]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/hrtimer.c
hrtimers: Convert hrtimers to use timerlist infrastructure
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
174bd199 92 xts = __current_kernel_time();
8ab4351a 93 tom = __get_wall_to_monotonic();
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
ecb49d1a 130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
ecb49d1a 134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
83cd4fe2
VP
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
6ff7041d
TG
149#endif
150 return this_cpu;
151}
152
153/*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160static int
161hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162{
163#ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
165
166 if (!new_base->cpu_base->hres_active)
167 return 0;
168
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171#else
172 return 0;
173#endif
174}
175
c0a31329
TG
176/*
177 * Switch the timer base to the current CPU when possible.
178 */
3c8aa39d 179static inline struct hrtimer_clock_base *
597d0275
AB
180switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
c0a31329 182{
3c8aa39d
TG
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 187
eea08f32
AB
188again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 190 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
191
192 if (base != new_base) {
193 /*
6ff7041d 194 * We are trying to move timer to new_base.
c0a31329
TG
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
201 */
54cdfdb4 202 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
203 return base;
204
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
ecb49d1a
TG
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 209
6ff7041d
TG
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
ecb49d1a
TG
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
214 timer->base = base;
215 goto again;
eea08f32 216 }
c0a31329
TG
217 timer->base = new_base;
218 }
219 return new_base;
220}
221
222#else /* CONFIG_SMP */
223
3c8aa39d 224static inline struct hrtimer_clock_base *
c0a31329
TG
225lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226{
3c8aa39d 227 struct hrtimer_clock_base *base = timer->base;
c0a31329 228
ecb49d1a 229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
230
231 return base;
232}
233
eea08f32 234# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
235
236#endif /* !CONFIG_SMP */
237
238/*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242#if BITS_PER_LONG < 64
243# ifndef CONFIG_KTIME_SCALAR
244/**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252{
253 ktime_t tmp;
254
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260 tmp = ktime_set((long)nsec, rem);
261 }
262
263 return ktime_add(kt, tmp);
264}
b8b8fd2d
DH
265
266EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
267
268/**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276{
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 tmp = ktime_set((long)nsec, rem);
285 }
286
287 return ktime_sub(kt, tmp);
288}
289
290EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
291# endif /* !CONFIG_KTIME_SCALAR */
292
293/*
294 * Divide a ktime value by a nanosecond value
295 */
4d672e7a 296u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 297{
900cfa46 298 u64 dclc;
c0a31329
TG
299 int sft = 0;
300
900cfa46 301 dclc = ktime_to_ns(kt);
c0a31329
TG
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
306 }
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
309
4d672e7a 310 return dclc;
c0a31329 311}
c0a31329
TG
312#endif /* BITS_PER_LONG >= 64 */
313
5a7780e7
TG
314/*
315 * Add two ktime values and do a safety check for overflow:
316 */
317ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318{
319 ktime_t res = ktime_add(lhs, rhs);
320
321 /*
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
324 */
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
327
328 return res;
329}
330
8daa21e6
AB
331EXPORT_SYMBOL_GPL(ktime_add_safe);
332
237fc6e7
TG
333#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335static struct debug_obj_descr hrtimer_debug_descr;
336
337/*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342{
343 struct hrtimer *timer = addr;
344
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
352 }
353}
354
355/*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361{
362 switch (state) {
363
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381{
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
399};
400
401static inline void debug_hrtimer_init(struct hrtimer *timer)
402{
403 debug_object_init(timer, &hrtimer_debug_descr);
404}
405
406static inline void debug_hrtimer_activate(struct hrtimer *timer)
407{
408 debug_object_activate(timer, &hrtimer_debug_descr);
409}
410
411static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412{
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
414}
415
416static inline void debug_hrtimer_free(struct hrtimer *timer)
417{
418 debug_object_free(timer, &hrtimer_debug_descr);
419}
420
421static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
424void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426{
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429}
2bc481cf 430EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
431
432void destroy_hrtimer_on_stack(struct hrtimer *timer)
433{
434 debug_object_free(timer, &hrtimer_debug_descr);
435}
436
437#else
438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441#endif
442
c6a2a177
XG
443static inline void
444debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
446{
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
449}
450
451static inline void debug_activate(struct hrtimer *timer)
452{
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
455}
456
457static inline void debug_deactivate(struct hrtimer *timer)
458{
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
461}
462
54cdfdb4
TG
463/* High resolution timer related functions */
464#ifdef CONFIG_HIGH_RES_TIMERS
465
466/*
467 * High resolution timer enabled ?
468 */
469static int hrtimer_hres_enabled __read_mostly = 1;
470
471/*
472 * Enable / Disable high resolution mode
473 */
474static int __init setup_hrtimer_hres(char *str)
475{
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
483}
484
485__setup("highres=", setup_hrtimer_hres);
486
487/*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490static inline int hrtimer_is_hres_enabled(void)
491{
492 return hrtimer_hres_enabled;
493}
494
495/*
496 * Is the high resolution mode active ?
497 */
498static inline int hrtimer_hres_active(void)
499{
500 return __get_cpu_var(hrtimer_bases).hres_active;
501}
502
503/*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
7403f41f
AC
508static void
509hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
510{
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 513 ktime_t expires, expires_next;
54cdfdb4 514
7403f41f 515 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
516
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
998adc3d 519 struct timerqueue_node *next;
54cdfdb4 520
998adc3d
JS
521 next = timerqueue_getnext(&base->active);
522 if (!next)
54cdfdb4 523 continue;
998adc3d
JS
524 timer = container_of(next, struct hrtimer, node);
525
cc584b21 526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
527 /*
528 * clock_was_set() has changed base->offset so the
529 * result might be negative. Fix it up to prevent a
530 * false positive in clockevents_program_event()
531 */
532 if (expires.tv64 < 0)
533 expires.tv64 = 0;
7403f41f
AC
534 if (expires.tv64 < expires_next.tv64)
535 expires_next = expires;
54cdfdb4
TG
536 }
537
7403f41f
AC
538 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
539 return;
540
541 cpu_base->expires_next.tv64 = expires_next.tv64;
542
54cdfdb4
TG
543 if (cpu_base->expires_next.tv64 != KTIME_MAX)
544 tick_program_event(cpu_base->expires_next, 1);
545}
546
547/*
548 * Shared reprogramming for clock_realtime and clock_monotonic
549 *
550 * When a timer is enqueued and expires earlier than the already enqueued
551 * timers, we have to check, whether it expires earlier than the timer for
552 * which the clock event device was armed.
553 *
554 * Called with interrupts disabled and base->cpu_base.lock held
555 */
556static int hrtimer_reprogram(struct hrtimer *timer,
557 struct hrtimer_clock_base *base)
558{
41d2e494 559 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 560 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
561 int res;
562
cc584b21 563 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 564
54cdfdb4
TG
565 /*
566 * When the callback is running, we do not reprogram the clock event
567 * device. The timer callback is either running on a different CPU or
3a4fa0a2 568 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
569 * reprogramming is handled either by the softirq, which called the
570 * callback or at the end of the hrtimer_interrupt.
571 */
572 if (hrtimer_callback_running(timer))
573 return 0;
574
63070a79
TG
575 /*
576 * CLOCK_REALTIME timer might be requested with an absolute
577 * expiry time which is less than base->offset. Nothing wrong
578 * about that, just avoid to call into the tick code, which
579 * has now objections against negative expiry values.
580 */
581 if (expires.tv64 < 0)
582 return -ETIME;
583
41d2e494
TG
584 if (expires.tv64 >= cpu_base->expires_next.tv64)
585 return 0;
586
587 /*
588 * If a hang was detected in the last timer interrupt then we
589 * do not schedule a timer which is earlier than the expiry
590 * which we enforced in the hang detection. We want the system
591 * to make progress.
592 */
593 if (cpu_base->hang_detected)
54cdfdb4
TG
594 return 0;
595
596 /*
597 * Clockevents returns -ETIME, when the event was in the past.
598 */
599 res = tick_program_event(expires, 0);
600 if (!IS_ERR_VALUE(res))
41d2e494 601 cpu_base->expires_next = expires;
54cdfdb4
TG
602 return res;
603}
604
605
606/*
607 * Retrigger next event is called after clock was set
608 *
609 * Called with interrupts disabled via on_each_cpu()
610 */
611static void retrigger_next_event(void *arg)
612{
613 struct hrtimer_cpu_base *base;
8ab4351a 614 struct timespec realtime_offset, wtm;
54cdfdb4
TG
615 unsigned long seq;
616
617 if (!hrtimer_hres_active())
618 return;
619
620 do {
621 seq = read_seqbegin(&xtime_lock);
8ab4351a 622 wtm = __get_wall_to_monotonic();
54cdfdb4 623 } while (read_seqretry(&xtime_lock, seq));
8ab4351a 624 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
54cdfdb4
TG
625
626 base = &__get_cpu_var(hrtimer_bases);
627
628 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 629 raw_spin_lock(&base->lock);
54cdfdb4
TG
630 base->clock_base[CLOCK_REALTIME].offset =
631 timespec_to_ktime(realtime_offset);
632
7403f41f 633 hrtimer_force_reprogram(base, 0);
ecb49d1a 634 raw_spin_unlock(&base->lock);
54cdfdb4
TG
635}
636
637/*
638 * Clock realtime was set
639 *
640 * Change the offset of the realtime clock vs. the monotonic
641 * clock.
642 *
643 * We might have to reprogram the high resolution timer interrupt. On
644 * SMP we call the architecture specific code to retrigger _all_ high
645 * resolution timer interrupts. On UP we just disable interrupts and
646 * call the high resolution interrupt code.
647 */
648void clock_was_set(void)
649{
650 /* Retrigger the CPU local events everywhere */
15c8b6c1 651 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
652}
653
995f054f
IM
654/*
655 * During resume we might have to reprogram the high resolution timer
656 * interrupt (on the local CPU):
657 */
658void hres_timers_resume(void)
659{
1d4a7f1c
PZ
660 WARN_ONCE(!irqs_disabled(),
661 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
662
995f054f
IM
663 retrigger_next_event(NULL);
664}
665
54cdfdb4
TG
666/*
667 * Initialize the high resolution related parts of cpu_base
668 */
669static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
670{
671 base->expires_next.tv64 = KTIME_MAX;
672 base->hres_active = 0;
54cdfdb4
TG
673}
674
675/*
676 * Initialize the high resolution related parts of a hrtimer
677 */
678static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
679{
54cdfdb4
TG
680}
681
ca109491 682
54cdfdb4
TG
683/*
684 * When High resolution timers are active, try to reprogram. Note, that in case
685 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
686 * check happens. The timer gets enqueued into the rbtree. The reprogramming
687 * and expiry check is done in the hrtimer_interrupt or in the softirq.
688 */
689static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
690 struct hrtimer_clock_base *base,
691 int wakeup)
54cdfdb4
TG
692{
693 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 694 if (wakeup) {
ecb49d1a 695 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 696 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 697 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
698 } else
699 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
700
ca109491 701 return 1;
54cdfdb4 702 }
7f1e2ca9 703
54cdfdb4
TG
704 return 0;
705}
706
707/*
708 * Switch to high resolution mode
709 */
f8953856 710static int hrtimer_switch_to_hres(void)
54cdfdb4 711{
820de5c3
IM
712 int cpu = smp_processor_id();
713 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
714 unsigned long flags;
715
716 if (base->hres_active)
f8953856 717 return 1;
54cdfdb4
TG
718
719 local_irq_save(flags);
720
721 if (tick_init_highres()) {
722 local_irq_restore(flags);
820de5c3
IM
723 printk(KERN_WARNING "Could not switch to high resolution "
724 "mode on CPU %d\n", cpu);
f8953856 725 return 0;
54cdfdb4
TG
726 }
727 base->hres_active = 1;
728 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
729 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
730
731 tick_setup_sched_timer();
732
733 /* "Retrigger" the interrupt to get things going */
734 retrigger_next_event(NULL);
735 local_irq_restore(flags);
f8953856 736 return 1;
54cdfdb4
TG
737}
738
739#else
740
741static inline int hrtimer_hres_active(void) { return 0; }
742static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 743static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
744static inline void
745hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 746static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
747 struct hrtimer_clock_base *base,
748 int wakeup)
54cdfdb4
TG
749{
750 return 0;
751}
54cdfdb4
TG
752static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
753static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
754
755#endif /* CONFIG_HIGH_RES_TIMERS */
756
5f201907 757static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 758{
5f201907 759#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
760 if (timer->start_site)
761 return;
5f201907 762 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
763 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
764 timer->start_pid = current->pid;
5f201907
HC
765#endif
766}
767
768static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
769{
770#ifdef CONFIG_TIMER_STATS
771 timer->start_site = NULL;
772#endif
82f67cd9 773}
5f201907
HC
774
775static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
776{
777#ifdef CONFIG_TIMER_STATS
778 if (likely(!timer_stats_active))
779 return;
780 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
781 timer->function, timer->start_comm, 0);
82f67cd9 782#endif
5f201907 783}
82f67cd9 784
c0a31329 785/*
6506f2aa 786 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
787 */
788static inline
789void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
790{
ecb49d1a 791 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
792}
793
794/**
795 * hrtimer_forward - forward the timer expiry
c0a31329 796 * @timer: hrtimer to forward
44f21475 797 * @now: forward past this time
c0a31329
TG
798 * @interval: the interval to forward
799 *
800 * Forward the timer expiry so it will expire in the future.
8dca6f33 801 * Returns the number of overruns.
c0a31329 802 */
4d672e7a 803u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 804{
4d672e7a 805 u64 orun = 1;
44f21475 806 ktime_t delta;
c0a31329 807
cc584b21 808 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
809
810 if (delta.tv64 < 0)
811 return 0;
812
c9db4fa1
TG
813 if (interval.tv64 < timer->base->resolution.tv64)
814 interval.tv64 = timer->base->resolution.tv64;
815
c0a31329 816 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 817 s64 incr = ktime_to_ns(interval);
c0a31329
TG
818
819 orun = ktime_divns(delta, incr);
cc584b21
AV
820 hrtimer_add_expires_ns(timer, incr * orun);
821 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
822 return orun;
823 /*
824 * This (and the ktime_add() below) is the
825 * correction for exact:
826 */
827 orun++;
828 }
cc584b21 829 hrtimer_add_expires(timer, interval);
c0a31329
TG
830
831 return orun;
832}
6bdb6b62 833EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
834
835/*
836 * enqueue_hrtimer - internal function to (re)start a timer
837 *
838 * The timer is inserted in expiry order. Insertion into the
839 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
840 *
841 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 842 */
a6037b61
PZ
843static int enqueue_hrtimer(struct hrtimer *timer,
844 struct hrtimer_clock_base *base)
c0a31329 845{
c6a2a177 846 debug_activate(timer);
237fc6e7 847
998adc3d 848 timerqueue_add(&base->active, &timer->node);
c0a31329 849
303e967f
TG
850 /*
851 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
852 * state of a possibly running callback.
853 */
854 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 855
998adc3d 856 return (&timer->node == base->active.next);
288867ec 857}
c0a31329
TG
858
859/*
860 * __remove_hrtimer - internal function to remove a timer
861 *
862 * Caller must hold the base lock.
54cdfdb4
TG
863 *
864 * High resolution timer mode reprograms the clock event device when the
865 * timer is the one which expires next. The caller can disable this by setting
866 * reprogram to zero. This is useful, when the context does a reprogramming
867 * anyway (e.g. timer interrupt)
c0a31329 868 */
3c8aa39d 869static void __remove_hrtimer(struct hrtimer *timer,
303e967f 870 struct hrtimer_clock_base *base,
54cdfdb4 871 unsigned long newstate, int reprogram)
c0a31329 872{
7403f41f
AC
873 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
874 goto out;
875
998adc3d 876 if (&timer->node == timerqueue_getnext(&base->active)) {
7403f41f
AC
877#ifdef CONFIG_HIGH_RES_TIMERS
878 /* Reprogram the clock event device. if enabled */
879 if (reprogram && hrtimer_hres_active()) {
880 ktime_t expires;
881
882 expires = ktime_sub(hrtimer_get_expires(timer),
883 base->offset);
884 if (base->cpu_base->expires_next.tv64 == expires.tv64)
885 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 886 }
7403f41f 887#endif
54cdfdb4 888 }
998adc3d 889 timerqueue_del(&base->active, &timer->node);
7403f41f 890out:
303e967f 891 timer->state = newstate;
c0a31329
TG
892}
893
894/*
895 * remove hrtimer, called with base lock held
896 */
897static inline int
3c8aa39d 898remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 899{
303e967f 900 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
901 int reprogram;
902
903 /*
904 * Remove the timer and force reprogramming when high
905 * resolution mode is active and the timer is on the current
906 * CPU. If we remove a timer on another CPU, reprogramming is
907 * skipped. The interrupt event on this CPU is fired and
908 * reprogramming happens in the interrupt handler. This is a
909 * rare case and less expensive than a smp call.
910 */
c6a2a177 911 debug_deactivate(timer);
82f67cd9 912 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
913 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
914 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
915 reprogram);
c0a31329
TG
916 return 1;
917 }
918 return 0;
919}
920
7f1e2ca9
PZ
921int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
922 unsigned long delta_ns, const enum hrtimer_mode mode,
923 int wakeup)
c0a31329 924{
3c8aa39d 925 struct hrtimer_clock_base *base, *new_base;
c0a31329 926 unsigned long flags;
a6037b61 927 int ret, leftmost;
c0a31329
TG
928
929 base = lock_hrtimer_base(timer, &flags);
930
931 /* Remove an active timer from the queue: */
932 ret = remove_hrtimer(timer, base);
933
934 /* Switch the timer base, if necessary: */
597d0275 935 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 936
597d0275 937 if (mode & HRTIMER_MODE_REL) {
5a7780e7 938 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
939 /*
940 * CONFIG_TIME_LOW_RES is a temporary way for architectures
941 * to signal that they simply return xtime in
942 * do_gettimeoffset(). In this case we want to round up by
943 * resolution when starting a relative timer, to avoid short
944 * timeouts. This will go away with the GTOD framework.
945 */
946#ifdef CONFIG_TIME_LOW_RES
5a7780e7 947 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
948#endif
949 }
237fc6e7 950
da8f2e17 951 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 952
82f67cd9
IM
953 timer_stats_hrtimer_set_start_info(timer);
954
a6037b61
PZ
955 leftmost = enqueue_hrtimer(timer, new_base);
956
935c631d
IM
957 /*
958 * Only allow reprogramming if the new base is on this CPU.
959 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
960 *
961 * XXX send_remote_softirq() ?
935c631d 962 */
a6037b61 963 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 964 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
965
966 unlock_hrtimer_base(timer, &flags);
967
968 return ret;
969}
7f1e2ca9
PZ
970
971/**
972 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
973 * @timer: the timer to be added
974 * @tim: expiry time
975 * @delta_ns: "slack" range for the timer
976 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
977 *
978 * Returns:
979 * 0 on success
980 * 1 when the timer was active
981 */
982int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
983 unsigned long delta_ns, const enum hrtimer_mode mode)
984{
985 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
986}
da8f2e17
AV
987EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
988
989/**
e1dd7bc5 990 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
991 * @timer: the timer to be added
992 * @tim: expiry time
993 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
994 *
995 * Returns:
996 * 0 on success
997 * 1 when the timer was active
998 */
999int
1000hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1001{
7f1e2ca9 1002 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1003}
8d16b764 1004EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1005
da8f2e17 1006
c0a31329
TG
1007/**
1008 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1009 * @timer: hrtimer to stop
1010 *
1011 * Returns:
1012 * 0 when the timer was not active
1013 * 1 when the timer was active
1014 * -1 when the timer is currently excuting the callback function and
fa9799e3 1015 * cannot be stopped
c0a31329
TG
1016 */
1017int hrtimer_try_to_cancel(struct hrtimer *timer)
1018{
3c8aa39d 1019 struct hrtimer_clock_base *base;
c0a31329
TG
1020 unsigned long flags;
1021 int ret = -1;
1022
1023 base = lock_hrtimer_base(timer, &flags);
1024
303e967f 1025 if (!hrtimer_callback_running(timer))
c0a31329
TG
1026 ret = remove_hrtimer(timer, base);
1027
1028 unlock_hrtimer_base(timer, &flags);
1029
1030 return ret;
1031
1032}
8d16b764 1033EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1034
1035/**
1036 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1037 * @timer: the timer to be cancelled
1038 *
1039 * Returns:
1040 * 0 when the timer was not active
1041 * 1 when the timer was active
1042 */
1043int hrtimer_cancel(struct hrtimer *timer)
1044{
1045 for (;;) {
1046 int ret = hrtimer_try_to_cancel(timer);
1047
1048 if (ret >= 0)
1049 return ret;
5ef37b19 1050 cpu_relax();
c0a31329
TG
1051 }
1052}
8d16b764 1053EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1054
1055/**
1056 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1057 * @timer: the timer to read
1058 */
1059ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1060{
3c8aa39d 1061 struct hrtimer_clock_base *base;
c0a31329
TG
1062 unsigned long flags;
1063 ktime_t rem;
1064
1065 base = lock_hrtimer_base(timer, &flags);
cc584b21 1066 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1067 unlock_hrtimer_base(timer, &flags);
1068
1069 return rem;
1070}
8d16b764 1071EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1072
ee9c5785 1073#ifdef CONFIG_NO_HZ
69239749
TL
1074/**
1075 * hrtimer_get_next_event - get the time until next expiry event
1076 *
1077 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1078 * is pending.
1079 */
1080ktime_t hrtimer_get_next_event(void)
1081{
3c8aa39d
TG
1082 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1083 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1084 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1085 unsigned long flags;
1086 int i;
1087
ecb49d1a 1088 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1089
54cdfdb4
TG
1090 if (!hrtimer_hres_active()) {
1091 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1092 struct hrtimer *timer;
998adc3d 1093 struct timerqueue_node *next;
69239749 1094
998adc3d
JS
1095 next = timerqueue_getnext(&base->active);
1096 if (!next)
54cdfdb4 1097 continue;
3c8aa39d 1098
998adc3d 1099 timer = container_of(next, struct hrtimer, node);
cc584b21 1100 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1101 delta = ktime_sub(delta, base->get_time());
1102 if (delta.tv64 < mindelta.tv64)
1103 mindelta.tv64 = delta.tv64;
1104 }
69239749 1105 }
3c8aa39d 1106
ecb49d1a 1107 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1108
69239749
TL
1109 if (mindelta.tv64 < 0)
1110 mindelta.tv64 = 0;
1111 return mindelta;
1112}
1113#endif
1114
237fc6e7
TG
1115static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1116 enum hrtimer_mode mode)
c0a31329 1117{
3c8aa39d 1118 struct hrtimer_cpu_base *cpu_base;
c0a31329 1119
7978672c
GA
1120 memset(timer, 0, sizeof(struct hrtimer));
1121
3c8aa39d 1122 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1123
c9cb2e3d 1124 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1125 clock_id = CLOCK_MONOTONIC;
1126
3c8aa39d 1127 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1128 hrtimer_init_timer_hres(timer);
998adc3d 1129 timerqueue_init(&timer->node);
82f67cd9
IM
1130
1131#ifdef CONFIG_TIMER_STATS
1132 timer->start_site = NULL;
1133 timer->start_pid = -1;
1134 memset(timer->start_comm, 0, TASK_COMM_LEN);
1135#endif
c0a31329 1136}
237fc6e7
TG
1137
1138/**
1139 * hrtimer_init - initialize a timer to the given clock
1140 * @timer: the timer to be initialized
1141 * @clock_id: the clock to be used
1142 * @mode: timer mode abs/rel
1143 */
1144void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145 enum hrtimer_mode mode)
1146{
c6a2a177 1147 debug_init(timer, clock_id, mode);
237fc6e7
TG
1148 __hrtimer_init(timer, clock_id, mode);
1149}
8d16b764 1150EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1151
1152/**
1153 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1154 * @which_clock: which clock to query
1155 * @tp: pointer to timespec variable to store the resolution
1156 *
72fd4a35
RD
1157 * Store the resolution of the clock selected by @which_clock in the
1158 * variable pointed to by @tp.
c0a31329
TG
1159 */
1160int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1161{
3c8aa39d 1162 struct hrtimer_cpu_base *cpu_base;
c0a31329 1163
3c8aa39d
TG
1164 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1165 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1166
1167 return 0;
1168}
8d16b764 1169EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1170
c6a2a177 1171static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1172{
1173 struct hrtimer_clock_base *base = timer->base;
1174 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1175 enum hrtimer_restart (*fn)(struct hrtimer *);
1176 int restart;
1177
ca109491
PZ
1178 WARN_ON(!irqs_disabled());
1179
c6a2a177 1180 debug_deactivate(timer);
d3d74453
PZ
1181 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1182 timer_stats_account_hrtimer(timer);
d3d74453 1183 fn = timer->function;
ca109491
PZ
1184
1185 /*
1186 * Because we run timers from hardirq context, there is no chance
1187 * they get migrated to another cpu, therefore its safe to unlock
1188 * the timer base.
1189 */
ecb49d1a 1190 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1191 trace_hrtimer_expire_entry(timer, now);
ca109491 1192 restart = fn(timer);
c6a2a177 1193 trace_hrtimer_expire_exit(timer);
ecb49d1a 1194 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1195
1196 /*
e3f1d883
TG
1197 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1198 * we do not reprogramm the event hardware. Happens either in
1199 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1200 */
1201 if (restart != HRTIMER_NORESTART) {
1202 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1203 enqueue_hrtimer(timer, base);
d3d74453
PZ
1204 }
1205 timer->state &= ~HRTIMER_STATE_CALLBACK;
1206}
1207
54cdfdb4
TG
1208#ifdef CONFIG_HIGH_RES_TIMERS
1209
1210/*
1211 * High resolution timer interrupt
1212 * Called with interrupts disabled
1213 */
1214void hrtimer_interrupt(struct clock_event_device *dev)
1215{
1216 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1217 struct hrtimer_clock_base *base;
41d2e494
TG
1218 ktime_t expires_next, now, entry_time, delta;
1219 int i, retries = 0;
54cdfdb4
TG
1220
1221 BUG_ON(!cpu_base->hres_active);
1222 cpu_base->nr_events++;
1223 dev->next_event.tv64 = KTIME_MAX;
1224
41d2e494
TG
1225 entry_time = now = ktime_get();
1226retry:
54cdfdb4
TG
1227 expires_next.tv64 = KTIME_MAX;
1228
ecb49d1a 1229 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1230 /*
1231 * We set expires_next to KTIME_MAX here with cpu_base->lock
1232 * held to prevent that a timer is enqueued in our queue via
1233 * the migration code. This does not affect enqueueing of
1234 * timers which run their callback and need to be requeued on
1235 * this CPU.
1236 */
1237 cpu_base->expires_next.tv64 = KTIME_MAX;
1238
54cdfdb4
TG
1239 base = cpu_base->clock_base;
1240
1241 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1242 ktime_t basenow;
998adc3d 1243 struct timerqueue_node *node;
54cdfdb4 1244
54cdfdb4
TG
1245 basenow = ktime_add(now, base->offset);
1246
998adc3d 1247 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1248 struct hrtimer *timer;
1249
998adc3d 1250 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1251
654c8e0b
AV
1252 /*
1253 * The immediate goal for using the softexpires is
1254 * minimizing wakeups, not running timers at the
1255 * earliest interrupt after their soft expiration.
1256 * This allows us to avoid using a Priority Search
1257 * Tree, which can answer a stabbing querry for
1258 * overlapping intervals and instead use the simple
1259 * BST we already have.
1260 * We don't add extra wakeups by delaying timers that
1261 * are right-of a not yet expired timer, because that
1262 * timer will have to trigger a wakeup anyway.
1263 */
1264
1265 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1266 ktime_t expires;
1267
cc584b21 1268 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1269 base->offset);
1270 if (expires.tv64 < expires_next.tv64)
1271 expires_next = expires;
1272 break;
1273 }
1274
c6a2a177 1275 __run_hrtimer(timer, &basenow);
54cdfdb4 1276 }
54cdfdb4
TG
1277 base++;
1278 }
1279
6ff7041d
TG
1280 /*
1281 * Store the new expiry value so the migration code can verify
1282 * against it.
1283 */
54cdfdb4 1284 cpu_base->expires_next = expires_next;
ecb49d1a 1285 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1286
1287 /* Reprogramming necessary ? */
41d2e494
TG
1288 if (expires_next.tv64 == KTIME_MAX ||
1289 !tick_program_event(expires_next, 0)) {
1290 cpu_base->hang_detected = 0;
1291 return;
54cdfdb4 1292 }
41d2e494
TG
1293
1294 /*
1295 * The next timer was already expired due to:
1296 * - tracing
1297 * - long lasting callbacks
1298 * - being scheduled away when running in a VM
1299 *
1300 * We need to prevent that we loop forever in the hrtimer
1301 * interrupt routine. We give it 3 attempts to avoid
1302 * overreacting on some spurious event.
1303 */
1304 now = ktime_get();
1305 cpu_base->nr_retries++;
1306 if (++retries < 3)
1307 goto retry;
1308 /*
1309 * Give the system a chance to do something else than looping
1310 * here. We stored the entry time, so we know exactly how long
1311 * we spent here. We schedule the next event this amount of
1312 * time away.
1313 */
1314 cpu_base->nr_hangs++;
1315 cpu_base->hang_detected = 1;
1316 delta = ktime_sub(now, entry_time);
1317 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1318 cpu_base->max_hang_time = delta;
1319 /*
1320 * Limit it to a sensible value as we enforce a longer
1321 * delay. Give the CPU at least 100ms to catch up.
1322 */
1323 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1324 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1325 else
1326 expires_next = ktime_add(now, delta);
1327 tick_program_event(expires_next, 1);
1328 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1329 ktime_to_ns(delta));
54cdfdb4
TG
1330}
1331
8bdec955
TG
1332/*
1333 * local version of hrtimer_peek_ahead_timers() called with interrupts
1334 * disabled.
1335 */
1336static void __hrtimer_peek_ahead_timers(void)
1337{
1338 struct tick_device *td;
1339
1340 if (!hrtimer_hres_active())
1341 return;
1342
1343 td = &__get_cpu_var(tick_cpu_device);
1344 if (td && td->evtdev)
1345 hrtimer_interrupt(td->evtdev);
1346}
1347
2e94d1f7
AV
1348/**
1349 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1350 *
1351 * hrtimer_peek_ahead_timers will peek at the timer queue of
1352 * the current cpu and check if there are any timers for which
1353 * the soft expires time has passed. If any such timers exist,
1354 * they are run immediately and then removed from the timer queue.
1355 *
1356 */
1357void hrtimer_peek_ahead_timers(void)
1358{
643bdf68 1359 unsigned long flags;
dc4304f7 1360
2e94d1f7 1361 local_irq_save(flags);
8bdec955 1362 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1363 local_irq_restore(flags);
1364}
1365
a6037b61
PZ
1366static void run_hrtimer_softirq(struct softirq_action *h)
1367{
1368 hrtimer_peek_ahead_timers();
1369}
1370
82c5b7b5
IM
1371#else /* CONFIG_HIGH_RES_TIMERS */
1372
1373static inline void __hrtimer_peek_ahead_timers(void) { }
1374
1375#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1376
d3d74453
PZ
1377/*
1378 * Called from timer softirq every jiffy, expire hrtimers:
1379 *
1380 * For HRT its the fall back code to run the softirq in the timer
1381 * softirq context in case the hrtimer initialization failed or has
1382 * not been done yet.
1383 */
1384void hrtimer_run_pending(void)
1385{
d3d74453
PZ
1386 if (hrtimer_hres_active())
1387 return;
54cdfdb4 1388
d3d74453
PZ
1389 /*
1390 * This _is_ ugly: We have to check in the softirq context,
1391 * whether we can switch to highres and / or nohz mode. The
1392 * clocksource switch happens in the timer interrupt with
1393 * xtime_lock held. Notification from there only sets the
1394 * check bit in the tick_oneshot code, otherwise we might
1395 * deadlock vs. xtime_lock.
1396 */
1397 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1398 hrtimer_switch_to_hres();
54cdfdb4
TG
1399}
1400
c0a31329 1401/*
d3d74453 1402 * Called from hardirq context every jiffy
c0a31329 1403 */
833883d9 1404void hrtimer_run_queues(void)
c0a31329 1405{
998adc3d 1406 struct timerqueue_node *node;
833883d9
DS
1407 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1408 struct hrtimer_clock_base *base;
1409 int index, gettime = 1;
c0a31329 1410
833883d9 1411 if (hrtimer_hres_active())
3055adda
DS
1412 return;
1413
833883d9 1414 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
998adc3d 1415 struct timerqueue_node *next;
c0a31329 1416
998adc3d
JS
1417 base = &cpu_base->clock_base[index];
1418 next = timerqueue_getnext(&base->active);
1419 if (!next)
d3d74453 1420 continue;
833883d9 1421
d7cfb60c 1422 if (gettime) {
833883d9
DS
1423 hrtimer_get_softirq_time(cpu_base);
1424 gettime = 0;
b75f7a51 1425 }
d3d74453 1426
ecb49d1a 1427 raw_spin_lock(&cpu_base->lock);
c0a31329 1428
998adc3d 1429 while ((node = next)) {
833883d9 1430 struct hrtimer *timer;
54cdfdb4 1431
998adc3d 1432 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1433 if (base->softirq_time.tv64 <=
1434 hrtimer_get_expires_tv64(timer))
833883d9
DS
1435 break;
1436
c6a2a177 1437 __run_hrtimer(timer, &base->softirq_time);
833883d9 1438 }
ecb49d1a 1439 raw_spin_unlock(&cpu_base->lock);
833883d9 1440 }
c0a31329
TG
1441}
1442
10c94ec1
TG
1443/*
1444 * Sleep related functions:
1445 */
c9cb2e3d 1446static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1447{
1448 struct hrtimer_sleeper *t =
1449 container_of(timer, struct hrtimer_sleeper, timer);
1450 struct task_struct *task = t->task;
1451
1452 t->task = NULL;
1453 if (task)
1454 wake_up_process(task);
1455
1456 return HRTIMER_NORESTART;
1457}
1458
36c8b586 1459void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1460{
1461 sl->timer.function = hrtimer_wakeup;
1462 sl->task = task;
1463}
2bc481cf 1464EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1465
669d7868 1466static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1467{
669d7868 1468 hrtimer_init_sleeper(t, current);
10c94ec1 1469
432569bb
RZ
1470 do {
1471 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1472 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1473 if (!hrtimer_active(&t->timer))
1474 t->task = NULL;
432569bb 1475
54cdfdb4
TG
1476 if (likely(t->task))
1477 schedule();
432569bb 1478
669d7868 1479 hrtimer_cancel(&t->timer);
c9cb2e3d 1480 mode = HRTIMER_MODE_ABS;
669d7868
TG
1481
1482 } while (t->task && !signal_pending(current));
432569bb 1483
3588a085
PZ
1484 __set_current_state(TASK_RUNNING);
1485
669d7868 1486 return t->task == NULL;
10c94ec1
TG
1487}
1488
080344b9
ON
1489static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1490{
1491 struct timespec rmt;
1492 ktime_t rem;
1493
cc584b21 1494 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1495 if (rem.tv64 <= 0)
1496 return 0;
1497 rmt = ktime_to_timespec(rem);
1498
1499 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1500 return -EFAULT;
1501
1502 return 1;
1503}
1504
1711ef38 1505long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1506{
669d7868 1507 struct hrtimer_sleeper t;
080344b9 1508 struct timespec __user *rmtp;
237fc6e7 1509 int ret = 0;
10c94ec1 1510
237fc6e7
TG
1511 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1512 HRTIMER_MODE_ABS);
cc584b21 1513 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1514
c9cb2e3d 1515 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1516 goto out;
10c94ec1 1517
029a07e0 1518 rmtp = restart->nanosleep.rmtp;
432569bb 1519 if (rmtp) {
237fc6e7 1520 ret = update_rmtp(&t.timer, rmtp);
080344b9 1521 if (ret <= 0)
237fc6e7 1522 goto out;
432569bb 1523 }
10c94ec1 1524
10c94ec1 1525 /* The other values in restart are already filled in */
237fc6e7
TG
1526 ret = -ERESTART_RESTARTBLOCK;
1527out:
1528 destroy_hrtimer_on_stack(&t.timer);
1529 return ret;
10c94ec1
TG
1530}
1531
080344b9 1532long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1533 const enum hrtimer_mode mode, const clockid_t clockid)
1534{
1535 struct restart_block *restart;
669d7868 1536 struct hrtimer_sleeper t;
237fc6e7 1537 int ret = 0;
3bd01206
AV
1538 unsigned long slack;
1539
1540 slack = current->timer_slack_ns;
1541 if (rt_task(current))
1542 slack = 0;
10c94ec1 1543
237fc6e7 1544 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1545 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1546 if (do_nanosleep(&t, mode))
237fc6e7 1547 goto out;
10c94ec1 1548
7978672c 1549 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1550 if (mode == HRTIMER_MODE_ABS) {
1551 ret = -ERESTARTNOHAND;
1552 goto out;
1553 }
10c94ec1 1554
432569bb 1555 if (rmtp) {
237fc6e7 1556 ret = update_rmtp(&t.timer, rmtp);
080344b9 1557 if (ret <= 0)
237fc6e7 1558 goto out;
432569bb 1559 }
10c94ec1
TG
1560
1561 restart = &current_thread_info()->restart_block;
1711ef38 1562 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1563 restart->nanosleep.index = t.timer.base->index;
1564 restart->nanosleep.rmtp = rmtp;
cc584b21 1565 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1566
237fc6e7
TG
1567 ret = -ERESTART_RESTARTBLOCK;
1568out:
1569 destroy_hrtimer_on_stack(&t.timer);
1570 return ret;
10c94ec1
TG
1571}
1572
58fd3aa2
HC
1573SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1574 struct timespec __user *, rmtp)
6ba1b912 1575{
080344b9 1576 struct timespec tu;
6ba1b912
TG
1577
1578 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1579 return -EFAULT;
1580
1581 if (!timespec_valid(&tu))
1582 return -EINVAL;
1583
080344b9 1584 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1585}
1586
c0a31329
TG
1587/*
1588 * Functions related to boot-time initialization:
1589 */
0ec160dd 1590static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1591{
3c8aa39d 1592 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1593 int i;
1594
ecb49d1a 1595 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1596
998adc3d 1597 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1598 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1599 timerqueue_init_head(&cpu_base->clock_base[i].active);
1600 }
3c8aa39d 1601
54cdfdb4 1602 hrtimer_init_hres(cpu_base);
c0a31329
TG
1603}
1604
1605#ifdef CONFIG_HOTPLUG_CPU
1606
ca109491 1607static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1608 struct hrtimer_clock_base *new_base)
c0a31329
TG
1609{
1610 struct hrtimer *timer;
998adc3d 1611 struct timerqueue_node *node;
c0a31329 1612
998adc3d
JS
1613 while ((node = timerqueue_getnext(&old_base->active))) {
1614 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1615 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1616 debug_deactivate(timer);
b00c1a99
TG
1617
1618 /*
1619 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1620 * timer could be seen as !active and just vanish away
1621 * under us on another CPU
1622 */
1623 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1624 timer->base = new_base;
54cdfdb4 1625 /*
e3f1d883
TG
1626 * Enqueue the timers on the new cpu. This does not
1627 * reprogram the event device in case the timer
1628 * expires before the earliest on this CPU, but we run
1629 * hrtimer_interrupt after we migrated everything to
1630 * sort out already expired timers and reprogram the
1631 * event device.
54cdfdb4 1632 */
a6037b61 1633 enqueue_hrtimer(timer, new_base);
41e1022e 1634
b00c1a99
TG
1635 /* Clear the migration state bit */
1636 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1637 }
1638}
1639
d5fd43c4 1640static void migrate_hrtimers(int scpu)
c0a31329 1641{
3c8aa39d 1642 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1643 int i;
c0a31329 1644
37810659 1645 BUG_ON(cpu_online(scpu));
37810659 1646 tick_cancel_sched_timer(scpu);
731a55ba
TG
1647
1648 local_irq_disable();
1649 old_base = &per_cpu(hrtimer_bases, scpu);
1650 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1651 /*
1652 * The caller is globally serialized and nobody else
1653 * takes two locks at once, deadlock is not possible.
1654 */
ecb49d1a
TG
1655 raw_spin_lock(&new_base->lock);
1656 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1657
3c8aa39d 1658 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1659 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1660 &new_base->clock_base[i]);
c0a31329
TG
1661 }
1662
ecb49d1a
TG
1663 raw_spin_unlock(&old_base->lock);
1664 raw_spin_unlock(&new_base->lock);
37810659 1665
731a55ba
TG
1666 /* Check, if we got expired work to do */
1667 __hrtimer_peek_ahead_timers();
1668 local_irq_enable();
c0a31329 1669}
37810659 1670
c0a31329
TG
1671#endif /* CONFIG_HOTPLUG_CPU */
1672
8c78f307 1673static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1674 unsigned long action, void *hcpu)
1675{
b2e3c0ad 1676 int scpu = (long)hcpu;
c0a31329
TG
1677
1678 switch (action) {
1679
1680 case CPU_UP_PREPARE:
8bb78442 1681 case CPU_UP_PREPARE_FROZEN:
37810659 1682 init_hrtimers_cpu(scpu);
c0a31329
TG
1683 break;
1684
1685#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1686 case CPU_DYING:
1687 case CPU_DYING_FROZEN:
1688 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1689 break;
c0a31329 1690 case CPU_DEAD:
8bb78442 1691 case CPU_DEAD_FROZEN:
b2e3c0ad 1692 {
37810659 1693 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1694 migrate_hrtimers(scpu);
c0a31329 1695 break;
b2e3c0ad 1696 }
c0a31329
TG
1697#endif
1698
1699 default:
1700 break;
1701 }
1702
1703 return NOTIFY_OK;
1704}
1705
8c78f307 1706static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1707 .notifier_call = hrtimer_cpu_notify,
1708};
1709
1710void __init hrtimers_init(void)
1711{
1712 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1713 (void *)(long)smp_processor_id());
1714 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1715#ifdef CONFIG_HIGH_RES_TIMERS
1716 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1717#endif
c0a31329
TG
1718}
1719
7bb67439 1720/**
351b3f7a 1721 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1722 * @expires: timeout value (ktime_t)
654c8e0b 1723 * @delta: slack in expires timeout (ktime_t)
7bb67439 1724 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1725 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1726 */
351b3f7a
CE
1727int __sched
1728schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1729 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1730{
1731 struct hrtimer_sleeper t;
1732
1733 /*
1734 * Optimize when a zero timeout value is given. It does not
1735 * matter whether this is an absolute or a relative time.
1736 */
1737 if (expires && !expires->tv64) {
1738 __set_current_state(TASK_RUNNING);
1739 return 0;
1740 }
1741
1742 /*
1743 * A NULL parameter means "inifinte"
1744 */
1745 if (!expires) {
1746 schedule();
1747 __set_current_state(TASK_RUNNING);
1748 return -EINTR;
1749 }
1750
351b3f7a 1751 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1752 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1753
1754 hrtimer_init_sleeper(&t, current);
1755
cc584b21 1756 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1757 if (!hrtimer_active(&t.timer))
1758 t.task = NULL;
1759
1760 if (likely(t.task))
1761 schedule();
1762
1763 hrtimer_cancel(&t.timer);
1764 destroy_hrtimer_on_stack(&t.timer);
1765
1766 __set_current_state(TASK_RUNNING);
1767
1768 return !t.task ? 0 : -EINTR;
1769}
351b3f7a
CE
1770
1771/**
1772 * schedule_hrtimeout_range - sleep until timeout
1773 * @expires: timeout value (ktime_t)
1774 * @delta: slack in expires timeout (ktime_t)
1775 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1776 *
1777 * Make the current task sleep until the given expiry time has
1778 * elapsed. The routine will return immediately unless
1779 * the current task state has been set (see set_current_state()).
1780 *
1781 * The @delta argument gives the kernel the freedom to schedule the
1782 * actual wakeup to a time that is both power and performance friendly.
1783 * The kernel give the normal best effort behavior for "@expires+@delta",
1784 * but may decide to fire the timer earlier, but no earlier than @expires.
1785 *
1786 * You can set the task state as follows -
1787 *
1788 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1789 * pass before the routine returns.
1790 *
1791 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1792 * delivered to the current task.
1793 *
1794 * The current task state is guaranteed to be TASK_RUNNING when this
1795 * routine returns.
1796 *
1797 * Returns 0 when the timer has expired otherwise -EINTR
1798 */
1799int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1800 const enum hrtimer_mode mode)
1801{
1802 return schedule_hrtimeout_range_clock(expires, delta, mode,
1803 CLOCK_MONOTONIC);
1804}
654c8e0b
AV
1805EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1806
1807/**
1808 * schedule_hrtimeout - sleep until timeout
1809 * @expires: timeout value (ktime_t)
1810 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1811 *
1812 * Make the current task sleep until the given expiry time has
1813 * elapsed. The routine will return immediately unless
1814 * the current task state has been set (see set_current_state()).
1815 *
1816 * You can set the task state as follows -
1817 *
1818 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1819 * pass before the routine returns.
1820 *
1821 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1822 * delivered to the current task.
1823 *
1824 * The current task state is guaranteed to be TASK_RUNNING when this
1825 * routine returns.
1826 *
1827 * Returns 0 when the timer has expired otherwise -EINTR
1828 */
1829int __sched schedule_hrtimeout(ktime_t *expires,
1830 const enum hrtimer_mode mode)
1831{
1832 return schedule_hrtimeout_range(expires, 0, mode);
1833}
7bb67439 1834EXPORT_SYMBOL_GPL(schedule_hrtimeout);