]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/hrtimer.c
highres: improve debug output
[mirror_ubuntu-eoan-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
641b9e0e 62EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
63
64/**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
d316c57f 69ktime_t ktime_get_real(void)
c0a31329
TG
70{
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76}
77
78EXPORT_SYMBOL_GPL(ktime_get_real);
79
80/*
81 * The timer bases:
7978672c
GA
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
c0a31329 88 */
54cdfdb4 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 90{
3c8aa39d
TG
91
92 .clock_base =
c0a31329 93 {
3c8aa39d
TG
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
54cdfdb4 97 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
54cdfdb4 102 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
103 },
104 }
c0a31329
TG
105};
106
107/**
108 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 113 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
114 */
115void ktime_get_ts(struct timespec *ts)
116{
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129}
69778e32 130EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 131
92127c7a
TG
132/*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
3c8aa39d 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
137{
138 ktime_t xtim, tomono;
ad28d94a 139 struct timespec xts, tom;
92127c7a
TG
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
f4304ab2
JS
144#ifdef CONFIG_NO_HZ
145 getnstimeofday(&xts);
146#else
147 xts = xtime;
148#endif
ad28d94a 149 tom = wall_to_monotonic;
92127c7a
TG
150 } while (read_seqretry(&xtime_lock, seq));
151
f4304ab2 152 xtim = timespec_to_ktime(xts);
ad28d94a 153 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
154 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
155 base->clock_base[CLOCK_MONOTONIC].softirq_time =
156 ktime_add(xtim, tomono);
92127c7a
TG
157}
158
303e967f
TG
159/*
160 * Helper function to check, whether the timer is running the callback
161 * function
162 */
163static inline int hrtimer_callback_running(struct hrtimer *timer)
164{
165 return timer->state & HRTIMER_STATE_CALLBACK;
166}
167
c0a31329
TG
168/*
169 * Functions and macros which are different for UP/SMP systems are kept in a
170 * single place
171 */
172#ifdef CONFIG_SMP
173
c0a31329
TG
174/*
175 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
176 * means that all timers which are tied to this base via timer->base are
177 * locked, and the base itself is locked too.
178 *
179 * So __run_timers/migrate_timers can safely modify all timers which could
180 * be found on the lists/queues.
181 *
182 * When the timer's base is locked, and the timer removed from list, it is
183 * possible to set timer->base = NULL and drop the lock: the timer remains
184 * locked.
185 */
3c8aa39d
TG
186static
187struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
188 unsigned long *flags)
c0a31329 189{
3c8aa39d 190 struct hrtimer_clock_base *base;
c0a31329
TG
191
192 for (;;) {
193 base = timer->base;
194 if (likely(base != NULL)) {
3c8aa39d 195 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
196 if (likely(base == timer->base))
197 return base;
198 /* The timer has migrated to another CPU: */
3c8aa39d 199 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
200 }
201 cpu_relax();
202 }
203}
204
205/*
206 * Switch the timer base to the current CPU when possible.
207 */
3c8aa39d
TG
208static inline struct hrtimer_clock_base *
209switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 210{
3c8aa39d
TG
211 struct hrtimer_clock_base *new_base;
212 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 213
3c8aa39d
TG
214 new_cpu_base = &__get_cpu_var(hrtimer_bases);
215 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
216
217 if (base != new_base) {
218 /*
219 * We are trying to schedule the timer on the local CPU.
220 * However we can't change timer's base while it is running,
221 * so we keep it on the same CPU. No hassle vs. reprogramming
222 * the event source in the high resolution case. The softirq
223 * code will take care of this when the timer function has
224 * completed. There is no conflict as we hold the lock until
225 * the timer is enqueued.
226 */
54cdfdb4 227 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
228 return base;
229
230 /* See the comment in lock_timer_base() */
231 timer->base = NULL;
3c8aa39d
TG
232 spin_unlock(&base->cpu_base->lock);
233 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
234 timer->base = new_base;
235 }
236 return new_base;
237}
238
239#else /* CONFIG_SMP */
240
3c8aa39d 241static inline struct hrtimer_clock_base *
c0a31329
TG
242lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
243{
3c8aa39d 244 struct hrtimer_clock_base *base = timer->base;
c0a31329 245
3c8aa39d 246 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
247
248 return base;
249}
250
54cdfdb4 251# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
252
253#endif /* !CONFIG_SMP */
254
255/*
256 * Functions for the union type storage format of ktime_t which are
257 * too large for inlining:
258 */
259#if BITS_PER_LONG < 64
260# ifndef CONFIG_KTIME_SCALAR
261/**
262 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
263 * @kt: addend
264 * @nsec: the scalar nsec value to add
265 *
266 * Returns the sum of kt and nsec in ktime_t format
267 */
268ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
269{
270 ktime_t tmp;
271
272 if (likely(nsec < NSEC_PER_SEC)) {
273 tmp.tv64 = nsec;
274 } else {
275 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
276
277 tmp = ktime_set((long)nsec, rem);
278 }
279
280 return ktime_add(kt, tmp);
281}
b8b8fd2d
DH
282
283EXPORT_SYMBOL_GPL(ktime_add_ns);
c0a31329
TG
284# endif /* !CONFIG_KTIME_SCALAR */
285
286/*
287 * Divide a ktime value by a nanosecond value
288 */
79bf2bb3 289unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
290{
291 u64 dclc, inc, dns;
292 int sft = 0;
293
294 dclc = dns = ktime_to_ns(kt);
295 inc = div;
296 /* Make sure the divisor is less than 2^32: */
297 while (div >> 32) {
298 sft++;
299 div >>= 1;
300 }
301 dclc >>= sft;
302 do_div(dclc, (unsigned long) div);
303
304 return (unsigned long) dclc;
305}
c0a31329
TG
306#endif /* BITS_PER_LONG >= 64 */
307
54cdfdb4
TG
308/* High resolution timer related functions */
309#ifdef CONFIG_HIGH_RES_TIMERS
310
311/*
312 * High resolution timer enabled ?
313 */
314static int hrtimer_hres_enabled __read_mostly = 1;
315
316/*
317 * Enable / Disable high resolution mode
318 */
319static int __init setup_hrtimer_hres(char *str)
320{
321 if (!strcmp(str, "off"))
322 hrtimer_hres_enabled = 0;
323 else if (!strcmp(str, "on"))
324 hrtimer_hres_enabled = 1;
325 else
326 return 0;
327 return 1;
328}
329
330__setup("highres=", setup_hrtimer_hres);
331
332/*
333 * hrtimer_high_res_enabled - query, if the highres mode is enabled
334 */
335static inline int hrtimer_is_hres_enabled(void)
336{
337 return hrtimer_hres_enabled;
338}
339
340/*
341 * Is the high resolution mode active ?
342 */
343static inline int hrtimer_hres_active(void)
344{
345 return __get_cpu_var(hrtimer_bases).hres_active;
346}
347
348/*
349 * Reprogram the event source with checking both queues for the
350 * next event
351 * Called with interrupts disabled and base->lock held
352 */
353static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
354{
355 int i;
356 struct hrtimer_clock_base *base = cpu_base->clock_base;
357 ktime_t expires;
358
359 cpu_base->expires_next.tv64 = KTIME_MAX;
360
361 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
362 struct hrtimer *timer;
363
364 if (!base->first)
365 continue;
366 timer = rb_entry(base->first, struct hrtimer, node);
367 expires = ktime_sub(timer->expires, base->offset);
368 if (expires.tv64 < cpu_base->expires_next.tv64)
369 cpu_base->expires_next = expires;
370 }
371
372 if (cpu_base->expires_next.tv64 != KTIME_MAX)
373 tick_program_event(cpu_base->expires_next, 1);
374}
375
376/*
377 * Shared reprogramming for clock_realtime and clock_monotonic
378 *
379 * When a timer is enqueued and expires earlier than the already enqueued
380 * timers, we have to check, whether it expires earlier than the timer for
381 * which the clock event device was armed.
382 *
383 * Called with interrupts disabled and base->cpu_base.lock held
384 */
385static int hrtimer_reprogram(struct hrtimer *timer,
386 struct hrtimer_clock_base *base)
387{
388 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
389 ktime_t expires = ktime_sub(timer->expires, base->offset);
390 int res;
391
392 /*
393 * When the callback is running, we do not reprogram the clock event
394 * device. The timer callback is either running on a different CPU or
395 * the callback is executed in the hrtimer_interupt context. The
396 * reprogramming is handled either by the softirq, which called the
397 * callback or at the end of the hrtimer_interrupt.
398 */
399 if (hrtimer_callback_running(timer))
400 return 0;
401
402 if (expires.tv64 >= expires_next->tv64)
403 return 0;
404
405 /*
406 * Clockevents returns -ETIME, when the event was in the past.
407 */
408 res = tick_program_event(expires, 0);
409 if (!IS_ERR_VALUE(res))
410 *expires_next = expires;
411 return res;
412}
413
414
415/*
416 * Retrigger next event is called after clock was set
417 *
418 * Called with interrupts disabled via on_each_cpu()
419 */
420static void retrigger_next_event(void *arg)
421{
422 struct hrtimer_cpu_base *base;
423 struct timespec realtime_offset;
424 unsigned long seq;
425
426 if (!hrtimer_hres_active())
427 return;
428
429 do {
430 seq = read_seqbegin(&xtime_lock);
431 set_normalized_timespec(&realtime_offset,
432 -wall_to_monotonic.tv_sec,
433 -wall_to_monotonic.tv_nsec);
434 } while (read_seqretry(&xtime_lock, seq));
435
436 base = &__get_cpu_var(hrtimer_bases);
437
438 /* Adjust CLOCK_REALTIME offset */
439 spin_lock(&base->lock);
440 base->clock_base[CLOCK_REALTIME].offset =
441 timespec_to_ktime(realtime_offset);
442
443 hrtimer_force_reprogram(base);
444 spin_unlock(&base->lock);
445}
446
447/*
448 * Clock realtime was set
449 *
450 * Change the offset of the realtime clock vs. the monotonic
451 * clock.
452 *
453 * We might have to reprogram the high resolution timer interrupt. On
454 * SMP we call the architecture specific code to retrigger _all_ high
455 * resolution timer interrupts. On UP we just disable interrupts and
456 * call the high resolution interrupt code.
457 */
458void clock_was_set(void)
459{
460 /* Retrigger the CPU local events everywhere */
461 on_each_cpu(retrigger_next_event, NULL, 0, 1);
462}
463
995f054f
IM
464/*
465 * During resume we might have to reprogram the high resolution timer
466 * interrupt (on the local CPU):
467 */
468void hres_timers_resume(void)
469{
470 WARN_ON_ONCE(num_online_cpus() > 1);
471
472 /* Retrigger the CPU local events: */
473 retrigger_next_event(NULL);
474}
475
54cdfdb4
TG
476/*
477 * Check, whether the timer is on the callback pending list
478 */
479static inline int hrtimer_cb_pending(const struct hrtimer *timer)
480{
481 return timer->state & HRTIMER_STATE_PENDING;
482}
483
484/*
485 * Remove a timer from the callback pending list
486 */
487static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
488{
489 list_del_init(&timer->cb_entry);
490}
491
492/*
493 * Initialize the high resolution related parts of cpu_base
494 */
495static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
496{
497 base->expires_next.tv64 = KTIME_MAX;
498 base->hres_active = 0;
499 INIT_LIST_HEAD(&base->cb_pending);
500}
501
502/*
503 * Initialize the high resolution related parts of a hrtimer
504 */
505static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
506{
507 INIT_LIST_HEAD(&timer->cb_entry);
508}
509
510/*
511 * When High resolution timers are active, try to reprogram. Note, that in case
512 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
513 * check happens. The timer gets enqueued into the rbtree. The reprogramming
514 * and expiry check is done in the hrtimer_interrupt or in the softirq.
515 */
516static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
517 struct hrtimer_clock_base *base)
518{
519 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
520
521 /* Timer is expired, act upon the callback mode */
522 switch(timer->cb_mode) {
523 case HRTIMER_CB_IRQSAFE_NO_RESTART:
524 /*
525 * We can call the callback from here. No restart
526 * happens, so no danger of recursion
527 */
528 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
529 return 1;
530 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
531 /*
532 * This is solely for the sched tick emulation with
533 * dynamic tick support to ensure that we do not
534 * restart the tick right on the edge and end up with
535 * the tick timer in the softirq ! The calling site
536 * takes care of this.
537 */
538 return 1;
539 case HRTIMER_CB_IRQSAFE:
540 case HRTIMER_CB_SOFTIRQ:
541 /*
542 * Move everything else into the softirq pending list !
543 */
544 list_add_tail(&timer->cb_entry,
545 &base->cpu_base->cb_pending);
546 timer->state = HRTIMER_STATE_PENDING;
547 raise_softirq(HRTIMER_SOFTIRQ);
548 return 1;
549 default:
550 BUG();
551 }
552 }
553 return 0;
554}
555
556/*
557 * Switch to high resolution mode
558 */
f8953856 559static int hrtimer_switch_to_hres(void)
54cdfdb4 560{
820de5c3
IM
561 int cpu = smp_processor_id();
562 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
563 unsigned long flags;
564
565 if (base->hres_active)
f8953856 566 return 1;
54cdfdb4
TG
567
568 local_irq_save(flags);
569
570 if (tick_init_highres()) {
571 local_irq_restore(flags);
820de5c3
IM
572 printk(KERN_WARNING "Could not switch to high resolution "
573 "mode on CPU %d\n", cpu);
f8953856 574 return 0;
54cdfdb4
TG
575 }
576 base->hres_active = 1;
577 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
578 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
579
580 tick_setup_sched_timer();
581
582 /* "Retrigger" the interrupt to get things going */
583 retrigger_next_event(NULL);
584 local_irq_restore(flags);
585 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
586 smp_processor_id());
f8953856 587 return 1;
54cdfdb4
TG
588}
589
590#else
591
592static inline int hrtimer_hres_active(void) { return 0; }
593static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 594static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
595static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
596static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
598{
599 return 0;
600}
601static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
602static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
603static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
604static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
605
606#endif /* CONFIG_HIGH_RES_TIMERS */
607
82f67cd9
IM
608#ifdef CONFIG_TIMER_STATS
609void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
610{
611 if (timer->start_site)
612 return;
613
614 timer->start_site = addr;
615 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
616 timer->start_pid = current->pid;
617}
618#endif
619
c0a31329
TG
620/*
621 * Counterpart to lock_timer_base above:
622 */
623static inline
624void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
625{
3c8aa39d 626 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
627}
628
629/**
630 * hrtimer_forward - forward the timer expiry
c0a31329 631 * @timer: hrtimer to forward
44f21475 632 * @now: forward past this time
c0a31329
TG
633 * @interval: the interval to forward
634 *
635 * Forward the timer expiry so it will expire in the future.
8dca6f33 636 * Returns the number of overruns.
c0a31329
TG
637 */
638unsigned long
44f21475 639hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
640{
641 unsigned long orun = 1;
44f21475 642 ktime_t delta;
c0a31329
TG
643
644 delta = ktime_sub(now, timer->expires);
645
646 if (delta.tv64 < 0)
647 return 0;
648
c9db4fa1
TG
649 if (interval.tv64 < timer->base->resolution.tv64)
650 interval.tv64 = timer->base->resolution.tv64;
651
c0a31329 652 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 653 s64 incr = ktime_to_ns(interval);
c0a31329
TG
654
655 orun = ktime_divns(delta, incr);
656 timer->expires = ktime_add_ns(timer->expires, incr * orun);
657 if (timer->expires.tv64 > now.tv64)
658 return orun;
659 /*
660 * This (and the ktime_add() below) is the
661 * correction for exact:
662 */
663 orun++;
664 }
665 timer->expires = ktime_add(timer->expires, interval);
13788ccc
TG
666 /*
667 * Make sure, that the result did not wrap with a very large
668 * interval.
669 */
670 if (timer->expires.tv64 < 0)
671 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
c0a31329
TG
672
673 return orun;
674}
6bdb6b62 675EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
676
677/*
678 * enqueue_hrtimer - internal function to (re)start a timer
679 *
680 * The timer is inserted in expiry order. Insertion into the
681 * red black tree is O(log(n)). Must hold the base lock.
682 */
3c8aa39d 683static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 684 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
685{
686 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
687 struct rb_node *parent = NULL;
688 struct hrtimer *entry;
689
690 /*
691 * Find the right place in the rbtree:
692 */
693 while (*link) {
694 parent = *link;
695 entry = rb_entry(parent, struct hrtimer, node);
696 /*
697 * We dont care about collisions. Nodes with
698 * the same expiry time stay together.
699 */
700 if (timer->expires.tv64 < entry->expires.tv64)
701 link = &(*link)->rb_left;
288867ec 702 else
c0a31329 703 link = &(*link)->rb_right;
c0a31329
TG
704 }
705
706 /*
288867ec
TG
707 * Insert the timer to the rbtree and check whether it
708 * replaces the first pending timer
c0a31329 709 */
54cdfdb4
TG
710 if (!base->first || timer->expires.tv64 <
711 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
712 /*
713 * Reprogram the clock event device. When the timer is already
714 * expired hrtimer_enqueue_reprogram has either called the
715 * callback or added it to the pending list and raised the
716 * softirq.
717 *
718 * This is a NOP for !HIGHRES
719 */
720 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
721 return;
722
723 base->first = &timer->node;
724 }
725
c0a31329
TG
726 rb_link_node(&timer->node, parent, link);
727 rb_insert_color(&timer->node, &base->active);
303e967f
TG
728 /*
729 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
730 * state of a possibly running callback.
731 */
732 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 733}
c0a31329
TG
734
735/*
736 * __remove_hrtimer - internal function to remove a timer
737 *
738 * Caller must hold the base lock.
54cdfdb4
TG
739 *
740 * High resolution timer mode reprograms the clock event device when the
741 * timer is the one which expires next. The caller can disable this by setting
742 * reprogram to zero. This is useful, when the context does a reprogramming
743 * anyway (e.g. timer interrupt)
c0a31329 744 */
3c8aa39d 745static void __remove_hrtimer(struct hrtimer *timer,
303e967f 746 struct hrtimer_clock_base *base,
54cdfdb4 747 unsigned long newstate, int reprogram)
c0a31329 748{
54cdfdb4
TG
749 /* High res. callback list. NOP for !HIGHRES */
750 if (hrtimer_cb_pending(timer))
751 hrtimer_remove_cb_pending(timer);
752 else {
753 /*
754 * Remove the timer from the rbtree and replace the
755 * first entry pointer if necessary.
756 */
757 if (base->first == &timer->node) {
758 base->first = rb_next(&timer->node);
759 /* Reprogram the clock event device. if enabled */
760 if (reprogram && hrtimer_hres_active())
761 hrtimer_force_reprogram(base->cpu_base);
762 }
763 rb_erase(&timer->node, &base->active);
764 }
303e967f 765 timer->state = newstate;
c0a31329
TG
766}
767
768/*
769 * remove hrtimer, called with base lock held
770 */
771static inline int
3c8aa39d 772remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 773{
303e967f 774 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
775 int reprogram;
776
777 /*
778 * Remove the timer and force reprogramming when high
779 * resolution mode is active and the timer is on the current
780 * CPU. If we remove a timer on another CPU, reprogramming is
781 * skipped. The interrupt event on this CPU is fired and
782 * reprogramming happens in the interrupt handler. This is a
783 * rare case and less expensive than a smp call.
784 */
82f67cd9 785 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
786 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
787 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
788 reprogram);
c0a31329
TG
789 return 1;
790 }
791 return 0;
792}
793
794/**
795 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
796 * @timer: the timer to be added
797 * @tim: expiry time
798 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
799 *
800 * Returns:
801 * 0 on success
802 * 1 when the timer was active
803 */
804int
805hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
806{
3c8aa39d 807 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
808 unsigned long flags;
809 int ret;
810
811 base = lock_hrtimer_base(timer, &flags);
812
813 /* Remove an active timer from the queue: */
814 ret = remove_hrtimer(timer, base);
815
816 /* Switch the timer base, if necessary: */
817 new_base = switch_hrtimer_base(timer, base);
818
c9cb2e3d 819 if (mode == HRTIMER_MODE_REL) {
c0a31329 820 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
821 /*
822 * CONFIG_TIME_LOW_RES is a temporary way for architectures
823 * to signal that they simply return xtime in
824 * do_gettimeoffset(). In this case we want to round up by
825 * resolution when starting a relative timer, to avoid short
826 * timeouts. This will go away with the GTOD framework.
827 */
828#ifdef CONFIG_TIME_LOW_RES
829 tim = ktime_add(tim, base->resolution);
830#endif
831 }
c0a31329
TG
832 timer->expires = tim;
833
82f67cd9
IM
834 timer_stats_hrtimer_set_start_info(timer);
835
935c631d
IM
836 /*
837 * Only allow reprogramming if the new base is on this CPU.
838 * (it might still be on another CPU if the timer was pending)
839 */
840 enqueue_hrtimer(timer, new_base,
841 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329
TG
842
843 unlock_hrtimer_base(timer, &flags);
844
845 return ret;
846}
8d16b764 847EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
848
849/**
850 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
851 * @timer: hrtimer to stop
852 *
853 * Returns:
854 * 0 when the timer was not active
855 * 1 when the timer was active
856 * -1 when the timer is currently excuting the callback function and
fa9799e3 857 * cannot be stopped
c0a31329
TG
858 */
859int hrtimer_try_to_cancel(struct hrtimer *timer)
860{
3c8aa39d 861 struct hrtimer_clock_base *base;
c0a31329
TG
862 unsigned long flags;
863 int ret = -1;
864
865 base = lock_hrtimer_base(timer, &flags);
866
303e967f 867 if (!hrtimer_callback_running(timer))
c0a31329
TG
868 ret = remove_hrtimer(timer, base);
869
870 unlock_hrtimer_base(timer, &flags);
871
872 return ret;
873
874}
8d16b764 875EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
876
877/**
878 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
879 * @timer: the timer to be cancelled
880 *
881 * Returns:
882 * 0 when the timer was not active
883 * 1 when the timer was active
884 */
885int hrtimer_cancel(struct hrtimer *timer)
886{
887 for (;;) {
888 int ret = hrtimer_try_to_cancel(timer);
889
890 if (ret >= 0)
891 return ret;
5ef37b19 892 cpu_relax();
c0a31329
TG
893 }
894}
8d16b764 895EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
896
897/**
898 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
899 * @timer: the timer to read
900 */
901ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
902{
3c8aa39d 903 struct hrtimer_clock_base *base;
c0a31329
TG
904 unsigned long flags;
905 ktime_t rem;
906
907 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 908 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
909 unlock_hrtimer_base(timer, &flags);
910
911 return rem;
912}
8d16b764 913EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 914
fd064b9b 915#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
916/**
917 * hrtimer_get_next_event - get the time until next expiry event
918 *
919 * Returns the delta to the next expiry event or KTIME_MAX if no timer
920 * is pending.
921 */
922ktime_t hrtimer_get_next_event(void)
923{
3c8aa39d
TG
924 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
925 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
926 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
927 unsigned long flags;
928 int i;
929
3c8aa39d
TG
930 spin_lock_irqsave(&cpu_base->lock, flags);
931
54cdfdb4
TG
932 if (!hrtimer_hres_active()) {
933 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
934 struct hrtimer *timer;
69239749 935
54cdfdb4
TG
936 if (!base->first)
937 continue;
3c8aa39d 938
54cdfdb4
TG
939 timer = rb_entry(base->first, struct hrtimer, node);
940 delta.tv64 = timer->expires.tv64;
941 delta = ktime_sub(delta, base->get_time());
942 if (delta.tv64 < mindelta.tv64)
943 mindelta.tv64 = delta.tv64;
944 }
69239749 945 }
3c8aa39d
TG
946
947 spin_unlock_irqrestore(&cpu_base->lock, flags);
948
69239749
TL
949 if (mindelta.tv64 < 0)
950 mindelta.tv64 = 0;
951 return mindelta;
952}
953#endif
954
c0a31329 955/**
7978672c 956 * hrtimer_init - initialize a timer to the given clock
7978672c 957 * @timer: the timer to be initialized
c0a31329 958 * @clock_id: the clock to be used
7978672c 959 * @mode: timer mode abs/rel
c0a31329 960 */
7978672c
GA
961void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
962 enum hrtimer_mode mode)
c0a31329 963{
3c8aa39d 964 struct hrtimer_cpu_base *cpu_base;
c0a31329 965
7978672c
GA
966 memset(timer, 0, sizeof(struct hrtimer));
967
3c8aa39d 968 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 969
c9cb2e3d 970 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
971 clock_id = CLOCK_MONOTONIC;
972
3c8aa39d 973 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 974 hrtimer_init_timer_hres(timer);
82f67cd9
IM
975
976#ifdef CONFIG_TIMER_STATS
977 timer->start_site = NULL;
978 timer->start_pid = -1;
979 memset(timer->start_comm, 0, TASK_COMM_LEN);
980#endif
c0a31329 981}
8d16b764 982EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
983
984/**
985 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
986 * @which_clock: which clock to query
987 * @tp: pointer to timespec variable to store the resolution
988 *
72fd4a35
RD
989 * Store the resolution of the clock selected by @which_clock in the
990 * variable pointed to by @tp.
c0a31329
TG
991 */
992int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
993{
3c8aa39d 994 struct hrtimer_cpu_base *cpu_base;
c0a31329 995
3c8aa39d
TG
996 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
997 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
998
999 return 0;
1000}
8d16b764 1001EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1002
54cdfdb4
TG
1003#ifdef CONFIG_HIGH_RES_TIMERS
1004
1005/*
1006 * High resolution timer interrupt
1007 * Called with interrupts disabled
1008 */
1009void hrtimer_interrupt(struct clock_event_device *dev)
1010{
1011 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1012 struct hrtimer_clock_base *base;
1013 ktime_t expires_next, now;
1014 int i, raise = 0;
1015
1016 BUG_ON(!cpu_base->hres_active);
1017 cpu_base->nr_events++;
1018 dev->next_event.tv64 = KTIME_MAX;
1019
1020 retry:
1021 now = ktime_get();
1022
1023 expires_next.tv64 = KTIME_MAX;
1024
1025 base = cpu_base->clock_base;
1026
1027 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1028 ktime_t basenow;
1029 struct rb_node *node;
1030
1031 spin_lock(&cpu_base->lock);
1032
1033 basenow = ktime_add(now, base->offset);
1034
1035 while ((node = base->first)) {
1036 struct hrtimer *timer;
1037
1038 timer = rb_entry(node, struct hrtimer, node);
1039
1040 if (basenow.tv64 < timer->expires.tv64) {
1041 ktime_t expires;
1042
1043 expires = ktime_sub(timer->expires,
1044 base->offset);
1045 if (expires.tv64 < expires_next.tv64)
1046 expires_next = expires;
1047 break;
1048 }
1049
1050 /* Move softirq callbacks to the pending list */
1051 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1052 __remove_hrtimer(timer, base,
1053 HRTIMER_STATE_PENDING, 0);
1054 list_add_tail(&timer->cb_entry,
1055 &base->cpu_base->cb_pending);
1056 raise = 1;
1057 continue;
1058 }
1059
1060 __remove_hrtimer(timer, base,
1061 HRTIMER_STATE_CALLBACK, 0);
82f67cd9 1062 timer_stats_account_hrtimer(timer);
54cdfdb4
TG
1063
1064 /*
1065 * Note: We clear the CALLBACK bit after
1066 * enqueue_hrtimer to avoid reprogramming of
1067 * the event hardware. This happens at the end
1068 * of this function anyway.
1069 */
1070 if (timer->function(timer) != HRTIMER_NORESTART) {
1071 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1072 enqueue_hrtimer(timer, base, 0);
1073 }
1074 timer->state &= ~HRTIMER_STATE_CALLBACK;
1075 }
1076 spin_unlock(&cpu_base->lock);
1077 base++;
1078 }
1079
1080 cpu_base->expires_next = expires_next;
1081
1082 /* Reprogramming necessary ? */
1083 if (expires_next.tv64 != KTIME_MAX) {
1084 if (tick_program_event(expires_next, 0))
1085 goto retry;
1086 }
1087
1088 /* Raise softirq ? */
1089 if (raise)
1090 raise_softirq(HRTIMER_SOFTIRQ);
1091}
1092
1093static void run_hrtimer_softirq(struct softirq_action *h)
1094{
1095 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1096
1097 spin_lock_irq(&cpu_base->lock);
1098
1099 while (!list_empty(&cpu_base->cb_pending)) {
1100 enum hrtimer_restart (*fn)(struct hrtimer *);
1101 struct hrtimer *timer;
1102 int restart;
1103
1104 timer = list_entry(cpu_base->cb_pending.next,
1105 struct hrtimer, cb_entry);
1106
82f67cd9
IM
1107 timer_stats_account_hrtimer(timer);
1108
54cdfdb4
TG
1109 fn = timer->function;
1110 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1111 spin_unlock_irq(&cpu_base->lock);
1112
1113 restart = fn(timer);
1114
1115 spin_lock_irq(&cpu_base->lock);
1116
1117 timer->state &= ~HRTIMER_STATE_CALLBACK;
1118 if (restart == HRTIMER_RESTART) {
1119 BUG_ON(hrtimer_active(timer));
1120 /*
1121 * Enqueue the timer, allow reprogramming of the event
1122 * device
1123 */
1124 enqueue_hrtimer(timer, timer->base, 1);
1125 } else if (hrtimer_active(timer)) {
1126 /*
1127 * If the timer was rearmed on another CPU, reprogram
1128 * the event device.
1129 */
1130 if (timer->base->first == &timer->node)
1131 hrtimer_reprogram(timer, timer->base);
1132 }
1133 }
1134 spin_unlock_irq(&cpu_base->lock);
1135}
1136
1137#endif /* CONFIG_HIGH_RES_TIMERS */
1138
c0a31329
TG
1139/*
1140 * Expire the per base hrtimer-queue:
1141 */
3c8aa39d
TG
1142static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1143 int index)
c0a31329 1144{
288867ec 1145 struct rb_node *node;
3c8aa39d 1146 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1147
3055adda
DS
1148 if (!base->first)
1149 return;
1150
92127c7a
TG
1151 if (base->get_softirq_time)
1152 base->softirq_time = base->get_softirq_time();
1153
3c8aa39d 1154 spin_lock_irq(&cpu_base->lock);
c0a31329 1155
288867ec 1156 while ((node = base->first)) {
c0a31329 1157 struct hrtimer *timer;
c9cb2e3d 1158 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1159 int restart;
c0a31329 1160
288867ec 1161 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1162 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1163 break;
1164
f8953856
TG
1165#ifdef CONFIG_HIGH_RES_TIMERS
1166 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1167#endif
82f67cd9
IM
1168 timer_stats_account_hrtimer(timer);
1169
c0a31329 1170 fn = timer->function;
54cdfdb4 1171 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1172 spin_unlock_irq(&cpu_base->lock);
c0a31329 1173
05cfb614 1174 restart = fn(timer);
c0a31329 1175
3c8aa39d 1176 spin_lock_irq(&cpu_base->lock);
c0a31329 1177
303e967f 1178 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1179 if (restart != HRTIMER_NORESTART) {
1180 BUG_ON(hrtimer_active(timer));
54cdfdb4 1181 enqueue_hrtimer(timer, base, 0);
b75f7a51 1182 }
c0a31329 1183 }
3c8aa39d 1184 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1185}
1186
1187/*
1188 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1189 *
1190 * For HRT its the fall back code to run the softirq in the timer
1191 * softirq context in case the hrtimer initialization failed or has
1192 * not been done yet.
c0a31329
TG
1193 */
1194void hrtimer_run_queues(void)
1195{
3c8aa39d 1196 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1197 int i;
1198
54cdfdb4
TG
1199 if (hrtimer_hres_active())
1200 return;
1201
79bf2bb3
TG
1202 /*
1203 * This _is_ ugly: We have to check in the softirq context,
1204 * whether we can switch to highres and / or nohz mode. The
1205 * clocksource switch happens in the timer interrupt with
1206 * xtime_lock held. Notification from there only sets the
1207 * check bit in the tick_oneshot code, otherwise we might
1208 * deadlock vs. xtime_lock.
1209 */
54cdfdb4 1210 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
f8953856
TG
1211 if (hrtimer_switch_to_hres())
1212 return;
79bf2bb3 1213
3c8aa39d 1214 hrtimer_get_softirq_time(cpu_base);
92127c7a 1215
3c8aa39d
TG
1216 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1217 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1218}
1219
10c94ec1
TG
1220/*
1221 * Sleep related functions:
1222 */
c9cb2e3d 1223static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1224{
1225 struct hrtimer_sleeper *t =
1226 container_of(timer, struct hrtimer_sleeper, timer);
1227 struct task_struct *task = t->task;
1228
1229 t->task = NULL;
1230 if (task)
1231 wake_up_process(task);
1232
1233 return HRTIMER_NORESTART;
1234}
1235
36c8b586 1236void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1237{
1238 sl->timer.function = hrtimer_wakeup;
1239 sl->task = task;
54cdfdb4
TG
1240#ifdef CONFIG_HIGH_RES_TIMERS
1241 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1242#endif
00362e33
TG
1243}
1244
669d7868 1245static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1246{
669d7868 1247 hrtimer_init_sleeper(t, current);
10c94ec1 1248
432569bb
RZ
1249 do {
1250 set_current_state(TASK_INTERRUPTIBLE);
1251 hrtimer_start(&t->timer, t->timer.expires, mode);
1252
54cdfdb4
TG
1253 if (likely(t->task))
1254 schedule();
432569bb 1255
669d7868 1256 hrtimer_cancel(&t->timer);
c9cb2e3d 1257 mode = HRTIMER_MODE_ABS;
669d7868
TG
1258
1259 } while (t->task && !signal_pending(current));
432569bb 1260
669d7868 1261 return t->task == NULL;
10c94ec1
TG
1262}
1263
1711ef38 1264long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1265{
669d7868 1266 struct hrtimer_sleeper t;
ea13dbc8
IM
1267 struct timespec __user *rmtp;
1268 struct timespec tu;
432569bb 1269 ktime_t time;
10c94ec1
TG
1270
1271 restart->fn = do_no_restart_syscall;
1272
c9cb2e3d 1273 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1274 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1275
c9cb2e3d 1276 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1277 return 0;
1278
1711ef38 1279 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
1280 if (rmtp) {
1281 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1282 if (time.tv64 <= 0)
1283 return 0;
1284 tu = ktime_to_timespec(time);
1285 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1286 return -EFAULT;
1287 }
10c94ec1 1288
1711ef38 1289 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1290
1291 /* The other values in restart are already filled in */
1292 return -ERESTART_RESTARTBLOCK;
1293}
1294
10c94ec1
TG
1295long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1296 const enum hrtimer_mode mode, const clockid_t clockid)
1297{
1298 struct restart_block *restart;
669d7868 1299 struct hrtimer_sleeper t;
10c94ec1
TG
1300 struct timespec tu;
1301 ktime_t rem;
1302
432569bb
RZ
1303 hrtimer_init(&t.timer, clockid, mode);
1304 t.timer.expires = timespec_to_ktime(*rqtp);
1305 if (do_nanosleep(&t, mode))
10c94ec1
TG
1306 return 0;
1307
7978672c 1308 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1309 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1310 return -ERESTARTNOHAND;
1311
432569bb
RZ
1312 if (rmtp) {
1313 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1314 if (rem.tv64 <= 0)
1315 return 0;
1316 tu = ktime_to_timespec(rem);
1317 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1318 return -EFAULT;
1319 }
10c94ec1
TG
1320
1321 restart = &current_thread_info()->restart_block;
1711ef38
TA
1322 restart->fn = hrtimer_nanosleep_restart;
1323 restart->arg0 = (unsigned long) t.timer.base->index;
1324 restart->arg1 = (unsigned long) rmtp;
1325 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1326 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1327
1328 return -ERESTART_RESTARTBLOCK;
1329}
1330
6ba1b912
TG
1331asmlinkage long
1332sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1333{
1334 struct timespec tu;
1335
1336 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1337 return -EFAULT;
1338
1339 if (!timespec_valid(&tu))
1340 return -EINVAL;
1341
c9cb2e3d 1342 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1343}
1344
c0a31329
TG
1345/*
1346 * Functions related to boot-time initialization:
1347 */
1348static void __devinit init_hrtimers_cpu(int cpu)
1349{
3c8aa39d 1350 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1351 int i;
1352
3c8aa39d
TG
1353 spin_lock_init(&cpu_base->lock);
1354 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1355
1356 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1357 cpu_base->clock_base[i].cpu_base = cpu_base;
1358
54cdfdb4 1359 hrtimer_init_hres(cpu_base);
c0a31329
TG
1360}
1361
1362#ifdef CONFIG_HOTPLUG_CPU
1363
3c8aa39d
TG
1364static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1365 struct hrtimer_clock_base *new_base)
c0a31329
TG
1366{
1367 struct hrtimer *timer;
1368 struct rb_node *node;
1369
1370 while ((node = rb_first(&old_base->active))) {
1371 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1372 BUG_ON(hrtimer_callback_running(timer));
1373 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1374 timer->base = new_base;
54cdfdb4
TG
1375 /*
1376 * Enqueue the timer. Allow reprogramming of the event device
1377 */
1378 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1379 }
1380}
1381
1382static void migrate_hrtimers(int cpu)
1383{
3c8aa39d 1384 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1385 int i;
1386
1387 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1388 old_base = &per_cpu(hrtimer_bases, cpu);
1389 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1390
54cdfdb4
TG
1391 tick_cancel_sched_timer(cpu);
1392
c0a31329 1393 local_irq_disable();
e81ce1f7
HC
1394 double_spin_lock(&new_base->lock, &old_base->lock,
1395 smp_processor_id() < cpu);
c0a31329 1396
3c8aa39d 1397 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1398 migrate_hrtimer_list(&old_base->clock_base[i],
1399 &new_base->clock_base[i]);
c0a31329
TG
1400 }
1401
e81ce1f7
HC
1402 double_spin_unlock(&new_base->lock, &old_base->lock,
1403 smp_processor_id() < cpu);
c0a31329
TG
1404 local_irq_enable();
1405 put_cpu_var(hrtimer_bases);
1406}
1407#endif /* CONFIG_HOTPLUG_CPU */
1408
8c78f307 1409static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1410 unsigned long action, void *hcpu)
1411{
7713a7d1 1412 unsigned int cpu = (long)hcpu;
c0a31329
TG
1413
1414 switch (action) {
1415
1416 case CPU_UP_PREPARE:
8bb78442 1417 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1418 init_hrtimers_cpu(cpu);
1419 break;
1420
1421#ifdef CONFIG_HOTPLUG_CPU
1422 case CPU_DEAD:
8bb78442 1423 case CPU_DEAD_FROZEN:
d316c57f 1424 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1425 migrate_hrtimers(cpu);
1426 break;
1427#endif
1428
1429 default:
1430 break;
1431 }
1432
1433 return NOTIFY_OK;
1434}
1435
8c78f307 1436static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1437 .notifier_call = hrtimer_cpu_notify,
1438};
1439
1440void __init hrtimers_init(void)
1441{
1442 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1443 (void *)(long)smp_processor_id());
1444 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1445#ifdef CONFIG_HIGH_RES_TIMERS
1446 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1447#endif
c0a31329
TG
1448}
1449