]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/hrtimer.c
timers: Logic to move non pinned timers
[mirror_ubuntu-zesty-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
51/**
52 * ktime_get - get the monotonic time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
d316c57f 56ktime_t ktime_get(void)
c0a31329
TG
57{
58 struct timespec now;
59
60 ktime_get_ts(&now);
61
62 return timespec_to_ktime(now);
63}
641b9e0e 64EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
65
66/**
67 * ktime_get_real - get the real (wall-) time in ktime_t format
68 *
69 * returns the time in ktime_t format
70 */
d316c57f 71ktime_t ktime_get_real(void)
c0a31329
TG
72{
73 struct timespec now;
74
75 getnstimeofday(&now);
76
77 return timespec_to_ktime(now);
78}
79
80EXPORT_SYMBOL_GPL(ktime_get_real);
81
82/*
83 * The timer bases:
7978672c
GA
84 *
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
c0a31329 90 */
54cdfdb4 91DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 92{
3c8aa39d
TG
93
94 .clock_base =
c0a31329 95 {
3c8aa39d
TG
96 {
97 .index = CLOCK_REALTIME,
98 .get_time = &ktime_get_real,
54cdfdb4 99 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
100 },
101 {
102 .index = CLOCK_MONOTONIC,
103 .get_time = &ktime_get,
54cdfdb4 104 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
105 },
106 }
c0a31329
TG
107};
108
109/**
110 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
111 * @ts: pointer to timespec variable
112 *
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 115 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
116 */
117void ktime_get_ts(struct timespec *ts)
118{
119 struct timespec tomono;
120 unsigned long seq;
121
122 do {
123 seq = read_seqbegin(&xtime_lock);
124 getnstimeofday(ts);
125 tomono = wall_to_monotonic;
126
127 } while (read_seqretry(&xtime_lock, seq));
128
129 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
130 ts->tv_nsec + tomono.tv_nsec);
131}
69778e32 132EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 133
92127c7a
TG
134/*
135 * Get the coarse grained time at the softirq based on xtime and
136 * wall_to_monotonic.
137 */
3c8aa39d 138static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
139{
140 ktime_t xtim, tomono;
ad28d94a 141 struct timespec xts, tom;
92127c7a
TG
142 unsigned long seq;
143
144 do {
145 seq = read_seqbegin(&xtime_lock);
2c6b47de 146 xts = current_kernel_time();
ad28d94a 147 tom = wall_to_monotonic;
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
ad28d94a 151 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
c0a31329
TG
157/*
158 * Functions and macros which are different for UP/SMP systems are kept in a
159 * single place
160 */
161#ifdef CONFIG_SMP
162
c0a31329
TG
163/*
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
167 *
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
170 *
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
173 * locked.
174 */
3c8aa39d
TG
175static
176struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
177 unsigned long *flags)
c0a31329 178{
3c8aa39d 179 struct hrtimer_clock_base *base;
c0a31329
TG
180
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
3c8aa39d 184 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU: */
3c8aa39d 188 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
189 }
190 cpu_relax();
191 }
192}
193
194/*
195 * Switch the timer base to the current CPU when possible.
196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
3c8aa39d
TG
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
eea08f32
AB
203 int cpu, preferred_cpu = -1;
204
205 cpu = smp_processor_id();
206#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
207 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
208 preferred_cpu = get_nohz_load_balancer();
209 if (preferred_cpu >= 0)
210 cpu = preferred_cpu;
211 }
212#endif
c0a31329 213
eea08f32
AB
214again:
215 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 216 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
217
218 if (base != new_base) {
219 /*
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * so we keep it on the same CPU. No hassle vs. reprogramming
223 * the event source in the high resolution case. The softirq
224 * code will take care of this when the timer function has
225 * completed. There is no conflict as we hold the lock until
226 * the timer is enqueued.
227 */
54cdfdb4 228 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
229 return base;
230
231 /* See the comment in lock_timer_base() */
232 timer->base = NULL;
3c8aa39d
TG
233 spin_unlock(&base->cpu_base->lock);
234 spin_lock(&new_base->cpu_base->lock);
eea08f32
AB
235
236 /* Optimized away for NOHZ=n SMP=n */
237 if (cpu == preferred_cpu) {
238 /* Calculate clock monotonic expiry time */
239#ifdef CONFIG_HIGH_RES_TIMERS
240 ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
241 new_base->offset);
242#else
243 ktime_t expires = hrtimer_get_expires(timer);
244#endif
245
246 /*
247 * Get the next event on target cpu from the
248 * clock events layer.
249 * This covers the highres=off nohz=on case as well.
250 */
251 ktime_t next = clockevents_get_next_event(cpu);
252
253 ktime_t delta = ktime_sub(expires, next);
254
255 /*
256 * We do not migrate the timer when it is expiring
257 * before the next event on the target cpu because
258 * we cannot reprogram the target cpu hardware and
259 * we would cause it to fire late.
260 */
261 if (delta.tv64 < 0) {
262 cpu = smp_processor_id();
263 spin_unlock(&new_base->cpu_base->lock);
264 spin_lock(&base->cpu_base->lock);
265 timer->base = base;
266 goto again;
267 }
268 }
c0a31329
TG
269 timer->base = new_base;
270 }
271 return new_base;
272}
273
274#else /* CONFIG_SMP */
275
3c8aa39d 276static inline struct hrtimer_clock_base *
c0a31329
TG
277lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
278{
3c8aa39d 279 struct hrtimer_clock_base *base = timer->base;
c0a31329 280
3c8aa39d 281 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
282
283 return base;
284}
285
eea08f32 286# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
287
288#endif /* !CONFIG_SMP */
289
290/*
291 * Functions for the union type storage format of ktime_t which are
292 * too large for inlining:
293 */
294#if BITS_PER_LONG < 64
295# ifndef CONFIG_KTIME_SCALAR
296/**
297 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
298 * @kt: addend
299 * @nsec: the scalar nsec value to add
300 *
301 * Returns the sum of kt and nsec in ktime_t format
302 */
303ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
304{
305 ktime_t tmp;
306
307 if (likely(nsec < NSEC_PER_SEC)) {
308 tmp.tv64 = nsec;
309 } else {
310 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
311
312 tmp = ktime_set((long)nsec, rem);
313 }
314
315 return ktime_add(kt, tmp);
316}
b8b8fd2d
DH
317
318EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
319
320/**
321 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
322 * @kt: minuend
323 * @nsec: the scalar nsec value to subtract
324 *
325 * Returns the subtraction of @nsec from @kt in ktime_t format
326 */
327ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
328{
329 ktime_t tmp;
330
331 if (likely(nsec < NSEC_PER_SEC)) {
332 tmp.tv64 = nsec;
333 } else {
334 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
335
336 tmp = ktime_set((long)nsec, rem);
337 }
338
339 return ktime_sub(kt, tmp);
340}
341
342EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
343# endif /* !CONFIG_KTIME_SCALAR */
344
345/*
346 * Divide a ktime value by a nanosecond value
347 */
4d672e7a 348u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 349{
900cfa46 350 u64 dclc;
c0a31329
TG
351 int sft = 0;
352
900cfa46 353 dclc = ktime_to_ns(kt);
c0a31329
TG
354 /* Make sure the divisor is less than 2^32: */
355 while (div >> 32) {
356 sft++;
357 div >>= 1;
358 }
359 dclc >>= sft;
360 do_div(dclc, (unsigned long) div);
361
4d672e7a 362 return dclc;
c0a31329 363}
c0a31329
TG
364#endif /* BITS_PER_LONG >= 64 */
365
5a7780e7
TG
366/*
367 * Add two ktime values and do a safety check for overflow:
368 */
369ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
370{
371 ktime_t res = ktime_add(lhs, rhs);
372
373 /*
374 * We use KTIME_SEC_MAX here, the maximum timeout which we can
375 * return to user space in a timespec:
376 */
377 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
378 res = ktime_set(KTIME_SEC_MAX, 0);
379
380 return res;
381}
382
237fc6e7
TG
383#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
384
385static struct debug_obj_descr hrtimer_debug_descr;
386
387/*
388 * fixup_init is called when:
389 * - an active object is initialized
390 */
391static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
392{
393 struct hrtimer *timer = addr;
394
395 switch (state) {
396 case ODEBUG_STATE_ACTIVE:
397 hrtimer_cancel(timer);
398 debug_object_init(timer, &hrtimer_debug_descr);
399 return 1;
400 default:
401 return 0;
402 }
403}
404
405/*
406 * fixup_activate is called when:
407 * - an active object is activated
408 * - an unknown object is activated (might be a statically initialized object)
409 */
410static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
411{
412 switch (state) {
413
414 case ODEBUG_STATE_NOTAVAILABLE:
415 WARN_ON_ONCE(1);
416 return 0;
417
418 case ODEBUG_STATE_ACTIVE:
419 WARN_ON(1);
420
421 default:
422 return 0;
423 }
424}
425
426/*
427 * fixup_free is called when:
428 * - an active object is freed
429 */
430static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
431{
432 struct hrtimer *timer = addr;
433
434 switch (state) {
435 case ODEBUG_STATE_ACTIVE:
436 hrtimer_cancel(timer);
437 debug_object_free(timer, &hrtimer_debug_descr);
438 return 1;
439 default:
440 return 0;
441 }
442}
443
444static struct debug_obj_descr hrtimer_debug_descr = {
445 .name = "hrtimer",
446 .fixup_init = hrtimer_fixup_init,
447 .fixup_activate = hrtimer_fixup_activate,
448 .fixup_free = hrtimer_fixup_free,
449};
450
451static inline void debug_hrtimer_init(struct hrtimer *timer)
452{
453 debug_object_init(timer, &hrtimer_debug_descr);
454}
455
456static inline void debug_hrtimer_activate(struct hrtimer *timer)
457{
458 debug_object_activate(timer, &hrtimer_debug_descr);
459}
460
461static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
462{
463 debug_object_deactivate(timer, &hrtimer_debug_descr);
464}
465
466static inline void debug_hrtimer_free(struct hrtimer *timer)
467{
468 debug_object_free(timer, &hrtimer_debug_descr);
469}
470
471static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
472 enum hrtimer_mode mode);
473
474void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
475 enum hrtimer_mode mode)
476{
477 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
478 __hrtimer_init(timer, clock_id, mode);
479}
480
481void destroy_hrtimer_on_stack(struct hrtimer *timer)
482{
483 debug_object_free(timer, &hrtimer_debug_descr);
484}
485
486#else
487static inline void debug_hrtimer_init(struct hrtimer *timer) { }
488static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
489static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
490#endif
491
54cdfdb4
TG
492/* High resolution timer related functions */
493#ifdef CONFIG_HIGH_RES_TIMERS
494
495/*
496 * High resolution timer enabled ?
497 */
498static int hrtimer_hres_enabled __read_mostly = 1;
499
500/*
501 * Enable / Disable high resolution mode
502 */
503static int __init setup_hrtimer_hres(char *str)
504{
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
512}
513
514__setup("highres=", setup_hrtimer_hres);
515
516/*
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
518 */
519static inline int hrtimer_is_hres_enabled(void)
520{
521 return hrtimer_hres_enabled;
522}
523
524/*
525 * Is the high resolution mode active ?
526 */
527static inline int hrtimer_hres_active(void)
528{
529 return __get_cpu_var(hrtimer_bases).hres_active;
530}
531
532/*
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
536 */
537static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
538{
539 int i;
540 struct hrtimer_clock_base *base = cpu_base->clock_base;
541 ktime_t expires;
542
543 cpu_base->expires_next.tv64 = KTIME_MAX;
544
545 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
546 struct hrtimer *timer;
547
548 if (!base->first)
549 continue;
550 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 551 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
552 /*
553 * clock_was_set() has changed base->offset so the
554 * result might be negative. Fix it up to prevent a
555 * false positive in clockevents_program_event()
556 */
557 if (expires.tv64 < 0)
558 expires.tv64 = 0;
54cdfdb4
TG
559 if (expires.tv64 < cpu_base->expires_next.tv64)
560 cpu_base->expires_next = expires;
561 }
562
563 if (cpu_base->expires_next.tv64 != KTIME_MAX)
564 tick_program_event(cpu_base->expires_next, 1);
565}
566
567/*
568 * Shared reprogramming for clock_realtime and clock_monotonic
569 *
570 * When a timer is enqueued and expires earlier than the already enqueued
571 * timers, we have to check, whether it expires earlier than the timer for
572 * which the clock event device was armed.
573 *
574 * Called with interrupts disabled and base->cpu_base.lock held
575 */
576static int hrtimer_reprogram(struct hrtimer *timer,
577 struct hrtimer_clock_base *base)
578{
579 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 580 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
581 int res;
582
cc584b21 583 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 584
54cdfdb4
TG
585 /*
586 * When the callback is running, we do not reprogram the clock event
587 * device. The timer callback is either running on a different CPU or
3a4fa0a2 588 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
589 * reprogramming is handled either by the softirq, which called the
590 * callback or at the end of the hrtimer_interrupt.
591 */
592 if (hrtimer_callback_running(timer))
593 return 0;
594
63070a79
TG
595 /*
596 * CLOCK_REALTIME timer might be requested with an absolute
597 * expiry time which is less than base->offset. Nothing wrong
598 * about that, just avoid to call into the tick code, which
599 * has now objections against negative expiry values.
600 */
601 if (expires.tv64 < 0)
602 return -ETIME;
603
54cdfdb4
TG
604 if (expires.tv64 >= expires_next->tv64)
605 return 0;
606
607 /*
608 * Clockevents returns -ETIME, when the event was in the past.
609 */
610 res = tick_program_event(expires, 0);
611 if (!IS_ERR_VALUE(res))
612 *expires_next = expires;
613 return res;
614}
615
616
617/*
618 * Retrigger next event is called after clock was set
619 *
620 * Called with interrupts disabled via on_each_cpu()
621 */
622static void retrigger_next_event(void *arg)
623{
624 struct hrtimer_cpu_base *base;
625 struct timespec realtime_offset;
626 unsigned long seq;
627
628 if (!hrtimer_hres_active())
629 return;
630
631 do {
632 seq = read_seqbegin(&xtime_lock);
633 set_normalized_timespec(&realtime_offset,
634 -wall_to_monotonic.tv_sec,
635 -wall_to_monotonic.tv_nsec);
636 } while (read_seqretry(&xtime_lock, seq));
637
638 base = &__get_cpu_var(hrtimer_bases);
639
640 /* Adjust CLOCK_REALTIME offset */
641 spin_lock(&base->lock);
642 base->clock_base[CLOCK_REALTIME].offset =
643 timespec_to_ktime(realtime_offset);
644
645 hrtimer_force_reprogram(base);
646 spin_unlock(&base->lock);
647}
648
649/*
650 * Clock realtime was set
651 *
652 * Change the offset of the realtime clock vs. the monotonic
653 * clock.
654 *
655 * We might have to reprogram the high resolution timer interrupt. On
656 * SMP we call the architecture specific code to retrigger _all_ high
657 * resolution timer interrupts. On UP we just disable interrupts and
658 * call the high resolution interrupt code.
659 */
660void clock_was_set(void)
661{
662 /* Retrigger the CPU local events everywhere */
15c8b6c1 663 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
664}
665
995f054f
IM
666/*
667 * During resume we might have to reprogram the high resolution timer
668 * interrupt (on the local CPU):
669 */
670void hres_timers_resume(void)
671{
1d4a7f1c
PZ
672 WARN_ONCE(!irqs_disabled(),
673 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
674
995f054f
IM
675 retrigger_next_event(NULL);
676}
677
54cdfdb4
TG
678/*
679 * Initialize the high resolution related parts of cpu_base
680 */
681static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
682{
683 base->expires_next.tv64 = KTIME_MAX;
684 base->hres_active = 0;
54cdfdb4
TG
685}
686
687/*
688 * Initialize the high resolution related parts of a hrtimer
689 */
690static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
691{
54cdfdb4
TG
692}
693
ca109491 694
54cdfdb4
TG
695/*
696 * When High resolution timers are active, try to reprogram. Note, that in case
697 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
698 * check happens. The timer gets enqueued into the rbtree. The reprogramming
699 * and expiry check is done in the hrtimer_interrupt or in the softirq.
700 */
701static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
702 struct hrtimer_clock_base *base,
703 int wakeup)
54cdfdb4
TG
704{
705 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
706 if (wakeup) {
707 spin_unlock(&base->cpu_base->lock);
708 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
709 spin_lock(&base->cpu_base->lock);
710 } else
711 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
712
ca109491 713 return 1;
54cdfdb4 714 }
7f1e2ca9 715
54cdfdb4
TG
716 return 0;
717}
718
719/*
720 * Switch to high resolution mode
721 */
f8953856 722static int hrtimer_switch_to_hres(void)
54cdfdb4 723{
820de5c3
IM
724 int cpu = smp_processor_id();
725 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
726 unsigned long flags;
727
728 if (base->hres_active)
f8953856 729 return 1;
54cdfdb4
TG
730
731 local_irq_save(flags);
732
733 if (tick_init_highres()) {
734 local_irq_restore(flags);
820de5c3
IM
735 printk(KERN_WARNING "Could not switch to high resolution "
736 "mode on CPU %d\n", cpu);
f8953856 737 return 0;
54cdfdb4
TG
738 }
739 base->hres_active = 1;
740 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
741 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
742
743 tick_setup_sched_timer();
744
745 /* "Retrigger" the interrupt to get things going */
746 retrigger_next_event(NULL);
747 local_irq_restore(flags);
edfed66e 748 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 749 smp_processor_id());
f8953856 750 return 1;
54cdfdb4
TG
751}
752
753#else
754
755static inline int hrtimer_hres_active(void) { return 0; }
756static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 757static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
758static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
759static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
760 struct hrtimer_clock_base *base,
761 int wakeup)
54cdfdb4
TG
762{
763 return 0;
764}
54cdfdb4
TG
765static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
766static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
767
768#endif /* CONFIG_HIGH_RES_TIMERS */
769
82f67cd9
IM
770#ifdef CONFIG_TIMER_STATS
771void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
772{
773 if (timer->start_site)
774 return;
775
776 timer->start_site = addr;
777 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778 timer->start_pid = current->pid;
779}
780#endif
781
c0a31329 782/*
6506f2aa 783 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
784 */
785static inline
786void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787{
3c8aa39d 788 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
789}
790
791/**
792 * hrtimer_forward - forward the timer expiry
c0a31329 793 * @timer: hrtimer to forward
44f21475 794 * @now: forward past this time
c0a31329
TG
795 * @interval: the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
8dca6f33 798 * Returns the number of overruns.
c0a31329 799 */
4d672e7a 800u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 801{
4d672e7a 802 u64 orun = 1;
44f21475 803 ktime_t delta;
c0a31329 804
cc584b21 805 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
806
807 if (delta.tv64 < 0)
808 return 0;
809
c9db4fa1
TG
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
812
c0a31329 813 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 814 s64 incr = ktime_to_ns(interval);
c0a31329
TG
815
816 orun = ktime_divns(delta, incr);
cc584b21
AV
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
cc584b21 826 hrtimer_add_expires(timer, interval);
c0a31329
TG
827
828 return orun;
829}
6bdb6b62 830EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
831
832/*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 839 */
a6037b61
PZ
840static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
c0a31329
TG
842{
843 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
99bc2fcb 846 int leftmost = 1;
c0a31329 847
237fc6e7
TG
848 debug_hrtimer_activate(timer);
849
c0a31329
TG
850 /*
851 * Find the right place in the rbtree:
852 */
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
856 /*
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
859 */
cc584b21
AV
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
c0a31329 862 link = &(*link)->rb_left;
99bc2fcb 863 } else {
c0a31329 864 link = &(*link)->rb_right;
99bc2fcb
IM
865 leftmost = 0;
866 }
c0a31329
TG
867 }
868
869 /*
288867ec
TG
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
c0a31329 872 */
a6037b61 873 if (leftmost)
54cdfdb4 874 base->first = &timer->node;
54cdfdb4 875
c0a31329
TG
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
303e967f
TG
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
883
884 return leftmost;
288867ec 885}
c0a31329
TG
886
887/*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
54cdfdb4
TG
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
c0a31329 896 */
3c8aa39d 897static void __remove_hrtimer(struct hrtimer *timer,
303e967f 898 struct hrtimer_clock_base *base,
54cdfdb4 899 unsigned long newstate, int reprogram)
c0a31329 900{
ca109491 901 if (timer->state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
902 /*
903 * Remove the timer from the rbtree and replace the
904 * first entry pointer if necessary.
905 */
906 if (base->first == &timer->node) {
907 base->first = rb_next(&timer->node);
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram && hrtimer_hres_active())
910 hrtimer_force_reprogram(base->cpu_base);
911 }
912 rb_erase(&timer->node, &base->active);
913 }
303e967f 914 timer->state = newstate;
c0a31329
TG
915}
916
917/*
918 * remove hrtimer, called with base lock held
919 */
920static inline int
3c8aa39d 921remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 922{
303e967f 923 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
237fc6e7 934 debug_hrtimer_deactivate(timer);
82f67cd9 935 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
936 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
937 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
938 reprogram);
c0a31329
TG
939 return 1;
940 }
941 return 0;
942}
943
7f1e2ca9
PZ
944int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
945 unsigned long delta_ns, const enum hrtimer_mode mode,
946 int wakeup)
c0a31329 947{
3c8aa39d 948 struct hrtimer_clock_base *base, *new_base;
c0a31329 949 unsigned long flags;
a6037b61 950 int ret, leftmost;
c0a31329
TG
951
952 base = lock_hrtimer_base(timer, &flags);
953
954 /* Remove an active timer from the queue: */
955 ret = remove_hrtimer(timer, base);
956
957 /* Switch the timer base, if necessary: */
597d0275 958 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 959
597d0275 960 if (mode & HRTIMER_MODE_REL) {
5a7780e7 961 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
962 /*
963 * CONFIG_TIME_LOW_RES is a temporary way for architectures
964 * to signal that they simply return xtime in
965 * do_gettimeoffset(). In this case we want to round up by
966 * resolution when starting a relative timer, to avoid short
967 * timeouts. This will go away with the GTOD framework.
968 */
969#ifdef CONFIG_TIME_LOW_RES
5a7780e7 970 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
971#endif
972 }
237fc6e7 973
da8f2e17 974 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 975
82f67cd9
IM
976 timer_stats_hrtimer_set_start_info(timer);
977
a6037b61
PZ
978 leftmost = enqueue_hrtimer(timer, new_base);
979
935c631d
IM
980 /*
981 * Only allow reprogramming if the new base is on this CPU.
982 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
983 *
984 * XXX send_remote_softirq() ?
935c631d 985 */
a6037b61 986 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 987 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
988
989 unlock_hrtimer_base(timer, &flags);
990
991 return ret;
992}
7f1e2ca9
PZ
993
994/**
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer: the timer to be added
997 * @tim: expiry time
998 * @delta_ns: "slack" range for the timer
999 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000 *
1001 * Returns:
1002 * 0 on success
1003 * 1 when the timer was active
1004 */
1005int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1006 unsigned long delta_ns, const enum hrtimer_mode mode)
1007{
1008 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1009}
da8f2e17
AV
1010EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1011
1012/**
e1dd7bc5 1013 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1014 * @timer: the timer to be added
1015 * @tim: expiry time
1016 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1017 *
1018 * Returns:
1019 * 0 on success
1020 * 1 when the timer was active
1021 */
1022int
1023hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1024{
7f1e2ca9 1025 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1026}
8d16b764 1027EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1028
da8f2e17 1029
c0a31329
TG
1030/**
1031 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1032 * @timer: hrtimer to stop
1033 *
1034 * Returns:
1035 * 0 when the timer was not active
1036 * 1 when the timer was active
1037 * -1 when the timer is currently excuting the callback function and
fa9799e3 1038 * cannot be stopped
c0a31329
TG
1039 */
1040int hrtimer_try_to_cancel(struct hrtimer *timer)
1041{
3c8aa39d 1042 struct hrtimer_clock_base *base;
c0a31329
TG
1043 unsigned long flags;
1044 int ret = -1;
1045
1046 base = lock_hrtimer_base(timer, &flags);
1047
303e967f 1048 if (!hrtimer_callback_running(timer))
c0a31329
TG
1049 ret = remove_hrtimer(timer, base);
1050
1051 unlock_hrtimer_base(timer, &flags);
1052
1053 return ret;
1054
1055}
8d16b764 1056EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1057
1058/**
1059 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1060 * @timer: the timer to be cancelled
1061 *
1062 * Returns:
1063 * 0 when the timer was not active
1064 * 1 when the timer was active
1065 */
1066int hrtimer_cancel(struct hrtimer *timer)
1067{
1068 for (;;) {
1069 int ret = hrtimer_try_to_cancel(timer);
1070
1071 if (ret >= 0)
1072 return ret;
5ef37b19 1073 cpu_relax();
c0a31329
TG
1074 }
1075}
8d16b764 1076EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1077
1078/**
1079 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1080 * @timer: the timer to read
1081 */
1082ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1083{
3c8aa39d 1084 struct hrtimer_clock_base *base;
c0a31329
TG
1085 unsigned long flags;
1086 ktime_t rem;
1087
1088 base = lock_hrtimer_base(timer, &flags);
cc584b21 1089 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1090 unlock_hrtimer_base(timer, &flags);
1091
1092 return rem;
1093}
8d16b764 1094EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1095
ee9c5785 1096#ifdef CONFIG_NO_HZ
69239749
TL
1097/**
1098 * hrtimer_get_next_event - get the time until next expiry event
1099 *
1100 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1101 * is pending.
1102 */
1103ktime_t hrtimer_get_next_event(void)
1104{
3c8aa39d
TG
1105 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1106 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1107 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1108 unsigned long flags;
1109 int i;
1110
3c8aa39d
TG
1111 spin_lock_irqsave(&cpu_base->lock, flags);
1112
54cdfdb4
TG
1113 if (!hrtimer_hres_active()) {
1114 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1115 struct hrtimer *timer;
69239749 1116
54cdfdb4
TG
1117 if (!base->first)
1118 continue;
3c8aa39d 1119
54cdfdb4 1120 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1121 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1122 delta = ktime_sub(delta, base->get_time());
1123 if (delta.tv64 < mindelta.tv64)
1124 mindelta.tv64 = delta.tv64;
1125 }
69239749 1126 }
3c8aa39d
TG
1127
1128 spin_unlock_irqrestore(&cpu_base->lock, flags);
1129
69239749
TL
1130 if (mindelta.tv64 < 0)
1131 mindelta.tv64 = 0;
1132 return mindelta;
1133}
1134#endif
1135
237fc6e7
TG
1136static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1137 enum hrtimer_mode mode)
c0a31329 1138{
3c8aa39d 1139 struct hrtimer_cpu_base *cpu_base;
c0a31329 1140
7978672c
GA
1141 memset(timer, 0, sizeof(struct hrtimer));
1142
3c8aa39d 1143 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1144
c9cb2e3d 1145 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1146 clock_id = CLOCK_MONOTONIC;
1147
3c8aa39d 1148 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1149 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1150 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1151
1152#ifdef CONFIG_TIMER_STATS
1153 timer->start_site = NULL;
1154 timer->start_pid = -1;
1155 memset(timer->start_comm, 0, TASK_COMM_LEN);
1156#endif
c0a31329 1157}
237fc6e7
TG
1158
1159/**
1160 * hrtimer_init - initialize a timer to the given clock
1161 * @timer: the timer to be initialized
1162 * @clock_id: the clock to be used
1163 * @mode: timer mode abs/rel
1164 */
1165void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1166 enum hrtimer_mode mode)
1167{
1168 debug_hrtimer_init(timer);
1169 __hrtimer_init(timer, clock_id, mode);
1170}
8d16b764 1171EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1172
1173/**
1174 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1175 * @which_clock: which clock to query
1176 * @tp: pointer to timespec variable to store the resolution
1177 *
72fd4a35
RD
1178 * Store the resolution of the clock selected by @which_clock in the
1179 * variable pointed to by @tp.
c0a31329
TG
1180 */
1181int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1182{
3c8aa39d 1183 struct hrtimer_cpu_base *cpu_base;
c0a31329 1184
3c8aa39d
TG
1185 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1186 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1187
1188 return 0;
1189}
8d16b764 1190EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1191
d3d74453
PZ
1192static void __run_hrtimer(struct hrtimer *timer)
1193{
1194 struct hrtimer_clock_base *base = timer->base;
1195 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1196 enum hrtimer_restart (*fn)(struct hrtimer *);
1197 int restart;
1198
ca109491
PZ
1199 WARN_ON(!irqs_disabled());
1200
237fc6e7 1201 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1202 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1203 timer_stats_account_hrtimer(timer);
d3d74453 1204 fn = timer->function;
ca109491
PZ
1205
1206 /*
1207 * Because we run timers from hardirq context, there is no chance
1208 * they get migrated to another cpu, therefore its safe to unlock
1209 * the timer base.
1210 */
1211 spin_unlock(&cpu_base->lock);
1212 restart = fn(timer);
1213 spin_lock(&cpu_base->lock);
d3d74453
PZ
1214
1215 /*
e3f1d883
TG
1216 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1217 * we do not reprogramm the event hardware. Happens either in
1218 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1219 */
1220 if (restart != HRTIMER_NORESTART) {
1221 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1222 enqueue_hrtimer(timer, base);
d3d74453
PZ
1223 }
1224 timer->state &= ~HRTIMER_STATE_CALLBACK;
1225}
1226
54cdfdb4
TG
1227#ifdef CONFIG_HIGH_RES_TIMERS
1228
7f22391c
FW
1229static int force_clock_reprogram;
1230
1231/*
1232 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1233 * is hanging, which could happen with something that slows the interrupt
1234 * such as the tracing. Then we force the clock reprogramming for each future
1235 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1236 * threshold that we will overwrite.
1237 * The next tick event will be scheduled to 3 times we currently spend on
1238 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1239 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1240 * let it running without serious starvation.
1241 */
1242
1243static inline void
1244hrtimer_interrupt_hanging(struct clock_event_device *dev,
1245 ktime_t try_time)
1246{
1247 force_clock_reprogram = 1;
1248 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1249 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1250 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1251}
54cdfdb4
TG
1252/*
1253 * High resolution timer interrupt
1254 * Called with interrupts disabled
1255 */
1256void hrtimer_interrupt(struct clock_event_device *dev)
1257{
1258 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1259 struct hrtimer_clock_base *base;
1260 ktime_t expires_next, now;
7f22391c 1261 int nr_retries = 0;
ca109491 1262 int i;
54cdfdb4
TG
1263
1264 BUG_ON(!cpu_base->hres_active);
1265 cpu_base->nr_events++;
1266 dev->next_event.tv64 = KTIME_MAX;
1267
1268 retry:
7f22391c
FW
1269 /* 5 retries is enough to notice a hang */
1270 if (!(++nr_retries % 5))
1271 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1272
54cdfdb4
TG
1273 now = ktime_get();
1274
1275 expires_next.tv64 = KTIME_MAX;
1276
1277 base = cpu_base->clock_base;
1278
1279 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1280 ktime_t basenow;
1281 struct rb_node *node;
1282
1283 spin_lock(&cpu_base->lock);
1284
1285 basenow = ktime_add(now, base->offset);
1286
1287 while ((node = base->first)) {
1288 struct hrtimer *timer;
1289
1290 timer = rb_entry(node, struct hrtimer, node);
1291
654c8e0b
AV
1292 /*
1293 * The immediate goal for using the softexpires is
1294 * minimizing wakeups, not running timers at the
1295 * earliest interrupt after their soft expiration.
1296 * This allows us to avoid using a Priority Search
1297 * Tree, which can answer a stabbing querry for
1298 * overlapping intervals and instead use the simple
1299 * BST we already have.
1300 * We don't add extra wakeups by delaying timers that
1301 * are right-of a not yet expired timer, because that
1302 * timer will have to trigger a wakeup anyway.
1303 */
1304
1305 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1306 ktime_t expires;
1307
cc584b21 1308 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1309 base->offset);
1310 if (expires.tv64 < expires_next.tv64)
1311 expires_next = expires;
1312 break;
1313 }
1314
d3d74453 1315 __run_hrtimer(timer);
54cdfdb4
TG
1316 }
1317 spin_unlock(&cpu_base->lock);
1318 base++;
1319 }
1320
1321 cpu_base->expires_next = expires_next;
1322
1323 /* Reprogramming necessary ? */
1324 if (expires_next.tv64 != KTIME_MAX) {
7f22391c 1325 if (tick_program_event(expires_next, force_clock_reprogram))
54cdfdb4
TG
1326 goto retry;
1327 }
54cdfdb4
TG
1328}
1329
8bdec955
TG
1330/*
1331 * local version of hrtimer_peek_ahead_timers() called with interrupts
1332 * disabled.
1333 */
1334static void __hrtimer_peek_ahead_timers(void)
1335{
1336 struct tick_device *td;
1337
1338 if (!hrtimer_hres_active())
1339 return;
1340
1341 td = &__get_cpu_var(tick_cpu_device);
1342 if (td && td->evtdev)
1343 hrtimer_interrupt(td->evtdev);
1344}
1345
2e94d1f7
AV
1346/**
1347 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1348 *
1349 * hrtimer_peek_ahead_timers will peek at the timer queue of
1350 * the current cpu and check if there are any timers for which
1351 * the soft expires time has passed. If any such timers exist,
1352 * they are run immediately and then removed from the timer queue.
1353 *
1354 */
1355void hrtimer_peek_ahead_timers(void)
1356{
643bdf68 1357 unsigned long flags;
dc4304f7 1358
2e94d1f7 1359 local_irq_save(flags);
8bdec955 1360 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1361 local_irq_restore(flags);
1362}
1363
a6037b61
PZ
1364static void run_hrtimer_softirq(struct softirq_action *h)
1365{
1366 hrtimer_peek_ahead_timers();
1367}
1368
82c5b7b5
IM
1369#else /* CONFIG_HIGH_RES_TIMERS */
1370
1371static inline void __hrtimer_peek_ahead_timers(void) { }
1372
1373#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1374
d3d74453
PZ
1375/*
1376 * Called from timer softirq every jiffy, expire hrtimers:
1377 *
1378 * For HRT its the fall back code to run the softirq in the timer
1379 * softirq context in case the hrtimer initialization failed or has
1380 * not been done yet.
1381 */
1382void hrtimer_run_pending(void)
1383{
d3d74453
PZ
1384 if (hrtimer_hres_active())
1385 return;
54cdfdb4 1386
d3d74453
PZ
1387 /*
1388 * This _is_ ugly: We have to check in the softirq context,
1389 * whether we can switch to highres and / or nohz mode. The
1390 * clocksource switch happens in the timer interrupt with
1391 * xtime_lock held. Notification from there only sets the
1392 * check bit in the tick_oneshot code, otherwise we might
1393 * deadlock vs. xtime_lock.
1394 */
1395 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1396 hrtimer_switch_to_hres();
54cdfdb4
TG
1397}
1398
c0a31329 1399/*
d3d74453 1400 * Called from hardirq context every jiffy
c0a31329 1401 */
833883d9 1402void hrtimer_run_queues(void)
c0a31329 1403{
288867ec 1404 struct rb_node *node;
833883d9
DS
1405 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1406 struct hrtimer_clock_base *base;
1407 int index, gettime = 1;
c0a31329 1408
833883d9 1409 if (hrtimer_hres_active())
3055adda
DS
1410 return;
1411
833883d9
DS
1412 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1413 base = &cpu_base->clock_base[index];
c0a31329 1414
833883d9 1415 if (!base->first)
d3d74453 1416 continue;
833883d9 1417
d7cfb60c 1418 if (gettime) {
833883d9
DS
1419 hrtimer_get_softirq_time(cpu_base);
1420 gettime = 0;
b75f7a51 1421 }
d3d74453 1422
833883d9 1423 spin_lock(&cpu_base->lock);
c0a31329 1424
833883d9
DS
1425 while ((node = base->first)) {
1426 struct hrtimer *timer;
54cdfdb4 1427
833883d9 1428 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1429 if (base->softirq_time.tv64 <=
1430 hrtimer_get_expires_tv64(timer))
833883d9
DS
1431 break;
1432
833883d9
DS
1433 __run_hrtimer(timer);
1434 }
1435 spin_unlock(&cpu_base->lock);
1436 }
c0a31329
TG
1437}
1438
10c94ec1
TG
1439/*
1440 * Sleep related functions:
1441 */
c9cb2e3d 1442static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1443{
1444 struct hrtimer_sleeper *t =
1445 container_of(timer, struct hrtimer_sleeper, timer);
1446 struct task_struct *task = t->task;
1447
1448 t->task = NULL;
1449 if (task)
1450 wake_up_process(task);
1451
1452 return HRTIMER_NORESTART;
1453}
1454
36c8b586 1455void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1456{
1457 sl->timer.function = hrtimer_wakeup;
1458 sl->task = task;
1459}
1460
669d7868 1461static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1462{
669d7868 1463 hrtimer_init_sleeper(t, current);
10c94ec1 1464
432569bb
RZ
1465 do {
1466 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1467 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1468 if (!hrtimer_active(&t->timer))
1469 t->task = NULL;
432569bb 1470
54cdfdb4
TG
1471 if (likely(t->task))
1472 schedule();
432569bb 1473
669d7868 1474 hrtimer_cancel(&t->timer);
c9cb2e3d 1475 mode = HRTIMER_MODE_ABS;
669d7868
TG
1476
1477 } while (t->task && !signal_pending(current));
432569bb 1478
3588a085
PZ
1479 __set_current_state(TASK_RUNNING);
1480
669d7868 1481 return t->task == NULL;
10c94ec1
TG
1482}
1483
080344b9
ON
1484static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1485{
1486 struct timespec rmt;
1487 ktime_t rem;
1488
cc584b21 1489 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1490 if (rem.tv64 <= 0)
1491 return 0;
1492 rmt = ktime_to_timespec(rem);
1493
1494 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1495 return -EFAULT;
1496
1497 return 1;
1498}
1499
1711ef38 1500long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1501{
669d7868 1502 struct hrtimer_sleeper t;
080344b9 1503 struct timespec __user *rmtp;
237fc6e7 1504 int ret = 0;
10c94ec1 1505
237fc6e7
TG
1506 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1507 HRTIMER_MODE_ABS);
cc584b21 1508 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1509
c9cb2e3d 1510 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1511 goto out;
10c94ec1 1512
029a07e0 1513 rmtp = restart->nanosleep.rmtp;
432569bb 1514 if (rmtp) {
237fc6e7 1515 ret = update_rmtp(&t.timer, rmtp);
080344b9 1516 if (ret <= 0)
237fc6e7 1517 goto out;
432569bb 1518 }
10c94ec1 1519
10c94ec1 1520 /* The other values in restart are already filled in */
237fc6e7
TG
1521 ret = -ERESTART_RESTARTBLOCK;
1522out:
1523 destroy_hrtimer_on_stack(&t.timer);
1524 return ret;
10c94ec1
TG
1525}
1526
080344b9 1527long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1528 const enum hrtimer_mode mode, const clockid_t clockid)
1529{
1530 struct restart_block *restart;
669d7868 1531 struct hrtimer_sleeper t;
237fc6e7 1532 int ret = 0;
3bd01206
AV
1533 unsigned long slack;
1534
1535 slack = current->timer_slack_ns;
1536 if (rt_task(current))
1537 slack = 0;
10c94ec1 1538
237fc6e7 1539 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1540 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1541 if (do_nanosleep(&t, mode))
237fc6e7 1542 goto out;
10c94ec1 1543
7978672c 1544 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1545 if (mode == HRTIMER_MODE_ABS) {
1546 ret = -ERESTARTNOHAND;
1547 goto out;
1548 }
10c94ec1 1549
432569bb 1550 if (rmtp) {
237fc6e7 1551 ret = update_rmtp(&t.timer, rmtp);
080344b9 1552 if (ret <= 0)
237fc6e7 1553 goto out;
432569bb 1554 }
10c94ec1
TG
1555
1556 restart = &current_thread_info()->restart_block;
1711ef38 1557 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1558 restart->nanosleep.index = t.timer.base->index;
1559 restart->nanosleep.rmtp = rmtp;
cc584b21 1560 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1561
237fc6e7
TG
1562 ret = -ERESTART_RESTARTBLOCK;
1563out:
1564 destroy_hrtimer_on_stack(&t.timer);
1565 return ret;
10c94ec1
TG
1566}
1567
58fd3aa2
HC
1568SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1569 struct timespec __user *, rmtp)
6ba1b912 1570{
080344b9 1571 struct timespec tu;
6ba1b912
TG
1572
1573 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1574 return -EFAULT;
1575
1576 if (!timespec_valid(&tu))
1577 return -EINVAL;
1578
080344b9 1579 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1580}
1581
c0a31329
TG
1582/*
1583 * Functions related to boot-time initialization:
1584 */
0ec160dd 1585static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1586{
3c8aa39d 1587 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1588 int i;
1589
3c8aa39d 1590 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1591
1592 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1593 cpu_base->clock_base[i].cpu_base = cpu_base;
1594
54cdfdb4 1595 hrtimer_init_hres(cpu_base);
c0a31329
TG
1596}
1597
1598#ifdef CONFIG_HOTPLUG_CPU
1599
ca109491 1600static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1601 struct hrtimer_clock_base *new_base)
c0a31329
TG
1602{
1603 struct hrtimer *timer;
1604 struct rb_node *node;
1605
1606 while ((node = rb_first(&old_base->active))) {
1607 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1608 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1609 debug_hrtimer_deactivate(timer);
b00c1a99
TG
1610
1611 /*
1612 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1613 * timer could be seen as !active and just vanish away
1614 * under us on another CPU
1615 */
1616 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1617 timer->base = new_base;
54cdfdb4 1618 /*
e3f1d883
TG
1619 * Enqueue the timers on the new cpu. This does not
1620 * reprogram the event device in case the timer
1621 * expires before the earliest on this CPU, but we run
1622 * hrtimer_interrupt after we migrated everything to
1623 * sort out already expired timers and reprogram the
1624 * event device.
54cdfdb4 1625 */
a6037b61 1626 enqueue_hrtimer(timer, new_base);
41e1022e 1627
b00c1a99
TG
1628 /* Clear the migration state bit */
1629 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1630 }
1631}
1632
d5fd43c4 1633static void migrate_hrtimers(int scpu)
c0a31329 1634{
3c8aa39d 1635 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1636 int i;
c0a31329 1637
37810659 1638 BUG_ON(cpu_online(scpu));
37810659 1639 tick_cancel_sched_timer(scpu);
731a55ba
TG
1640
1641 local_irq_disable();
1642 old_base = &per_cpu(hrtimer_bases, scpu);
1643 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1644 /*
1645 * The caller is globally serialized and nobody else
1646 * takes two locks at once, deadlock is not possible.
1647 */
731a55ba 1648 spin_lock(&new_base->lock);
8e60e05f 1649 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1650
3c8aa39d 1651 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1652 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1653 &new_base->clock_base[i]);
c0a31329
TG
1654 }
1655
8e60e05f 1656 spin_unlock(&old_base->lock);
731a55ba 1657 spin_unlock(&new_base->lock);
37810659 1658
731a55ba
TG
1659 /* Check, if we got expired work to do */
1660 __hrtimer_peek_ahead_timers();
1661 local_irq_enable();
c0a31329 1662}
37810659 1663
c0a31329
TG
1664#endif /* CONFIG_HOTPLUG_CPU */
1665
8c78f307 1666static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1667 unsigned long action, void *hcpu)
1668{
b2e3c0ad 1669 int scpu = (long)hcpu;
c0a31329
TG
1670
1671 switch (action) {
1672
1673 case CPU_UP_PREPARE:
8bb78442 1674 case CPU_UP_PREPARE_FROZEN:
37810659 1675 init_hrtimers_cpu(scpu);
c0a31329
TG
1676 break;
1677
1678#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1679 case CPU_DYING:
1680 case CPU_DYING_FROZEN:
1681 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1682 break;
c0a31329 1683 case CPU_DEAD:
8bb78442 1684 case CPU_DEAD_FROZEN:
b2e3c0ad 1685 {
37810659 1686 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1687 migrate_hrtimers(scpu);
c0a31329 1688 break;
b2e3c0ad 1689 }
c0a31329
TG
1690#endif
1691
1692 default:
1693 break;
1694 }
1695
1696 return NOTIFY_OK;
1697}
1698
8c78f307 1699static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1700 .notifier_call = hrtimer_cpu_notify,
1701};
1702
1703void __init hrtimers_init(void)
1704{
1705 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1706 (void *)(long)smp_processor_id());
1707 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1708#ifdef CONFIG_HIGH_RES_TIMERS
1709 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1710#endif
c0a31329
TG
1711}
1712
7bb67439 1713/**
654c8e0b 1714 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1715 * @expires: timeout value (ktime_t)
654c8e0b 1716 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1717 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718 *
1719 * Make the current task sleep until the given expiry time has
1720 * elapsed. The routine will return immediately unless
1721 * the current task state has been set (see set_current_state()).
1722 *
654c8e0b
AV
1723 * The @delta argument gives the kernel the freedom to schedule the
1724 * actual wakeup to a time that is both power and performance friendly.
1725 * The kernel give the normal best effort behavior for "@expires+@delta",
1726 * but may decide to fire the timer earlier, but no earlier than @expires.
1727 *
7bb67439
AV
1728 * You can set the task state as follows -
1729 *
1730 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1731 * pass before the routine returns.
1732 *
1733 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1734 * delivered to the current task.
1735 *
1736 * The current task state is guaranteed to be TASK_RUNNING when this
1737 * routine returns.
1738 *
1739 * Returns 0 when the timer has expired otherwise -EINTR
1740 */
654c8e0b 1741int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1742 const enum hrtimer_mode mode)
1743{
1744 struct hrtimer_sleeper t;
1745
1746 /*
1747 * Optimize when a zero timeout value is given. It does not
1748 * matter whether this is an absolute or a relative time.
1749 */
1750 if (expires && !expires->tv64) {
1751 __set_current_state(TASK_RUNNING);
1752 return 0;
1753 }
1754
1755 /*
1756 * A NULL parameter means "inifinte"
1757 */
1758 if (!expires) {
1759 schedule();
1760 __set_current_state(TASK_RUNNING);
1761 return -EINTR;
1762 }
1763
1764 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1765 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1766
1767 hrtimer_init_sleeper(&t, current);
1768
cc584b21 1769 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1770 if (!hrtimer_active(&t.timer))
1771 t.task = NULL;
1772
1773 if (likely(t.task))
1774 schedule();
1775
1776 hrtimer_cancel(&t.timer);
1777 destroy_hrtimer_on_stack(&t.timer);
1778
1779 __set_current_state(TASK_RUNNING);
1780
1781 return !t.task ? 0 : -EINTR;
1782}
654c8e0b
AV
1783EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1784
1785/**
1786 * schedule_hrtimeout - sleep until timeout
1787 * @expires: timeout value (ktime_t)
1788 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1789 *
1790 * Make the current task sleep until the given expiry time has
1791 * elapsed. The routine will return immediately unless
1792 * the current task state has been set (see set_current_state()).
1793 *
1794 * You can set the task state as follows -
1795 *
1796 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1797 * pass before the routine returns.
1798 *
1799 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1800 * delivered to the current task.
1801 *
1802 * The current task state is guaranteed to be TASK_RUNNING when this
1803 * routine returns.
1804 *
1805 * Returns 0 when the timer has expired otherwise -EINTR
1806 */
1807int __sched schedule_hrtimeout(ktime_t *expires,
1808 const enum hrtimer_mode mode)
1809{
1810 return schedule_hrtimeout_range(expires, 0, mode);
1811}
7bb67439 1812EXPORT_SYMBOL_GPL(schedule_hrtimeout);