]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/hrtimer.c
ntp: Remove redundant and incorrect parameter check
[mirror_ubuntu-jammy-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a 88
48cf76f7 89 get_xtime_and_monotonic_offset(&xts, &tom);
92127c7a 90
f4304ab2 91 xtim = timespec_to_ktime(xts);
ad28d94a 92 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
93 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
94 base->clock_base[CLOCK_MONOTONIC].softirq_time =
95 ktime_add(xtim, tomono);
92127c7a
TG
96}
97
c0a31329
TG
98/*
99 * Functions and macros which are different for UP/SMP systems are kept in a
100 * single place
101 */
102#ifdef CONFIG_SMP
103
c0a31329
TG
104/*
105 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
106 * means that all timers which are tied to this base via timer->base are
107 * locked, and the base itself is locked too.
108 *
109 * So __run_timers/migrate_timers can safely modify all timers which could
110 * be found on the lists/queues.
111 *
112 * When the timer's base is locked, and the timer removed from list, it is
113 * possible to set timer->base = NULL and drop the lock: the timer remains
114 * locked.
115 */
3c8aa39d
TG
116static
117struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
118 unsigned long *flags)
c0a31329 119{
3c8aa39d 120 struct hrtimer_clock_base *base;
c0a31329
TG
121
122 for (;;) {
123 base = timer->base;
124 if (likely(base != NULL)) {
ecb49d1a 125 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
126 if (likely(base == timer->base))
127 return base;
128 /* The timer has migrated to another CPU: */
ecb49d1a 129 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
130 }
131 cpu_relax();
132 }
133}
134
6ff7041d
TG
135
136/*
137 * Get the preferred target CPU for NOHZ
138 */
139static int hrtimer_get_target(int this_cpu, int pinned)
140{
141#ifdef CONFIG_NO_HZ
83cd4fe2
VP
142 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
143 return get_nohz_timer_target();
6ff7041d
TG
144#endif
145 return this_cpu;
146}
147
148/*
149 * With HIGHRES=y we do not migrate the timer when it is expiring
150 * before the next event on the target cpu because we cannot reprogram
151 * the target cpu hardware and we would cause it to fire late.
152 *
153 * Called with cpu_base->lock of target cpu held.
154 */
155static int
156hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
157{
158#ifdef CONFIG_HIGH_RES_TIMERS
159 ktime_t expires;
160
161 if (!new_base->cpu_base->hres_active)
162 return 0;
163
164 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
165 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
166#else
167 return 0;
168#endif
169}
170
c0a31329
TG
171/*
172 * Switch the timer base to the current CPU when possible.
173 */
3c8aa39d 174static inline struct hrtimer_clock_base *
597d0275
AB
175switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
176 int pinned)
c0a31329 177{
3c8aa39d
TG
178 struct hrtimer_clock_base *new_base;
179 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
180 int this_cpu = smp_processor_id();
181 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 182
eea08f32
AB
183again:
184 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 185 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
186
187 if (base != new_base) {
188 /*
6ff7041d 189 * We are trying to move timer to new_base.
c0a31329
TG
190 * However we can't change timer's base while it is running,
191 * so we keep it on the same CPU. No hassle vs. reprogramming
192 * the event source in the high resolution case. The softirq
193 * code will take care of this when the timer function has
194 * completed. There is no conflict as we hold the lock until
195 * the timer is enqueued.
196 */
54cdfdb4 197 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
198 return base;
199
200 /* See the comment in lock_timer_base() */
201 timer->base = NULL;
ecb49d1a
TG
202 raw_spin_unlock(&base->cpu_base->lock);
203 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 204
6ff7041d
TG
205 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
206 cpu = this_cpu;
ecb49d1a
TG
207 raw_spin_unlock(&new_base->cpu_base->lock);
208 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
209 timer->base = base;
210 goto again;
eea08f32 211 }
c0a31329
TG
212 timer->base = new_base;
213 }
214 return new_base;
215}
216
217#else /* CONFIG_SMP */
218
3c8aa39d 219static inline struct hrtimer_clock_base *
c0a31329
TG
220lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
221{
3c8aa39d 222 struct hrtimer_clock_base *base = timer->base;
c0a31329 223
ecb49d1a 224 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
225
226 return base;
227}
228
eea08f32 229# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
230
231#endif /* !CONFIG_SMP */
232
233/*
234 * Functions for the union type storage format of ktime_t which are
235 * too large for inlining:
236 */
237#if BITS_PER_LONG < 64
238# ifndef CONFIG_KTIME_SCALAR
239/**
240 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
241 * @kt: addend
242 * @nsec: the scalar nsec value to add
243 *
244 * Returns the sum of kt and nsec in ktime_t format
245 */
246ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
247{
248 ktime_t tmp;
249
250 if (likely(nsec < NSEC_PER_SEC)) {
251 tmp.tv64 = nsec;
252 } else {
253 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
254
255 tmp = ktime_set((long)nsec, rem);
256 }
257
258 return ktime_add(kt, tmp);
259}
b8b8fd2d
DH
260
261EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
262
263/**
264 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
265 * @kt: minuend
266 * @nsec: the scalar nsec value to subtract
267 *
268 * Returns the subtraction of @nsec from @kt in ktime_t format
269 */
270ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
271{
272 ktime_t tmp;
273
274 if (likely(nsec < NSEC_PER_SEC)) {
275 tmp.tv64 = nsec;
276 } else {
277 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
278
279 tmp = ktime_set((long)nsec, rem);
280 }
281
282 return ktime_sub(kt, tmp);
283}
284
285EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
286# endif /* !CONFIG_KTIME_SCALAR */
287
288/*
289 * Divide a ktime value by a nanosecond value
290 */
4d672e7a 291u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 292{
900cfa46 293 u64 dclc;
c0a31329
TG
294 int sft = 0;
295
900cfa46 296 dclc = ktime_to_ns(kt);
c0a31329
TG
297 /* Make sure the divisor is less than 2^32: */
298 while (div >> 32) {
299 sft++;
300 div >>= 1;
301 }
302 dclc >>= sft;
303 do_div(dclc, (unsigned long) div);
304
4d672e7a 305 return dclc;
c0a31329 306}
c0a31329
TG
307#endif /* BITS_PER_LONG >= 64 */
308
5a7780e7
TG
309/*
310 * Add two ktime values and do a safety check for overflow:
311 */
312ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
313{
314 ktime_t res = ktime_add(lhs, rhs);
315
316 /*
317 * We use KTIME_SEC_MAX here, the maximum timeout which we can
318 * return to user space in a timespec:
319 */
320 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
321 res = ktime_set(KTIME_SEC_MAX, 0);
322
323 return res;
324}
325
8daa21e6
AB
326EXPORT_SYMBOL_GPL(ktime_add_safe);
327
237fc6e7
TG
328#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
329
330static struct debug_obj_descr hrtimer_debug_descr;
331
332/*
333 * fixup_init is called when:
334 * - an active object is initialized
335 */
336static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
337{
338 struct hrtimer *timer = addr;
339
340 switch (state) {
341 case ODEBUG_STATE_ACTIVE:
342 hrtimer_cancel(timer);
343 debug_object_init(timer, &hrtimer_debug_descr);
344 return 1;
345 default:
346 return 0;
347 }
348}
349
350/*
351 * fixup_activate is called when:
352 * - an active object is activated
353 * - an unknown object is activated (might be a statically initialized object)
354 */
355static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
356{
357 switch (state) {
358
359 case ODEBUG_STATE_NOTAVAILABLE:
360 WARN_ON_ONCE(1);
361 return 0;
362
363 case ODEBUG_STATE_ACTIVE:
364 WARN_ON(1);
365
366 default:
367 return 0;
368 }
369}
370
371/*
372 * fixup_free is called when:
373 * - an active object is freed
374 */
375static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
376{
377 struct hrtimer *timer = addr;
378
379 switch (state) {
380 case ODEBUG_STATE_ACTIVE:
381 hrtimer_cancel(timer);
382 debug_object_free(timer, &hrtimer_debug_descr);
383 return 1;
384 default:
385 return 0;
386 }
387}
388
389static struct debug_obj_descr hrtimer_debug_descr = {
390 .name = "hrtimer",
391 .fixup_init = hrtimer_fixup_init,
392 .fixup_activate = hrtimer_fixup_activate,
393 .fixup_free = hrtimer_fixup_free,
394};
395
396static inline void debug_hrtimer_init(struct hrtimer *timer)
397{
398 debug_object_init(timer, &hrtimer_debug_descr);
399}
400
401static inline void debug_hrtimer_activate(struct hrtimer *timer)
402{
403 debug_object_activate(timer, &hrtimer_debug_descr);
404}
405
406static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
407{
408 debug_object_deactivate(timer, &hrtimer_debug_descr);
409}
410
411static inline void debug_hrtimer_free(struct hrtimer *timer)
412{
413 debug_object_free(timer, &hrtimer_debug_descr);
414}
415
416static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode);
418
419void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode)
421{
422 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
423 __hrtimer_init(timer, clock_id, mode);
424}
2bc481cf 425EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
426
427void destroy_hrtimer_on_stack(struct hrtimer *timer)
428{
429 debug_object_free(timer, &hrtimer_debug_descr);
430}
431
432#else
433static inline void debug_hrtimer_init(struct hrtimer *timer) { }
434static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
435static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
436#endif
437
c6a2a177
XG
438static inline void
439debug_init(struct hrtimer *timer, clockid_t clockid,
440 enum hrtimer_mode mode)
441{
442 debug_hrtimer_init(timer);
443 trace_hrtimer_init(timer, clockid, mode);
444}
445
446static inline void debug_activate(struct hrtimer *timer)
447{
448 debug_hrtimer_activate(timer);
449 trace_hrtimer_start(timer);
450}
451
452static inline void debug_deactivate(struct hrtimer *timer)
453{
454 debug_hrtimer_deactivate(timer);
455 trace_hrtimer_cancel(timer);
456}
457
54cdfdb4
TG
458/* High resolution timer related functions */
459#ifdef CONFIG_HIGH_RES_TIMERS
460
461/*
462 * High resolution timer enabled ?
463 */
464static int hrtimer_hres_enabled __read_mostly = 1;
465
466/*
467 * Enable / Disable high resolution mode
468 */
469static int __init setup_hrtimer_hres(char *str)
470{
471 if (!strcmp(str, "off"))
472 hrtimer_hres_enabled = 0;
473 else if (!strcmp(str, "on"))
474 hrtimer_hres_enabled = 1;
475 else
476 return 0;
477 return 1;
478}
479
480__setup("highres=", setup_hrtimer_hres);
481
482/*
483 * hrtimer_high_res_enabled - query, if the highres mode is enabled
484 */
485static inline int hrtimer_is_hres_enabled(void)
486{
487 return hrtimer_hres_enabled;
488}
489
490/*
491 * Is the high resolution mode active ?
492 */
493static inline int hrtimer_hres_active(void)
494{
909ea964 495 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
496}
497
498/*
499 * Reprogram the event source with checking both queues for the
500 * next event
501 * Called with interrupts disabled and base->lock held
502 */
7403f41f
AC
503static void
504hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
505{
506 int i;
507 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 508 ktime_t expires, expires_next;
54cdfdb4 509
7403f41f 510 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
511
512 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
513 struct hrtimer *timer;
998adc3d 514 struct timerqueue_node *next;
54cdfdb4 515
998adc3d
JS
516 next = timerqueue_getnext(&base->active);
517 if (!next)
54cdfdb4 518 continue;
998adc3d
JS
519 timer = container_of(next, struct hrtimer, node);
520
cc584b21 521 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
522 /*
523 * clock_was_set() has changed base->offset so the
524 * result might be negative. Fix it up to prevent a
525 * false positive in clockevents_program_event()
526 */
527 if (expires.tv64 < 0)
528 expires.tv64 = 0;
7403f41f
AC
529 if (expires.tv64 < expires_next.tv64)
530 expires_next = expires;
54cdfdb4
TG
531 }
532
7403f41f
AC
533 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
534 return;
535
536 cpu_base->expires_next.tv64 = expires_next.tv64;
537
54cdfdb4
TG
538 if (cpu_base->expires_next.tv64 != KTIME_MAX)
539 tick_program_event(cpu_base->expires_next, 1);
540}
541
542/*
543 * Shared reprogramming for clock_realtime and clock_monotonic
544 *
545 * When a timer is enqueued and expires earlier than the already enqueued
546 * timers, we have to check, whether it expires earlier than the timer for
547 * which the clock event device was armed.
548 *
549 * Called with interrupts disabled and base->cpu_base.lock held
550 */
551static int hrtimer_reprogram(struct hrtimer *timer,
552 struct hrtimer_clock_base *base)
553{
41d2e494 554 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 555 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
556 int res;
557
cc584b21 558 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 559
54cdfdb4
TG
560 /*
561 * When the callback is running, we do not reprogram the clock event
562 * device. The timer callback is either running on a different CPU or
3a4fa0a2 563 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
564 * reprogramming is handled either by the softirq, which called the
565 * callback or at the end of the hrtimer_interrupt.
566 */
567 if (hrtimer_callback_running(timer))
568 return 0;
569
63070a79
TG
570 /*
571 * CLOCK_REALTIME timer might be requested with an absolute
572 * expiry time which is less than base->offset. Nothing wrong
573 * about that, just avoid to call into the tick code, which
574 * has now objections against negative expiry values.
575 */
576 if (expires.tv64 < 0)
577 return -ETIME;
578
41d2e494
TG
579 if (expires.tv64 >= cpu_base->expires_next.tv64)
580 return 0;
581
582 /*
583 * If a hang was detected in the last timer interrupt then we
584 * do not schedule a timer which is earlier than the expiry
585 * which we enforced in the hang detection. We want the system
586 * to make progress.
587 */
588 if (cpu_base->hang_detected)
54cdfdb4
TG
589 return 0;
590
591 /*
592 * Clockevents returns -ETIME, when the event was in the past.
593 */
594 res = tick_program_event(expires, 0);
595 if (!IS_ERR_VALUE(res))
41d2e494 596 cpu_base->expires_next = expires;
54cdfdb4
TG
597 return res;
598}
599
600
601/*
602 * Retrigger next event is called after clock was set
603 *
604 * Called with interrupts disabled via on_each_cpu()
605 */
606static void retrigger_next_event(void *arg)
607{
608 struct hrtimer_cpu_base *base;
8ab4351a 609 struct timespec realtime_offset, wtm;
54cdfdb4
TG
610
611 if (!hrtimer_hres_active())
612 return;
613
48cf76f7 614 get_xtime_and_monotonic_offset(&realtime_offset, &wtm);
8ab4351a 615 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
54cdfdb4
TG
616
617 base = &__get_cpu_var(hrtimer_bases);
618
619 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 620 raw_spin_lock(&base->lock);
54cdfdb4
TG
621 base->clock_base[CLOCK_REALTIME].offset =
622 timespec_to_ktime(realtime_offset);
623
7403f41f 624 hrtimer_force_reprogram(base, 0);
ecb49d1a 625 raw_spin_unlock(&base->lock);
54cdfdb4
TG
626}
627
628/*
629 * Clock realtime was set
630 *
631 * Change the offset of the realtime clock vs. the monotonic
632 * clock.
633 *
634 * We might have to reprogram the high resolution timer interrupt. On
635 * SMP we call the architecture specific code to retrigger _all_ high
636 * resolution timer interrupts. On UP we just disable interrupts and
637 * call the high resolution interrupt code.
638 */
639void clock_was_set(void)
640{
641 /* Retrigger the CPU local events everywhere */
15c8b6c1 642 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
643}
644
995f054f
IM
645/*
646 * During resume we might have to reprogram the high resolution timer
647 * interrupt (on the local CPU):
648 */
649void hres_timers_resume(void)
650{
1d4a7f1c
PZ
651 WARN_ONCE(!irqs_disabled(),
652 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
653
995f054f
IM
654 retrigger_next_event(NULL);
655}
656
54cdfdb4
TG
657/*
658 * Initialize the high resolution related parts of cpu_base
659 */
660static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
661{
662 base->expires_next.tv64 = KTIME_MAX;
663 base->hres_active = 0;
54cdfdb4
TG
664}
665
666/*
667 * Initialize the high resolution related parts of a hrtimer
668 */
669static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
670{
54cdfdb4
TG
671}
672
ca109491 673
54cdfdb4
TG
674/*
675 * When High resolution timers are active, try to reprogram. Note, that in case
676 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
677 * check happens. The timer gets enqueued into the rbtree. The reprogramming
678 * and expiry check is done in the hrtimer_interrupt or in the softirq.
679 */
680static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
681 struct hrtimer_clock_base *base,
682 int wakeup)
54cdfdb4
TG
683{
684 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 685 if (wakeup) {
ecb49d1a 686 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 687 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 688 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
689 } else
690 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
691
ca109491 692 return 1;
54cdfdb4 693 }
7f1e2ca9 694
54cdfdb4
TG
695 return 0;
696}
697
698/*
699 * Switch to high resolution mode
700 */
f8953856 701static int hrtimer_switch_to_hres(void)
54cdfdb4 702{
820de5c3
IM
703 int cpu = smp_processor_id();
704 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
705 unsigned long flags;
706
707 if (base->hres_active)
f8953856 708 return 1;
54cdfdb4
TG
709
710 local_irq_save(flags);
711
712 if (tick_init_highres()) {
713 local_irq_restore(flags);
820de5c3
IM
714 printk(KERN_WARNING "Could not switch to high resolution "
715 "mode on CPU %d\n", cpu);
f8953856 716 return 0;
54cdfdb4
TG
717 }
718 base->hres_active = 1;
719 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
720 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
721
722 tick_setup_sched_timer();
723
724 /* "Retrigger" the interrupt to get things going */
725 retrigger_next_event(NULL);
726 local_irq_restore(flags);
f8953856 727 return 1;
54cdfdb4
TG
728}
729
730#else
731
732static inline int hrtimer_hres_active(void) { return 0; }
733static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 734static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
735static inline void
736hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 737static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
738 struct hrtimer_clock_base *base,
739 int wakeup)
54cdfdb4
TG
740{
741 return 0;
742}
54cdfdb4
TG
743static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
744static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
745
746#endif /* CONFIG_HIGH_RES_TIMERS */
747
5f201907 748static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 749{
5f201907 750#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
751 if (timer->start_site)
752 return;
5f201907 753 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
754 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
755 timer->start_pid = current->pid;
5f201907
HC
756#endif
757}
758
759static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
760{
761#ifdef CONFIG_TIMER_STATS
762 timer->start_site = NULL;
763#endif
82f67cd9 764}
5f201907
HC
765
766static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
767{
768#ifdef CONFIG_TIMER_STATS
769 if (likely(!timer_stats_active))
770 return;
771 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
772 timer->function, timer->start_comm, 0);
82f67cd9 773#endif
5f201907 774}
82f67cd9 775
c0a31329 776/*
6506f2aa 777 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
778 */
779static inline
780void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
781{
ecb49d1a 782 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
783}
784
785/**
786 * hrtimer_forward - forward the timer expiry
c0a31329 787 * @timer: hrtimer to forward
44f21475 788 * @now: forward past this time
c0a31329
TG
789 * @interval: the interval to forward
790 *
791 * Forward the timer expiry so it will expire in the future.
8dca6f33 792 * Returns the number of overruns.
c0a31329 793 */
4d672e7a 794u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 795{
4d672e7a 796 u64 orun = 1;
44f21475 797 ktime_t delta;
c0a31329 798
cc584b21 799 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
800
801 if (delta.tv64 < 0)
802 return 0;
803
c9db4fa1
TG
804 if (interval.tv64 < timer->base->resolution.tv64)
805 interval.tv64 = timer->base->resolution.tv64;
806
c0a31329 807 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 808 s64 incr = ktime_to_ns(interval);
c0a31329
TG
809
810 orun = ktime_divns(delta, incr);
cc584b21
AV
811 hrtimer_add_expires_ns(timer, incr * orun);
812 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
813 return orun;
814 /*
815 * This (and the ktime_add() below) is the
816 * correction for exact:
817 */
818 orun++;
819 }
cc584b21 820 hrtimer_add_expires(timer, interval);
c0a31329
TG
821
822 return orun;
823}
6bdb6b62 824EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
825
826/*
827 * enqueue_hrtimer - internal function to (re)start a timer
828 *
829 * The timer is inserted in expiry order. Insertion into the
830 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
831 *
832 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 833 */
a6037b61
PZ
834static int enqueue_hrtimer(struct hrtimer *timer,
835 struct hrtimer_clock_base *base)
c0a31329 836{
c6a2a177 837 debug_activate(timer);
237fc6e7 838
998adc3d 839 timerqueue_add(&base->active, &timer->node);
54cdfdb4 840
303e967f
TG
841 /*
842 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
843 * state of a possibly running callback.
844 */
845 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 846
998adc3d 847 return (&timer->node == base->active.next);
288867ec 848}
c0a31329
TG
849
850/*
851 * __remove_hrtimer - internal function to remove a timer
852 *
853 * Caller must hold the base lock.
54cdfdb4
TG
854 *
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
c0a31329 859 */
3c8aa39d 860static void __remove_hrtimer(struct hrtimer *timer,
303e967f 861 struct hrtimer_clock_base *base,
54cdfdb4 862 unsigned long newstate, int reprogram)
c0a31329 863{
7403f41f
AC
864 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
865 goto out;
866
998adc3d 867 if (&timer->node == timerqueue_getnext(&base->active)) {
7403f41f
AC
868#ifdef CONFIG_HIGH_RES_TIMERS
869 /* Reprogram the clock event device. if enabled */
870 if (reprogram && hrtimer_hres_active()) {
871 ktime_t expires;
872
873 expires = ktime_sub(hrtimer_get_expires(timer),
874 base->offset);
875 if (base->cpu_base->expires_next.tv64 == expires.tv64)
876 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 877 }
7403f41f 878#endif
54cdfdb4 879 }
998adc3d 880 timerqueue_del(&base->active, &timer->node);
7403f41f 881out:
303e967f 882 timer->state = newstate;
c0a31329
TG
883}
884
885/*
886 * remove hrtimer, called with base lock held
887 */
888static inline int
3c8aa39d 889remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 890{
303e967f 891 if (hrtimer_is_queued(timer)) {
f13d4f97 892 unsigned long state;
54cdfdb4
TG
893 int reprogram;
894
895 /*
896 * Remove the timer and force reprogramming when high
897 * resolution mode is active and the timer is on the current
898 * CPU. If we remove a timer on another CPU, reprogramming is
899 * skipped. The interrupt event on this CPU is fired and
900 * reprogramming happens in the interrupt handler. This is a
901 * rare case and less expensive than a smp call.
902 */
c6a2a177 903 debug_deactivate(timer);
82f67cd9 904 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 905 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
906 /*
907 * We must preserve the CALLBACK state flag here,
908 * otherwise we could move the timer base in
909 * switch_hrtimer_base.
910 */
911 state = timer->state & HRTIMER_STATE_CALLBACK;
912 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
913 return 1;
914 }
915 return 0;
916}
917
7f1e2ca9
PZ
918int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
919 unsigned long delta_ns, const enum hrtimer_mode mode,
920 int wakeup)
c0a31329 921{
3c8aa39d 922 struct hrtimer_clock_base *base, *new_base;
c0a31329 923 unsigned long flags;
a6037b61 924 int ret, leftmost;
c0a31329
TG
925
926 base = lock_hrtimer_base(timer, &flags);
927
928 /* Remove an active timer from the queue: */
929 ret = remove_hrtimer(timer, base);
930
931 /* Switch the timer base, if necessary: */
597d0275 932 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 933
597d0275 934 if (mode & HRTIMER_MODE_REL) {
5a7780e7 935 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
936 /*
937 * CONFIG_TIME_LOW_RES is a temporary way for architectures
938 * to signal that they simply return xtime in
939 * do_gettimeoffset(). In this case we want to round up by
940 * resolution when starting a relative timer, to avoid short
941 * timeouts. This will go away with the GTOD framework.
942 */
943#ifdef CONFIG_TIME_LOW_RES
5a7780e7 944 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
945#endif
946 }
237fc6e7 947
da8f2e17 948 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 949
82f67cd9
IM
950 timer_stats_hrtimer_set_start_info(timer);
951
a6037b61
PZ
952 leftmost = enqueue_hrtimer(timer, new_base);
953
935c631d
IM
954 /*
955 * Only allow reprogramming if the new base is on this CPU.
956 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
957 *
958 * XXX send_remote_softirq() ?
935c631d 959 */
a6037b61 960 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 961 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
962
963 unlock_hrtimer_base(timer, &flags);
964
965 return ret;
966}
7f1e2ca9
PZ
967
968/**
969 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
970 * @timer: the timer to be added
971 * @tim: expiry time
972 * @delta_ns: "slack" range for the timer
973 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
974 *
975 * Returns:
976 * 0 on success
977 * 1 when the timer was active
978 */
979int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
980 unsigned long delta_ns, const enum hrtimer_mode mode)
981{
982 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
983}
da8f2e17
AV
984EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
985
986/**
e1dd7bc5 987 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
988 * @timer: the timer to be added
989 * @tim: expiry time
990 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
991 *
992 * Returns:
993 * 0 on success
994 * 1 when the timer was active
995 */
996int
997hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
998{
7f1e2ca9 999 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1000}
8d16b764 1001EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1002
da8f2e17 1003
c0a31329
TG
1004/**
1005 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1006 * @timer: hrtimer to stop
1007 *
1008 * Returns:
1009 * 0 when the timer was not active
1010 * 1 when the timer was active
1011 * -1 when the timer is currently excuting the callback function and
fa9799e3 1012 * cannot be stopped
c0a31329
TG
1013 */
1014int hrtimer_try_to_cancel(struct hrtimer *timer)
1015{
3c8aa39d 1016 struct hrtimer_clock_base *base;
c0a31329
TG
1017 unsigned long flags;
1018 int ret = -1;
1019
1020 base = lock_hrtimer_base(timer, &flags);
1021
303e967f 1022 if (!hrtimer_callback_running(timer))
c0a31329
TG
1023 ret = remove_hrtimer(timer, base);
1024
1025 unlock_hrtimer_base(timer, &flags);
1026
1027 return ret;
1028
1029}
8d16b764 1030EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1031
1032/**
1033 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1034 * @timer: the timer to be cancelled
1035 *
1036 * Returns:
1037 * 0 when the timer was not active
1038 * 1 when the timer was active
1039 */
1040int hrtimer_cancel(struct hrtimer *timer)
1041{
1042 for (;;) {
1043 int ret = hrtimer_try_to_cancel(timer);
1044
1045 if (ret >= 0)
1046 return ret;
5ef37b19 1047 cpu_relax();
c0a31329
TG
1048 }
1049}
8d16b764 1050EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1051
1052/**
1053 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1054 * @timer: the timer to read
1055 */
1056ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1057{
c0a31329
TG
1058 unsigned long flags;
1059 ktime_t rem;
1060
b3bd3de6 1061 lock_hrtimer_base(timer, &flags);
cc584b21 1062 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1063 unlock_hrtimer_base(timer, &flags);
1064
1065 return rem;
1066}
8d16b764 1067EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1068
ee9c5785 1069#ifdef CONFIG_NO_HZ
69239749
TL
1070/**
1071 * hrtimer_get_next_event - get the time until next expiry event
1072 *
1073 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1074 * is pending.
1075 */
1076ktime_t hrtimer_get_next_event(void)
1077{
3c8aa39d
TG
1078 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1079 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1080 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1081 unsigned long flags;
1082 int i;
1083
ecb49d1a 1084 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1085
54cdfdb4
TG
1086 if (!hrtimer_hres_active()) {
1087 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1088 struct hrtimer *timer;
998adc3d 1089 struct timerqueue_node *next;
69239749 1090
998adc3d
JS
1091 next = timerqueue_getnext(&base->active);
1092 if (!next)
54cdfdb4 1093 continue;
3c8aa39d 1094
998adc3d 1095 timer = container_of(next, struct hrtimer, node);
cc584b21 1096 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1097 delta = ktime_sub(delta, base->get_time());
1098 if (delta.tv64 < mindelta.tv64)
1099 mindelta.tv64 = delta.tv64;
1100 }
69239749 1101 }
3c8aa39d 1102
ecb49d1a 1103 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1104
69239749
TL
1105 if (mindelta.tv64 < 0)
1106 mindelta.tv64 = 0;
1107 return mindelta;
1108}
1109#endif
1110
237fc6e7
TG
1111static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1112 enum hrtimer_mode mode)
c0a31329 1113{
3c8aa39d 1114 struct hrtimer_cpu_base *cpu_base;
c0a31329 1115
7978672c
GA
1116 memset(timer, 0, sizeof(struct hrtimer));
1117
3c8aa39d 1118 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1119
c9cb2e3d 1120 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1121 clock_id = CLOCK_MONOTONIC;
1122
3c8aa39d 1123 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1124 hrtimer_init_timer_hres(timer);
998adc3d 1125 timerqueue_init(&timer->node);
82f67cd9
IM
1126
1127#ifdef CONFIG_TIMER_STATS
1128 timer->start_site = NULL;
1129 timer->start_pid = -1;
1130 memset(timer->start_comm, 0, TASK_COMM_LEN);
1131#endif
c0a31329 1132}
237fc6e7
TG
1133
1134/**
1135 * hrtimer_init - initialize a timer to the given clock
1136 * @timer: the timer to be initialized
1137 * @clock_id: the clock to be used
1138 * @mode: timer mode abs/rel
1139 */
1140void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1141 enum hrtimer_mode mode)
1142{
c6a2a177 1143 debug_init(timer, clock_id, mode);
237fc6e7
TG
1144 __hrtimer_init(timer, clock_id, mode);
1145}
8d16b764 1146EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1147
1148/**
1149 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1150 * @which_clock: which clock to query
1151 * @tp: pointer to timespec variable to store the resolution
1152 *
72fd4a35
RD
1153 * Store the resolution of the clock selected by @which_clock in the
1154 * variable pointed to by @tp.
c0a31329
TG
1155 */
1156int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1157{
3c8aa39d 1158 struct hrtimer_cpu_base *cpu_base;
c0a31329 1159
3c8aa39d
TG
1160 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1161 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1162
1163 return 0;
1164}
8d16b764 1165EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1166
c6a2a177 1167static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1168{
1169 struct hrtimer_clock_base *base = timer->base;
1170 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1171 enum hrtimer_restart (*fn)(struct hrtimer *);
1172 int restart;
1173
ca109491
PZ
1174 WARN_ON(!irqs_disabled());
1175
c6a2a177 1176 debug_deactivate(timer);
d3d74453
PZ
1177 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1178 timer_stats_account_hrtimer(timer);
d3d74453 1179 fn = timer->function;
ca109491
PZ
1180
1181 /*
1182 * Because we run timers from hardirq context, there is no chance
1183 * they get migrated to another cpu, therefore its safe to unlock
1184 * the timer base.
1185 */
ecb49d1a 1186 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1187 trace_hrtimer_expire_entry(timer, now);
ca109491 1188 restart = fn(timer);
c6a2a177 1189 trace_hrtimer_expire_exit(timer);
ecb49d1a 1190 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1191
1192 /*
e3f1d883
TG
1193 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1194 * we do not reprogramm the event hardware. Happens either in
1195 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1196 */
1197 if (restart != HRTIMER_NORESTART) {
1198 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1199 enqueue_hrtimer(timer, base);
d3d74453 1200 }
f13d4f97
SQ
1201
1202 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1203
d3d74453
PZ
1204 timer->state &= ~HRTIMER_STATE_CALLBACK;
1205}
1206
54cdfdb4
TG
1207#ifdef CONFIG_HIGH_RES_TIMERS
1208
1209/*
1210 * High resolution timer interrupt
1211 * Called with interrupts disabled
1212 */
1213void hrtimer_interrupt(struct clock_event_device *dev)
1214{
1215 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1216 struct hrtimer_clock_base *base;
41d2e494
TG
1217 ktime_t expires_next, now, entry_time, delta;
1218 int i, retries = 0;
54cdfdb4
TG
1219
1220 BUG_ON(!cpu_base->hres_active);
1221 cpu_base->nr_events++;
1222 dev->next_event.tv64 = KTIME_MAX;
1223
41d2e494
TG
1224 entry_time = now = ktime_get();
1225retry:
54cdfdb4
TG
1226 expires_next.tv64 = KTIME_MAX;
1227
ecb49d1a 1228 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1229 /*
1230 * We set expires_next to KTIME_MAX here with cpu_base->lock
1231 * held to prevent that a timer is enqueued in our queue via
1232 * the migration code. This does not affect enqueueing of
1233 * timers which run their callback and need to be requeued on
1234 * this CPU.
1235 */
1236 cpu_base->expires_next.tv64 = KTIME_MAX;
1237
54cdfdb4
TG
1238 base = cpu_base->clock_base;
1239
1240 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1241 ktime_t basenow;
998adc3d 1242 struct timerqueue_node *node;
54cdfdb4 1243
54cdfdb4
TG
1244 basenow = ktime_add(now, base->offset);
1245
998adc3d 1246 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1247 struct hrtimer *timer;
1248
998adc3d 1249 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1250
654c8e0b
AV
1251 /*
1252 * The immediate goal for using the softexpires is
1253 * minimizing wakeups, not running timers at the
1254 * earliest interrupt after their soft expiration.
1255 * This allows us to avoid using a Priority Search
1256 * Tree, which can answer a stabbing querry for
1257 * overlapping intervals and instead use the simple
1258 * BST we already have.
1259 * We don't add extra wakeups by delaying timers that
1260 * are right-of a not yet expired timer, because that
1261 * timer will have to trigger a wakeup anyway.
1262 */
1263
1264 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1265 ktime_t expires;
1266
cc584b21 1267 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1268 base->offset);
1269 if (expires.tv64 < expires_next.tv64)
1270 expires_next = expires;
1271 break;
1272 }
1273
c6a2a177 1274 __run_hrtimer(timer, &basenow);
54cdfdb4 1275 }
54cdfdb4
TG
1276 base++;
1277 }
1278
6ff7041d
TG
1279 /*
1280 * Store the new expiry value so the migration code can verify
1281 * against it.
1282 */
54cdfdb4 1283 cpu_base->expires_next = expires_next;
ecb49d1a 1284 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1285
1286 /* Reprogramming necessary ? */
41d2e494
TG
1287 if (expires_next.tv64 == KTIME_MAX ||
1288 !tick_program_event(expires_next, 0)) {
1289 cpu_base->hang_detected = 0;
1290 return;
54cdfdb4 1291 }
41d2e494
TG
1292
1293 /*
1294 * The next timer was already expired due to:
1295 * - tracing
1296 * - long lasting callbacks
1297 * - being scheduled away when running in a VM
1298 *
1299 * We need to prevent that we loop forever in the hrtimer
1300 * interrupt routine. We give it 3 attempts to avoid
1301 * overreacting on some spurious event.
1302 */
1303 now = ktime_get();
1304 cpu_base->nr_retries++;
1305 if (++retries < 3)
1306 goto retry;
1307 /*
1308 * Give the system a chance to do something else than looping
1309 * here. We stored the entry time, so we know exactly how long
1310 * we spent here. We schedule the next event this amount of
1311 * time away.
1312 */
1313 cpu_base->nr_hangs++;
1314 cpu_base->hang_detected = 1;
1315 delta = ktime_sub(now, entry_time);
1316 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1317 cpu_base->max_hang_time = delta;
1318 /*
1319 * Limit it to a sensible value as we enforce a longer
1320 * delay. Give the CPU at least 100ms to catch up.
1321 */
1322 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1323 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1324 else
1325 expires_next = ktime_add(now, delta);
1326 tick_program_event(expires_next, 1);
1327 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1328 ktime_to_ns(delta));
54cdfdb4
TG
1329}
1330
8bdec955
TG
1331/*
1332 * local version of hrtimer_peek_ahead_timers() called with interrupts
1333 * disabled.
1334 */
1335static void __hrtimer_peek_ahead_timers(void)
1336{
1337 struct tick_device *td;
1338
1339 if (!hrtimer_hres_active())
1340 return;
1341
1342 td = &__get_cpu_var(tick_cpu_device);
1343 if (td && td->evtdev)
1344 hrtimer_interrupt(td->evtdev);
1345}
1346
2e94d1f7
AV
1347/**
1348 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1349 *
1350 * hrtimer_peek_ahead_timers will peek at the timer queue of
1351 * the current cpu and check if there are any timers for which
1352 * the soft expires time has passed. If any such timers exist,
1353 * they are run immediately and then removed from the timer queue.
1354 *
1355 */
1356void hrtimer_peek_ahead_timers(void)
1357{
643bdf68 1358 unsigned long flags;
dc4304f7 1359
2e94d1f7 1360 local_irq_save(flags);
8bdec955 1361 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1362 local_irq_restore(flags);
1363}
1364
a6037b61
PZ
1365static void run_hrtimer_softirq(struct softirq_action *h)
1366{
1367 hrtimer_peek_ahead_timers();
1368}
1369
82c5b7b5
IM
1370#else /* CONFIG_HIGH_RES_TIMERS */
1371
1372static inline void __hrtimer_peek_ahead_timers(void) { }
1373
1374#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1375
d3d74453
PZ
1376/*
1377 * Called from timer softirq every jiffy, expire hrtimers:
1378 *
1379 * For HRT its the fall back code to run the softirq in the timer
1380 * softirq context in case the hrtimer initialization failed or has
1381 * not been done yet.
1382 */
1383void hrtimer_run_pending(void)
1384{
d3d74453
PZ
1385 if (hrtimer_hres_active())
1386 return;
54cdfdb4 1387
d3d74453
PZ
1388 /*
1389 * This _is_ ugly: We have to check in the softirq context,
1390 * whether we can switch to highres and / or nohz mode. The
1391 * clocksource switch happens in the timer interrupt with
1392 * xtime_lock held. Notification from there only sets the
1393 * check bit in the tick_oneshot code, otherwise we might
1394 * deadlock vs. xtime_lock.
1395 */
1396 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1397 hrtimer_switch_to_hres();
54cdfdb4
TG
1398}
1399
c0a31329 1400/*
d3d74453 1401 * Called from hardirq context every jiffy
c0a31329 1402 */
833883d9 1403void hrtimer_run_queues(void)
c0a31329 1404{
998adc3d 1405 struct timerqueue_node *node;
833883d9
DS
1406 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1407 struct hrtimer_clock_base *base;
1408 int index, gettime = 1;
c0a31329 1409
833883d9 1410 if (hrtimer_hres_active())
3055adda
DS
1411 return;
1412
833883d9
DS
1413 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1414 base = &cpu_base->clock_base[index];
b007c389 1415 if (!timerqueue_getnext(&base->active))
d3d74453 1416 continue;
833883d9 1417
d7cfb60c 1418 if (gettime) {
833883d9
DS
1419 hrtimer_get_softirq_time(cpu_base);
1420 gettime = 0;
b75f7a51 1421 }
d3d74453 1422
ecb49d1a 1423 raw_spin_lock(&cpu_base->lock);
c0a31329 1424
b007c389 1425 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1426 struct hrtimer *timer;
54cdfdb4 1427
998adc3d 1428 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1429 if (base->softirq_time.tv64 <=
1430 hrtimer_get_expires_tv64(timer))
833883d9
DS
1431 break;
1432
c6a2a177 1433 __run_hrtimer(timer, &base->softirq_time);
833883d9 1434 }
ecb49d1a 1435 raw_spin_unlock(&cpu_base->lock);
833883d9 1436 }
c0a31329
TG
1437}
1438
10c94ec1
TG
1439/*
1440 * Sleep related functions:
1441 */
c9cb2e3d 1442static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1443{
1444 struct hrtimer_sleeper *t =
1445 container_of(timer, struct hrtimer_sleeper, timer);
1446 struct task_struct *task = t->task;
1447
1448 t->task = NULL;
1449 if (task)
1450 wake_up_process(task);
1451
1452 return HRTIMER_NORESTART;
1453}
1454
36c8b586 1455void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1456{
1457 sl->timer.function = hrtimer_wakeup;
1458 sl->task = task;
1459}
2bc481cf 1460EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1461
669d7868 1462static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1463{
669d7868 1464 hrtimer_init_sleeper(t, current);
10c94ec1 1465
432569bb
RZ
1466 do {
1467 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1468 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1469 if (!hrtimer_active(&t->timer))
1470 t->task = NULL;
432569bb 1471
54cdfdb4
TG
1472 if (likely(t->task))
1473 schedule();
432569bb 1474
669d7868 1475 hrtimer_cancel(&t->timer);
c9cb2e3d 1476 mode = HRTIMER_MODE_ABS;
669d7868
TG
1477
1478 } while (t->task && !signal_pending(current));
432569bb 1479
3588a085
PZ
1480 __set_current_state(TASK_RUNNING);
1481
669d7868 1482 return t->task == NULL;
10c94ec1
TG
1483}
1484
080344b9
ON
1485static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1486{
1487 struct timespec rmt;
1488 ktime_t rem;
1489
cc584b21 1490 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1491 if (rem.tv64 <= 0)
1492 return 0;
1493 rmt = ktime_to_timespec(rem);
1494
1495 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1496 return -EFAULT;
1497
1498 return 1;
1499}
1500
1711ef38 1501long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1502{
669d7868 1503 struct hrtimer_sleeper t;
080344b9 1504 struct timespec __user *rmtp;
237fc6e7 1505 int ret = 0;
10c94ec1 1506
237fc6e7
TG
1507 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1508 HRTIMER_MODE_ABS);
cc584b21 1509 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1510
c9cb2e3d 1511 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1512 goto out;
10c94ec1 1513
029a07e0 1514 rmtp = restart->nanosleep.rmtp;
432569bb 1515 if (rmtp) {
237fc6e7 1516 ret = update_rmtp(&t.timer, rmtp);
080344b9 1517 if (ret <= 0)
237fc6e7 1518 goto out;
432569bb 1519 }
10c94ec1 1520
10c94ec1 1521 /* The other values in restart are already filled in */
237fc6e7
TG
1522 ret = -ERESTART_RESTARTBLOCK;
1523out:
1524 destroy_hrtimer_on_stack(&t.timer);
1525 return ret;
10c94ec1
TG
1526}
1527
080344b9 1528long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1529 const enum hrtimer_mode mode, const clockid_t clockid)
1530{
1531 struct restart_block *restart;
669d7868 1532 struct hrtimer_sleeper t;
237fc6e7 1533 int ret = 0;
3bd01206
AV
1534 unsigned long slack;
1535
1536 slack = current->timer_slack_ns;
1537 if (rt_task(current))
1538 slack = 0;
10c94ec1 1539
237fc6e7 1540 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1541 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1542 if (do_nanosleep(&t, mode))
237fc6e7 1543 goto out;
10c94ec1 1544
7978672c 1545 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1546 if (mode == HRTIMER_MODE_ABS) {
1547 ret = -ERESTARTNOHAND;
1548 goto out;
1549 }
10c94ec1 1550
432569bb 1551 if (rmtp) {
237fc6e7 1552 ret = update_rmtp(&t.timer, rmtp);
080344b9 1553 if (ret <= 0)
237fc6e7 1554 goto out;
432569bb 1555 }
10c94ec1
TG
1556
1557 restart = &current_thread_info()->restart_block;
1711ef38 1558 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1559 restart->nanosleep.index = t.timer.base->index;
1560 restart->nanosleep.rmtp = rmtp;
cc584b21 1561 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1562
237fc6e7
TG
1563 ret = -ERESTART_RESTARTBLOCK;
1564out:
1565 destroy_hrtimer_on_stack(&t.timer);
1566 return ret;
10c94ec1
TG
1567}
1568
58fd3aa2
HC
1569SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1570 struct timespec __user *, rmtp)
6ba1b912 1571{
080344b9 1572 struct timespec tu;
6ba1b912
TG
1573
1574 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1575 return -EFAULT;
1576
1577 if (!timespec_valid(&tu))
1578 return -EINVAL;
1579
080344b9 1580 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1581}
1582
c0a31329
TG
1583/*
1584 * Functions related to boot-time initialization:
1585 */
0ec160dd 1586static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1587{
3c8aa39d 1588 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1589 int i;
1590
ecb49d1a 1591 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1592
998adc3d 1593 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1594 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1595 timerqueue_init_head(&cpu_base->clock_base[i].active);
1596 }
3c8aa39d 1597
54cdfdb4 1598 hrtimer_init_hres(cpu_base);
c0a31329
TG
1599}
1600
1601#ifdef CONFIG_HOTPLUG_CPU
1602
ca109491 1603static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1604 struct hrtimer_clock_base *new_base)
c0a31329
TG
1605{
1606 struct hrtimer *timer;
998adc3d 1607 struct timerqueue_node *node;
c0a31329 1608
998adc3d
JS
1609 while ((node = timerqueue_getnext(&old_base->active))) {
1610 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1611 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1612 debug_deactivate(timer);
b00c1a99
TG
1613
1614 /*
1615 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1616 * timer could be seen as !active and just vanish away
1617 * under us on another CPU
1618 */
1619 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1620 timer->base = new_base;
54cdfdb4 1621 /*
e3f1d883
TG
1622 * Enqueue the timers on the new cpu. This does not
1623 * reprogram the event device in case the timer
1624 * expires before the earliest on this CPU, but we run
1625 * hrtimer_interrupt after we migrated everything to
1626 * sort out already expired timers and reprogram the
1627 * event device.
54cdfdb4 1628 */
a6037b61 1629 enqueue_hrtimer(timer, new_base);
41e1022e 1630
b00c1a99
TG
1631 /* Clear the migration state bit */
1632 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1633 }
1634}
1635
d5fd43c4 1636static void migrate_hrtimers(int scpu)
c0a31329 1637{
3c8aa39d 1638 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1639 int i;
c0a31329 1640
37810659 1641 BUG_ON(cpu_online(scpu));
37810659 1642 tick_cancel_sched_timer(scpu);
731a55ba
TG
1643
1644 local_irq_disable();
1645 old_base = &per_cpu(hrtimer_bases, scpu);
1646 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1647 /*
1648 * The caller is globally serialized and nobody else
1649 * takes two locks at once, deadlock is not possible.
1650 */
ecb49d1a
TG
1651 raw_spin_lock(&new_base->lock);
1652 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1653
3c8aa39d 1654 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1655 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1656 &new_base->clock_base[i]);
c0a31329
TG
1657 }
1658
ecb49d1a
TG
1659 raw_spin_unlock(&old_base->lock);
1660 raw_spin_unlock(&new_base->lock);
37810659 1661
731a55ba
TG
1662 /* Check, if we got expired work to do */
1663 __hrtimer_peek_ahead_timers();
1664 local_irq_enable();
c0a31329 1665}
37810659 1666
c0a31329
TG
1667#endif /* CONFIG_HOTPLUG_CPU */
1668
8c78f307 1669static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1670 unsigned long action, void *hcpu)
1671{
b2e3c0ad 1672 int scpu = (long)hcpu;
c0a31329
TG
1673
1674 switch (action) {
1675
1676 case CPU_UP_PREPARE:
8bb78442 1677 case CPU_UP_PREPARE_FROZEN:
37810659 1678 init_hrtimers_cpu(scpu);
c0a31329
TG
1679 break;
1680
1681#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1682 case CPU_DYING:
1683 case CPU_DYING_FROZEN:
1684 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1685 break;
c0a31329 1686 case CPU_DEAD:
8bb78442 1687 case CPU_DEAD_FROZEN:
b2e3c0ad 1688 {
37810659 1689 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1690 migrate_hrtimers(scpu);
c0a31329 1691 break;
b2e3c0ad 1692 }
c0a31329
TG
1693#endif
1694
1695 default:
1696 break;
1697 }
1698
1699 return NOTIFY_OK;
1700}
1701
8c78f307 1702static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1703 .notifier_call = hrtimer_cpu_notify,
1704};
1705
1706void __init hrtimers_init(void)
1707{
1708 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1709 (void *)(long)smp_processor_id());
1710 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1711#ifdef CONFIG_HIGH_RES_TIMERS
1712 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1713#endif
c0a31329
TG
1714}
1715
7bb67439 1716/**
351b3f7a 1717 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1718 * @expires: timeout value (ktime_t)
654c8e0b 1719 * @delta: slack in expires timeout (ktime_t)
7bb67439 1720 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1721 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1722 */
351b3f7a
CE
1723int __sched
1724schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1725 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1726{
1727 struct hrtimer_sleeper t;
1728
1729 /*
1730 * Optimize when a zero timeout value is given. It does not
1731 * matter whether this is an absolute or a relative time.
1732 */
1733 if (expires && !expires->tv64) {
1734 __set_current_state(TASK_RUNNING);
1735 return 0;
1736 }
1737
1738 /*
43b21013 1739 * A NULL parameter means "infinite"
7bb67439
AV
1740 */
1741 if (!expires) {
1742 schedule();
1743 __set_current_state(TASK_RUNNING);
1744 return -EINTR;
1745 }
1746
351b3f7a 1747 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1748 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1749
1750 hrtimer_init_sleeper(&t, current);
1751
cc584b21 1752 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1753 if (!hrtimer_active(&t.timer))
1754 t.task = NULL;
1755
1756 if (likely(t.task))
1757 schedule();
1758
1759 hrtimer_cancel(&t.timer);
1760 destroy_hrtimer_on_stack(&t.timer);
1761
1762 __set_current_state(TASK_RUNNING);
1763
1764 return !t.task ? 0 : -EINTR;
1765}
351b3f7a
CE
1766
1767/**
1768 * schedule_hrtimeout_range - sleep until timeout
1769 * @expires: timeout value (ktime_t)
1770 * @delta: slack in expires timeout (ktime_t)
1771 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1772 *
1773 * Make the current task sleep until the given expiry time has
1774 * elapsed. The routine will return immediately unless
1775 * the current task state has been set (see set_current_state()).
1776 *
1777 * The @delta argument gives the kernel the freedom to schedule the
1778 * actual wakeup to a time that is both power and performance friendly.
1779 * The kernel give the normal best effort behavior for "@expires+@delta",
1780 * but may decide to fire the timer earlier, but no earlier than @expires.
1781 *
1782 * You can set the task state as follows -
1783 *
1784 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1785 * pass before the routine returns.
1786 *
1787 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1788 * delivered to the current task.
1789 *
1790 * The current task state is guaranteed to be TASK_RUNNING when this
1791 * routine returns.
1792 *
1793 * Returns 0 when the timer has expired otherwise -EINTR
1794 */
1795int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1796 const enum hrtimer_mode mode)
1797{
1798 return schedule_hrtimeout_range_clock(expires, delta, mode,
1799 CLOCK_MONOTONIC);
1800}
654c8e0b
AV
1801EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1802
1803/**
1804 * schedule_hrtimeout - sleep until timeout
1805 * @expires: timeout value (ktime_t)
1806 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1807 *
1808 * Make the current task sleep until the given expiry time has
1809 * elapsed. The routine will return immediately unless
1810 * the current task state has been set (see set_current_state()).
1811 *
1812 * You can set the task state as follows -
1813 *
1814 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1815 * pass before the routine returns.
1816 *
1817 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1818 * delivered to the current task.
1819 *
1820 * The current task state is guaranteed to be TASK_RUNNING when this
1821 * routine returns.
1822 *
1823 * Returns 0 when the timer has expired otherwise -EINTR
1824 */
1825int __sched schedule_hrtimeout(ktime_t *expires,
1826 const enum hrtimer_mode mode)
1827{
1828 return schedule_hrtimeout_range(expires, 0, mode);
1829}
7bb67439 1830EXPORT_SYMBOL_GPL(schedule_hrtimeout);