]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/hrtimer.c
hrtimer: removing all ur callback modes
[mirror_ubuntu-jammy-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
237fc6e7 46#include <linux/debugobjects.h>
c0a31329
TG
47
48#include <asm/uaccess.h>
49
50/**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
d316c57f 55ktime_t ktime_get(void)
c0a31329
TG
56{
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62}
641b9e0e 63EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
64
65/**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
d316c57f 70ktime_t ktime_get_real(void)
c0a31329
TG
71{
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77}
78
79EXPORT_SYMBOL_GPL(ktime_get_real);
80
81/*
82 * The timer bases:
7978672c
GA
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
c0a31329 89 */
54cdfdb4 90DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 91{
3c8aa39d
TG
92
93 .clock_base =
c0a31329 94 {
3c8aa39d
TG
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
54cdfdb4 98 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
54cdfdb4 103 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
104 },
105 }
c0a31329
TG
106};
107
108/**
109 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 114 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
115 */
116void ktime_get_ts(struct timespec *ts)
117{
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130}
69778e32 131EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 132
92127c7a
TG
133/*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
3c8aa39d 137static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
138{
139 ktime_t xtim, tomono;
ad28d94a 140 struct timespec xts, tom;
92127c7a
TG
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
2c6b47de 145 xts = current_kernel_time();
ad28d94a 146 tom = wall_to_monotonic;
92127c7a
TG
147 } while (read_seqretry(&xtime_lock, seq));
148
f4304ab2 149 xtim = timespec_to_ktime(xts);
ad28d94a 150 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
92127c7a
TG
154}
155
c0a31329
TG
156/*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160#ifdef CONFIG_SMP
161
c0a31329
TG
162/*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
3c8aa39d
TG
174static
175struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
c0a31329 177{
3c8aa39d 178 struct hrtimer_clock_base *base;
c0a31329
TG
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
3c8aa39d 183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
3c8aa39d 187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
188 }
189 cpu_relax();
190 }
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
3c8aa39d
TG
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 198{
3c8aa39d
TG
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 201
3c8aa39d
TG
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
54cdfdb4 215 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
3c8aa39d
TG
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
222 timer->base = new_base;
223 }
224 return new_base;
225}
226
227#else /* CONFIG_SMP */
228
3c8aa39d 229static inline struct hrtimer_clock_base *
c0a31329
TG
230lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231{
3c8aa39d 232 struct hrtimer_clock_base *base = timer->base;
c0a31329 233
3c8aa39d 234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
235
236 return base;
237}
238
54cdfdb4 239# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
240
241#endif /* !CONFIG_SMP */
242
243/*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247#if BITS_PER_LONG < 64
248# ifndef CONFIG_KTIME_SCALAR
249/**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257{
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269}
b8b8fd2d
DH
270
271EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
272
273/**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281{
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293}
294
295EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
296# endif /* !CONFIG_KTIME_SCALAR */
297
298/*
299 * Divide a ktime value by a nanosecond value
300 */
4d672e7a 301u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 302{
900cfa46 303 u64 dclc;
c0a31329
TG
304 int sft = 0;
305
900cfa46 306 dclc = ktime_to_ns(kt);
c0a31329
TG
307 /* Make sure the divisor is less than 2^32: */
308 while (div >> 32) {
309 sft++;
310 div >>= 1;
311 }
312 dclc >>= sft;
313 do_div(dclc, (unsigned long) div);
314
4d672e7a 315 return dclc;
c0a31329 316}
c0a31329
TG
317#endif /* BITS_PER_LONG >= 64 */
318
5a7780e7
TG
319/*
320 * Add two ktime values and do a safety check for overflow:
321 */
322ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323{
324 ktime_t res = ktime_add(lhs, rhs);
325
326 /*
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
329 */
330 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
331 res = ktime_set(KTIME_SEC_MAX, 0);
332
333 return res;
334}
335
237fc6e7
TG
336#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338static struct debug_obj_descr hrtimer_debug_descr;
339
340/*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345{
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364{
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377}
378
379/*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384{
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395}
396
397static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402};
403
404static inline void debug_hrtimer_init(struct hrtimer *timer)
405{
406 debug_object_init(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_activate(struct hrtimer *timer)
410{
411 debug_object_activate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415{
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_free(struct hrtimer *timer)
420{
421 debug_object_free(timer, &hrtimer_debug_descr);
422}
423
424static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429{
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432}
433
434void destroy_hrtimer_on_stack(struct hrtimer *timer)
435{
436 debug_object_free(timer, &hrtimer_debug_descr);
437}
438
439#else
440static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif
444
54cdfdb4
TG
445/* High resolution timer related functions */
446#ifdef CONFIG_HIGH_RES_TIMERS
447
448/*
449 * High resolution timer enabled ?
450 */
451static int hrtimer_hres_enabled __read_mostly = 1;
452
453/*
454 * Enable / Disable high resolution mode
455 */
456static int __init setup_hrtimer_hres(char *str)
457{
458 if (!strcmp(str, "off"))
459 hrtimer_hres_enabled = 0;
460 else if (!strcmp(str, "on"))
461 hrtimer_hres_enabled = 1;
462 else
463 return 0;
464 return 1;
465}
466
467__setup("highres=", setup_hrtimer_hres);
468
469/*
470 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 */
472static inline int hrtimer_is_hres_enabled(void)
473{
474 return hrtimer_hres_enabled;
475}
476
477/*
478 * Is the high resolution mode active ?
479 */
480static inline int hrtimer_hres_active(void)
481{
482 return __get_cpu_var(hrtimer_bases).hres_active;
483}
484
485/*
486 * Reprogram the event source with checking both queues for the
487 * next event
488 * Called with interrupts disabled and base->lock held
489 */
490static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
491{
492 int i;
493 struct hrtimer_clock_base *base = cpu_base->clock_base;
494 ktime_t expires;
495
496 cpu_base->expires_next.tv64 = KTIME_MAX;
497
498 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
499 struct hrtimer *timer;
500
501 if (!base->first)
502 continue;
503 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
505 if (expires.tv64 < cpu_base->expires_next.tv64)
506 cpu_base->expires_next = expires;
507 }
508
509 if (cpu_base->expires_next.tv64 != KTIME_MAX)
510 tick_program_event(cpu_base->expires_next, 1);
511}
512
513/*
514 * Shared reprogramming for clock_realtime and clock_monotonic
515 *
516 * When a timer is enqueued and expires earlier than the already enqueued
517 * timers, we have to check, whether it expires earlier than the timer for
518 * which the clock event device was armed.
519 *
520 * Called with interrupts disabled and base->cpu_base.lock held
521 */
522static int hrtimer_reprogram(struct hrtimer *timer,
523 struct hrtimer_clock_base *base)
524{
525 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 526 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
527 int res;
528
cc584b21 529 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 530
54cdfdb4
TG
531 /*
532 * When the callback is running, we do not reprogram the clock event
533 * device. The timer callback is either running on a different CPU or
3a4fa0a2 534 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
535 * reprogramming is handled either by the softirq, which called the
536 * callback or at the end of the hrtimer_interrupt.
537 */
538 if (hrtimer_callback_running(timer))
539 return 0;
540
63070a79
TG
541 /*
542 * CLOCK_REALTIME timer might be requested with an absolute
543 * expiry time which is less than base->offset. Nothing wrong
544 * about that, just avoid to call into the tick code, which
545 * has now objections against negative expiry values.
546 */
547 if (expires.tv64 < 0)
548 return -ETIME;
549
54cdfdb4
TG
550 if (expires.tv64 >= expires_next->tv64)
551 return 0;
552
553 /*
554 * Clockevents returns -ETIME, when the event was in the past.
555 */
556 res = tick_program_event(expires, 0);
557 if (!IS_ERR_VALUE(res))
558 *expires_next = expires;
559 return res;
560}
561
562
563/*
564 * Retrigger next event is called after clock was set
565 *
566 * Called with interrupts disabled via on_each_cpu()
567 */
568static void retrigger_next_event(void *arg)
569{
570 struct hrtimer_cpu_base *base;
571 struct timespec realtime_offset;
572 unsigned long seq;
573
574 if (!hrtimer_hres_active())
575 return;
576
577 do {
578 seq = read_seqbegin(&xtime_lock);
579 set_normalized_timespec(&realtime_offset,
580 -wall_to_monotonic.tv_sec,
581 -wall_to_monotonic.tv_nsec);
582 } while (read_seqretry(&xtime_lock, seq));
583
584 base = &__get_cpu_var(hrtimer_bases);
585
586 /* Adjust CLOCK_REALTIME offset */
587 spin_lock(&base->lock);
588 base->clock_base[CLOCK_REALTIME].offset =
589 timespec_to_ktime(realtime_offset);
590
591 hrtimer_force_reprogram(base);
592 spin_unlock(&base->lock);
593}
594
595/*
596 * Clock realtime was set
597 *
598 * Change the offset of the realtime clock vs. the monotonic
599 * clock.
600 *
601 * We might have to reprogram the high resolution timer interrupt. On
602 * SMP we call the architecture specific code to retrigger _all_ high
603 * resolution timer interrupts. On UP we just disable interrupts and
604 * call the high resolution interrupt code.
605 */
606void clock_was_set(void)
607{
608 /* Retrigger the CPU local events everywhere */
15c8b6c1 609 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
610}
611
995f054f
IM
612/*
613 * During resume we might have to reprogram the high resolution timer
614 * interrupt (on the local CPU):
615 */
616void hres_timers_resume(void)
617{
995f054f
IM
618 /* Retrigger the CPU local events: */
619 retrigger_next_event(NULL);
620}
621
54cdfdb4
TG
622/*
623 * Initialize the high resolution related parts of cpu_base
624 */
625static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
626{
627 base->expires_next.tv64 = KTIME_MAX;
628 base->hres_active = 0;
54cdfdb4
TG
629}
630
631/*
632 * Initialize the high resolution related parts of a hrtimer
633 */
634static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
635{
54cdfdb4
TG
636}
637
ca109491
PZ
638static void __run_hrtimer(struct hrtimer *timer);
639
54cdfdb4
TG
640/*
641 * When High resolution timers are active, try to reprogram. Note, that in case
642 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
643 * check happens. The timer gets enqueued into the rbtree. The reprogramming
644 * and expiry check is done in the hrtimer_interrupt or in the softirq.
645 */
646static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
647 struct hrtimer_clock_base *base)
648{
649 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
ca109491
PZ
650 /*
651 * XXX: recursion check?
652 * hrtimer_forward() should round up with timer granularity
653 * so that we never get into inf recursion here,
654 * it doesn't do that though
655 */
656 __run_hrtimer(timer);
657 return 1;
54cdfdb4
TG
658 }
659 return 0;
660}
661
662/*
663 * Switch to high resolution mode
664 */
f8953856 665static int hrtimer_switch_to_hres(void)
54cdfdb4 666{
820de5c3
IM
667 int cpu = smp_processor_id();
668 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
669 unsigned long flags;
670
671 if (base->hres_active)
f8953856 672 return 1;
54cdfdb4
TG
673
674 local_irq_save(flags);
675
676 if (tick_init_highres()) {
677 local_irq_restore(flags);
820de5c3
IM
678 printk(KERN_WARNING "Could not switch to high resolution "
679 "mode on CPU %d\n", cpu);
f8953856 680 return 0;
54cdfdb4
TG
681 }
682 base->hres_active = 1;
683 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
684 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
685
686 tick_setup_sched_timer();
687
688 /* "Retrigger" the interrupt to get things going */
689 retrigger_next_event(NULL);
690 local_irq_restore(flags);
edfed66e 691 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 692 smp_processor_id());
f8953856 693 return 1;
54cdfdb4
TG
694}
695
696#else
697
698static inline int hrtimer_hres_active(void) { return 0; }
699static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 700static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
701static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
702static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
703 struct hrtimer_clock_base *base)
704{
705 return 0;
706}
54cdfdb4
TG
707static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
708static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
d3d74453
PZ
709static inline int hrtimer_reprogram(struct hrtimer *timer,
710 struct hrtimer_clock_base *base)
711{
712 return 0;
713}
54cdfdb4
TG
714
715#endif /* CONFIG_HIGH_RES_TIMERS */
716
82f67cd9
IM
717#ifdef CONFIG_TIMER_STATS
718void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
719{
720 if (timer->start_site)
721 return;
722
723 timer->start_site = addr;
724 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
725 timer->start_pid = current->pid;
726}
727#endif
728
c0a31329 729/*
6506f2aa 730 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
731 */
732static inline
733void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
734{
3c8aa39d 735 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
736}
737
738/**
739 * hrtimer_forward - forward the timer expiry
c0a31329 740 * @timer: hrtimer to forward
44f21475 741 * @now: forward past this time
c0a31329
TG
742 * @interval: the interval to forward
743 *
744 * Forward the timer expiry so it will expire in the future.
8dca6f33 745 * Returns the number of overruns.
c0a31329 746 */
4d672e7a 747u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 748{
4d672e7a 749 u64 orun = 1;
44f21475 750 ktime_t delta;
c0a31329 751
cc584b21 752 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
753
754 if (delta.tv64 < 0)
755 return 0;
756
c9db4fa1
TG
757 if (interval.tv64 < timer->base->resolution.tv64)
758 interval.tv64 = timer->base->resolution.tv64;
759
c0a31329 760 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 761 s64 incr = ktime_to_ns(interval);
c0a31329
TG
762
763 orun = ktime_divns(delta, incr);
cc584b21
AV
764 hrtimer_add_expires_ns(timer, incr * orun);
765 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
766 return orun;
767 /*
768 * This (and the ktime_add() below) is the
769 * correction for exact:
770 */
771 orun++;
772 }
cc584b21 773 hrtimer_add_expires(timer, interval);
c0a31329
TG
774
775 return orun;
776}
6bdb6b62 777EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
778
779/*
780 * enqueue_hrtimer - internal function to (re)start a timer
781 *
782 * The timer is inserted in expiry order. Insertion into the
783 * red black tree is O(log(n)). Must hold the base lock.
784 */
3c8aa39d 785static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 786 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
787{
788 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
789 struct rb_node *parent = NULL;
790 struct hrtimer *entry;
99bc2fcb 791 int leftmost = 1;
c0a31329 792
237fc6e7
TG
793 debug_hrtimer_activate(timer);
794
c0a31329
TG
795 /*
796 * Find the right place in the rbtree:
797 */
798 while (*link) {
799 parent = *link;
800 entry = rb_entry(parent, struct hrtimer, node);
801 /*
802 * We dont care about collisions. Nodes with
803 * the same expiry time stay together.
804 */
cc584b21
AV
805 if (hrtimer_get_expires_tv64(timer) <
806 hrtimer_get_expires_tv64(entry)) {
c0a31329 807 link = &(*link)->rb_left;
99bc2fcb 808 } else {
c0a31329 809 link = &(*link)->rb_right;
99bc2fcb
IM
810 leftmost = 0;
811 }
c0a31329
TG
812 }
813
814 /*
288867ec
TG
815 * Insert the timer to the rbtree and check whether it
816 * replaces the first pending timer
c0a31329 817 */
99bc2fcb 818 if (leftmost) {
54cdfdb4
TG
819 /*
820 * Reprogram the clock event device. When the timer is already
821 * expired hrtimer_enqueue_reprogram has either called the
822 * callback or added it to the pending list and raised the
823 * softirq.
824 *
825 * This is a NOP for !HIGHRES
826 */
827 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
828 return;
829
830 base->first = &timer->node;
831 }
832
c0a31329
TG
833 rb_link_node(&timer->node, parent, link);
834 rb_insert_color(&timer->node, &base->active);
303e967f
TG
835 /*
836 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
837 * state of a possibly running callback.
838 */
839 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 840}
c0a31329
TG
841
842/*
843 * __remove_hrtimer - internal function to remove a timer
844 *
845 * Caller must hold the base lock.
54cdfdb4
TG
846 *
847 * High resolution timer mode reprograms the clock event device when the
848 * timer is the one which expires next. The caller can disable this by setting
849 * reprogram to zero. This is useful, when the context does a reprogramming
850 * anyway (e.g. timer interrupt)
c0a31329 851 */
3c8aa39d 852static void __remove_hrtimer(struct hrtimer *timer,
303e967f 853 struct hrtimer_clock_base *base,
54cdfdb4 854 unsigned long newstate, int reprogram)
c0a31329 855{
ca109491 856 if (timer->state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
857 /*
858 * Remove the timer from the rbtree and replace the
859 * first entry pointer if necessary.
860 */
861 if (base->first == &timer->node) {
862 base->first = rb_next(&timer->node);
863 /* Reprogram the clock event device. if enabled */
864 if (reprogram && hrtimer_hres_active())
865 hrtimer_force_reprogram(base->cpu_base);
866 }
867 rb_erase(&timer->node, &base->active);
868 }
303e967f 869 timer->state = newstate;
c0a31329
TG
870}
871
872/*
873 * remove hrtimer, called with base lock held
874 */
875static inline int
3c8aa39d 876remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 877{
303e967f 878 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
879 int reprogram;
880
881 /*
882 * Remove the timer and force reprogramming when high
883 * resolution mode is active and the timer is on the current
884 * CPU. If we remove a timer on another CPU, reprogramming is
885 * skipped. The interrupt event on this CPU is fired and
886 * reprogramming happens in the interrupt handler. This is a
887 * rare case and less expensive than a smp call.
888 */
237fc6e7 889 debug_hrtimer_deactivate(timer);
82f67cd9 890 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
891 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
892 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
893 reprogram);
c0a31329
TG
894 return 1;
895 }
896 return 0;
897}
898
899/**
e1dd7bc5 900 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
c0a31329
TG
901 * @timer: the timer to be added
902 * @tim: expiry time
da8f2e17 903 * @delta_ns: "slack" range for the timer
c0a31329
TG
904 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
905 *
906 * Returns:
907 * 0 on success
908 * 1 when the timer was active
909 */
910int
da8f2e17
AV
911hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
912 const enum hrtimer_mode mode)
c0a31329 913{
3c8aa39d 914 struct hrtimer_clock_base *base, *new_base;
c0a31329 915 unsigned long flags;
ca109491 916 int ret;
c0a31329
TG
917
918 base = lock_hrtimer_base(timer, &flags);
919
920 /* Remove an active timer from the queue: */
921 ret = remove_hrtimer(timer, base);
922
923 /* Switch the timer base, if necessary: */
924 new_base = switch_hrtimer_base(timer, base);
925
c9cb2e3d 926 if (mode == HRTIMER_MODE_REL) {
5a7780e7 927 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
928 /*
929 * CONFIG_TIME_LOW_RES is a temporary way for architectures
930 * to signal that they simply return xtime in
931 * do_gettimeoffset(). In this case we want to round up by
932 * resolution when starting a relative timer, to avoid short
933 * timeouts. This will go away with the GTOD framework.
934 */
935#ifdef CONFIG_TIME_LOW_RES
5a7780e7 936 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
937#endif
938 }
237fc6e7 939
da8f2e17 940 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 941
82f67cd9
IM
942 timer_stats_hrtimer_set_start_info(timer);
943
935c631d
IM
944 /*
945 * Only allow reprogramming if the new base is on this CPU.
946 * (it might still be on another CPU if the timer was pending)
947 */
948 enqueue_hrtimer(timer, new_base,
949 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329
TG
950
951 unlock_hrtimer_base(timer, &flags);
952
953 return ret;
954}
da8f2e17
AV
955EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
956
957/**
e1dd7bc5 958 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
959 * @timer: the timer to be added
960 * @tim: expiry time
961 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
962 *
963 * Returns:
964 * 0 on success
965 * 1 when the timer was active
966 */
967int
968hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
969{
970 return hrtimer_start_range_ns(timer, tim, 0, mode);
971}
8d16b764 972EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 973
da8f2e17 974
c0a31329
TG
975/**
976 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
977 * @timer: hrtimer to stop
978 *
979 * Returns:
980 * 0 when the timer was not active
981 * 1 when the timer was active
982 * -1 when the timer is currently excuting the callback function and
fa9799e3 983 * cannot be stopped
c0a31329
TG
984 */
985int hrtimer_try_to_cancel(struct hrtimer *timer)
986{
3c8aa39d 987 struct hrtimer_clock_base *base;
c0a31329
TG
988 unsigned long flags;
989 int ret = -1;
990
991 base = lock_hrtimer_base(timer, &flags);
992
303e967f 993 if (!hrtimer_callback_running(timer))
c0a31329
TG
994 ret = remove_hrtimer(timer, base);
995
996 unlock_hrtimer_base(timer, &flags);
997
998 return ret;
999
1000}
8d16b764 1001EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1002
1003/**
1004 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1005 * @timer: the timer to be cancelled
1006 *
1007 * Returns:
1008 * 0 when the timer was not active
1009 * 1 when the timer was active
1010 */
1011int hrtimer_cancel(struct hrtimer *timer)
1012{
1013 for (;;) {
1014 int ret = hrtimer_try_to_cancel(timer);
1015
1016 if (ret >= 0)
1017 return ret;
5ef37b19 1018 cpu_relax();
c0a31329
TG
1019 }
1020}
8d16b764 1021EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1022
1023/**
1024 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1025 * @timer: the timer to read
1026 */
1027ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1028{
3c8aa39d 1029 struct hrtimer_clock_base *base;
c0a31329
TG
1030 unsigned long flags;
1031 ktime_t rem;
1032
1033 base = lock_hrtimer_base(timer, &flags);
cc584b21 1034 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1035 unlock_hrtimer_base(timer, &flags);
1036
1037 return rem;
1038}
8d16b764 1039EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1040
ee9c5785 1041#ifdef CONFIG_NO_HZ
69239749
TL
1042/**
1043 * hrtimer_get_next_event - get the time until next expiry event
1044 *
1045 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1046 * is pending.
1047 */
1048ktime_t hrtimer_get_next_event(void)
1049{
3c8aa39d
TG
1050 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1051 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1052 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1053 unsigned long flags;
1054 int i;
1055
3c8aa39d
TG
1056 spin_lock_irqsave(&cpu_base->lock, flags);
1057
54cdfdb4
TG
1058 if (!hrtimer_hres_active()) {
1059 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1060 struct hrtimer *timer;
69239749 1061
54cdfdb4
TG
1062 if (!base->first)
1063 continue;
3c8aa39d 1064
54cdfdb4 1065 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1066 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1067 delta = ktime_sub(delta, base->get_time());
1068 if (delta.tv64 < mindelta.tv64)
1069 mindelta.tv64 = delta.tv64;
1070 }
69239749 1071 }
3c8aa39d
TG
1072
1073 spin_unlock_irqrestore(&cpu_base->lock, flags);
1074
69239749
TL
1075 if (mindelta.tv64 < 0)
1076 mindelta.tv64 = 0;
1077 return mindelta;
1078}
1079#endif
1080
237fc6e7
TG
1081static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1082 enum hrtimer_mode mode)
c0a31329 1083{
3c8aa39d 1084 struct hrtimer_cpu_base *cpu_base;
c0a31329 1085
7978672c
GA
1086 memset(timer, 0, sizeof(struct hrtimer));
1087
3c8aa39d 1088 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1089
c9cb2e3d 1090 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1091 clock_id = CLOCK_MONOTONIC;
1092
3c8aa39d 1093 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1094 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1095 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1096
1097#ifdef CONFIG_TIMER_STATS
1098 timer->start_site = NULL;
1099 timer->start_pid = -1;
1100 memset(timer->start_comm, 0, TASK_COMM_LEN);
1101#endif
c0a31329 1102}
237fc6e7
TG
1103
1104/**
1105 * hrtimer_init - initialize a timer to the given clock
1106 * @timer: the timer to be initialized
1107 * @clock_id: the clock to be used
1108 * @mode: timer mode abs/rel
1109 */
1110void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1111 enum hrtimer_mode mode)
1112{
1113 debug_hrtimer_init(timer);
1114 __hrtimer_init(timer, clock_id, mode);
1115}
8d16b764 1116EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1117
1118/**
1119 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1120 * @which_clock: which clock to query
1121 * @tp: pointer to timespec variable to store the resolution
1122 *
72fd4a35
RD
1123 * Store the resolution of the clock selected by @which_clock in the
1124 * variable pointed to by @tp.
c0a31329
TG
1125 */
1126int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1127{
3c8aa39d 1128 struct hrtimer_cpu_base *cpu_base;
c0a31329 1129
3c8aa39d
TG
1130 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1131 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1132
1133 return 0;
1134}
8d16b764 1135EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1136
d3d74453
PZ
1137static void __run_hrtimer(struct hrtimer *timer)
1138{
1139 struct hrtimer_clock_base *base = timer->base;
1140 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1141 enum hrtimer_restart (*fn)(struct hrtimer *);
1142 int restart;
1143
ca109491
PZ
1144 WARN_ON(!irqs_disabled());
1145
237fc6e7 1146 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1147 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1148 timer_stats_account_hrtimer(timer);
d3d74453 1149 fn = timer->function;
ca109491
PZ
1150
1151 /*
1152 * Because we run timers from hardirq context, there is no chance
1153 * they get migrated to another cpu, therefore its safe to unlock
1154 * the timer base.
1155 */
1156 spin_unlock(&cpu_base->lock);
1157 restart = fn(timer);
1158 spin_lock(&cpu_base->lock);
d3d74453
PZ
1159
1160 /*
1161 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1162 * reprogramming of the event hardware. This happens at the end of this
1163 * function anyway.
1164 */
1165 if (restart != HRTIMER_NORESTART) {
1166 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1167 enqueue_hrtimer(timer, base, 0);
1168 }
1169 timer->state &= ~HRTIMER_STATE_CALLBACK;
1170}
1171
54cdfdb4
TG
1172#ifdef CONFIG_HIGH_RES_TIMERS
1173
1174/*
1175 * High resolution timer interrupt
1176 * Called with interrupts disabled
1177 */
1178void hrtimer_interrupt(struct clock_event_device *dev)
1179{
1180 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1181 struct hrtimer_clock_base *base;
1182 ktime_t expires_next, now;
ca109491 1183 int i;
54cdfdb4
TG
1184
1185 BUG_ON(!cpu_base->hres_active);
1186 cpu_base->nr_events++;
1187 dev->next_event.tv64 = KTIME_MAX;
1188
1189 retry:
1190 now = ktime_get();
1191
1192 expires_next.tv64 = KTIME_MAX;
1193
1194 base = cpu_base->clock_base;
1195
1196 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1197 ktime_t basenow;
1198 struct rb_node *node;
1199
1200 spin_lock(&cpu_base->lock);
1201
1202 basenow = ktime_add(now, base->offset);
1203
1204 while ((node = base->first)) {
1205 struct hrtimer *timer;
1206
1207 timer = rb_entry(node, struct hrtimer, node);
1208
654c8e0b
AV
1209 /*
1210 * The immediate goal for using the softexpires is
1211 * minimizing wakeups, not running timers at the
1212 * earliest interrupt after their soft expiration.
1213 * This allows us to avoid using a Priority Search
1214 * Tree, which can answer a stabbing querry for
1215 * overlapping intervals and instead use the simple
1216 * BST we already have.
1217 * We don't add extra wakeups by delaying timers that
1218 * are right-of a not yet expired timer, because that
1219 * timer will have to trigger a wakeup anyway.
1220 */
1221
1222 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1223 ktime_t expires;
1224
cc584b21 1225 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1226 base->offset);
1227 if (expires.tv64 < expires_next.tv64)
1228 expires_next = expires;
1229 break;
1230 }
1231
d3d74453 1232 __run_hrtimer(timer);
54cdfdb4
TG
1233 }
1234 spin_unlock(&cpu_base->lock);
1235 base++;
1236 }
1237
1238 cpu_base->expires_next = expires_next;
1239
1240 /* Reprogramming necessary ? */
1241 if (expires_next.tv64 != KTIME_MAX) {
1242 if (tick_program_event(expires_next, 0))
1243 goto retry;
1244 }
54cdfdb4
TG
1245}
1246
2e94d1f7
AV
1247/**
1248 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1249 *
1250 * hrtimer_peek_ahead_timers will peek at the timer queue of
1251 * the current cpu and check if there are any timers for which
1252 * the soft expires time has passed. If any such timers exist,
1253 * they are run immediately and then removed from the timer queue.
1254 *
1255 */
1256void hrtimer_peek_ahead_timers(void)
1257{
2e94d1f7 1258 struct tick_device *td;
643bdf68 1259 unsigned long flags;
dc4304f7
AV
1260
1261 if (!hrtimer_hres_active())
2e94d1f7
AV
1262 return;
1263
1264 local_irq_save(flags);
1265 td = &__get_cpu_var(tick_cpu_device);
643bdf68
TG
1266 if (td && td->evtdev)
1267 hrtimer_interrupt(td->evtdev);
2e94d1f7
AV
1268 local_irq_restore(flags);
1269}
1270
d3d74453 1271#endif /* CONFIG_HIGH_RES_TIMERS */
82f67cd9 1272
d3d74453
PZ
1273/*
1274 * Called from timer softirq every jiffy, expire hrtimers:
1275 *
1276 * For HRT its the fall back code to run the softirq in the timer
1277 * softirq context in case the hrtimer initialization failed or has
1278 * not been done yet.
1279 */
1280void hrtimer_run_pending(void)
1281{
d3d74453
PZ
1282 if (hrtimer_hres_active())
1283 return;
54cdfdb4 1284
d3d74453
PZ
1285 /*
1286 * This _is_ ugly: We have to check in the softirq context,
1287 * whether we can switch to highres and / or nohz mode. The
1288 * clocksource switch happens in the timer interrupt with
1289 * xtime_lock held. Notification from there only sets the
1290 * check bit in the tick_oneshot code, otherwise we might
1291 * deadlock vs. xtime_lock.
1292 */
1293 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1294 hrtimer_switch_to_hres();
54cdfdb4
TG
1295}
1296
c0a31329 1297/*
d3d74453 1298 * Called from hardirq context every jiffy
c0a31329 1299 */
833883d9 1300void hrtimer_run_queues(void)
c0a31329 1301{
288867ec 1302 struct rb_node *node;
833883d9
DS
1303 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1304 struct hrtimer_clock_base *base;
1305 int index, gettime = 1;
c0a31329 1306
833883d9 1307 if (hrtimer_hres_active())
3055adda
DS
1308 return;
1309
833883d9
DS
1310 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1311 base = &cpu_base->clock_base[index];
c0a31329 1312
833883d9 1313 if (!base->first)
d3d74453 1314 continue;
833883d9 1315
d7cfb60c 1316 if (gettime) {
833883d9
DS
1317 hrtimer_get_softirq_time(cpu_base);
1318 gettime = 0;
b75f7a51 1319 }
d3d74453 1320
833883d9 1321 spin_lock(&cpu_base->lock);
c0a31329 1322
833883d9
DS
1323 while ((node = base->first)) {
1324 struct hrtimer *timer;
54cdfdb4 1325
833883d9 1326 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1327 if (base->softirq_time.tv64 <=
1328 hrtimer_get_expires_tv64(timer))
833883d9
DS
1329 break;
1330
833883d9
DS
1331 __run_hrtimer(timer);
1332 }
1333 spin_unlock(&cpu_base->lock);
1334 }
c0a31329
TG
1335}
1336
10c94ec1
TG
1337/*
1338 * Sleep related functions:
1339 */
c9cb2e3d 1340static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1341{
1342 struct hrtimer_sleeper *t =
1343 container_of(timer, struct hrtimer_sleeper, timer);
1344 struct task_struct *task = t->task;
1345
1346 t->task = NULL;
1347 if (task)
1348 wake_up_process(task);
1349
1350 return HRTIMER_NORESTART;
1351}
1352
36c8b586 1353void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1354{
1355 sl->timer.function = hrtimer_wakeup;
1356 sl->task = task;
1357}
1358
669d7868 1359static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1360{
669d7868 1361 hrtimer_init_sleeper(t, current);
10c94ec1 1362
432569bb
RZ
1363 do {
1364 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1365 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1366 if (!hrtimer_active(&t->timer))
1367 t->task = NULL;
432569bb 1368
54cdfdb4
TG
1369 if (likely(t->task))
1370 schedule();
432569bb 1371
669d7868 1372 hrtimer_cancel(&t->timer);
c9cb2e3d 1373 mode = HRTIMER_MODE_ABS;
669d7868
TG
1374
1375 } while (t->task && !signal_pending(current));
432569bb 1376
3588a085
PZ
1377 __set_current_state(TASK_RUNNING);
1378
669d7868 1379 return t->task == NULL;
10c94ec1
TG
1380}
1381
080344b9
ON
1382static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1383{
1384 struct timespec rmt;
1385 ktime_t rem;
1386
cc584b21 1387 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1388 if (rem.tv64 <= 0)
1389 return 0;
1390 rmt = ktime_to_timespec(rem);
1391
1392 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1393 return -EFAULT;
1394
1395 return 1;
1396}
1397
1711ef38 1398long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1399{
669d7868 1400 struct hrtimer_sleeper t;
080344b9 1401 struct timespec __user *rmtp;
237fc6e7 1402 int ret = 0;
10c94ec1 1403
237fc6e7
TG
1404 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1405 HRTIMER_MODE_ABS);
cc584b21 1406 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1407
c9cb2e3d 1408 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1409 goto out;
10c94ec1 1410
029a07e0 1411 rmtp = restart->nanosleep.rmtp;
432569bb 1412 if (rmtp) {
237fc6e7 1413 ret = update_rmtp(&t.timer, rmtp);
080344b9 1414 if (ret <= 0)
237fc6e7 1415 goto out;
432569bb 1416 }
10c94ec1 1417
10c94ec1 1418 /* The other values in restart are already filled in */
237fc6e7
TG
1419 ret = -ERESTART_RESTARTBLOCK;
1420out:
1421 destroy_hrtimer_on_stack(&t.timer);
1422 return ret;
10c94ec1
TG
1423}
1424
080344b9 1425long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1426 const enum hrtimer_mode mode, const clockid_t clockid)
1427{
1428 struct restart_block *restart;
669d7868 1429 struct hrtimer_sleeper t;
237fc6e7 1430 int ret = 0;
3bd01206
AV
1431 unsigned long slack;
1432
1433 slack = current->timer_slack_ns;
1434 if (rt_task(current))
1435 slack = 0;
10c94ec1 1436
237fc6e7 1437 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1438 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1439 if (do_nanosleep(&t, mode))
237fc6e7 1440 goto out;
10c94ec1 1441
7978672c 1442 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1443 if (mode == HRTIMER_MODE_ABS) {
1444 ret = -ERESTARTNOHAND;
1445 goto out;
1446 }
10c94ec1 1447
432569bb 1448 if (rmtp) {
237fc6e7 1449 ret = update_rmtp(&t.timer, rmtp);
080344b9 1450 if (ret <= 0)
237fc6e7 1451 goto out;
432569bb 1452 }
10c94ec1
TG
1453
1454 restart = &current_thread_info()->restart_block;
1711ef38 1455 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1456 restart->nanosleep.index = t.timer.base->index;
1457 restart->nanosleep.rmtp = rmtp;
cc584b21 1458 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1459
237fc6e7
TG
1460 ret = -ERESTART_RESTARTBLOCK;
1461out:
1462 destroy_hrtimer_on_stack(&t.timer);
1463 return ret;
10c94ec1
TG
1464}
1465
6ba1b912
TG
1466asmlinkage long
1467sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1468{
080344b9 1469 struct timespec tu;
6ba1b912
TG
1470
1471 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1472 return -EFAULT;
1473
1474 if (!timespec_valid(&tu))
1475 return -EINVAL;
1476
080344b9 1477 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1478}
1479
c0a31329
TG
1480/*
1481 * Functions related to boot-time initialization:
1482 */
0ec160dd 1483static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1484{
3c8aa39d 1485 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1486 int i;
1487
3c8aa39d 1488 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1489
1490 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1491 cpu_base->clock_base[i].cpu_base = cpu_base;
1492
54cdfdb4 1493 hrtimer_init_hres(cpu_base);
c0a31329
TG
1494}
1495
1496#ifdef CONFIG_HOTPLUG_CPU
1497
ca109491
PZ
1498static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1499 struct hrtimer_clock_base *new_base, int dcpu)
c0a31329
TG
1500{
1501 struct hrtimer *timer;
1502 struct rb_node *node;
1503
1504 while ((node = rb_first(&old_base->active))) {
1505 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1506 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1507 debug_hrtimer_deactivate(timer);
b00c1a99
TG
1508
1509 /*
1510 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1511 * timer could be seen as !active and just vanish away
1512 * under us on another CPU
1513 */
1514 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1515 timer->base = new_base;
54cdfdb4
TG
1516 /*
1517 * Enqueue the timer. Allow reprogramming of the event device
1518 */
1519 enqueue_hrtimer(timer, new_base, 1);
41e1022e
TG
1520
1521#ifdef CONFIG_HIGH_RES_TIMERS
1522 /*
1523 * Happens with high res enabled when the timer was
1524 * already expired and the callback mode is
ccc7dadf
TG
1525 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1526 * enqueue code does not move them to the soft irq
1527 * pending list for performance/latency reasons, but
1528 * in the migration state, we need to do that
1529 * otherwise we end up with a stale timer.
41e1022e 1530 */
b00c1a99 1531 if (timer->state == HRTIMER_STATE_MIGRATE) {
ca109491
PZ
1532 /* XXX: running on offline cpu */
1533 __run_hrtimer(timer);
41e1022e
TG
1534 }
1535#endif
b00c1a99
TG
1536 /* Clear the migration state bit */
1537 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1538 }
1539}
1540
1541static void migrate_hrtimers(int cpu)
1542{
3c8aa39d 1543 struct hrtimer_cpu_base *old_base, *new_base;
ca109491 1544 int i;
c0a31329
TG
1545
1546 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1547 old_base = &per_cpu(hrtimer_bases, cpu);
1548 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1549
54cdfdb4 1550 tick_cancel_sched_timer(cpu);
d82f0b0f
ON
1551 /*
1552 * The caller is globally serialized and nobody else
1553 * takes two locks at once, deadlock is not possible.
1554 */
1555 spin_lock_irq(&new_base->lock);
8e60e05f 1556 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1557
3c8aa39d 1558 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491
PZ
1559 migrate_hrtimer_list(&old_base->clock_base[i],
1560 &new_base->clock_base[i], cpu);
c0a31329
TG
1561 }
1562
8e60e05f 1563 spin_unlock(&old_base->lock);
d82f0b0f 1564 spin_unlock_irq(&new_base->lock);
c0a31329
TG
1565 put_cpu_var(hrtimer_bases);
1566}
1567#endif /* CONFIG_HOTPLUG_CPU */
1568
8c78f307 1569static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1570 unsigned long action, void *hcpu)
1571{
7713a7d1 1572 unsigned int cpu = (long)hcpu;
c0a31329
TG
1573
1574 switch (action) {
1575
1576 case CPU_UP_PREPARE:
8bb78442 1577 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1578 init_hrtimers_cpu(cpu);
1579 break;
1580
1581#ifdef CONFIG_HOTPLUG_CPU
1582 case CPU_DEAD:
8bb78442 1583 case CPU_DEAD_FROZEN:
d316c57f 1584 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1585 migrate_hrtimers(cpu);
1586 break;
1587#endif
1588
1589 default:
1590 break;
1591 }
1592
1593 return NOTIFY_OK;
1594}
1595
8c78f307 1596static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1597 .notifier_call = hrtimer_cpu_notify,
1598};
1599
1600void __init hrtimers_init(void)
1601{
1602 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1603 (void *)(long)smp_processor_id());
1604 register_cpu_notifier(&hrtimers_nb);
1605}
1606
7bb67439 1607/**
654c8e0b 1608 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1609 * @expires: timeout value (ktime_t)
654c8e0b 1610 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1611 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1612 *
1613 * Make the current task sleep until the given expiry time has
1614 * elapsed. The routine will return immediately unless
1615 * the current task state has been set (see set_current_state()).
1616 *
654c8e0b
AV
1617 * The @delta argument gives the kernel the freedom to schedule the
1618 * actual wakeup to a time that is both power and performance friendly.
1619 * The kernel give the normal best effort behavior for "@expires+@delta",
1620 * but may decide to fire the timer earlier, but no earlier than @expires.
1621 *
7bb67439
AV
1622 * You can set the task state as follows -
1623 *
1624 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1625 * pass before the routine returns.
1626 *
1627 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1628 * delivered to the current task.
1629 *
1630 * The current task state is guaranteed to be TASK_RUNNING when this
1631 * routine returns.
1632 *
1633 * Returns 0 when the timer has expired otherwise -EINTR
1634 */
654c8e0b 1635int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1636 const enum hrtimer_mode mode)
1637{
1638 struct hrtimer_sleeper t;
1639
1640 /*
1641 * Optimize when a zero timeout value is given. It does not
1642 * matter whether this is an absolute or a relative time.
1643 */
1644 if (expires && !expires->tv64) {
1645 __set_current_state(TASK_RUNNING);
1646 return 0;
1647 }
1648
1649 /*
1650 * A NULL parameter means "inifinte"
1651 */
1652 if (!expires) {
1653 schedule();
1654 __set_current_state(TASK_RUNNING);
1655 return -EINTR;
1656 }
1657
1658 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1659 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1660
1661 hrtimer_init_sleeper(&t, current);
1662
cc584b21 1663 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1664 if (!hrtimer_active(&t.timer))
1665 t.task = NULL;
1666
1667 if (likely(t.task))
1668 schedule();
1669
1670 hrtimer_cancel(&t.timer);
1671 destroy_hrtimer_on_stack(&t.timer);
1672
1673 __set_current_state(TASK_RUNNING);
1674
1675 return !t.task ? 0 : -EINTR;
1676}
654c8e0b
AV
1677EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1678
1679/**
1680 * schedule_hrtimeout - sleep until timeout
1681 * @expires: timeout value (ktime_t)
1682 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1683 *
1684 * Make the current task sleep until the given expiry time has
1685 * elapsed. The routine will return immediately unless
1686 * the current task state has been set (see set_current_state()).
1687 *
1688 * You can set the task state as follows -
1689 *
1690 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1691 * pass before the routine returns.
1692 *
1693 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1694 * delivered to the current task.
1695 *
1696 * The current task state is guaranteed to be TASK_RUNNING when this
1697 * routine returns.
1698 *
1699 * Returns 0 when the timer has expired otherwise -EINTR
1700 */
1701int __sched schedule_hrtimeout(ktime_t *expires,
1702 const enum hrtimer_mode mode)
1703{
1704 return schedule_hrtimeout_range(expires, 0, mode);
1705}
7bb67439 1706EXPORT_SYMBOL_GPL(schedule_hrtimeout);