]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/hrtimer.c
timekeeping: Maintain ktime_t based offsets for hrtimers
[mirror_ubuntu-bionic-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c 55 *
e06383db
JS
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 60 */
54cdfdb4 61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 62{
3c8aa39d
TG
63
64 .clock_base =
c0a31329 65 {
3c8aa39d 66 {
ab8177bc
TG
67 .index = HRTIMER_BASE_MONOTONIC,
68 .clockid = CLOCK_MONOTONIC,
3c8aa39d 69 .get_time = &ktime_get,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d 71 },
68fa61c0
TG
72 {
73 .index = HRTIMER_BASE_REALTIME,
74 .clockid = CLOCK_REALTIME,
75 .get_time = &ktime_get_real,
76 .resolution = KTIME_LOW_RES,
77 },
70a08cca 78 {
ab8177bc
TG
79 .index = HRTIMER_BASE_BOOTTIME,
80 .clockid = CLOCK_BOOTTIME,
70a08cca
JS
81 .get_time = &ktime_get_boottime,
82 .resolution = KTIME_LOW_RES,
83 },
3c8aa39d 84 }
c0a31329
TG
85};
86
942c3c5c 87static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
88 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
89 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
90 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
91};
e06383db
JS
92
93static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94{
95 return hrtimer_clock_to_base_table[clock_id];
96}
97
98
92127c7a
TG
99/*
100 * Get the coarse grained time at the softirq based on xtime and
101 * wall_to_monotonic.
102 */
3c8aa39d 103static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 104{
70a08cca 105 ktime_t xtim, mono, boot;
314ac371 106 struct timespec xts, tom, slp;
92127c7a 107
314ac371 108 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
92127c7a 109
f4304ab2 110 xtim = timespec_to_ktime(xts);
70a08cca
JS
111 mono = ktime_add(xtim, timespec_to_ktime(tom));
112 boot = ktime_add(mono, timespec_to_ktime(slp));
e06383db 113 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
114 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
92127c7a
TG
116}
117
c0a31329
TG
118/*
119 * Functions and macros which are different for UP/SMP systems are kept in a
120 * single place
121 */
122#ifdef CONFIG_SMP
123
c0a31329
TG
124/*
125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126 * means that all timers which are tied to this base via timer->base are
127 * locked, and the base itself is locked too.
128 *
129 * So __run_timers/migrate_timers can safely modify all timers which could
130 * be found on the lists/queues.
131 *
132 * When the timer's base is locked, and the timer removed from list, it is
133 * possible to set timer->base = NULL and drop the lock: the timer remains
134 * locked.
135 */
3c8aa39d
TG
136static
137struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 unsigned long *flags)
c0a31329 139{
3c8aa39d 140 struct hrtimer_clock_base *base;
c0a31329
TG
141
142 for (;;) {
143 base = timer->base;
144 if (likely(base != NULL)) {
ecb49d1a 145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
146 if (likely(base == timer->base))
147 return base;
148 /* The timer has migrated to another CPU: */
ecb49d1a 149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
150 }
151 cpu_relax();
152 }
153}
154
6ff7041d
TG
155
156/*
157 * Get the preferred target CPU for NOHZ
158 */
159static int hrtimer_get_target(int this_cpu, int pinned)
160{
161#ifdef CONFIG_NO_HZ
83cd4fe2
VP
162 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163 return get_nohz_timer_target();
6ff7041d
TG
164#endif
165 return this_cpu;
166}
167
168/*
169 * With HIGHRES=y we do not migrate the timer when it is expiring
170 * before the next event on the target cpu because we cannot reprogram
171 * the target cpu hardware and we would cause it to fire late.
172 *
173 * Called with cpu_base->lock of target cpu held.
174 */
175static int
176hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177{
178#ifdef CONFIG_HIGH_RES_TIMERS
179 ktime_t expires;
180
181 if (!new_base->cpu_base->hres_active)
182 return 0;
183
184 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186#else
187 return 0;
188#endif
189}
190
c0a31329
TG
191/*
192 * Switch the timer base to the current CPU when possible.
193 */
3c8aa39d 194static inline struct hrtimer_clock_base *
597d0275
AB
195switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196 int pinned)
c0a31329 197{
3c8aa39d
TG
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
200 int this_cpu = smp_processor_id();
201 int cpu = hrtimer_get_target(this_cpu, pinned);
ab8177bc 202 int basenum = base->index;
c0a31329 203
eea08f32
AB
204again:
205 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 206 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
207
208 if (base != new_base) {
209 /*
6ff7041d 210 * We are trying to move timer to new_base.
c0a31329
TG
211 * However we can't change timer's base while it is running,
212 * so we keep it on the same CPU. No hassle vs. reprogramming
213 * the event source in the high resolution case. The softirq
214 * code will take care of this when the timer function has
215 * completed. There is no conflict as we hold the lock until
216 * the timer is enqueued.
217 */
54cdfdb4 218 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
219 return base;
220
221 /* See the comment in lock_timer_base() */
222 timer->base = NULL;
ecb49d1a
TG
223 raw_spin_unlock(&base->cpu_base->lock);
224 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 225
6ff7041d
TG
226 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227 cpu = this_cpu;
ecb49d1a
TG
228 raw_spin_unlock(&new_base->cpu_base->lock);
229 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
230 timer->base = base;
231 goto again;
eea08f32 232 }
c0a31329
TG
233 timer->base = new_base;
234 }
235 return new_base;
236}
237
238#else /* CONFIG_SMP */
239
3c8aa39d 240static inline struct hrtimer_clock_base *
c0a31329
TG
241lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242{
3c8aa39d 243 struct hrtimer_clock_base *base = timer->base;
c0a31329 244
ecb49d1a 245 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
246
247 return base;
248}
249
eea08f32 250# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
251
252#endif /* !CONFIG_SMP */
253
254/*
255 * Functions for the union type storage format of ktime_t which are
256 * too large for inlining:
257 */
258#if BITS_PER_LONG < 64
259# ifndef CONFIG_KTIME_SCALAR
260/**
261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
262 * @kt: addend
263 * @nsec: the scalar nsec value to add
264 *
265 * Returns the sum of kt and nsec in ktime_t format
266 */
267ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268{
269 ktime_t tmp;
270
271 if (likely(nsec < NSEC_PER_SEC)) {
272 tmp.tv64 = nsec;
273 } else {
274 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275
276 tmp = ktime_set((long)nsec, rem);
277 }
278
279 return ktime_add(kt, tmp);
280}
b8b8fd2d
DH
281
282EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
283
284/**
285 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
286 * @kt: minuend
287 * @nsec: the scalar nsec value to subtract
288 *
289 * Returns the subtraction of @nsec from @kt in ktime_t format
290 */
291ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
292{
293 ktime_t tmp;
294
295 if (likely(nsec < NSEC_PER_SEC)) {
296 tmp.tv64 = nsec;
297 } else {
298 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299
300 tmp = ktime_set((long)nsec, rem);
301 }
302
303 return ktime_sub(kt, tmp);
304}
305
306EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
307# endif /* !CONFIG_KTIME_SCALAR */
308
309/*
310 * Divide a ktime value by a nanosecond value
311 */
4d672e7a 312u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 313{
900cfa46 314 u64 dclc;
c0a31329
TG
315 int sft = 0;
316
900cfa46 317 dclc = ktime_to_ns(kt);
c0a31329
TG
318 /* Make sure the divisor is less than 2^32: */
319 while (div >> 32) {
320 sft++;
321 div >>= 1;
322 }
323 dclc >>= sft;
324 do_div(dclc, (unsigned long) div);
325
4d672e7a 326 return dclc;
c0a31329 327}
c0a31329
TG
328#endif /* BITS_PER_LONG >= 64 */
329
5a7780e7
TG
330/*
331 * Add two ktime values and do a safety check for overflow:
332 */
333ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334{
335 ktime_t res = ktime_add(lhs, rhs);
336
337 /*
338 * We use KTIME_SEC_MAX here, the maximum timeout which we can
339 * return to user space in a timespec:
340 */
341 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342 res = ktime_set(KTIME_SEC_MAX, 0);
343
344 return res;
345}
346
8daa21e6
AB
347EXPORT_SYMBOL_GPL(ktime_add_safe);
348
237fc6e7
TG
349#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350
351static struct debug_obj_descr hrtimer_debug_descr;
352
99777288
SG
353static void *hrtimer_debug_hint(void *addr)
354{
355 return ((struct hrtimer *) addr)->function;
356}
357
237fc6e7
TG
358/*
359 * fixup_init is called when:
360 * - an active object is initialized
361 */
362static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363{
364 struct hrtimer *timer = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 hrtimer_cancel(timer);
369 debug_object_init(timer, &hrtimer_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_activate is called when:
378 * - an active object is activated
379 * - an unknown object is activated (might be a statically initialized object)
380 */
381static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382{
383 switch (state) {
384
385 case ODEBUG_STATE_NOTAVAILABLE:
386 WARN_ON_ONCE(1);
387 return 0;
388
389 case ODEBUG_STATE_ACTIVE:
390 WARN_ON(1);
391
392 default:
393 return 0;
394 }
395}
396
397/*
398 * fixup_free is called when:
399 * - an active object is freed
400 */
401static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402{
403 struct hrtimer *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 hrtimer_cancel(timer);
408 debug_object_free(timer, &hrtimer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413}
414
415static struct debug_obj_descr hrtimer_debug_descr = {
416 .name = "hrtimer",
99777288 417 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
418 .fixup_init = hrtimer_fixup_init,
419 .fixup_activate = hrtimer_fixup_activate,
420 .fixup_free = hrtimer_fixup_free,
421};
422
423static inline void debug_hrtimer_init(struct hrtimer *timer)
424{
425 debug_object_init(timer, &hrtimer_debug_descr);
426}
427
428static inline void debug_hrtimer_activate(struct hrtimer *timer)
429{
430 debug_object_activate(timer, &hrtimer_debug_descr);
431}
432
433static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434{
435 debug_object_deactivate(timer, &hrtimer_debug_descr);
436}
437
438static inline void debug_hrtimer_free(struct hrtimer *timer)
439{
440 debug_object_free(timer, &hrtimer_debug_descr);
441}
442
443static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444 enum hrtimer_mode mode);
445
446void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447 enum hrtimer_mode mode)
448{
449 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450 __hrtimer_init(timer, clock_id, mode);
451}
2bc481cf 452EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
453
454void destroy_hrtimer_on_stack(struct hrtimer *timer)
455{
456 debug_object_free(timer, &hrtimer_debug_descr);
457}
458
459#else
460static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
c6a2a177
XG
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
473static inline void debug_activate(struct hrtimer *timer)
474{
475 debug_hrtimer_activate(timer);
476 trace_hrtimer_start(timer);
477}
478
479static inline void debug_deactivate(struct hrtimer *timer)
480{
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483}
484
54cdfdb4
TG
485/* High resolution timer related functions */
486#ifdef CONFIG_HIGH_RES_TIMERS
487
488/*
489 * High resolution timer enabled ?
490 */
491static int hrtimer_hres_enabled __read_mostly = 1;
492
493/*
494 * Enable / Disable high resolution mode
495 */
496static int __init setup_hrtimer_hres(char *str)
497{
498 if (!strcmp(str, "off"))
499 hrtimer_hres_enabled = 0;
500 else if (!strcmp(str, "on"))
501 hrtimer_hres_enabled = 1;
502 else
503 return 0;
504 return 1;
505}
506
507__setup("highres=", setup_hrtimer_hres);
508
509/*
510 * hrtimer_high_res_enabled - query, if the highres mode is enabled
511 */
512static inline int hrtimer_is_hres_enabled(void)
513{
514 return hrtimer_hres_enabled;
515}
516
517/*
518 * Is the high resolution mode active ?
519 */
520static inline int hrtimer_hres_active(void)
521{
909ea964 522 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
523}
524
525/*
526 * Reprogram the event source with checking both queues for the
527 * next event
528 * Called with interrupts disabled and base->lock held
529 */
7403f41f
AC
530static void
531hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
532{
533 int i;
534 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 535 ktime_t expires, expires_next;
54cdfdb4 536
7403f41f 537 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
538
539 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540 struct hrtimer *timer;
998adc3d 541 struct timerqueue_node *next;
54cdfdb4 542
998adc3d
JS
543 next = timerqueue_getnext(&base->active);
544 if (!next)
54cdfdb4 545 continue;
998adc3d
JS
546 timer = container_of(next, struct hrtimer, node);
547
cc584b21 548 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
549 /*
550 * clock_was_set() has changed base->offset so the
551 * result might be negative. Fix it up to prevent a
552 * false positive in clockevents_program_event()
553 */
554 if (expires.tv64 < 0)
555 expires.tv64 = 0;
7403f41f
AC
556 if (expires.tv64 < expires_next.tv64)
557 expires_next = expires;
54cdfdb4
TG
558 }
559
7403f41f
AC
560 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561 return;
562
563 cpu_base->expires_next.tv64 = expires_next.tv64;
564
54cdfdb4
TG
565 if (cpu_base->expires_next.tv64 != KTIME_MAX)
566 tick_program_event(cpu_base->expires_next, 1);
567}
568
569/*
570 * Shared reprogramming for clock_realtime and clock_monotonic
571 *
572 * When a timer is enqueued and expires earlier than the already enqueued
573 * timers, we have to check, whether it expires earlier than the timer for
574 * which the clock event device was armed.
575 *
576 * Called with interrupts disabled and base->cpu_base.lock held
577 */
578static int hrtimer_reprogram(struct hrtimer *timer,
579 struct hrtimer_clock_base *base)
580{
41d2e494 581 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 582 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
583 int res;
584
cc584b21 585 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 586
54cdfdb4
TG
587 /*
588 * When the callback is running, we do not reprogram the clock event
589 * device. The timer callback is either running on a different CPU or
3a4fa0a2 590 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
591 * reprogramming is handled either by the softirq, which called the
592 * callback or at the end of the hrtimer_interrupt.
593 */
594 if (hrtimer_callback_running(timer))
595 return 0;
596
63070a79
TG
597 /*
598 * CLOCK_REALTIME timer might be requested with an absolute
599 * expiry time which is less than base->offset. Nothing wrong
600 * about that, just avoid to call into the tick code, which
601 * has now objections against negative expiry values.
602 */
603 if (expires.tv64 < 0)
604 return -ETIME;
605
41d2e494
TG
606 if (expires.tv64 >= cpu_base->expires_next.tv64)
607 return 0;
608
609 /*
610 * If a hang was detected in the last timer interrupt then we
611 * do not schedule a timer which is earlier than the expiry
612 * which we enforced in the hang detection. We want the system
613 * to make progress.
614 */
615 if (cpu_base->hang_detected)
54cdfdb4
TG
616 return 0;
617
618 /*
619 * Clockevents returns -ETIME, when the event was in the past.
620 */
621 res = tick_program_event(expires, 0);
622 if (!IS_ERR_VALUE(res))
41d2e494 623 cpu_base->expires_next = expires;
54cdfdb4
TG
624 return res;
625}
626
54cdfdb4
TG
627/*
628 * Initialize the high resolution related parts of cpu_base
629 */
630static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631{
632 base->expires_next.tv64 = KTIME_MAX;
633 base->hres_active = 0;
54cdfdb4
TG
634}
635
54cdfdb4
TG
636/*
637 * When High resolution timers are active, try to reprogram. Note, that in case
638 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639 * check happens. The timer gets enqueued into the rbtree. The reprogramming
640 * and expiry check is done in the hrtimer_interrupt or in the softirq.
641 */
642static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
643 struct hrtimer_clock_base *base,
644 int wakeup)
54cdfdb4
TG
645{
646 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 647 if (wakeup) {
ecb49d1a 648 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 649 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 650 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
651 } else
652 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
653
ca109491 654 return 1;
54cdfdb4 655 }
7f1e2ca9 656
54cdfdb4
TG
657 return 0;
658}
659
9ec26907
TG
660/*
661 * Retrigger next event is called after clock was set
662 *
663 * Called with interrupts disabled via on_each_cpu()
664 */
665static void retrigger_next_event(void *arg)
666{
667 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
668 struct timespec realtime_offset, xtim, wtm, sleep;
669
670 if (!hrtimer_hres_active())
671 return;
672
673 /* Optimized out for !HIGH_RES */
674 get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
675 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
676
677 /* Adjust CLOCK_REALTIME offset */
678 raw_spin_lock(&base->lock);
679 base->clock_base[HRTIMER_BASE_REALTIME].offset =
680 timespec_to_ktime(realtime_offset);
681 base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
682 timespec_to_ktime(sleep);
683
684 hrtimer_force_reprogram(base, 0);
685 raw_spin_unlock(&base->lock);
686}
b12a03ce 687
54cdfdb4
TG
688/*
689 * Switch to high resolution mode
690 */
f8953856 691static int hrtimer_switch_to_hres(void)
54cdfdb4 692{
b12a03ce 693 int i, cpu = smp_processor_id();
820de5c3 694 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
695 unsigned long flags;
696
697 if (base->hres_active)
f8953856 698 return 1;
54cdfdb4
TG
699
700 local_irq_save(flags);
701
702 if (tick_init_highres()) {
703 local_irq_restore(flags);
820de5c3
IM
704 printk(KERN_WARNING "Could not switch to high resolution "
705 "mode on CPU %d\n", cpu);
f8953856 706 return 0;
54cdfdb4
TG
707 }
708 base->hres_active = 1;
b12a03ce
TG
709 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
710 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
711
712 tick_setup_sched_timer();
713
714 /* "Retrigger" the interrupt to get things going */
715 retrigger_next_event(NULL);
716 local_irq_restore(flags);
f8953856 717 return 1;
54cdfdb4
TG
718}
719
f55a6faa
JS
720/*
721 * Called from timekeeping code to reprogramm the hrtimer interrupt
722 * device. If called from the timer interrupt context we defer it to
723 * softirq context.
724 */
725void clock_was_set_delayed(void)
726{
727 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
728
729 cpu_base->clock_was_set = 1;
730 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
731}
732
54cdfdb4
TG
733#else
734
735static inline int hrtimer_hres_active(void) { return 0; }
736static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 737static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
738static inline void
739hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 740static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
741 struct hrtimer_clock_base *base,
742 int wakeup)
54cdfdb4
TG
743{
744 return 0;
745}
54cdfdb4 746static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 747static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
748
749#endif /* CONFIG_HIGH_RES_TIMERS */
750
b12a03ce
TG
751/*
752 * Clock realtime was set
753 *
754 * Change the offset of the realtime clock vs. the monotonic
755 * clock.
756 *
757 * We might have to reprogram the high resolution timer interrupt. On
758 * SMP we call the architecture specific code to retrigger _all_ high
759 * resolution timer interrupts. On UP we just disable interrupts and
760 * call the high resolution interrupt code.
761 */
762void clock_was_set(void)
763{
90ff1f30 764#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
765 /* Retrigger the CPU local events everywhere */
766 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
767#endif
768 timerfd_clock_was_set();
b12a03ce
TG
769}
770
771/*
772 * During resume we might have to reprogram the high resolution timer
773 * interrupt (on the local CPU):
774 */
775void hrtimers_resume(void)
776{
777 WARN_ONCE(!irqs_disabled(),
778 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
779
780 retrigger_next_event(NULL);
9ec26907 781 timerfd_clock_was_set();
b12a03ce
TG
782}
783
5f201907 784static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 785{
5f201907 786#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
787 if (timer->start_site)
788 return;
5f201907 789 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
790 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
791 timer->start_pid = current->pid;
5f201907
HC
792#endif
793}
794
795static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
796{
797#ifdef CONFIG_TIMER_STATS
798 timer->start_site = NULL;
799#endif
82f67cd9 800}
5f201907
HC
801
802static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
803{
804#ifdef CONFIG_TIMER_STATS
805 if (likely(!timer_stats_active))
806 return;
807 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
808 timer->function, timer->start_comm, 0);
82f67cd9 809#endif
5f201907 810}
82f67cd9 811
c0a31329 812/*
6506f2aa 813 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
814 */
815static inline
816void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
817{
ecb49d1a 818 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
819}
820
821/**
822 * hrtimer_forward - forward the timer expiry
c0a31329 823 * @timer: hrtimer to forward
44f21475 824 * @now: forward past this time
c0a31329
TG
825 * @interval: the interval to forward
826 *
827 * Forward the timer expiry so it will expire in the future.
8dca6f33 828 * Returns the number of overruns.
c0a31329 829 */
4d672e7a 830u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 831{
4d672e7a 832 u64 orun = 1;
44f21475 833 ktime_t delta;
c0a31329 834
cc584b21 835 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
836
837 if (delta.tv64 < 0)
838 return 0;
839
c9db4fa1
TG
840 if (interval.tv64 < timer->base->resolution.tv64)
841 interval.tv64 = timer->base->resolution.tv64;
842
c0a31329 843 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 844 s64 incr = ktime_to_ns(interval);
c0a31329
TG
845
846 orun = ktime_divns(delta, incr);
cc584b21
AV
847 hrtimer_add_expires_ns(timer, incr * orun);
848 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
849 return orun;
850 /*
851 * This (and the ktime_add() below) is the
852 * correction for exact:
853 */
854 orun++;
855 }
cc584b21 856 hrtimer_add_expires(timer, interval);
c0a31329
TG
857
858 return orun;
859}
6bdb6b62 860EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
861
862/*
863 * enqueue_hrtimer - internal function to (re)start a timer
864 *
865 * The timer is inserted in expiry order. Insertion into the
866 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
867 *
868 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 869 */
a6037b61
PZ
870static int enqueue_hrtimer(struct hrtimer *timer,
871 struct hrtimer_clock_base *base)
c0a31329 872{
c6a2a177 873 debug_activate(timer);
237fc6e7 874
998adc3d 875 timerqueue_add(&base->active, &timer->node);
ab8177bc 876 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 877
303e967f
TG
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 883
998adc3d 884 return (&timer->node == base->active.next);
288867ec 885}
c0a31329
TG
886
887/*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
54cdfdb4
TG
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
c0a31329 896 */
3c8aa39d 897static void __remove_hrtimer(struct hrtimer *timer,
303e967f 898 struct hrtimer_clock_base *base,
54cdfdb4 899 unsigned long newstate, int reprogram)
c0a31329 900{
27c9cd7e 901 struct timerqueue_node *next_timer;
7403f41f
AC
902 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
903 goto out;
904
27c9cd7e
JO
905 next_timer = timerqueue_getnext(&base->active);
906 timerqueue_del(&base->active, &timer->node);
907 if (&timer->node == next_timer) {
7403f41f
AC
908#ifdef CONFIG_HIGH_RES_TIMERS
909 /* Reprogram the clock event device. if enabled */
910 if (reprogram && hrtimer_hres_active()) {
911 ktime_t expires;
912
913 expires = ktime_sub(hrtimer_get_expires(timer),
914 base->offset);
915 if (base->cpu_base->expires_next.tv64 == expires.tv64)
916 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 917 }
7403f41f 918#endif
54cdfdb4 919 }
ab8177bc
TG
920 if (!timerqueue_getnext(&base->active))
921 base->cpu_base->active_bases &= ~(1 << base->index);
7403f41f 922out:
303e967f 923 timer->state = newstate;
c0a31329
TG
924}
925
926/*
927 * remove hrtimer, called with base lock held
928 */
929static inline int
3c8aa39d 930remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 931{
303e967f 932 if (hrtimer_is_queued(timer)) {
f13d4f97 933 unsigned long state;
54cdfdb4
TG
934 int reprogram;
935
936 /*
937 * Remove the timer and force reprogramming when high
938 * resolution mode is active and the timer is on the current
939 * CPU. If we remove a timer on another CPU, reprogramming is
940 * skipped. The interrupt event on this CPU is fired and
941 * reprogramming happens in the interrupt handler. This is a
942 * rare case and less expensive than a smp call.
943 */
c6a2a177 944 debug_deactivate(timer);
82f67cd9 945 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 946 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
947 /*
948 * We must preserve the CALLBACK state flag here,
949 * otherwise we could move the timer base in
950 * switch_hrtimer_base.
951 */
952 state = timer->state & HRTIMER_STATE_CALLBACK;
953 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
954 return 1;
955 }
956 return 0;
957}
958
7f1e2ca9
PZ
959int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
960 unsigned long delta_ns, const enum hrtimer_mode mode,
961 int wakeup)
c0a31329 962{
3c8aa39d 963 struct hrtimer_clock_base *base, *new_base;
c0a31329 964 unsigned long flags;
a6037b61 965 int ret, leftmost;
c0a31329
TG
966
967 base = lock_hrtimer_base(timer, &flags);
968
969 /* Remove an active timer from the queue: */
970 ret = remove_hrtimer(timer, base);
971
972 /* Switch the timer base, if necessary: */
597d0275 973 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 974
597d0275 975 if (mode & HRTIMER_MODE_REL) {
5a7780e7 976 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
977 /*
978 * CONFIG_TIME_LOW_RES is a temporary way for architectures
979 * to signal that they simply return xtime in
980 * do_gettimeoffset(). In this case we want to round up by
981 * resolution when starting a relative timer, to avoid short
982 * timeouts. This will go away with the GTOD framework.
983 */
984#ifdef CONFIG_TIME_LOW_RES
5a7780e7 985 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
986#endif
987 }
237fc6e7 988
da8f2e17 989 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 990
82f67cd9
IM
991 timer_stats_hrtimer_set_start_info(timer);
992
a6037b61
PZ
993 leftmost = enqueue_hrtimer(timer, new_base);
994
935c631d
IM
995 /*
996 * Only allow reprogramming if the new base is on this CPU.
997 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
998 *
999 * XXX send_remote_softirq() ?
935c631d 1000 */
a6037b61 1001 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 1002 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
1003
1004 unlock_hrtimer_base(timer, &flags);
1005
1006 return ret;
1007}
7f1e2ca9
PZ
1008
1009/**
1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011 * @timer: the timer to be added
1012 * @tim: expiry time
1013 * @delta_ns: "slack" range for the timer
1014 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1015 *
1016 * Returns:
1017 * 0 on success
1018 * 1 when the timer was active
1019 */
1020int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1021 unsigned long delta_ns, const enum hrtimer_mode mode)
1022{
1023 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1024}
da8f2e17
AV
1025EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1026
1027/**
e1dd7bc5 1028 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1029 * @timer: the timer to be added
1030 * @tim: expiry time
1031 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1032 *
1033 * Returns:
1034 * 0 on success
1035 * 1 when the timer was active
1036 */
1037int
1038hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1039{
7f1e2ca9 1040 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1041}
8d16b764 1042EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1043
da8f2e17 1044
c0a31329
TG
1045/**
1046 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1047 * @timer: hrtimer to stop
1048 *
1049 * Returns:
1050 * 0 when the timer was not active
1051 * 1 when the timer was active
1052 * -1 when the timer is currently excuting the callback function and
fa9799e3 1053 * cannot be stopped
c0a31329
TG
1054 */
1055int hrtimer_try_to_cancel(struct hrtimer *timer)
1056{
3c8aa39d 1057 struct hrtimer_clock_base *base;
c0a31329
TG
1058 unsigned long flags;
1059 int ret = -1;
1060
1061 base = lock_hrtimer_base(timer, &flags);
1062
303e967f 1063 if (!hrtimer_callback_running(timer))
c0a31329
TG
1064 ret = remove_hrtimer(timer, base);
1065
1066 unlock_hrtimer_base(timer, &flags);
1067
1068 return ret;
1069
1070}
8d16b764 1071EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1072
1073/**
1074 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1075 * @timer: the timer to be cancelled
1076 *
1077 * Returns:
1078 * 0 when the timer was not active
1079 * 1 when the timer was active
1080 */
1081int hrtimer_cancel(struct hrtimer *timer)
1082{
1083 for (;;) {
1084 int ret = hrtimer_try_to_cancel(timer);
1085
1086 if (ret >= 0)
1087 return ret;
5ef37b19 1088 cpu_relax();
c0a31329
TG
1089 }
1090}
8d16b764 1091EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1092
1093/**
1094 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1095 * @timer: the timer to read
1096 */
1097ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1098{
c0a31329
TG
1099 unsigned long flags;
1100 ktime_t rem;
1101
b3bd3de6 1102 lock_hrtimer_base(timer, &flags);
cc584b21 1103 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1104 unlock_hrtimer_base(timer, &flags);
1105
1106 return rem;
1107}
8d16b764 1108EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1109
ee9c5785 1110#ifdef CONFIG_NO_HZ
69239749
TL
1111/**
1112 * hrtimer_get_next_event - get the time until next expiry event
1113 *
1114 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1115 * is pending.
1116 */
1117ktime_t hrtimer_get_next_event(void)
1118{
3c8aa39d
TG
1119 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1120 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1121 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1122 unsigned long flags;
1123 int i;
1124
ecb49d1a 1125 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1126
54cdfdb4
TG
1127 if (!hrtimer_hres_active()) {
1128 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1129 struct hrtimer *timer;
998adc3d 1130 struct timerqueue_node *next;
69239749 1131
998adc3d
JS
1132 next = timerqueue_getnext(&base->active);
1133 if (!next)
54cdfdb4 1134 continue;
3c8aa39d 1135
998adc3d 1136 timer = container_of(next, struct hrtimer, node);
cc584b21 1137 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1138 delta = ktime_sub(delta, base->get_time());
1139 if (delta.tv64 < mindelta.tv64)
1140 mindelta.tv64 = delta.tv64;
1141 }
69239749 1142 }
3c8aa39d 1143
ecb49d1a 1144 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1145
69239749
TL
1146 if (mindelta.tv64 < 0)
1147 mindelta.tv64 = 0;
1148 return mindelta;
1149}
1150#endif
1151
237fc6e7
TG
1152static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1153 enum hrtimer_mode mode)
c0a31329 1154{
3c8aa39d 1155 struct hrtimer_cpu_base *cpu_base;
e06383db 1156 int base;
c0a31329 1157
7978672c
GA
1158 memset(timer, 0, sizeof(struct hrtimer));
1159
3c8aa39d 1160 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1161
c9cb2e3d 1162 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1163 clock_id = CLOCK_MONOTONIC;
1164
e06383db
JS
1165 base = hrtimer_clockid_to_base(clock_id);
1166 timer->base = &cpu_base->clock_base[base];
998adc3d 1167 timerqueue_init(&timer->node);
82f67cd9
IM
1168
1169#ifdef CONFIG_TIMER_STATS
1170 timer->start_site = NULL;
1171 timer->start_pid = -1;
1172 memset(timer->start_comm, 0, TASK_COMM_LEN);
1173#endif
c0a31329 1174}
237fc6e7
TG
1175
1176/**
1177 * hrtimer_init - initialize a timer to the given clock
1178 * @timer: the timer to be initialized
1179 * @clock_id: the clock to be used
1180 * @mode: timer mode abs/rel
1181 */
1182void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1183 enum hrtimer_mode mode)
1184{
c6a2a177 1185 debug_init(timer, clock_id, mode);
237fc6e7
TG
1186 __hrtimer_init(timer, clock_id, mode);
1187}
8d16b764 1188EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1189
1190/**
1191 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1192 * @which_clock: which clock to query
1193 * @tp: pointer to timespec variable to store the resolution
1194 *
72fd4a35
RD
1195 * Store the resolution of the clock selected by @which_clock in the
1196 * variable pointed to by @tp.
c0a31329
TG
1197 */
1198int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1199{
3c8aa39d 1200 struct hrtimer_cpu_base *cpu_base;
e06383db 1201 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1202
3c8aa39d 1203 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1204 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1205
1206 return 0;
1207}
8d16b764 1208EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1209
c6a2a177 1210static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1211{
1212 struct hrtimer_clock_base *base = timer->base;
1213 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1214 enum hrtimer_restart (*fn)(struct hrtimer *);
1215 int restart;
1216
ca109491
PZ
1217 WARN_ON(!irqs_disabled());
1218
c6a2a177 1219 debug_deactivate(timer);
d3d74453
PZ
1220 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1221 timer_stats_account_hrtimer(timer);
d3d74453 1222 fn = timer->function;
ca109491
PZ
1223
1224 /*
1225 * Because we run timers from hardirq context, there is no chance
1226 * they get migrated to another cpu, therefore its safe to unlock
1227 * the timer base.
1228 */
ecb49d1a 1229 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1230 trace_hrtimer_expire_entry(timer, now);
ca109491 1231 restart = fn(timer);
c6a2a177 1232 trace_hrtimer_expire_exit(timer);
ecb49d1a 1233 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1234
1235 /*
e3f1d883
TG
1236 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1237 * we do not reprogramm the event hardware. Happens either in
1238 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1239 */
1240 if (restart != HRTIMER_NORESTART) {
1241 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1242 enqueue_hrtimer(timer, base);
d3d74453 1243 }
f13d4f97
SQ
1244
1245 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1246
d3d74453
PZ
1247 timer->state &= ~HRTIMER_STATE_CALLBACK;
1248}
1249
54cdfdb4
TG
1250#ifdef CONFIG_HIGH_RES_TIMERS
1251
1252/*
1253 * High resolution timer interrupt
1254 * Called with interrupts disabled
1255 */
1256void hrtimer_interrupt(struct clock_event_device *dev)
1257{
1258 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
41d2e494
TG
1259 ktime_t expires_next, now, entry_time, delta;
1260 int i, retries = 0;
54cdfdb4
TG
1261
1262 BUG_ON(!cpu_base->hres_active);
1263 cpu_base->nr_events++;
1264 dev->next_event.tv64 = KTIME_MAX;
1265
41d2e494
TG
1266 entry_time = now = ktime_get();
1267retry:
54cdfdb4
TG
1268 expires_next.tv64 = KTIME_MAX;
1269
ecb49d1a 1270 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1271 /*
1272 * We set expires_next to KTIME_MAX here with cpu_base->lock
1273 * held to prevent that a timer is enqueued in our queue via
1274 * the migration code. This does not affect enqueueing of
1275 * timers which run their callback and need to be requeued on
1276 * this CPU.
1277 */
1278 cpu_base->expires_next.tv64 = KTIME_MAX;
1279
54cdfdb4 1280 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1281 struct hrtimer_clock_base *base;
998adc3d 1282 struct timerqueue_node *node;
ab8177bc
TG
1283 ktime_t basenow;
1284
1285 if (!(cpu_base->active_bases & (1 << i)))
1286 continue;
54cdfdb4 1287
ab8177bc 1288 base = cpu_base->clock_base + i;
54cdfdb4
TG
1289 basenow = ktime_add(now, base->offset);
1290
998adc3d 1291 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1292 struct hrtimer *timer;
1293
998adc3d 1294 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1295
654c8e0b
AV
1296 /*
1297 * The immediate goal for using the softexpires is
1298 * minimizing wakeups, not running timers at the
1299 * earliest interrupt after their soft expiration.
1300 * This allows us to avoid using a Priority Search
1301 * Tree, which can answer a stabbing querry for
1302 * overlapping intervals and instead use the simple
1303 * BST we already have.
1304 * We don't add extra wakeups by delaying timers that
1305 * are right-of a not yet expired timer, because that
1306 * timer will have to trigger a wakeup anyway.
1307 */
1308
1309 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1310 ktime_t expires;
1311
cc584b21 1312 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1313 base->offset);
1314 if (expires.tv64 < expires_next.tv64)
1315 expires_next = expires;
1316 break;
1317 }
1318
c6a2a177 1319 __run_hrtimer(timer, &basenow);
54cdfdb4 1320 }
54cdfdb4
TG
1321 }
1322
6ff7041d
TG
1323 /*
1324 * Store the new expiry value so the migration code can verify
1325 * against it.
1326 */
54cdfdb4 1327 cpu_base->expires_next = expires_next;
ecb49d1a 1328 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1329
1330 /* Reprogramming necessary ? */
41d2e494
TG
1331 if (expires_next.tv64 == KTIME_MAX ||
1332 !tick_program_event(expires_next, 0)) {
1333 cpu_base->hang_detected = 0;
1334 return;
54cdfdb4 1335 }
41d2e494
TG
1336
1337 /*
1338 * The next timer was already expired due to:
1339 * - tracing
1340 * - long lasting callbacks
1341 * - being scheduled away when running in a VM
1342 *
1343 * We need to prevent that we loop forever in the hrtimer
1344 * interrupt routine. We give it 3 attempts to avoid
1345 * overreacting on some spurious event.
1346 */
1347 now = ktime_get();
1348 cpu_base->nr_retries++;
1349 if (++retries < 3)
1350 goto retry;
1351 /*
1352 * Give the system a chance to do something else than looping
1353 * here. We stored the entry time, so we know exactly how long
1354 * we spent here. We schedule the next event this amount of
1355 * time away.
1356 */
1357 cpu_base->nr_hangs++;
1358 cpu_base->hang_detected = 1;
1359 delta = ktime_sub(now, entry_time);
1360 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1361 cpu_base->max_hang_time = delta;
1362 /*
1363 * Limit it to a sensible value as we enforce a longer
1364 * delay. Give the CPU at least 100ms to catch up.
1365 */
1366 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1367 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1368 else
1369 expires_next = ktime_add(now, delta);
1370 tick_program_event(expires_next, 1);
1371 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1372 ktime_to_ns(delta));
54cdfdb4
TG
1373}
1374
8bdec955
TG
1375/*
1376 * local version of hrtimer_peek_ahead_timers() called with interrupts
1377 * disabled.
1378 */
1379static void __hrtimer_peek_ahead_timers(void)
1380{
1381 struct tick_device *td;
1382
1383 if (!hrtimer_hres_active())
1384 return;
1385
1386 td = &__get_cpu_var(tick_cpu_device);
1387 if (td && td->evtdev)
1388 hrtimer_interrupt(td->evtdev);
1389}
1390
2e94d1f7
AV
1391/**
1392 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1393 *
1394 * hrtimer_peek_ahead_timers will peek at the timer queue of
1395 * the current cpu and check if there are any timers for which
1396 * the soft expires time has passed. If any such timers exist,
1397 * they are run immediately and then removed from the timer queue.
1398 *
1399 */
1400void hrtimer_peek_ahead_timers(void)
1401{
643bdf68 1402 unsigned long flags;
dc4304f7 1403
2e94d1f7 1404 local_irq_save(flags);
8bdec955 1405 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1406 local_irq_restore(flags);
1407}
1408
a6037b61
PZ
1409static void run_hrtimer_softirq(struct softirq_action *h)
1410{
f55a6faa
JS
1411 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1412
1413 if (cpu_base->clock_was_set) {
1414 cpu_base->clock_was_set = 0;
1415 clock_was_set();
1416 }
1417
a6037b61
PZ
1418 hrtimer_peek_ahead_timers();
1419}
1420
82c5b7b5
IM
1421#else /* CONFIG_HIGH_RES_TIMERS */
1422
1423static inline void __hrtimer_peek_ahead_timers(void) { }
1424
1425#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1426
d3d74453
PZ
1427/*
1428 * Called from timer softirq every jiffy, expire hrtimers:
1429 *
1430 * For HRT its the fall back code to run the softirq in the timer
1431 * softirq context in case the hrtimer initialization failed or has
1432 * not been done yet.
1433 */
1434void hrtimer_run_pending(void)
1435{
d3d74453
PZ
1436 if (hrtimer_hres_active())
1437 return;
54cdfdb4 1438
d3d74453
PZ
1439 /*
1440 * This _is_ ugly: We have to check in the softirq context,
1441 * whether we can switch to highres and / or nohz mode. The
1442 * clocksource switch happens in the timer interrupt with
1443 * xtime_lock held. Notification from there only sets the
1444 * check bit in the tick_oneshot code, otherwise we might
1445 * deadlock vs. xtime_lock.
1446 */
1447 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1448 hrtimer_switch_to_hres();
54cdfdb4
TG
1449}
1450
c0a31329 1451/*
d3d74453 1452 * Called from hardirq context every jiffy
c0a31329 1453 */
833883d9 1454void hrtimer_run_queues(void)
c0a31329 1455{
998adc3d 1456 struct timerqueue_node *node;
833883d9
DS
1457 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1458 struct hrtimer_clock_base *base;
1459 int index, gettime = 1;
c0a31329 1460
833883d9 1461 if (hrtimer_hres_active())
3055adda
DS
1462 return;
1463
833883d9
DS
1464 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1465 base = &cpu_base->clock_base[index];
b007c389 1466 if (!timerqueue_getnext(&base->active))
d3d74453 1467 continue;
833883d9 1468
d7cfb60c 1469 if (gettime) {
833883d9
DS
1470 hrtimer_get_softirq_time(cpu_base);
1471 gettime = 0;
b75f7a51 1472 }
d3d74453 1473
ecb49d1a 1474 raw_spin_lock(&cpu_base->lock);
c0a31329 1475
b007c389 1476 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1477 struct hrtimer *timer;
54cdfdb4 1478
998adc3d 1479 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1480 if (base->softirq_time.tv64 <=
1481 hrtimer_get_expires_tv64(timer))
833883d9
DS
1482 break;
1483
c6a2a177 1484 __run_hrtimer(timer, &base->softirq_time);
833883d9 1485 }
ecb49d1a 1486 raw_spin_unlock(&cpu_base->lock);
833883d9 1487 }
c0a31329
TG
1488}
1489
10c94ec1
TG
1490/*
1491 * Sleep related functions:
1492 */
c9cb2e3d 1493static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1494{
1495 struct hrtimer_sleeper *t =
1496 container_of(timer, struct hrtimer_sleeper, timer);
1497 struct task_struct *task = t->task;
1498
1499 t->task = NULL;
1500 if (task)
1501 wake_up_process(task);
1502
1503 return HRTIMER_NORESTART;
1504}
1505
36c8b586 1506void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1507{
1508 sl->timer.function = hrtimer_wakeup;
1509 sl->task = task;
1510}
2bc481cf 1511EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1512
669d7868 1513static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1514{
669d7868 1515 hrtimer_init_sleeper(t, current);
10c94ec1 1516
432569bb
RZ
1517 do {
1518 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1519 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1520 if (!hrtimer_active(&t->timer))
1521 t->task = NULL;
432569bb 1522
54cdfdb4
TG
1523 if (likely(t->task))
1524 schedule();
432569bb 1525
669d7868 1526 hrtimer_cancel(&t->timer);
c9cb2e3d 1527 mode = HRTIMER_MODE_ABS;
669d7868
TG
1528
1529 } while (t->task && !signal_pending(current));
432569bb 1530
3588a085
PZ
1531 __set_current_state(TASK_RUNNING);
1532
669d7868 1533 return t->task == NULL;
10c94ec1
TG
1534}
1535
080344b9
ON
1536static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1537{
1538 struct timespec rmt;
1539 ktime_t rem;
1540
cc584b21 1541 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1542 if (rem.tv64 <= 0)
1543 return 0;
1544 rmt = ktime_to_timespec(rem);
1545
1546 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1547 return -EFAULT;
1548
1549 return 1;
1550}
1551
1711ef38 1552long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1553{
669d7868 1554 struct hrtimer_sleeper t;
080344b9 1555 struct timespec __user *rmtp;
237fc6e7 1556 int ret = 0;
10c94ec1 1557
ab8177bc 1558 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1559 HRTIMER_MODE_ABS);
cc584b21 1560 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1561
c9cb2e3d 1562 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1563 goto out;
10c94ec1 1564
029a07e0 1565 rmtp = restart->nanosleep.rmtp;
432569bb 1566 if (rmtp) {
237fc6e7 1567 ret = update_rmtp(&t.timer, rmtp);
080344b9 1568 if (ret <= 0)
237fc6e7 1569 goto out;
432569bb 1570 }
10c94ec1 1571
10c94ec1 1572 /* The other values in restart are already filled in */
237fc6e7
TG
1573 ret = -ERESTART_RESTARTBLOCK;
1574out:
1575 destroy_hrtimer_on_stack(&t.timer);
1576 return ret;
10c94ec1
TG
1577}
1578
080344b9 1579long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1580 const enum hrtimer_mode mode, const clockid_t clockid)
1581{
1582 struct restart_block *restart;
669d7868 1583 struct hrtimer_sleeper t;
237fc6e7 1584 int ret = 0;
3bd01206
AV
1585 unsigned long slack;
1586
1587 slack = current->timer_slack_ns;
1588 if (rt_task(current))
1589 slack = 0;
10c94ec1 1590
237fc6e7 1591 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1592 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1593 if (do_nanosleep(&t, mode))
237fc6e7 1594 goto out;
10c94ec1 1595
7978672c 1596 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1597 if (mode == HRTIMER_MODE_ABS) {
1598 ret = -ERESTARTNOHAND;
1599 goto out;
1600 }
10c94ec1 1601
432569bb 1602 if (rmtp) {
237fc6e7 1603 ret = update_rmtp(&t.timer, rmtp);
080344b9 1604 if (ret <= 0)
237fc6e7 1605 goto out;
432569bb 1606 }
10c94ec1
TG
1607
1608 restart = &current_thread_info()->restart_block;
1711ef38 1609 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1610 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1611 restart->nanosleep.rmtp = rmtp;
cc584b21 1612 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1613
237fc6e7
TG
1614 ret = -ERESTART_RESTARTBLOCK;
1615out:
1616 destroy_hrtimer_on_stack(&t.timer);
1617 return ret;
10c94ec1
TG
1618}
1619
58fd3aa2
HC
1620SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1621 struct timespec __user *, rmtp)
6ba1b912 1622{
080344b9 1623 struct timespec tu;
6ba1b912
TG
1624
1625 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1626 return -EFAULT;
1627
1628 if (!timespec_valid(&tu))
1629 return -EINVAL;
1630
080344b9 1631 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1632}
1633
c0a31329
TG
1634/*
1635 * Functions related to boot-time initialization:
1636 */
0ec160dd 1637static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1638{
3c8aa39d 1639 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1640 int i;
1641
ecb49d1a 1642 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1643
998adc3d 1644 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1645 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1646 timerqueue_init_head(&cpu_base->clock_base[i].active);
1647 }
3c8aa39d 1648
54cdfdb4 1649 hrtimer_init_hres(cpu_base);
c0a31329
TG
1650}
1651
1652#ifdef CONFIG_HOTPLUG_CPU
1653
ca109491 1654static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1655 struct hrtimer_clock_base *new_base)
c0a31329
TG
1656{
1657 struct hrtimer *timer;
998adc3d 1658 struct timerqueue_node *node;
c0a31329 1659
998adc3d
JS
1660 while ((node = timerqueue_getnext(&old_base->active))) {
1661 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1662 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1663 debug_deactivate(timer);
b00c1a99
TG
1664
1665 /*
1666 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1667 * timer could be seen as !active and just vanish away
1668 * under us on another CPU
1669 */
1670 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1671 timer->base = new_base;
54cdfdb4 1672 /*
e3f1d883
TG
1673 * Enqueue the timers on the new cpu. This does not
1674 * reprogram the event device in case the timer
1675 * expires before the earliest on this CPU, but we run
1676 * hrtimer_interrupt after we migrated everything to
1677 * sort out already expired timers and reprogram the
1678 * event device.
54cdfdb4 1679 */
a6037b61 1680 enqueue_hrtimer(timer, new_base);
41e1022e 1681
b00c1a99
TG
1682 /* Clear the migration state bit */
1683 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1684 }
1685}
1686
d5fd43c4 1687static void migrate_hrtimers(int scpu)
c0a31329 1688{
3c8aa39d 1689 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1690 int i;
c0a31329 1691
37810659 1692 BUG_ON(cpu_online(scpu));
37810659 1693 tick_cancel_sched_timer(scpu);
731a55ba
TG
1694
1695 local_irq_disable();
1696 old_base = &per_cpu(hrtimer_bases, scpu);
1697 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1698 /*
1699 * The caller is globally serialized and nobody else
1700 * takes two locks at once, deadlock is not possible.
1701 */
ecb49d1a
TG
1702 raw_spin_lock(&new_base->lock);
1703 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1704
3c8aa39d 1705 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1706 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1707 &new_base->clock_base[i]);
c0a31329
TG
1708 }
1709
ecb49d1a
TG
1710 raw_spin_unlock(&old_base->lock);
1711 raw_spin_unlock(&new_base->lock);
37810659 1712
731a55ba
TG
1713 /* Check, if we got expired work to do */
1714 __hrtimer_peek_ahead_timers();
1715 local_irq_enable();
c0a31329 1716}
37810659 1717
c0a31329
TG
1718#endif /* CONFIG_HOTPLUG_CPU */
1719
8c78f307 1720static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1721 unsigned long action, void *hcpu)
1722{
b2e3c0ad 1723 int scpu = (long)hcpu;
c0a31329
TG
1724
1725 switch (action) {
1726
1727 case CPU_UP_PREPARE:
8bb78442 1728 case CPU_UP_PREPARE_FROZEN:
37810659 1729 init_hrtimers_cpu(scpu);
c0a31329
TG
1730 break;
1731
1732#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1733 case CPU_DYING:
1734 case CPU_DYING_FROZEN:
1735 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1736 break;
c0a31329 1737 case CPU_DEAD:
8bb78442 1738 case CPU_DEAD_FROZEN:
b2e3c0ad 1739 {
37810659 1740 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1741 migrate_hrtimers(scpu);
c0a31329 1742 break;
b2e3c0ad 1743 }
c0a31329
TG
1744#endif
1745
1746 default:
1747 break;
1748 }
1749
1750 return NOTIFY_OK;
1751}
1752
8c78f307 1753static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1754 .notifier_call = hrtimer_cpu_notify,
1755};
1756
1757void __init hrtimers_init(void)
1758{
1759 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1760 (void *)(long)smp_processor_id());
1761 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1762#ifdef CONFIG_HIGH_RES_TIMERS
1763 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1764#endif
c0a31329
TG
1765}
1766
7bb67439 1767/**
351b3f7a 1768 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1769 * @expires: timeout value (ktime_t)
654c8e0b 1770 * @delta: slack in expires timeout (ktime_t)
7bb67439 1771 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1772 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1773 */
351b3f7a
CE
1774int __sched
1775schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1776 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1777{
1778 struct hrtimer_sleeper t;
1779
1780 /*
1781 * Optimize when a zero timeout value is given. It does not
1782 * matter whether this is an absolute or a relative time.
1783 */
1784 if (expires && !expires->tv64) {
1785 __set_current_state(TASK_RUNNING);
1786 return 0;
1787 }
1788
1789 /*
43b21013 1790 * A NULL parameter means "infinite"
7bb67439
AV
1791 */
1792 if (!expires) {
1793 schedule();
1794 __set_current_state(TASK_RUNNING);
1795 return -EINTR;
1796 }
1797
351b3f7a 1798 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1799 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1800
1801 hrtimer_init_sleeper(&t, current);
1802
cc584b21 1803 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1804 if (!hrtimer_active(&t.timer))
1805 t.task = NULL;
1806
1807 if (likely(t.task))
1808 schedule();
1809
1810 hrtimer_cancel(&t.timer);
1811 destroy_hrtimer_on_stack(&t.timer);
1812
1813 __set_current_state(TASK_RUNNING);
1814
1815 return !t.task ? 0 : -EINTR;
1816}
351b3f7a
CE
1817
1818/**
1819 * schedule_hrtimeout_range - sleep until timeout
1820 * @expires: timeout value (ktime_t)
1821 * @delta: slack in expires timeout (ktime_t)
1822 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1823 *
1824 * Make the current task sleep until the given expiry time has
1825 * elapsed. The routine will return immediately unless
1826 * the current task state has been set (see set_current_state()).
1827 *
1828 * The @delta argument gives the kernel the freedom to schedule the
1829 * actual wakeup to a time that is both power and performance friendly.
1830 * The kernel give the normal best effort behavior for "@expires+@delta",
1831 * but may decide to fire the timer earlier, but no earlier than @expires.
1832 *
1833 * You can set the task state as follows -
1834 *
1835 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1836 * pass before the routine returns.
1837 *
1838 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1839 * delivered to the current task.
1840 *
1841 * The current task state is guaranteed to be TASK_RUNNING when this
1842 * routine returns.
1843 *
1844 * Returns 0 when the timer has expired otherwise -EINTR
1845 */
1846int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1847 const enum hrtimer_mode mode)
1848{
1849 return schedule_hrtimeout_range_clock(expires, delta, mode,
1850 CLOCK_MONOTONIC);
1851}
654c8e0b
AV
1852EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1853
1854/**
1855 * schedule_hrtimeout - sleep until timeout
1856 * @expires: timeout value (ktime_t)
1857 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1858 *
1859 * Make the current task sleep until the given expiry time has
1860 * elapsed. The routine will return immediately unless
1861 * the current task state has been set (see set_current_state()).
1862 *
1863 * You can set the task state as follows -
1864 *
1865 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1866 * pass before the routine returns.
1867 *
1868 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1869 * delivered to the current task.
1870 *
1871 * The current task state is guaranteed to be TASK_RUNNING when this
1872 * routine returns.
1873 *
1874 * Returns 0 when the timer has expired otherwise -EINTR
1875 */
1876int __sched schedule_hrtimeout(ktime_t *expires,
1877 const enum hrtimer_mode mode)
1878{
1879 return schedule_hrtimeout_range(expires, 0, mode);
1880}
7bb67439 1881EXPORT_SYMBOL_GPL(schedule_hrtimeout);