]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/hrtimer.c
time: Introduce get_monotonic_boottime and ktime_get_boottime
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c 55 *
e06383db
JS
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 60 */
54cdfdb4 61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 62{
3c8aa39d
TG
63
64 .clock_base =
c0a31329 65 {
3c8aa39d
TG
66 {
67 .index = CLOCK_REALTIME,
68 .get_time = &ktime_get_real,
54cdfdb4 69 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
70 },
71 {
72 .index = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
54cdfdb4 74 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
75 },
76 }
c0a31329
TG
77};
78
e06383db
JS
79static int hrtimer_clock_to_base_table[MAX_CLOCKS];
80
81static inline int hrtimer_clockid_to_base(clockid_t clock_id)
82{
83 return hrtimer_clock_to_base_table[clock_id];
84}
85
86
92127c7a
TG
87/*
88 * Get the coarse grained time at the softirq based on xtime and
89 * wall_to_monotonic.
90 */
3c8aa39d 91static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
92{
93 ktime_t xtim, tomono;
ad28d94a 94 struct timespec xts, tom;
92127c7a 95
48cf76f7 96 get_xtime_and_monotonic_offset(&xts, &tom);
92127c7a 97
f4304ab2 98 xtim = timespec_to_ktime(xts);
ad28d94a 99 tomono = timespec_to_ktime(tom);
e06383db
JS
100 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
101 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time =
3c8aa39d 102 ktime_add(xtim, tomono);
92127c7a
TG
103}
104
c0a31329
TG
105/*
106 * Functions and macros which are different for UP/SMP systems are kept in a
107 * single place
108 */
109#ifdef CONFIG_SMP
110
c0a31329
TG
111/*
112 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
113 * means that all timers which are tied to this base via timer->base are
114 * locked, and the base itself is locked too.
115 *
116 * So __run_timers/migrate_timers can safely modify all timers which could
117 * be found on the lists/queues.
118 *
119 * When the timer's base is locked, and the timer removed from list, it is
120 * possible to set timer->base = NULL and drop the lock: the timer remains
121 * locked.
122 */
3c8aa39d
TG
123static
124struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
125 unsigned long *flags)
c0a31329 126{
3c8aa39d 127 struct hrtimer_clock_base *base;
c0a31329
TG
128
129 for (;;) {
130 base = timer->base;
131 if (likely(base != NULL)) {
ecb49d1a 132 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
133 if (likely(base == timer->base))
134 return base;
135 /* The timer has migrated to another CPU: */
ecb49d1a 136 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
137 }
138 cpu_relax();
139 }
140}
141
6ff7041d
TG
142
143/*
144 * Get the preferred target CPU for NOHZ
145 */
146static int hrtimer_get_target(int this_cpu, int pinned)
147{
148#ifdef CONFIG_NO_HZ
83cd4fe2
VP
149 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
150 return get_nohz_timer_target();
6ff7041d
TG
151#endif
152 return this_cpu;
153}
154
155/*
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
159 *
160 * Called with cpu_base->lock of target cpu held.
161 */
162static int
163hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164{
165#ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
167
168 if (!new_base->cpu_base->hres_active)
169 return 0;
170
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173#else
174 return 0;
175#endif
176}
177
c0a31329
TG
178/*
179 * Switch the timer base to the current CPU when possible.
180 */
3c8aa39d 181static inline struct hrtimer_clock_base *
597d0275
AB
182switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
183 int pinned)
c0a31329 184{
3c8aa39d
TG
185 struct hrtimer_clock_base *new_base;
186 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
187 int this_cpu = smp_processor_id();
188 int cpu = hrtimer_get_target(this_cpu, pinned);
e06383db 189 int basenum = hrtimer_clockid_to_base(base->index);
c0a31329 190
eea08f32
AB
191again:
192 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 193 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
194
195 if (base != new_base) {
196 /*
6ff7041d 197 * We are trying to move timer to new_base.
c0a31329
TG
198 * However we can't change timer's base while it is running,
199 * so we keep it on the same CPU. No hassle vs. reprogramming
200 * the event source in the high resolution case. The softirq
201 * code will take care of this when the timer function has
202 * completed. There is no conflict as we hold the lock until
203 * the timer is enqueued.
204 */
54cdfdb4 205 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
206 return base;
207
208 /* See the comment in lock_timer_base() */
209 timer->base = NULL;
ecb49d1a
TG
210 raw_spin_unlock(&base->cpu_base->lock);
211 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 212
6ff7041d
TG
213 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
214 cpu = this_cpu;
ecb49d1a
TG
215 raw_spin_unlock(&new_base->cpu_base->lock);
216 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
217 timer->base = base;
218 goto again;
eea08f32 219 }
c0a31329
TG
220 timer->base = new_base;
221 }
222 return new_base;
223}
224
225#else /* CONFIG_SMP */
226
3c8aa39d 227static inline struct hrtimer_clock_base *
c0a31329
TG
228lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
229{
3c8aa39d 230 struct hrtimer_clock_base *base = timer->base;
c0a31329 231
ecb49d1a 232 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
233
234 return base;
235}
236
eea08f32 237# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
238
239#endif /* !CONFIG_SMP */
240
241/*
242 * Functions for the union type storage format of ktime_t which are
243 * too large for inlining:
244 */
245#if BITS_PER_LONG < 64
246# ifndef CONFIG_KTIME_SCALAR
247/**
248 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
249 * @kt: addend
250 * @nsec: the scalar nsec value to add
251 *
252 * Returns the sum of kt and nsec in ktime_t format
253 */
254ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
255{
256 ktime_t tmp;
257
258 if (likely(nsec < NSEC_PER_SEC)) {
259 tmp.tv64 = nsec;
260 } else {
261 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
262
263 tmp = ktime_set((long)nsec, rem);
264 }
265
266 return ktime_add(kt, tmp);
267}
b8b8fd2d
DH
268
269EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
270
271/**
272 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
273 * @kt: minuend
274 * @nsec: the scalar nsec value to subtract
275 *
276 * Returns the subtraction of @nsec from @kt in ktime_t format
277 */
278ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
279{
280 ktime_t tmp;
281
282 if (likely(nsec < NSEC_PER_SEC)) {
283 tmp.tv64 = nsec;
284 } else {
285 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
286
287 tmp = ktime_set((long)nsec, rem);
288 }
289
290 return ktime_sub(kt, tmp);
291}
292
293EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
294# endif /* !CONFIG_KTIME_SCALAR */
295
296/*
297 * Divide a ktime value by a nanosecond value
298 */
4d672e7a 299u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 300{
900cfa46 301 u64 dclc;
c0a31329
TG
302 int sft = 0;
303
900cfa46 304 dclc = ktime_to_ns(kt);
c0a31329
TG
305 /* Make sure the divisor is less than 2^32: */
306 while (div >> 32) {
307 sft++;
308 div >>= 1;
309 }
310 dclc >>= sft;
311 do_div(dclc, (unsigned long) div);
312
4d672e7a 313 return dclc;
c0a31329 314}
c0a31329
TG
315#endif /* BITS_PER_LONG >= 64 */
316
5a7780e7
TG
317/*
318 * Add two ktime values and do a safety check for overflow:
319 */
320ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
321{
322 ktime_t res = ktime_add(lhs, rhs);
323
324 /*
325 * We use KTIME_SEC_MAX here, the maximum timeout which we can
326 * return to user space in a timespec:
327 */
328 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
329 res = ktime_set(KTIME_SEC_MAX, 0);
330
331 return res;
332}
333
8daa21e6
AB
334EXPORT_SYMBOL_GPL(ktime_add_safe);
335
237fc6e7
TG
336#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338static struct debug_obj_descr hrtimer_debug_descr;
339
340/*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345{
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364{
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377}
378
379/*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384{
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395}
396
397static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402};
403
404static inline void debug_hrtimer_init(struct hrtimer *timer)
405{
406 debug_object_init(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_activate(struct hrtimer *timer)
410{
411 debug_object_activate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415{
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_free(struct hrtimer *timer)
420{
421 debug_object_free(timer, &hrtimer_debug_descr);
422}
423
424static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429{
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432}
2bc481cf 433EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
434
435void destroy_hrtimer_on_stack(struct hrtimer *timer)
436{
437 debug_object_free(timer, &hrtimer_debug_descr);
438}
439
440#else
441static inline void debug_hrtimer_init(struct hrtimer *timer) { }
442static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
443static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444#endif
445
c6a2a177
XG
446static inline void
447debug_init(struct hrtimer *timer, clockid_t clockid,
448 enum hrtimer_mode mode)
449{
450 debug_hrtimer_init(timer);
451 trace_hrtimer_init(timer, clockid, mode);
452}
453
454static inline void debug_activate(struct hrtimer *timer)
455{
456 debug_hrtimer_activate(timer);
457 trace_hrtimer_start(timer);
458}
459
460static inline void debug_deactivate(struct hrtimer *timer)
461{
462 debug_hrtimer_deactivate(timer);
463 trace_hrtimer_cancel(timer);
464}
465
54cdfdb4
TG
466/* High resolution timer related functions */
467#ifdef CONFIG_HIGH_RES_TIMERS
468
469/*
470 * High resolution timer enabled ?
471 */
472static int hrtimer_hres_enabled __read_mostly = 1;
473
474/*
475 * Enable / Disable high resolution mode
476 */
477static int __init setup_hrtimer_hres(char *str)
478{
479 if (!strcmp(str, "off"))
480 hrtimer_hres_enabled = 0;
481 else if (!strcmp(str, "on"))
482 hrtimer_hres_enabled = 1;
483 else
484 return 0;
485 return 1;
486}
487
488__setup("highres=", setup_hrtimer_hres);
489
490/*
491 * hrtimer_high_res_enabled - query, if the highres mode is enabled
492 */
493static inline int hrtimer_is_hres_enabled(void)
494{
495 return hrtimer_hres_enabled;
496}
497
498/*
499 * Is the high resolution mode active ?
500 */
501static inline int hrtimer_hres_active(void)
502{
909ea964 503 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
504}
505
506/*
507 * Reprogram the event source with checking both queues for the
508 * next event
509 * Called with interrupts disabled and base->lock held
510 */
7403f41f
AC
511static void
512hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
513{
514 int i;
515 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 516 ktime_t expires, expires_next;
54cdfdb4 517
7403f41f 518 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
519
520 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
521 struct hrtimer *timer;
998adc3d 522 struct timerqueue_node *next;
54cdfdb4 523
998adc3d
JS
524 next = timerqueue_getnext(&base->active);
525 if (!next)
54cdfdb4 526 continue;
998adc3d
JS
527 timer = container_of(next, struct hrtimer, node);
528
cc584b21 529 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
530 /*
531 * clock_was_set() has changed base->offset so the
532 * result might be negative. Fix it up to prevent a
533 * false positive in clockevents_program_event()
534 */
535 if (expires.tv64 < 0)
536 expires.tv64 = 0;
7403f41f
AC
537 if (expires.tv64 < expires_next.tv64)
538 expires_next = expires;
54cdfdb4
TG
539 }
540
7403f41f
AC
541 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
542 return;
543
544 cpu_base->expires_next.tv64 = expires_next.tv64;
545
54cdfdb4
TG
546 if (cpu_base->expires_next.tv64 != KTIME_MAX)
547 tick_program_event(cpu_base->expires_next, 1);
548}
549
550/*
551 * Shared reprogramming for clock_realtime and clock_monotonic
552 *
553 * When a timer is enqueued and expires earlier than the already enqueued
554 * timers, we have to check, whether it expires earlier than the timer for
555 * which the clock event device was armed.
556 *
557 * Called with interrupts disabled and base->cpu_base.lock held
558 */
559static int hrtimer_reprogram(struct hrtimer *timer,
560 struct hrtimer_clock_base *base)
561{
41d2e494 562 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 563 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
564 int res;
565
cc584b21 566 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 567
54cdfdb4
TG
568 /*
569 * When the callback is running, we do not reprogram the clock event
570 * device. The timer callback is either running on a different CPU or
3a4fa0a2 571 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
572 * reprogramming is handled either by the softirq, which called the
573 * callback or at the end of the hrtimer_interrupt.
574 */
575 if (hrtimer_callback_running(timer))
576 return 0;
577
63070a79
TG
578 /*
579 * CLOCK_REALTIME timer might be requested with an absolute
580 * expiry time which is less than base->offset. Nothing wrong
581 * about that, just avoid to call into the tick code, which
582 * has now objections against negative expiry values.
583 */
584 if (expires.tv64 < 0)
585 return -ETIME;
586
41d2e494
TG
587 if (expires.tv64 >= cpu_base->expires_next.tv64)
588 return 0;
589
590 /*
591 * If a hang was detected in the last timer interrupt then we
592 * do not schedule a timer which is earlier than the expiry
593 * which we enforced in the hang detection. We want the system
594 * to make progress.
595 */
596 if (cpu_base->hang_detected)
54cdfdb4
TG
597 return 0;
598
599 /*
600 * Clockevents returns -ETIME, when the event was in the past.
601 */
602 res = tick_program_event(expires, 0);
603 if (!IS_ERR_VALUE(res))
41d2e494 604 cpu_base->expires_next = expires;
54cdfdb4
TG
605 return res;
606}
607
608
609/*
610 * Retrigger next event is called after clock was set
611 *
612 * Called with interrupts disabled via on_each_cpu()
613 */
614static void retrigger_next_event(void *arg)
615{
616 struct hrtimer_cpu_base *base;
8ab4351a 617 struct timespec realtime_offset, wtm;
54cdfdb4
TG
618
619 if (!hrtimer_hres_active())
620 return;
621
48cf76f7 622 get_xtime_and_monotonic_offset(&realtime_offset, &wtm);
8ab4351a 623 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
54cdfdb4
TG
624
625 base = &__get_cpu_var(hrtimer_bases);
626
627 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 628 raw_spin_lock(&base->lock);
e06383db 629 base->clock_base[HRTIMER_BASE_REALTIME].offset =
54cdfdb4
TG
630 timespec_to_ktime(realtime_offset);
631
7403f41f 632 hrtimer_force_reprogram(base, 0);
ecb49d1a 633 raw_spin_unlock(&base->lock);
54cdfdb4
TG
634}
635
636/*
637 * Clock realtime was set
638 *
639 * Change the offset of the realtime clock vs. the monotonic
640 * clock.
641 *
642 * We might have to reprogram the high resolution timer interrupt. On
643 * SMP we call the architecture specific code to retrigger _all_ high
644 * resolution timer interrupts. On UP we just disable interrupts and
645 * call the high resolution interrupt code.
646 */
647void clock_was_set(void)
648{
649 /* Retrigger the CPU local events everywhere */
15c8b6c1 650 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
651}
652
995f054f
IM
653/*
654 * During resume we might have to reprogram the high resolution timer
655 * interrupt (on the local CPU):
656 */
657void hres_timers_resume(void)
658{
1d4a7f1c
PZ
659 WARN_ONCE(!irqs_disabled(),
660 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
661
995f054f
IM
662 retrigger_next_event(NULL);
663}
664
54cdfdb4
TG
665/*
666 * Initialize the high resolution related parts of cpu_base
667 */
668static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
669{
670 base->expires_next.tv64 = KTIME_MAX;
671 base->hres_active = 0;
54cdfdb4
TG
672}
673
674/*
675 * Initialize the high resolution related parts of a hrtimer
676 */
677static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
678{
54cdfdb4
TG
679}
680
ca109491 681
54cdfdb4
TG
682/*
683 * When High resolution timers are active, try to reprogram. Note, that in case
684 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
685 * check happens. The timer gets enqueued into the rbtree. The reprogramming
686 * and expiry check is done in the hrtimer_interrupt or in the softirq.
687 */
688static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
689 struct hrtimer_clock_base *base,
690 int wakeup)
54cdfdb4
TG
691{
692 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 693 if (wakeup) {
ecb49d1a 694 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 695 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 696 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
697 } else
698 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
699
ca109491 700 return 1;
54cdfdb4 701 }
7f1e2ca9 702
54cdfdb4
TG
703 return 0;
704}
705
706/*
707 * Switch to high resolution mode
708 */
f8953856 709static int hrtimer_switch_to_hres(void)
54cdfdb4 710{
820de5c3
IM
711 int cpu = smp_processor_id();
712 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
713 unsigned long flags;
714
715 if (base->hres_active)
f8953856 716 return 1;
54cdfdb4
TG
717
718 local_irq_save(flags);
719
720 if (tick_init_highres()) {
721 local_irq_restore(flags);
820de5c3
IM
722 printk(KERN_WARNING "Could not switch to high resolution "
723 "mode on CPU %d\n", cpu);
f8953856 724 return 0;
54cdfdb4
TG
725 }
726 base->hres_active = 1;
e06383db
JS
727 base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
728 base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
729
730 tick_setup_sched_timer();
731
732 /* "Retrigger" the interrupt to get things going */
733 retrigger_next_event(NULL);
734 local_irq_restore(flags);
f8953856 735 return 1;
54cdfdb4
TG
736}
737
738#else
739
740static inline int hrtimer_hres_active(void) { return 0; }
741static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 742static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
743static inline void
744hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 745static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
746 struct hrtimer_clock_base *base,
747 int wakeup)
54cdfdb4
TG
748{
749 return 0;
750}
54cdfdb4
TG
751static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
752static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
753
754#endif /* CONFIG_HIGH_RES_TIMERS */
755
5f201907 756static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 757{
5f201907 758#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
759 if (timer->start_site)
760 return;
5f201907 761 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
762 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
763 timer->start_pid = current->pid;
5f201907
HC
764#endif
765}
766
767static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
768{
769#ifdef CONFIG_TIMER_STATS
770 timer->start_site = NULL;
771#endif
82f67cd9 772}
5f201907
HC
773
774static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
775{
776#ifdef CONFIG_TIMER_STATS
777 if (likely(!timer_stats_active))
778 return;
779 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
780 timer->function, timer->start_comm, 0);
82f67cd9 781#endif
5f201907 782}
82f67cd9 783
c0a31329 784/*
6506f2aa 785 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
786 */
787static inline
788void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
789{
ecb49d1a 790 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
791}
792
793/**
794 * hrtimer_forward - forward the timer expiry
c0a31329 795 * @timer: hrtimer to forward
44f21475 796 * @now: forward past this time
c0a31329
TG
797 * @interval: the interval to forward
798 *
799 * Forward the timer expiry so it will expire in the future.
8dca6f33 800 * Returns the number of overruns.
c0a31329 801 */
4d672e7a 802u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 803{
4d672e7a 804 u64 orun = 1;
44f21475 805 ktime_t delta;
c0a31329 806
cc584b21 807 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
808
809 if (delta.tv64 < 0)
810 return 0;
811
c9db4fa1
TG
812 if (interval.tv64 < timer->base->resolution.tv64)
813 interval.tv64 = timer->base->resolution.tv64;
814
c0a31329 815 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 816 s64 incr = ktime_to_ns(interval);
c0a31329
TG
817
818 orun = ktime_divns(delta, incr);
cc584b21
AV
819 hrtimer_add_expires_ns(timer, incr * orun);
820 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
821 return orun;
822 /*
823 * This (and the ktime_add() below) is the
824 * correction for exact:
825 */
826 orun++;
827 }
cc584b21 828 hrtimer_add_expires(timer, interval);
c0a31329
TG
829
830 return orun;
831}
6bdb6b62 832EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
833
834/*
835 * enqueue_hrtimer - internal function to (re)start a timer
836 *
837 * The timer is inserted in expiry order. Insertion into the
838 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
839 *
840 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 841 */
a6037b61
PZ
842static int enqueue_hrtimer(struct hrtimer *timer,
843 struct hrtimer_clock_base *base)
c0a31329 844{
c6a2a177 845 debug_activate(timer);
237fc6e7 846
998adc3d 847 timerqueue_add(&base->active, &timer->node);
54cdfdb4 848
303e967f
TG
849 /*
850 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
851 * state of a possibly running callback.
852 */
853 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 854
998adc3d 855 return (&timer->node == base->active.next);
288867ec 856}
c0a31329
TG
857
858/*
859 * __remove_hrtimer - internal function to remove a timer
860 *
861 * Caller must hold the base lock.
54cdfdb4
TG
862 *
863 * High resolution timer mode reprograms the clock event device when the
864 * timer is the one which expires next. The caller can disable this by setting
865 * reprogram to zero. This is useful, when the context does a reprogramming
866 * anyway (e.g. timer interrupt)
c0a31329 867 */
3c8aa39d 868static void __remove_hrtimer(struct hrtimer *timer,
303e967f 869 struct hrtimer_clock_base *base,
54cdfdb4 870 unsigned long newstate, int reprogram)
c0a31329 871{
7403f41f
AC
872 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
873 goto out;
874
998adc3d 875 if (&timer->node == timerqueue_getnext(&base->active)) {
7403f41f
AC
876#ifdef CONFIG_HIGH_RES_TIMERS
877 /* Reprogram the clock event device. if enabled */
878 if (reprogram && hrtimer_hres_active()) {
879 ktime_t expires;
880
881 expires = ktime_sub(hrtimer_get_expires(timer),
882 base->offset);
883 if (base->cpu_base->expires_next.tv64 == expires.tv64)
884 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 885 }
7403f41f 886#endif
54cdfdb4 887 }
998adc3d 888 timerqueue_del(&base->active, &timer->node);
7403f41f 889out:
303e967f 890 timer->state = newstate;
c0a31329
TG
891}
892
893/*
894 * remove hrtimer, called with base lock held
895 */
896static inline int
3c8aa39d 897remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 898{
303e967f 899 if (hrtimer_is_queued(timer)) {
f13d4f97 900 unsigned long state;
54cdfdb4
TG
901 int reprogram;
902
903 /*
904 * Remove the timer and force reprogramming when high
905 * resolution mode is active and the timer is on the current
906 * CPU. If we remove a timer on another CPU, reprogramming is
907 * skipped. The interrupt event on this CPU is fired and
908 * reprogramming happens in the interrupt handler. This is a
909 * rare case and less expensive than a smp call.
910 */
c6a2a177 911 debug_deactivate(timer);
82f67cd9 912 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 913 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
914 /*
915 * We must preserve the CALLBACK state flag here,
916 * otherwise we could move the timer base in
917 * switch_hrtimer_base.
918 */
919 state = timer->state & HRTIMER_STATE_CALLBACK;
920 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
921 return 1;
922 }
923 return 0;
924}
925
7f1e2ca9
PZ
926int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
927 unsigned long delta_ns, const enum hrtimer_mode mode,
928 int wakeup)
c0a31329 929{
3c8aa39d 930 struct hrtimer_clock_base *base, *new_base;
c0a31329 931 unsigned long flags;
a6037b61 932 int ret, leftmost;
c0a31329
TG
933
934 base = lock_hrtimer_base(timer, &flags);
935
936 /* Remove an active timer from the queue: */
937 ret = remove_hrtimer(timer, base);
938
939 /* Switch the timer base, if necessary: */
597d0275 940 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 941
597d0275 942 if (mode & HRTIMER_MODE_REL) {
5a7780e7 943 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
944 /*
945 * CONFIG_TIME_LOW_RES is a temporary way for architectures
946 * to signal that they simply return xtime in
947 * do_gettimeoffset(). In this case we want to round up by
948 * resolution when starting a relative timer, to avoid short
949 * timeouts. This will go away with the GTOD framework.
950 */
951#ifdef CONFIG_TIME_LOW_RES
5a7780e7 952 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
953#endif
954 }
237fc6e7 955
da8f2e17 956 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 957
82f67cd9
IM
958 timer_stats_hrtimer_set_start_info(timer);
959
a6037b61
PZ
960 leftmost = enqueue_hrtimer(timer, new_base);
961
935c631d
IM
962 /*
963 * Only allow reprogramming if the new base is on this CPU.
964 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
965 *
966 * XXX send_remote_softirq() ?
935c631d 967 */
a6037b61 968 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 969 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
970
971 unlock_hrtimer_base(timer, &flags);
972
973 return ret;
974}
7f1e2ca9
PZ
975
976/**
977 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
978 * @timer: the timer to be added
979 * @tim: expiry time
980 * @delta_ns: "slack" range for the timer
981 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
982 *
983 * Returns:
984 * 0 on success
985 * 1 when the timer was active
986 */
987int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
988 unsigned long delta_ns, const enum hrtimer_mode mode)
989{
990 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
991}
da8f2e17
AV
992EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
993
994/**
e1dd7bc5 995 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
996 * @timer: the timer to be added
997 * @tim: expiry time
998 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
999 *
1000 * Returns:
1001 * 0 on success
1002 * 1 when the timer was active
1003 */
1004int
1005hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1006{
7f1e2ca9 1007 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1008}
8d16b764 1009EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1010
da8f2e17 1011
c0a31329
TG
1012/**
1013 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1014 * @timer: hrtimer to stop
1015 *
1016 * Returns:
1017 * 0 when the timer was not active
1018 * 1 when the timer was active
1019 * -1 when the timer is currently excuting the callback function and
fa9799e3 1020 * cannot be stopped
c0a31329
TG
1021 */
1022int hrtimer_try_to_cancel(struct hrtimer *timer)
1023{
3c8aa39d 1024 struct hrtimer_clock_base *base;
c0a31329
TG
1025 unsigned long flags;
1026 int ret = -1;
1027
1028 base = lock_hrtimer_base(timer, &flags);
1029
303e967f 1030 if (!hrtimer_callback_running(timer))
c0a31329
TG
1031 ret = remove_hrtimer(timer, base);
1032
1033 unlock_hrtimer_base(timer, &flags);
1034
1035 return ret;
1036
1037}
8d16b764 1038EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1039
1040/**
1041 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1042 * @timer: the timer to be cancelled
1043 *
1044 * Returns:
1045 * 0 when the timer was not active
1046 * 1 when the timer was active
1047 */
1048int hrtimer_cancel(struct hrtimer *timer)
1049{
1050 for (;;) {
1051 int ret = hrtimer_try_to_cancel(timer);
1052
1053 if (ret >= 0)
1054 return ret;
5ef37b19 1055 cpu_relax();
c0a31329
TG
1056 }
1057}
8d16b764 1058EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1059
1060/**
1061 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1062 * @timer: the timer to read
1063 */
1064ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1065{
c0a31329
TG
1066 unsigned long flags;
1067 ktime_t rem;
1068
b3bd3de6 1069 lock_hrtimer_base(timer, &flags);
cc584b21 1070 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1071 unlock_hrtimer_base(timer, &flags);
1072
1073 return rem;
1074}
8d16b764 1075EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1076
ee9c5785 1077#ifdef CONFIG_NO_HZ
69239749
TL
1078/**
1079 * hrtimer_get_next_event - get the time until next expiry event
1080 *
1081 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1082 * is pending.
1083 */
1084ktime_t hrtimer_get_next_event(void)
1085{
3c8aa39d
TG
1086 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1087 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1088 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1089 unsigned long flags;
1090 int i;
1091
ecb49d1a 1092 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1093
54cdfdb4
TG
1094 if (!hrtimer_hres_active()) {
1095 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1096 struct hrtimer *timer;
998adc3d 1097 struct timerqueue_node *next;
69239749 1098
998adc3d
JS
1099 next = timerqueue_getnext(&base->active);
1100 if (!next)
54cdfdb4 1101 continue;
3c8aa39d 1102
998adc3d 1103 timer = container_of(next, struct hrtimer, node);
cc584b21 1104 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1105 delta = ktime_sub(delta, base->get_time());
1106 if (delta.tv64 < mindelta.tv64)
1107 mindelta.tv64 = delta.tv64;
1108 }
69239749 1109 }
3c8aa39d 1110
ecb49d1a 1111 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1112
69239749
TL
1113 if (mindelta.tv64 < 0)
1114 mindelta.tv64 = 0;
1115 return mindelta;
1116}
1117#endif
1118
237fc6e7
TG
1119static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120 enum hrtimer_mode mode)
c0a31329 1121{
3c8aa39d 1122 struct hrtimer_cpu_base *cpu_base;
e06383db 1123 int base;
c0a31329 1124
7978672c
GA
1125 memset(timer, 0, sizeof(struct hrtimer));
1126
3c8aa39d 1127 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1128
c9cb2e3d 1129 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1130 clock_id = CLOCK_MONOTONIC;
1131
e06383db
JS
1132 base = hrtimer_clockid_to_base(clock_id);
1133 timer->base = &cpu_base->clock_base[base];
54cdfdb4 1134 hrtimer_init_timer_hres(timer);
998adc3d 1135 timerqueue_init(&timer->node);
82f67cd9
IM
1136
1137#ifdef CONFIG_TIMER_STATS
1138 timer->start_site = NULL;
1139 timer->start_pid = -1;
1140 memset(timer->start_comm, 0, TASK_COMM_LEN);
1141#endif
c0a31329 1142}
237fc6e7
TG
1143
1144/**
1145 * hrtimer_init - initialize a timer to the given clock
1146 * @timer: the timer to be initialized
1147 * @clock_id: the clock to be used
1148 * @mode: timer mode abs/rel
1149 */
1150void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1151 enum hrtimer_mode mode)
1152{
c6a2a177 1153 debug_init(timer, clock_id, mode);
237fc6e7
TG
1154 __hrtimer_init(timer, clock_id, mode);
1155}
8d16b764 1156EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1157
1158/**
1159 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1160 * @which_clock: which clock to query
1161 * @tp: pointer to timespec variable to store the resolution
1162 *
72fd4a35
RD
1163 * Store the resolution of the clock selected by @which_clock in the
1164 * variable pointed to by @tp.
c0a31329
TG
1165 */
1166int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1167{
3c8aa39d 1168 struct hrtimer_cpu_base *cpu_base;
e06383db 1169 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1170
3c8aa39d 1171 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1172 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1173
1174 return 0;
1175}
8d16b764 1176EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1177
c6a2a177 1178static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1179{
1180 struct hrtimer_clock_base *base = timer->base;
1181 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1182 enum hrtimer_restart (*fn)(struct hrtimer *);
1183 int restart;
1184
ca109491
PZ
1185 WARN_ON(!irqs_disabled());
1186
c6a2a177 1187 debug_deactivate(timer);
d3d74453
PZ
1188 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1189 timer_stats_account_hrtimer(timer);
d3d74453 1190 fn = timer->function;
ca109491
PZ
1191
1192 /*
1193 * Because we run timers from hardirq context, there is no chance
1194 * they get migrated to another cpu, therefore its safe to unlock
1195 * the timer base.
1196 */
ecb49d1a 1197 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1198 trace_hrtimer_expire_entry(timer, now);
ca109491 1199 restart = fn(timer);
c6a2a177 1200 trace_hrtimer_expire_exit(timer);
ecb49d1a 1201 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1202
1203 /*
e3f1d883
TG
1204 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1205 * we do not reprogramm the event hardware. Happens either in
1206 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1207 */
1208 if (restart != HRTIMER_NORESTART) {
1209 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1210 enqueue_hrtimer(timer, base);
d3d74453 1211 }
f13d4f97
SQ
1212
1213 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1214
d3d74453
PZ
1215 timer->state &= ~HRTIMER_STATE_CALLBACK;
1216}
1217
54cdfdb4
TG
1218#ifdef CONFIG_HIGH_RES_TIMERS
1219
1220/*
1221 * High resolution timer interrupt
1222 * Called with interrupts disabled
1223 */
1224void hrtimer_interrupt(struct clock_event_device *dev)
1225{
1226 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1227 struct hrtimer_clock_base *base;
41d2e494
TG
1228 ktime_t expires_next, now, entry_time, delta;
1229 int i, retries = 0;
54cdfdb4
TG
1230
1231 BUG_ON(!cpu_base->hres_active);
1232 cpu_base->nr_events++;
1233 dev->next_event.tv64 = KTIME_MAX;
1234
41d2e494
TG
1235 entry_time = now = ktime_get();
1236retry:
54cdfdb4
TG
1237 expires_next.tv64 = KTIME_MAX;
1238
ecb49d1a 1239 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1240 /*
1241 * We set expires_next to KTIME_MAX here with cpu_base->lock
1242 * held to prevent that a timer is enqueued in our queue via
1243 * the migration code. This does not affect enqueueing of
1244 * timers which run their callback and need to be requeued on
1245 * this CPU.
1246 */
1247 cpu_base->expires_next.tv64 = KTIME_MAX;
1248
54cdfdb4
TG
1249 base = cpu_base->clock_base;
1250
1251 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1252 ktime_t basenow;
998adc3d 1253 struct timerqueue_node *node;
54cdfdb4 1254
54cdfdb4
TG
1255 basenow = ktime_add(now, base->offset);
1256
998adc3d 1257 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1258 struct hrtimer *timer;
1259
998adc3d 1260 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1261
654c8e0b
AV
1262 /*
1263 * The immediate goal for using the softexpires is
1264 * minimizing wakeups, not running timers at the
1265 * earliest interrupt after their soft expiration.
1266 * This allows us to avoid using a Priority Search
1267 * Tree, which can answer a stabbing querry for
1268 * overlapping intervals and instead use the simple
1269 * BST we already have.
1270 * We don't add extra wakeups by delaying timers that
1271 * are right-of a not yet expired timer, because that
1272 * timer will have to trigger a wakeup anyway.
1273 */
1274
1275 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1276 ktime_t expires;
1277
cc584b21 1278 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1279 base->offset);
1280 if (expires.tv64 < expires_next.tv64)
1281 expires_next = expires;
1282 break;
1283 }
1284
c6a2a177 1285 __run_hrtimer(timer, &basenow);
54cdfdb4 1286 }
54cdfdb4
TG
1287 base++;
1288 }
1289
6ff7041d
TG
1290 /*
1291 * Store the new expiry value so the migration code can verify
1292 * against it.
1293 */
54cdfdb4 1294 cpu_base->expires_next = expires_next;
ecb49d1a 1295 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1296
1297 /* Reprogramming necessary ? */
41d2e494
TG
1298 if (expires_next.tv64 == KTIME_MAX ||
1299 !tick_program_event(expires_next, 0)) {
1300 cpu_base->hang_detected = 0;
1301 return;
54cdfdb4 1302 }
41d2e494
TG
1303
1304 /*
1305 * The next timer was already expired due to:
1306 * - tracing
1307 * - long lasting callbacks
1308 * - being scheduled away when running in a VM
1309 *
1310 * We need to prevent that we loop forever in the hrtimer
1311 * interrupt routine. We give it 3 attempts to avoid
1312 * overreacting on some spurious event.
1313 */
1314 now = ktime_get();
1315 cpu_base->nr_retries++;
1316 if (++retries < 3)
1317 goto retry;
1318 /*
1319 * Give the system a chance to do something else than looping
1320 * here. We stored the entry time, so we know exactly how long
1321 * we spent here. We schedule the next event this amount of
1322 * time away.
1323 */
1324 cpu_base->nr_hangs++;
1325 cpu_base->hang_detected = 1;
1326 delta = ktime_sub(now, entry_time);
1327 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1328 cpu_base->max_hang_time = delta;
1329 /*
1330 * Limit it to a sensible value as we enforce a longer
1331 * delay. Give the CPU at least 100ms to catch up.
1332 */
1333 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1334 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1335 else
1336 expires_next = ktime_add(now, delta);
1337 tick_program_event(expires_next, 1);
1338 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1339 ktime_to_ns(delta));
54cdfdb4
TG
1340}
1341
8bdec955
TG
1342/*
1343 * local version of hrtimer_peek_ahead_timers() called with interrupts
1344 * disabled.
1345 */
1346static void __hrtimer_peek_ahead_timers(void)
1347{
1348 struct tick_device *td;
1349
1350 if (!hrtimer_hres_active())
1351 return;
1352
1353 td = &__get_cpu_var(tick_cpu_device);
1354 if (td && td->evtdev)
1355 hrtimer_interrupt(td->evtdev);
1356}
1357
2e94d1f7
AV
1358/**
1359 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1360 *
1361 * hrtimer_peek_ahead_timers will peek at the timer queue of
1362 * the current cpu and check if there are any timers for which
1363 * the soft expires time has passed. If any such timers exist,
1364 * they are run immediately and then removed from the timer queue.
1365 *
1366 */
1367void hrtimer_peek_ahead_timers(void)
1368{
643bdf68 1369 unsigned long flags;
dc4304f7 1370
2e94d1f7 1371 local_irq_save(flags);
8bdec955 1372 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1373 local_irq_restore(flags);
1374}
1375
a6037b61
PZ
1376static void run_hrtimer_softirq(struct softirq_action *h)
1377{
1378 hrtimer_peek_ahead_timers();
1379}
1380
82c5b7b5
IM
1381#else /* CONFIG_HIGH_RES_TIMERS */
1382
1383static inline void __hrtimer_peek_ahead_timers(void) { }
1384
1385#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1386
d3d74453
PZ
1387/*
1388 * Called from timer softirq every jiffy, expire hrtimers:
1389 *
1390 * For HRT its the fall back code to run the softirq in the timer
1391 * softirq context in case the hrtimer initialization failed or has
1392 * not been done yet.
1393 */
1394void hrtimer_run_pending(void)
1395{
d3d74453
PZ
1396 if (hrtimer_hres_active())
1397 return;
54cdfdb4 1398
d3d74453
PZ
1399 /*
1400 * This _is_ ugly: We have to check in the softirq context,
1401 * whether we can switch to highres and / or nohz mode. The
1402 * clocksource switch happens in the timer interrupt with
1403 * xtime_lock held. Notification from there only sets the
1404 * check bit in the tick_oneshot code, otherwise we might
1405 * deadlock vs. xtime_lock.
1406 */
1407 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1408 hrtimer_switch_to_hres();
54cdfdb4
TG
1409}
1410
c0a31329 1411/*
d3d74453 1412 * Called from hardirq context every jiffy
c0a31329 1413 */
833883d9 1414void hrtimer_run_queues(void)
c0a31329 1415{
998adc3d 1416 struct timerqueue_node *node;
833883d9
DS
1417 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1418 struct hrtimer_clock_base *base;
1419 int index, gettime = 1;
c0a31329 1420
833883d9 1421 if (hrtimer_hres_active())
3055adda
DS
1422 return;
1423
833883d9
DS
1424 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1425 base = &cpu_base->clock_base[index];
b007c389 1426 if (!timerqueue_getnext(&base->active))
d3d74453 1427 continue;
833883d9 1428
d7cfb60c 1429 if (gettime) {
833883d9
DS
1430 hrtimer_get_softirq_time(cpu_base);
1431 gettime = 0;
b75f7a51 1432 }
d3d74453 1433
ecb49d1a 1434 raw_spin_lock(&cpu_base->lock);
c0a31329 1435
b007c389 1436 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1437 struct hrtimer *timer;
54cdfdb4 1438
998adc3d 1439 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1440 if (base->softirq_time.tv64 <=
1441 hrtimer_get_expires_tv64(timer))
833883d9
DS
1442 break;
1443
c6a2a177 1444 __run_hrtimer(timer, &base->softirq_time);
833883d9 1445 }
ecb49d1a 1446 raw_spin_unlock(&cpu_base->lock);
833883d9 1447 }
c0a31329
TG
1448}
1449
10c94ec1
TG
1450/*
1451 * Sleep related functions:
1452 */
c9cb2e3d 1453static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1454{
1455 struct hrtimer_sleeper *t =
1456 container_of(timer, struct hrtimer_sleeper, timer);
1457 struct task_struct *task = t->task;
1458
1459 t->task = NULL;
1460 if (task)
1461 wake_up_process(task);
1462
1463 return HRTIMER_NORESTART;
1464}
1465
36c8b586 1466void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1467{
1468 sl->timer.function = hrtimer_wakeup;
1469 sl->task = task;
1470}
2bc481cf 1471EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1472
669d7868 1473static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1474{
669d7868 1475 hrtimer_init_sleeper(t, current);
10c94ec1 1476
432569bb
RZ
1477 do {
1478 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1479 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1480 if (!hrtimer_active(&t->timer))
1481 t->task = NULL;
432569bb 1482
54cdfdb4
TG
1483 if (likely(t->task))
1484 schedule();
432569bb 1485
669d7868 1486 hrtimer_cancel(&t->timer);
c9cb2e3d 1487 mode = HRTIMER_MODE_ABS;
669d7868
TG
1488
1489 } while (t->task && !signal_pending(current));
432569bb 1490
3588a085
PZ
1491 __set_current_state(TASK_RUNNING);
1492
669d7868 1493 return t->task == NULL;
10c94ec1
TG
1494}
1495
080344b9
ON
1496static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1497{
1498 struct timespec rmt;
1499 ktime_t rem;
1500
cc584b21 1501 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1502 if (rem.tv64 <= 0)
1503 return 0;
1504 rmt = ktime_to_timespec(rem);
1505
1506 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1507 return -EFAULT;
1508
1509 return 1;
1510}
1511
1711ef38 1512long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1513{
669d7868 1514 struct hrtimer_sleeper t;
080344b9 1515 struct timespec __user *rmtp;
237fc6e7 1516 int ret = 0;
10c94ec1 1517
237fc6e7
TG
1518 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1519 HRTIMER_MODE_ABS);
cc584b21 1520 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1521
c9cb2e3d 1522 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1523 goto out;
10c94ec1 1524
029a07e0 1525 rmtp = restart->nanosleep.rmtp;
432569bb 1526 if (rmtp) {
237fc6e7 1527 ret = update_rmtp(&t.timer, rmtp);
080344b9 1528 if (ret <= 0)
237fc6e7 1529 goto out;
432569bb 1530 }
10c94ec1 1531
10c94ec1 1532 /* The other values in restart are already filled in */
237fc6e7
TG
1533 ret = -ERESTART_RESTARTBLOCK;
1534out:
1535 destroy_hrtimer_on_stack(&t.timer);
1536 return ret;
10c94ec1
TG
1537}
1538
080344b9 1539long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1540 const enum hrtimer_mode mode, const clockid_t clockid)
1541{
1542 struct restart_block *restart;
669d7868 1543 struct hrtimer_sleeper t;
237fc6e7 1544 int ret = 0;
3bd01206
AV
1545 unsigned long slack;
1546
1547 slack = current->timer_slack_ns;
1548 if (rt_task(current))
1549 slack = 0;
10c94ec1 1550
237fc6e7 1551 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1552 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1553 if (do_nanosleep(&t, mode))
237fc6e7 1554 goto out;
10c94ec1 1555
7978672c 1556 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1557 if (mode == HRTIMER_MODE_ABS) {
1558 ret = -ERESTARTNOHAND;
1559 goto out;
1560 }
10c94ec1 1561
432569bb 1562 if (rmtp) {
237fc6e7 1563 ret = update_rmtp(&t.timer, rmtp);
080344b9 1564 if (ret <= 0)
237fc6e7 1565 goto out;
432569bb 1566 }
10c94ec1
TG
1567
1568 restart = &current_thread_info()->restart_block;
1711ef38 1569 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1570 restart->nanosleep.index = t.timer.base->index;
1571 restart->nanosleep.rmtp = rmtp;
cc584b21 1572 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1573
237fc6e7
TG
1574 ret = -ERESTART_RESTARTBLOCK;
1575out:
1576 destroy_hrtimer_on_stack(&t.timer);
1577 return ret;
10c94ec1
TG
1578}
1579
58fd3aa2
HC
1580SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1581 struct timespec __user *, rmtp)
6ba1b912 1582{
080344b9 1583 struct timespec tu;
6ba1b912
TG
1584
1585 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1586 return -EFAULT;
1587
1588 if (!timespec_valid(&tu))
1589 return -EINVAL;
1590
080344b9 1591 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1592}
1593
c0a31329
TG
1594/*
1595 * Functions related to boot-time initialization:
1596 */
0ec160dd 1597static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1598{
3c8aa39d 1599 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1600 int i;
1601
ecb49d1a 1602 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1603
998adc3d 1604 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1605 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1606 timerqueue_init_head(&cpu_base->clock_base[i].active);
1607 }
3c8aa39d 1608
54cdfdb4 1609 hrtimer_init_hres(cpu_base);
c0a31329
TG
1610}
1611
1612#ifdef CONFIG_HOTPLUG_CPU
1613
ca109491 1614static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1615 struct hrtimer_clock_base *new_base)
c0a31329
TG
1616{
1617 struct hrtimer *timer;
998adc3d 1618 struct timerqueue_node *node;
c0a31329 1619
998adc3d
JS
1620 while ((node = timerqueue_getnext(&old_base->active))) {
1621 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1622 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1623 debug_deactivate(timer);
b00c1a99
TG
1624
1625 /*
1626 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1627 * timer could be seen as !active and just vanish away
1628 * under us on another CPU
1629 */
1630 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1631 timer->base = new_base;
54cdfdb4 1632 /*
e3f1d883
TG
1633 * Enqueue the timers on the new cpu. This does not
1634 * reprogram the event device in case the timer
1635 * expires before the earliest on this CPU, but we run
1636 * hrtimer_interrupt after we migrated everything to
1637 * sort out already expired timers and reprogram the
1638 * event device.
54cdfdb4 1639 */
a6037b61 1640 enqueue_hrtimer(timer, new_base);
41e1022e 1641
b00c1a99
TG
1642 /* Clear the migration state bit */
1643 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1644 }
1645}
1646
d5fd43c4 1647static void migrate_hrtimers(int scpu)
c0a31329 1648{
3c8aa39d 1649 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1650 int i;
c0a31329 1651
37810659 1652 BUG_ON(cpu_online(scpu));
37810659 1653 tick_cancel_sched_timer(scpu);
731a55ba
TG
1654
1655 local_irq_disable();
1656 old_base = &per_cpu(hrtimer_bases, scpu);
1657 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1658 /*
1659 * The caller is globally serialized and nobody else
1660 * takes two locks at once, deadlock is not possible.
1661 */
ecb49d1a
TG
1662 raw_spin_lock(&new_base->lock);
1663 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1664
3c8aa39d 1665 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1666 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1667 &new_base->clock_base[i]);
c0a31329
TG
1668 }
1669
ecb49d1a
TG
1670 raw_spin_unlock(&old_base->lock);
1671 raw_spin_unlock(&new_base->lock);
37810659 1672
731a55ba
TG
1673 /* Check, if we got expired work to do */
1674 __hrtimer_peek_ahead_timers();
1675 local_irq_enable();
c0a31329 1676}
37810659 1677
c0a31329
TG
1678#endif /* CONFIG_HOTPLUG_CPU */
1679
8c78f307 1680static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1681 unsigned long action, void *hcpu)
1682{
b2e3c0ad 1683 int scpu = (long)hcpu;
c0a31329
TG
1684
1685 switch (action) {
1686
1687 case CPU_UP_PREPARE:
8bb78442 1688 case CPU_UP_PREPARE_FROZEN:
37810659 1689 init_hrtimers_cpu(scpu);
c0a31329
TG
1690 break;
1691
1692#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1693 case CPU_DYING:
1694 case CPU_DYING_FROZEN:
1695 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1696 break;
c0a31329 1697 case CPU_DEAD:
8bb78442 1698 case CPU_DEAD_FROZEN:
b2e3c0ad 1699 {
37810659 1700 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1701 migrate_hrtimers(scpu);
c0a31329 1702 break;
b2e3c0ad 1703 }
c0a31329
TG
1704#endif
1705
1706 default:
1707 break;
1708 }
1709
1710 return NOTIFY_OK;
1711}
1712
8c78f307 1713static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1714 .notifier_call = hrtimer_cpu_notify,
1715};
1716
1717void __init hrtimers_init(void)
1718{
e06383db
JS
1719 hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
1720 hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
1721
c0a31329
TG
1722 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1723 (void *)(long)smp_processor_id());
1724 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1725#ifdef CONFIG_HIGH_RES_TIMERS
1726 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1727#endif
c0a31329
TG
1728}
1729
7bb67439 1730/**
351b3f7a 1731 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1732 * @expires: timeout value (ktime_t)
654c8e0b 1733 * @delta: slack in expires timeout (ktime_t)
7bb67439 1734 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1735 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1736 */
351b3f7a
CE
1737int __sched
1738schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1739 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1740{
1741 struct hrtimer_sleeper t;
1742
1743 /*
1744 * Optimize when a zero timeout value is given. It does not
1745 * matter whether this is an absolute or a relative time.
1746 */
1747 if (expires && !expires->tv64) {
1748 __set_current_state(TASK_RUNNING);
1749 return 0;
1750 }
1751
1752 /*
43b21013 1753 * A NULL parameter means "infinite"
7bb67439
AV
1754 */
1755 if (!expires) {
1756 schedule();
1757 __set_current_state(TASK_RUNNING);
1758 return -EINTR;
1759 }
1760
351b3f7a 1761 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1762 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1763
1764 hrtimer_init_sleeper(&t, current);
1765
cc584b21 1766 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1767 if (!hrtimer_active(&t.timer))
1768 t.task = NULL;
1769
1770 if (likely(t.task))
1771 schedule();
1772
1773 hrtimer_cancel(&t.timer);
1774 destroy_hrtimer_on_stack(&t.timer);
1775
1776 __set_current_state(TASK_RUNNING);
1777
1778 return !t.task ? 0 : -EINTR;
1779}
351b3f7a
CE
1780
1781/**
1782 * schedule_hrtimeout_range - sleep until timeout
1783 * @expires: timeout value (ktime_t)
1784 * @delta: slack in expires timeout (ktime_t)
1785 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1786 *
1787 * Make the current task sleep until the given expiry time has
1788 * elapsed. The routine will return immediately unless
1789 * the current task state has been set (see set_current_state()).
1790 *
1791 * The @delta argument gives the kernel the freedom to schedule the
1792 * actual wakeup to a time that is both power and performance friendly.
1793 * The kernel give the normal best effort behavior for "@expires+@delta",
1794 * but may decide to fire the timer earlier, but no earlier than @expires.
1795 *
1796 * You can set the task state as follows -
1797 *
1798 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1799 * pass before the routine returns.
1800 *
1801 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1802 * delivered to the current task.
1803 *
1804 * The current task state is guaranteed to be TASK_RUNNING when this
1805 * routine returns.
1806 *
1807 * Returns 0 when the timer has expired otherwise -EINTR
1808 */
1809int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1810 const enum hrtimer_mode mode)
1811{
1812 return schedule_hrtimeout_range_clock(expires, delta, mode,
1813 CLOCK_MONOTONIC);
1814}
654c8e0b
AV
1815EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1816
1817/**
1818 * schedule_hrtimeout - sleep until timeout
1819 * @expires: timeout value (ktime_t)
1820 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1821 *
1822 * Make the current task sleep until the given expiry time has
1823 * elapsed. The routine will return immediately unless
1824 * the current task state has been set (see set_current_state()).
1825 *
1826 * You can set the task state as follows -
1827 *
1828 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1829 * pass before the routine returns.
1830 *
1831 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1832 * delivered to the current task.
1833 *
1834 * The current task state is guaranteed to be TASK_RUNNING when this
1835 * routine returns.
1836 *
1837 * Returns 0 when the timer has expired otherwise -EINTR
1838 */
1839int __sched schedule_hrtimeout(ktime_t *expires,
1840 const enum hrtimer_mode mode)
1841{
1842 return schedule_hrtimeout_range(expires, 0, mode);
1843}
7bb67439 1844EXPORT_SYMBOL_GPL(schedule_hrtimeout);