;
54cdfdb4 1633 /*
e3f1d883
TG
1634 * Enqueue the timers on the new cpu. This does not
1635 * reprogram the event device in case the timer
1636 * expires before the earliest on this CPU, but we run
1637 * hrtimer_interrupt after we migrated everything to
1638 * sort out already expired timers and reprogram the
1639 * event device.
54cdfdb4 1640 */
a6037b61 1641 enqueue_hrtimer(timer, new_base);
41e1022e 1642
b00c1a99
TG
1643 /* Clear the migration state bit */
1644 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1645 }
1646}
1647
d5fd43c4 1648static void migrate_hrtimers(int scpu)
c0a31329 1649{
3c8aa39d 1650 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1651 int i;
c0a31329 1652
37810659 1653 BUG_ON(cpu_online(scpu));
37810659 1654 tick_cancel_sched_timer(scpu);
731a55ba
TG
1655
1656 local_irq_disable();
1657 old_base = &per_cpu(hrtimer_bases, scpu);
1658 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1659 /*
1660 * The caller is globally serialized and nobody else
1661 * takes two locks at once, deadlock is not possible.
1662 */
ecb49d1a
TG
1663 raw_spin_lock(&new_base->lock);
1664 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1665
3c8aa39d 1666 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1667 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1668 &new_base->clock_base[i]);
c0a31329
TG
1669 }
1670
ecb49d1a
TG
1671 raw_spin_unlock(&old_base->lock);
1672 raw_spin_unlock(&new_base->lock);
37810659 1673
731a55ba
TG
1674 /* Check, if we got expired work to do */
1675 __hrtimer_peek_ahead_timers();
1676 local_irq_enable();
c0a31329 1677}
37810659 1678
c0a31329
TG
1679#endif /* CONFIG_HOTPLUG_CPU */
1680
8c78f307 1681static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1682 unsigned long action, void *hcpu)
1683{
b2e3c0ad 1684 int scpu = (long)hcpu;
c0a31329
TG
1685
1686 switch (action) {
1687
1688 case CPU_UP_PREPARE:
8bb78442 1689 case CPU_UP_PREPARE_FROZEN:
37810659 1690 init_hrtimers_cpu(scpu);
c0a31329
TG
1691 break;
1692
1693#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1694 case CPU_DYING:
1695 case CPU_DYING_FROZEN:
1696 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1697 break;
c0a31329 1698 case CPU_DEAD:
8bb78442 1699 case CPU_DEAD_FROZEN:
b2e3c0ad 1700 {
37810659 1701 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1702 migrate_hrtimers(scpu);
c0a31329 1703 break;
b2e3c0ad 1704 }
c0a31329
TG
1705#endif
1706
1707 default:
1708 break;
1709 }
1710
1711 return NOTIFY_OK;
1712}
1713
8c78f307 1714static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1715 .notifier_call = hrtimer_cpu_notify,
1716};
1717
1718void __init hrtimers_init(void)
1719{
e06383db
JS
1720 hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
1721 hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
1722
c0a31329
TG
1723 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1724 (void *)(long)smp_processor_id());
1725 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1726#ifdef CONFIG_HIGH_RES_TIMERS
1727 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1728#endif
c0a31329
TG
1729}
1730
7bb67439 1731/**
351b3f7a 1732 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1733 * @expires: timeout value (ktime_t)
654c8e0b 1734 * @delta: slack in expires timeout (ktime_t)
7bb67439 1735 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1736 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1737 */
351b3f7a
CE
1738int __sched
1739schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1740 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1741{
1742 struct hrtimer_sleeper t;
1743
1744 /*
1745 * Optimize when a zero timeout value is given. It does not
1746 * matter whether this is an absolute or a relative time.
1747 */
1748 if (expires && !expires->tv64) {
1749 __set_current_state(TASK_RUNNING);
1750 return 0;
1751 }
1752
1753 /*
43b21013 1754 * A NULL parameter means "infinite"
7bb67439
AV
1755 */
1756 if (!expires) {
1757 schedule();
1758 __set_current_state(TASK_RUNNING);
1759 return -EINTR;
1760 }
1761
351b3f7a 1762 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1763 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1764
1765 hrtimer_init_sleeper(&t, current);
1766
cc584b21 1767 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1768 if (!hrtimer_active(&t.timer))
1769 t.task = NULL;
1770
1771 if (likely(t.task))
1772 schedule();
1773
1774 hrtimer_cancel(&t.timer);
1775 destroy_hrtimer_on_stack(&t.timer);
1776
1777 __set_current_state(TASK_RUNNING);
1778
1779 return !t.task ? 0 : -EINTR;
1780}
351b3f7a
CE
1781
1782/**
1783 * schedule_hrtimeout_range - sleep until timeout
1784 * @expires: timeout value (ktime_t)
1785 * @delta: slack in expires timeout (ktime_t)
1786 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1787 *
1788 * Make the current task sleep until the given expiry time has
1789 * elapsed. The routine will return immediately unless
1790 * the current task state has been set (see set_current_state()).
1791 *
1792 * The @delta argument gives the kernel the freedom to schedule the
1793 * actual wakeup to a time that is both power and performance friendly.
1794 * The kernel give the normal best effort behavior for "@expires+@delta",
1795 * but may decide to fire the timer earlier, but no earlier than @expires.
1796 *
1797 * You can set the task state as follows -
1798 *
1799 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1800 * pass before the routine returns.
1801 *
1802 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1803 * delivered to the current task.
1804 *
1805 * The current task state is guaranteed to be TASK_RUNNING when this
1806 * routine returns.
1807 *
1808 * Returns 0 when the timer has expired otherwise -EINTR
1809 */
1810int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1811 const enum hrtimer_mode mode)
1812{
1813 return schedule_hrtimeout_range_clock(expires, delta, mode,
1814 CLOCK_MONOTONIC);
1815}
654c8e0b
AV
1816EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1817
1818/**
1819 * schedule_hrtimeout - sleep until timeout
1820 * @expires: timeout value (ktime_t)
1821 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1822 *
1823 * Make the current task sleep until the given expiry time has
1824 * elapsed. The routine will return immediately unless
1825 * the current task state has been set (see set_current_state()).
1826 *
1827 * You can set the task state as follows -
1828 *
1829 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1830 * pass before the routine returns.
1831 *
1832 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1833 * delivered to the current task.
1834 *
1835 * The current task state is guaranteed to be TASK_RUNNING when this
1836 * routine returns.
1837 *
1838 * Returns 0 when the timer has expired otherwise -EINTR
1839 */
1840int __sched schedule_hrtimeout(ktime_t *expires,
1841 const enum hrtimer_mode mode)
1842{
1843 return schedule_hrtimeout_range(expires, 0, mode);
1844}
7bb67439 1845EXPORT_SYMBOL_GPL(schedule_hrtimeout);