]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/hrtimer.c
hrtimers: Make struct hrtimer_cpu_base layout less stupid
[mirror_ubuntu-jammy-kernel.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c 55 *
e06383db
JS
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 60 */
54cdfdb4 61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 62{
3c8aa39d
TG
63
64 .clock_base =
c0a31329 65 {
3c8aa39d
TG
66 {
67 .index = CLOCK_REALTIME,
68 .get_time = &ktime_get_real,
54cdfdb4 69 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
70 },
71 {
72 .index = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
54cdfdb4 74 .resolution = KTIME_LOW_RES,
3c8aa39d 75 },
70a08cca
JS
76 {
77 .index = CLOCK_BOOTTIME,
78 .get_time = &ktime_get_boottime,
79 .resolution = KTIME_LOW_RES,
80 },
3c8aa39d 81 }
c0a31329
TG
82};
83
942c3c5c 84static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
85 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
86 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
87 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
88};
e06383db
JS
89
90static inline int hrtimer_clockid_to_base(clockid_t clock_id)
91{
92 return hrtimer_clock_to_base_table[clock_id];
93}
94
95
92127c7a
TG
96/*
97 * Get the coarse grained time at the softirq based on xtime and
98 * wall_to_monotonic.
99 */
3c8aa39d 100static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 101{
70a08cca 102 ktime_t xtim, mono, boot;
314ac371 103 struct timespec xts, tom, slp;
92127c7a 104
314ac371 105 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
92127c7a 106
f4304ab2 107 xtim = timespec_to_ktime(xts);
70a08cca
JS
108 mono = ktime_add(xtim, timespec_to_ktime(tom));
109 boot = ktime_add(mono, timespec_to_ktime(slp));
e06383db 110 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
111 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
112 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
92127c7a
TG
113}
114
c0a31329
TG
115/*
116 * Functions and macros which are different for UP/SMP systems are kept in a
117 * single place
118 */
119#ifdef CONFIG_SMP
120
c0a31329
TG
121/*
122 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
123 * means that all timers which are tied to this base via timer->base are
124 * locked, and the base itself is locked too.
125 *
126 * So __run_timers/migrate_timers can safely modify all timers which could
127 * be found on the lists/queues.
128 *
129 * When the timer's base is locked, and the timer removed from list, it is
130 * possible to set timer->base = NULL and drop the lock: the timer remains
131 * locked.
132 */
3c8aa39d
TG
133static
134struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
135 unsigned long *flags)
c0a31329 136{
3c8aa39d 137 struct hrtimer_clock_base *base;
c0a31329
TG
138
139 for (;;) {
140 base = timer->base;
141 if (likely(base != NULL)) {
ecb49d1a 142 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
143 if (likely(base == timer->base))
144 return base;
145 /* The timer has migrated to another CPU: */
ecb49d1a 146 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
147 }
148 cpu_relax();
149 }
150}
151
6ff7041d
TG
152
153/*
154 * Get the preferred target CPU for NOHZ
155 */
156static int hrtimer_get_target(int this_cpu, int pinned)
157{
158#ifdef CONFIG_NO_HZ
83cd4fe2
VP
159 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
160 return get_nohz_timer_target();
6ff7041d
TG
161#endif
162 return this_cpu;
163}
164
165/*
166 * With HIGHRES=y we do not migrate the timer when it is expiring
167 * before the next event on the target cpu because we cannot reprogram
168 * the target cpu hardware and we would cause it to fire late.
169 *
170 * Called with cpu_base->lock of target cpu held.
171 */
172static int
173hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
174{
175#ifdef CONFIG_HIGH_RES_TIMERS
176 ktime_t expires;
177
178 if (!new_base->cpu_base->hres_active)
179 return 0;
180
181 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
182 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
183#else
184 return 0;
185#endif
186}
187
c0a31329
TG
188/*
189 * Switch the timer base to the current CPU when possible.
190 */
3c8aa39d 191static inline struct hrtimer_clock_base *
597d0275
AB
192switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
193 int pinned)
c0a31329 194{
3c8aa39d
TG
195 struct hrtimer_clock_base *new_base;
196 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
197 int this_cpu = smp_processor_id();
198 int cpu = hrtimer_get_target(this_cpu, pinned);
e06383db 199 int basenum = hrtimer_clockid_to_base(base->index);
c0a31329 200
eea08f32
AB
201again:
202 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 203 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
204
205 if (base != new_base) {
206 /*
6ff7041d 207 * We are trying to move timer to new_base.
c0a31329
TG
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
54cdfdb4 215 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
ecb49d1a
TG
220 raw_spin_unlock(&base->cpu_base->lock);
221 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 222
6ff7041d
TG
223 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
224 cpu = this_cpu;
ecb49d1a
TG
225 raw_spin_unlock(&new_base->cpu_base->lock);
226 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
227 timer->base = base;
228 goto again;
eea08f32 229 }
c0a31329
TG
230 timer->base = new_base;
231 }
232 return new_base;
233}
234
235#else /* CONFIG_SMP */
236
3c8aa39d 237static inline struct hrtimer_clock_base *
c0a31329
TG
238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239{
3c8aa39d 240 struct hrtimer_clock_base *base = timer->base;
c0a31329 241
ecb49d1a 242 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
243
244 return base;
245}
246
eea08f32 247# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
248
249#endif /* !CONFIG_SMP */
250
251/*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255#if BITS_PER_LONG < 64
256# ifndef CONFIG_KTIME_SCALAR
257/**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265{
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277}
b8b8fd2d
DH
278
279EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
280
281/**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289{
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301}
302
303EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
304# endif /* !CONFIG_KTIME_SCALAR */
305
306/*
307 * Divide a ktime value by a nanosecond value
308 */
4d672e7a 309u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 310{
900cfa46 311 u64 dclc;
c0a31329
TG
312 int sft = 0;
313
900cfa46 314 dclc = ktime_to_ns(kt);
c0a31329
TG
315 /* Make sure the divisor is less than 2^32: */
316 while (div >> 32) {
317 sft++;
318 div >>= 1;
319 }
320 dclc >>= sft;
321 do_div(dclc, (unsigned long) div);
322
4d672e7a 323 return dclc;
c0a31329 324}
c0a31329
TG
325#endif /* BITS_PER_LONG >= 64 */
326
5a7780e7
TG
327/*
328 * Add two ktime values and do a safety check for overflow:
329 */
330ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331{
332 ktime_t res = ktime_add(lhs, rhs);
333
334 /*
335 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336 * return to user space in a timespec:
337 */
338 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
339 res = ktime_set(KTIME_SEC_MAX, 0);
340
341 return res;
342}
343
8daa21e6
AB
344EXPORT_SYMBOL_GPL(ktime_add_safe);
345
237fc6e7
TG
346#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347
348static struct debug_obj_descr hrtimer_debug_descr;
349
99777288
SG
350static void *hrtimer_debug_hint(void *addr)
351{
352 return ((struct hrtimer *) addr)->function;
353}
354
237fc6e7
TG
355/*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360{
361 struct hrtimer *timer = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 hrtimer_cancel(timer);
366 debug_object_init(timer, &hrtimer_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371}
372
373/*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379{
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 WARN_ON_ONCE(1);
384 return 0;
385
386 case ODEBUG_STATE_ACTIVE:
387 WARN_ON(1);
388
389 default:
390 return 0;
391 }
392}
393
394/*
395 * fixup_free is called when:
396 * - an active object is freed
397 */
398static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
399{
400 struct hrtimer *timer = addr;
401
402 switch (state) {
403 case ODEBUG_STATE_ACTIVE:
404 hrtimer_cancel(timer);
405 debug_object_free(timer, &hrtimer_debug_descr);
406 return 1;
407 default:
408 return 0;
409 }
410}
411
412static struct debug_obj_descr hrtimer_debug_descr = {
413 .name = "hrtimer",
99777288 414 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
415 .fixup_init = hrtimer_fixup_init,
416 .fixup_activate = hrtimer_fixup_activate,
417 .fixup_free = hrtimer_fixup_free,
418};
419
420static inline void debug_hrtimer_init(struct hrtimer *timer)
421{
422 debug_object_init(timer, &hrtimer_debug_descr);
423}
424
425static inline void debug_hrtimer_activate(struct hrtimer *timer)
426{
427 debug_object_activate(timer, &hrtimer_debug_descr);
428}
429
430static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
431{
432 debug_object_deactivate(timer, &hrtimer_debug_descr);
433}
434
435static inline void debug_hrtimer_free(struct hrtimer *timer)
436{
437 debug_object_free(timer, &hrtimer_debug_descr);
438}
439
440static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
441 enum hrtimer_mode mode);
442
443void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
444 enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
447 __hrtimer_init(timer, clock_id, mode);
448}
2bc481cf 449EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
450
451void destroy_hrtimer_on_stack(struct hrtimer *timer)
452{
453 debug_object_free(timer, &hrtimer_debug_descr);
454}
455
456#else
457static inline void debug_hrtimer_init(struct hrtimer *timer) { }
458static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
459static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
460#endif
461
c6a2a177
XG
462static inline void
463debug_init(struct hrtimer *timer, clockid_t clockid,
464 enum hrtimer_mode mode)
465{
466 debug_hrtimer_init(timer);
467 trace_hrtimer_init(timer, clockid, mode);
468}
469
470static inline void debug_activate(struct hrtimer *timer)
471{
472 debug_hrtimer_activate(timer);
473 trace_hrtimer_start(timer);
474}
475
476static inline void debug_deactivate(struct hrtimer *timer)
477{
478 debug_hrtimer_deactivate(timer);
479 trace_hrtimer_cancel(timer);
480}
481
54cdfdb4
TG
482/* High resolution timer related functions */
483#ifdef CONFIG_HIGH_RES_TIMERS
484
485/*
486 * High resolution timer enabled ?
487 */
488static int hrtimer_hres_enabled __read_mostly = 1;
489
490/*
491 * Enable / Disable high resolution mode
492 */
493static int __init setup_hrtimer_hres(char *str)
494{
495 if (!strcmp(str, "off"))
496 hrtimer_hres_enabled = 0;
497 else if (!strcmp(str, "on"))
498 hrtimer_hres_enabled = 1;
499 else
500 return 0;
501 return 1;
502}
503
504__setup("highres=", setup_hrtimer_hres);
505
506/*
507 * hrtimer_high_res_enabled - query, if the highres mode is enabled
508 */
509static inline int hrtimer_is_hres_enabled(void)
510{
511 return hrtimer_hres_enabled;
512}
513
514/*
515 * Is the high resolution mode active ?
516 */
517static inline int hrtimer_hres_active(void)
518{
909ea964 519 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
520}
521
522/*
523 * Reprogram the event source with checking both queues for the
524 * next event
525 * Called with interrupts disabled and base->lock held
526 */
7403f41f
AC
527static void
528hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
529{
530 int i;
531 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 532 ktime_t expires, expires_next;
54cdfdb4 533
7403f41f 534 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
535
536 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
537 struct hrtimer *timer;
998adc3d 538 struct timerqueue_node *next;
54cdfdb4 539
998adc3d
JS
540 next = timerqueue_getnext(&base->active);
541 if (!next)
54cdfdb4 542 continue;
998adc3d
JS
543 timer = container_of(next, struct hrtimer, node);
544
cc584b21 545 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
546 /*
547 * clock_was_set() has changed base->offset so the
548 * result might be negative. Fix it up to prevent a
549 * false positive in clockevents_program_event()
550 */
551 if (expires.tv64 < 0)
552 expires.tv64 = 0;
7403f41f
AC
553 if (expires.tv64 < expires_next.tv64)
554 expires_next = expires;
54cdfdb4
TG
555 }
556
7403f41f
AC
557 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
558 return;
559
560 cpu_base->expires_next.tv64 = expires_next.tv64;
561
54cdfdb4
TG
562 if (cpu_base->expires_next.tv64 != KTIME_MAX)
563 tick_program_event(cpu_base->expires_next, 1);
564}
565
566/*
567 * Shared reprogramming for clock_realtime and clock_monotonic
568 *
569 * When a timer is enqueued and expires earlier than the already enqueued
570 * timers, we have to check, whether it expires earlier than the timer for
571 * which the clock event device was armed.
572 *
573 * Called with interrupts disabled and base->cpu_base.lock held
574 */
575static int hrtimer_reprogram(struct hrtimer *timer,
576 struct hrtimer_clock_base *base)
577{
41d2e494 578 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 579 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
580 int res;
581
cc584b21 582 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 583
54cdfdb4
TG
584 /*
585 * When the callback is running, we do not reprogram the clock event
586 * device. The timer callback is either running on a different CPU or
3a4fa0a2 587 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
588 * reprogramming is handled either by the softirq, which called the
589 * callback or at the end of the hrtimer_interrupt.
590 */
591 if (hrtimer_callback_running(timer))
592 return 0;
593
63070a79
TG
594 /*
595 * CLOCK_REALTIME timer might be requested with an absolute
596 * expiry time which is less than base->offset. Nothing wrong
597 * about that, just avoid to call into the tick code, which
598 * has now objections against negative expiry values.
599 */
600 if (expires.tv64 < 0)
601 return -ETIME;
602
41d2e494
TG
603 if (expires.tv64 >= cpu_base->expires_next.tv64)
604 return 0;
605
606 /*
607 * If a hang was detected in the last timer interrupt then we
608 * do not schedule a timer which is earlier than the expiry
609 * which we enforced in the hang detection. We want the system
610 * to make progress.
611 */
612 if (cpu_base->hang_detected)
54cdfdb4
TG
613 return 0;
614
615 /*
616 * Clockevents returns -ETIME, when the event was in the past.
617 */
618 res = tick_program_event(expires, 0);
619 if (!IS_ERR_VALUE(res))
41d2e494 620 cpu_base->expires_next = expires;
54cdfdb4
TG
621 return res;
622}
623
54cdfdb4
TG
624/*
625 * Initialize the high resolution related parts of cpu_base
626 */
627static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
628{
629 base->expires_next.tv64 = KTIME_MAX;
630 base->hres_active = 0;
54cdfdb4
TG
631}
632
54cdfdb4
TG
633/*
634 * When High resolution timers are active, try to reprogram. Note, that in case
635 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
636 * check happens. The timer gets enqueued into the rbtree. The reprogramming
637 * and expiry check is done in the hrtimer_interrupt or in the softirq.
638 */
639static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
640 struct hrtimer_clock_base *base,
641 int wakeup)
54cdfdb4
TG
642{
643 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 644 if (wakeup) {
ecb49d1a 645 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 646 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 647 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
648 } else
649 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650
ca109491 651 return 1;
54cdfdb4 652 }
7f1e2ca9 653
54cdfdb4
TG
654 return 0;
655}
656
9ec26907
TG
657/*
658 * Retrigger next event is called after clock was set
659 *
660 * Called with interrupts disabled via on_each_cpu()
661 */
662static void retrigger_next_event(void *arg)
663{
664 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
665 struct timespec realtime_offset, xtim, wtm, sleep;
666
667 if (!hrtimer_hres_active())
668 return;
669
670 /* Optimized out for !HIGH_RES */
671 get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
672 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
673
674 /* Adjust CLOCK_REALTIME offset */
675 raw_spin_lock(&base->lock);
676 base->clock_base[HRTIMER_BASE_REALTIME].offset =
677 timespec_to_ktime(realtime_offset);
678 base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
679 timespec_to_ktime(sleep);
680
681 hrtimer_force_reprogram(base, 0);
682 raw_spin_unlock(&base->lock);
683}
b12a03ce 684
54cdfdb4
TG
685/*
686 * Switch to high resolution mode
687 */
f8953856 688static int hrtimer_switch_to_hres(void)
54cdfdb4 689{
b12a03ce 690 int i, cpu = smp_processor_id();
820de5c3 691 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
692 unsigned long flags;
693
694 if (base->hres_active)
f8953856 695 return 1;
54cdfdb4
TG
696
697 local_irq_save(flags);
698
699 if (tick_init_highres()) {
700 local_irq_restore(flags);
820de5c3
IM
701 printk(KERN_WARNING "Could not switch to high resolution "
702 "mode on CPU %d\n", cpu);
f8953856 703 return 0;
54cdfdb4
TG
704 }
705 base->hres_active = 1;
b12a03ce
TG
706 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
707 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
708
709 tick_setup_sched_timer();
710
711 /* "Retrigger" the interrupt to get things going */
712 retrigger_next_event(NULL);
713 local_irq_restore(flags);
f8953856 714 return 1;
54cdfdb4
TG
715}
716
717#else
718
719static inline int hrtimer_hres_active(void) { return 0; }
720static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 721static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
722static inline void
723hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 724static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
725 struct hrtimer_clock_base *base,
726 int wakeup)
54cdfdb4
TG
727{
728 return 0;
729}
54cdfdb4 730static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 731static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
732
733#endif /* CONFIG_HIGH_RES_TIMERS */
734
b12a03ce
TG
735/*
736 * Clock realtime was set
737 *
738 * Change the offset of the realtime clock vs. the monotonic
739 * clock.
740 *
741 * We might have to reprogram the high resolution timer interrupt. On
742 * SMP we call the architecture specific code to retrigger _all_ high
743 * resolution timer interrupts. On UP we just disable interrupts and
744 * call the high resolution interrupt code.
745 */
746void clock_was_set(void)
747{
9ec26907 748#ifdef CONFIG_HIGHRES_TIMERS
b12a03ce
TG
749 /* Retrigger the CPU local events everywhere */
750 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
751#endif
752 timerfd_clock_was_set();
b12a03ce
TG
753}
754
755/*
756 * During resume we might have to reprogram the high resolution timer
757 * interrupt (on the local CPU):
758 */
759void hrtimers_resume(void)
760{
761 WARN_ONCE(!irqs_disabled(),
762 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
763
764 retrigger_next_event(NULL);
9ec26907 765 timerfd_clock_was_set();
b12a03ce
TG
766}
767
5f201907 768static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 769{
5f201907 770#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
771 if (timer->start_site)
772 return;
5f201907 773 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
774 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
775 timer->start_pid = current->pid;
5f201907
HC
776#endif
777}
778
779static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
780{
781#ifdef CONFIG_TIMER_STATS
782 timer->start_site = NULL;
783#endif
82f67cd9 784}
5f201907
HC
785
786static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
787{
788#ifdef CONFIG_TIMER_STATS
789 if (likely(!timer_stats_active))
790 return;
791 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
792 timer->function, timer->start_comm, 0);
82f67cd9 793#endif
5f201907 794}
82f67cd9 795
c0a31329 796/*
6506f2aa 797 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
798 */
799static inline
800void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
801{
ecb49d1a 802 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
803}
804
805/**
806 * hrtimer_forward - forward the timer expiry
c0a31329 807 * @timer: hrtimer to forward
44f21475 808 * @now: forward past this time
c0a31329
TG
809 * @interval: the interval to forward
810 *
811 * Forward the timer expiry so it will expire in the future.
8dca6f33 812 * Returns the number of overruns.
c0a31329 813 */
4d672e7a 814u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 815{
4d672e7a 816 u64 orun = 1;
44f21475 817 ktime_t delta;
c0a31329 818
cc584b21 819 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
820
821 if (delta.tv64 < 0)
822 return 0;
823
c9db4fa1
TG
824 if (interval.tv64 < timer->base->resolution.tv64)
825 interval.tv64 = timer->base->resolution.tv64;
826
c0a31329 827 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 828 s64 incr = ktime_to_ns(interval);
c0a31329
TG
829
830 orun = ktime_divns(delta, incr);
cc584b21
AV
831 hrtimer_add_expires_ns(timer, incr * orun);
832 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
833 return orun;
834 /*
835 * This (and the ktime_add() below) is the
836 * correction for exact:
837 */
838 orun++;
839 }
cc584b21 840 hrtimer_add_expires(timer, interval);
c0a31329
TG
841
842 return orun;
843}
6bdb6b62 844EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
845
846/*
847 * enqueue_hrtimer - internal function to (re)start a timer
848 *
849 * The timer is inserted in expiry order. Insertion into the
850 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
851 *
852 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 853 */
a6037b61
PZ
854static int enqueue_hrtimer(struct hrtimer *timer,
855 struct hrtimer_clock_base *base)
c0a31329 856{
c6a2a177 857 debug_activate(timer);
237fc6e7 858
998adc3d 859 timerqueue_add(&base->active, &timer->node);
54cdfdb4 860
303e967f
TG
861 /*
862 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
863 * state of a possibly running callback.
864 */
865 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 866
998adc3d 867 return (&timer->node == base->active.next);
288867ec 868}
c0a31329
TG
869
870/*
871 * __remove_hrtimer - internal function to remove a timer
872 *
873 * Caller must hold the base lock.
54cdfdb4
TG
874 *
875 * High resolution timer mode reprograms the clock event device when the
876 * timer is the one which expires next. The caller can disable this by setting
877 * reprogram to zero. This is useful, when the context does a reprogramming
878 * anyway (e.g. timer interrupt)
c0a31329 879 */
3c8aa39d 880static void __remove_hrtimer(struct hrtimer *timer,
303e967f 881 struct hrtimer_clock_base *base,
54cdfdb4 882 unsigned long newstate, int reprogram)
c0a31329 883{
7403f41f
AC
884 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
885 goto out;
886
998adc3d 887 if (&timer->node == timerqueue_getnext(&base->active)) {
7403f41f
AC
888#ifdef CONFIG_HIGH_RES_TIMERS
889 /* Reprogram the clock event device. if enabled */
890 if (reprogram && hrtimer_hres_active()) {
891 ktime_t expires;
892
893 expires = ktime_sub(hrtimer_get_expires(timer),
894 base->offset);
895 if (base->cpu_base->expires_next.tv64 == expires.tv64)
896 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 897 }
7403f41f 898#endif
54cdfdb4 899 }
998adc3d 900 timerqueue_del(&base->active, &timer->node);
7403f41f 901out:
303e967f 902 timer->state = newstate;
c0a31329
TG
903}
904
905/*
906 * remove hrtimer, called with base lock held
907 */
908static inline int
3c8aa39d 909remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 910{
303e967f 911 if (hrtimer_is_queued(timer)) {
f13d4f97 912 unsigned long state;
54cdfdb4
TG
913 int reprogram;
914
915 /*
916 * Remove the timer and force reprogramming when high
917 * resolution mode is active and the timer is on the current
918 * CPU. If we remove a timer on another CPU, reprogramming is
919 * skipped. The interrupt event on this CPU is fired and
920 * reprogramming happens in the interrupt handler. This is a
921 * rare case and less expensive than a smp call.
922 */
c6a2a177 923 debug_deactivate(timer);
82f67cd9 924 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 925 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
926 /*
927 * We must preserve the CALLBACK state flag here,
928 * otherwise we could move the timer base in
929 * switch_hrtimer_base.
930 */
931 state = timer->state & HRTIMER_STATE_CALLBACK;
932 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
933 return 1;
934 }
935 return 0;
936}
937
7f1e2ca9
PZ
938int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
939 unsigned long delta_ns, const enum hrtimer_mode mode,
940 int wakeup)
c0a31329 941{
3c8aa39d 942 struct hrtimer_clock_base *base, *new_base;
c0a31329 943 unsigned long flags;
a6037b61 944 int ret, leftmost;
c0a31329
TG
945
946 base = lock_hrtimer_base(timer, &flags);
947
948 /* Remove an active timer from the queue: */
949 ret = remove_hrtimer(timer, base);
950
951 /* Switch the timer base, if necessary: */
597d0275 952 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 953
597d0275 954 if (mode & HRTIMER_MODE_REL) {
5a7780e7 955 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
956 /*
957 * CONFIG_TIME_LOW_RES is a temporary way for architectures
958 * to signal that they simply return xtime in
959 * do_gettimeoffset(). In this case we want to round up by
960 * resolution when starting a relative timer, to avoid short
961 * timeouts. This will go away with the GTOD framework.
962 */
963#ifdef CONFIG_TIME_LOW_RES
5a7780e7 964 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
965#endif
966 }
237fc6e7 967
da8f2e17 968 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 969
82f67cd9
IM
970 timer_stats_hrtimer_set_start_info(timer);
971
a6037b61
PZ
972 leftmost = enqueue_hrtimer(timer, new_base);
973
935c631d
IM
974 /*
975 * Only allow reprogramming if the new base is on this CPU.
976 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
977 *
978 * XXX send_remote_softirq() ?
935c631d 979 */
a6037b61 980 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 981 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
982
983 unlock_hrtimer_base(timer, &flags);
984
985 return ret;
986}
7f1e2ca9
PZ
987
988/**
989 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
990 * @timer: the timer to be added
991 * @tim: expiry time
992 * @delta_ns: "slack" range for the timer
993 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
994 *
995 * Returns:
996 * 0 on success
997 * 1 when the timer was active
998 */
999int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1000 unsigned long delta_ns, const enum hrtimer_mode mode)
1001{
1002 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1003}
da8f2e17
AV
1004EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1005
1006/**
e1dd7bc5 1007 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1008 * @timer: the timer to be added
1009 * @tim: expiry time
1010 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1011 *
1012 * Returns:
1013 * 0 on success
1014 * 1 when the timer was active
1015 */
1016int
1017hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1018{
7f1e2ca9 1019 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1020}
8d16b764 1021EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1022
da8f2e17 1023
c0a31329
TG
1024/**
1025 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1026 * @timer: hrtimer to stop
1027 *
1028 * Returns:
1029 * 0 when the timer was not active
1030 * 1 when the timer was active
1031 * -1 when the timer is currently excuting the callback function and
fa9799e3 1032 * cannot be stopped
c0a31329
TG
1033 */
1034int hrtimer_try_to_cancel(struct hrtimer *timer)
1035{
3c8aa39d 1036 struct hrtimer_clock_base *base;
c0a31329
TG
1037 unsigned long flags;
1038 int ret = -1;
1039
1040 base = lock_hrtimer_base(timer, &flags);
1041
303e967f 1042 if (!hrtimer_callback_running(timer))
c0a31329
TG
1043 ret = remove_hrtimer(timer, base);
1044
1045 unlock_hrtimer_base(timer, &flags);
1046
1047 return ret;
1048
1049}
8d16b764 1050EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1051
1052/**
1053 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1054 * @timer: the timer to be cancelled
1055 *
1056 * Returns:
1057 * 0 when the timer was not active
1058 * 1 when the timer was active
1059 */
1060int hrtimer_cancel(struct hrtimer *timer)
1061{
1062 for (;;) {
1063 int ret = hrtimer_try_to_cancel(timer);
1064
1065 if (ret >= 0)
1066 return ret;
5ef37b19 1067 cpu_relax();
c0a31329
TG
1068 }
1069}
8d16b764 1070EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1071
1072/**
1073 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1074 * @timer: the timer to read
1075 */
1076ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1077{
c0a31329
TG
1078 unsigned long flags;
1079 ktime_t rem;
1080
b3bd3de6 1081 lock_hrtimer_base(timer, &flags);
cc584b21 1082 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1083 unlock_hrtimer_base(timer, &flags);
1084
1085 return rem;
1086}
8d16b764 1087EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1088
ee9c5785 1089#ifdef CONFIG_NO_HZ
69239749
TL
1090/**
1091 * hrtimer_get_next_event - get the time until next expiry event
1092 *
1093 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1094 * is pending.
1095 */
1096ktime_t hrtimer_get_next_event(void)
1097{
3c8aa39d
TG
1098 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1099 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1100 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1101 unsigned long flags;
1102 int i;
1103
ecb49d1a 1104 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1105
54cdfdb4
TG
1106 if (!hrtimer_hres_active()) {
1107 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1108 struct hrtimer *timer;
998adc3d 1109 struct timerqueue_node *next;
69239749 1110
998adc3d
JS
1111 next = timerqueue_getnext(&base->active);
1112 if (!next)
54cdfdb4 1113 continue;
3c8aa39d 1114
998adc3d 1115 timer = container_of(next, struct hrtimer, node);
cc584b21 1116 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1117 delta = ktime_sub(delta, base->get_time());
1118 if (delta.tv64 < mindelta.tv64)
1119 mindelta.tv64 = delta.tv64;
1120 }
69239749 1121 }
3c8aa39d 1122
ecb49d1a 1123 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1124
69239749
TL
1125 if (mindelta.tv64 < 0)
1126 mindelta.tv64 = 0;
1127 return mindelta;
1128}
1129#endif
1130
237fc6e7
TG
1131static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1132 enum hrtimer_mode mode)
c0a31329 1133{
3c8aa39d 1134 struct hrtimer_cpu_base *cpu_base;
e06383db 1135 int base;
c0a31329 1136
7978672c
GA
1137 memset(timer, 0, sizeof(struct hrtimer));
1138
3c8aa39d 1139 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1140
c9cb2e3d 1141 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1142 clock_id = CLOCK_MONOTONIC;
1143
e06383db
JS
1144 base = hrtimer_clockid_to_base(clock_id);
1145 timer->base = &cpu_base->clock_base[base];
998adc3d 1146 timerqueue_init(&timer->node);
82f67cd9
IM
1147
1148#ifdef CONFIG_TIMER_STATS
1149 timer->start_site = NULL;
1150 timer->start_pid = -1;
1151 memset(timer->start_comm, 0, TASK_COMM_LEN);
1152#endif
c0a31329 1153}
237fc6e7
TG
1154
1155/**
1156 * hrtimer_init - initialize a timer to the given clock
1157 * @timer: the timer to be initialized
1158 * @clock_id: the clock to be used
1159 * @mode: timer mode abs/rel
1160 */
1161void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1162 enum hrtimer_mode mode)
1163{
c6a2a177 1164 debug_init(timer, clock_id, mode);
237fc6e7
TG
1165 __hrtimer_init(timer, clock_id, mode);
1166}
8d16b764 1167EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1168
1169/**
1170 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1171 * @which_clock: which clock to query
1172 * @tp: pointer to timespec variable to store the resolution
1173 *
72fd4a35
RD
1174 * Store the resolution of the clock selected by @which_clock in the
1175 * variable pointed to by @tp.
c0a31329
TG
1176 */
1177int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1178{
3c8aa39d 1179 struct hrtimer_cpu_base *cpu_base;
e06383db 1180 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1181
3c8aa39d 1182 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1183 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1184
1185 return 0;
1186}
8d16b764 1187EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1188
c6a2a177 1189static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1190{
1191 struct hrtimer_clock_base *base = timer->base;
1192 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1193 enum hrtimer_restart (*fn)(struct hrtimer *);
1194 int restart;
1195
ca109491
PZ
1196 WARN_ON(!irqs_disabled());
1197
c6a2a177 1198 debug_deactivate(timer);
d3d74453
PZ
1199 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1200 timer_stats_account_hrtimer(timer);
d3d74453 1201 fn = timer->function;
ca109491
PZ
1202
1203 /*
1204 * Because we run timers from hardirq context, there is no chance
1205 * they get migrated to another cpu, therefore its safe to unlock
1206 * the timer base.
1207 */
ecb49d1a 1208 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1209 trace_hrtimer_expire_entry(timer, now);
ca109491 1210 restart = fn(timer);
c6a2a177 1211 trace_hrtimer_expire_exit(timer);
ecb49d1a 1212 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1213
1214 /*
e3f1d883
TG
1215 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1216 * we do not reprogramm the event hardware. Happens either in
1217 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1218 */
1219 if (restart != HRTIMER_NORESTART) {
1220 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1221 enqueue_hrtimer(timer, base);
d3d74453 1222 }
f13d4f97
SQ
1223
1224 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1225
d3d74453
PZ
1226 timer->state &= ~HRTIMER_STATE_CALLBACK;
1227}
1228
54cdfdb4
TG
1229#ifdef CONFIG_HIGH_RES_TIMERS
1230
1231/*
1232 * High resolution timer interrupt
1233 * Called with interrupts disabled
1234 */
1235void hrtimer_interrupt(struct clock_event_device *dev)
1236{
1237 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1238 struct hrtimer_clock_base *base;
41d2e494
TG
1239 ktime_t expires_next, now, entry_time, delta;
1240 int i, retries = 0;
54cdfdb4
TG
1241
1242 BUG_ON(!cpu_base->hres_active);
1243 cpu_base->nr_events++;
1244 dev->next_event.tv64 = KTIME_MAX;
1245
41d2e494
TG
1246 entry_time = now = ktime_get();
1247retry:
54cdfdb4
TG
1248 expires_next.tv64 = KTIME_MAX;
1249
ecb49d1a 1250 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1251 /*
1252 * We set expires_next to KTIME_MAX here with cpu_base->lock
1253 * held to prevent that a timer is enqueued in our queue via
1254 * the migration code. This does not affect enqueueing of
1255 * timers which run their callback and need to be requeued on
1256 * this CPU.
1257 */
1258 cpu_base->expires_next.tv64 = KTIME_MAX;
1259
54cdfdb4
TG
1260 base = cpu_base->clock_base;
1261
1262 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1263 ktime_t basenow;
998adc3d 1264 struct timerqueue_node *node;
54cdfdb4 1265
54cdfdb4
TG
1266 basenow = ktime_add(now, base->offset);
1267
998adc3d 1268 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1269 struct hrtimer *timer;
1270
998adc3d 1271 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1272
654c8e0b
AV
1273 /*
1274 * The immediate goal for using the softexpires is
1275 * minimizing wakeups, not running timers at the
1276 * earliest interrupt after their soft expiration.
1277 * This allows us to avoid using a Priority Search
1278 * Tree, which can answer a stabbing querry for
1279 * overlapping intervals and instead use the simple
1280 * BST we already have.
1281 * We don't add extra wakeups by delaying timers that
1282 * are right-of a not yet expired timer, because that
1283 * timer will have to trigger a wakeup anyway.
1284 */
1285
1286 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1287 ktime_t expires;
1288
cc584b21 1289 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1290 base->offset);
1291 if (expires.tv64 < expires_next.tv64)
1292 expires_next = expires;
1293 break;
1294 }
1295
c6a2a177 1296 __run_hrtimer(timer, &basenow);
54cdfdb4 1297 }
54cdfdb4
TG
1298 base++;
1299 }
1300
6ff7041d
TG
1301 /*
1302 * Store the new expiry value so the migration code can verify
1303 * against it.
1304 */
54cdfdb4 1305 cpu_base->expires_next = expires_next;
ecb49d1a 1306 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1307
1308 /* Reprogramming necessary ? */
41d2e494
TG
1309 if (expires_next.tv64 == KTIME_MAX ||
1310 !tick_program_event(expires_next, 0)) {
1311 cpu_base->hang_detected = 0;
1312 return;
54cdfdb4 1313 }
41d2e494
TG
1314
1315 /*
1316 * The next timer was already expired due to:
1317 * - tracing
1318 * - long lasting callbacks
1319 * - being scheduled away when running in a VM
1320 *
1321 * We need to prevent that we loop forever in the hrtimer
1322 * interrupt routine. We give it 3 attempts to avoid
1323 * overreacting on some spurious event.
1324 */
1325 now = ktime_get();
1326 cpu_base->nr_retries++;
1327 if (++retries < 3)
1328 goto retry;
1329 /*
1330 * Give the system a chance to do something else than looping
1331 * here. We stored the entry time, so we know exactly how long
1332 * we spent here. We schedule the next event this amount of
1333 * time away.
1334 */
1335 cpu_base->nr_hangs++;
1336 cpu_base->hang_detected = 1;
1337 delta = ktime_sub(now, entry_time);
1338 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1339 cpu_base->max_hang_time = delta;
1340 /*
1341 * Limit it to a sensible value as we enforce a longer
1342 * delay. Give the CPU at least 100ms to catch up.
1343 */
1344 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1345 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1346 else
1347 expires_next = ktime_add(now, delta);
1348 tick_program_event(expires_next, 1);
1349 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1350 ktime_to_ns(delta));
54cdfdb4
TG
1351}
1352
8bdec955
TG
1353/*
1354 * local version of hrtimer_peek_ahead_timers() called with interrupts
1355 * disabled.
1356 */
1357static void __hrtimer_peek_ahead_timers(void)
1358{
1359 struct tick_device *td;
1360
1361 if (!hrtimer_hres_active())
1362 return;
1363
1364 td = &__get_cpu_var(tick_cpu_device);
1365 if (td && td->evtdev)
1366 hrtimer_interrupt(td->evtdev);
1367}
1368
2e94d1f7
AV
1369/**
1370 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1371 *
1372 * hrtimer_peek_ahead_timers will peek at the timer queue of
1373 * the current cpu and check if there are any timers for which
1374 * the soft expires time has passed. If any such timers exist,
1375 * they are run immediately and then removed from the timer queue.
1376 *
1377 */
1378void hrtimer_peek_ahead_timers(void)
1379{
643bdf68 1380 unsigned long flags;
dc4304f7 1381
2e94d1f7 1382 local_irq_save(flags);
8bdec955 1383 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1384 local_irq_restore(flags);
1385}
1386
a6037b61
PZ
1387static void run_hrtimer_softirq(struct softirq_action *h)
1388{
1389 hrtimer_peek_ahead_timers();
1390}
1391
82c5b7b5
IM
1392#else /* CONFIG_HIGH_RES_TIMERS */
1393
1394static inline void __hrtimer_peek_ahead_timers(void) { }
1395
1396#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1397
d3d74453
PZ
1398/*
1399 * Called from timer softirq every jiffy, expire hrtimers:
1400 *
1401 * For HRT its the fall back code to run the softirq in the timer
1402 * softirq context in case the hrtimer initialization failed or has
1403 * not been done yet.
1404 */
1405void hrtimer_run_pending(void)
1406{
d3d74453
PZ
1407 if (hrtimer_hres_active())
1408 return;
54cdfdb4 1409
d3d74453
PZ
1410 /*
1411 * This _is_ ugly: We have to check in the softirq context,
1412 * whether we can switch to highres and / or nohz mode. The
1413 * clocksource switch happens in the timer interrupt with
1414 * xtime_lock held. Notification from there only sets the
1415 * check bit in the tick_oneshot code, otherwise we might
1416 * deadlock vs. xtime_lock.
1417 */
1418 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1419 hrtimer_switch_to_hres();
54cdfdb4
TG
1420}
1421
c0a31329 1422/*
d3d74453 1423 * Called from hardirq context every jiffy
c0a31329 1424 */
833883d9 1425void hrtimer_run_queues(void)
c0a31329 1426{
998adc3d 1427 struct timerqueue_node *node;
833883d9
DS
1428 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1429 struct hrtimer_clock_base *base;
1430 int index, gettime = 1;
c0a31329 1431
833883d9 1432 if (hrtimer_hres_active())
3055adda
DS
1433 return;
1434
833883d9
DS
1435 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1436 base = &cpu_base->clock_base[index];
b007c389 1437 if (!timerqueue_getnext(&base->active))
d3d74453 1438 continue;
833883d9 1439
d7cfb60c 1440 if (gettime) {
833883d9
DS
1441 hrtimer_get_softirq_time(cpu_base);
1442 gettime = 0;
b75f7a51 1443 }
d3d74453 1444
ecb49d1a 1445 raw_spin_lock(&cpu_base->lock);
c0a31329 1446
b007c389 1447 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1448 struct hrtimer *timer;
54cdfdb4 1449
998adc3d 1450 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1451 if (base->softirq_time.tv64 <=
1452 hrtimer_get_expires_tv64(timer))
833883d9
DS
1453 break;
1454
c6a2a177 1455 __run_hrtimer(timer, &base->softirq_time);
833883d9 1456 }
ecb49d1a 1457 raw_spin_unlock(&cpu_base->lock);
833883d9 1458 }
c0a31329
TG
1459}
1460
10c94ec1
TG
1461/*
1462 * Sleep related functions:
1463 */
c9cb2e3d 1464static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1465{
1466 struct hrtimer_sleeper *t =
1467 container_of(timer, struct hrtimer_sleeper, timer);
1468 struct task_struct *task = t->task;
1469
1470 t->task = NULL;
1471 if (task)
1472 wake_up_process(task);
1473
1474 return HRTIMER_NORESTART;
1475}
1476
36c8b586 1477void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1478{
1479 sl->timer.function = hrtimer_wakeup;
1480 sl->task = task;
1481}
2bc481cf 1482EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1483
669d7868 1484static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1485{
669d7868 1486 hrtimer_init_sleeper(t, current);
10c94ec1 1487
432569bb
RZ
1488 do {
1489 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1490 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1491 if (!hrtimer_active(&t->timer))
1492 t->task = NULL;
432569bb 1493
54cdfdb4
TG
1494 if (likely(t->task))
1495 schedule();
432569bb 1496
669d7868 1497 hrtimer_cancel(&t->timer);
c9cb2e3d 1498 mode = HRTIMER_MODE_ABS;
669d7868
TG
1499
1500 } while (t->task && !signal_pending(current));
432569bb 1501
3588a085
PZ
1502 __set_current_state(TASK_RUNNING);
1503
669d7868 1504 return t->task == NULL;
10c94ec1
TG
1505}
1506
080344b9
ON
1507static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1508{
1509 struct timespec rmt;
1510 ktime_t rem;
1511
cc584b21 1512 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1513 if (rem.tv64 <= 0)
1514 return 0;
1515 rmt = ktime_to_timespec(rem);
1516
1517 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1518 return -EFAULT;
1519
1520 return 1;
1521}
1522
1711ef38 1523long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1524{
669d7868 1525 struct hrtimer_sleeper t;
080344b9 1526 struct timespec __user *rmtp;
237fc6e7 1527 int ret = 0;
10c94ec1 1528
237fc6e7
TG
1529 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1530 HRTIMER_MODE_ABS);
cc584b21 1531 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1532
c9cb2e3d 1533 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1534 goto out;
10c94ec1 1535
029a07e0 1536 rmtp = restart->nanosleep.rmtp;
432569bb 1537 if (rmtp) {
237fc6e7 1538 ret = update_rmtp(&t.timer, rmtp);
080344b9 1539 if (ret <= 0)
237fc6e7 1540 goto out;
432569bb 1541 }
10c94ec1 1542
10c94ec1 1543 /* The other values in restart are already filled in */
237fc6e7
TG
1544 ret = -ERESTART_RESTARTBLOCK;
1545out:
1546 destroy_hrtimer_on_stack(&t.timer);
1547 return ret;
10c94ec1
TG
1548}
1549
080344b9 1550long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1551 const enum hrtimer_mode mode, const clockid_t clockid)
1552{
1553 struct restart_block *restart;
669d7868 1554 struct hrtimer_sleeper t;
237fc6e7 1555 int ret = 0;
3bd01206
AV
1556 unsigned long slack;
1557
1558 slack = current->timer_slack_ns;
1559 if (rt_task(current))
1560 slack = 0;
10c94ec1 1561
237fc6e7 1562 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1563 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1564 if (do_nanosleep(&t, mode))
237fc6e7 1565 goto out;
10c94ec1 1566
7978672c 1567 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1568 if (mode == HRTIMER_MODE_ABS) {
1569 ret = -ERESTARTNOHAND;
1570 goto out;
1571 }
10c94ec1 1572
432569bb 1573 if (rmtp) {
237fc6e7 1574 ret = update_rmtp(&t.timer, rmtp);
080344b9 1575 if (ret <= 0)
237fc6e7 1576 goto out;
432569bb 1577 }
10c94ec1
TG
1578
1579 restart = &current_thread_info()->restart_block;
1711ef38 1580 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1581 restart->nanosleep.index = t.timer.base->index;
1582 restart->nanosleep.rmtp = rmtp;
cc584b21 1583 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1584
237fc6e7
TG
1585 ret = -ERESTART_RESTARTBLOCK;
1586out:
1587 destroy_hrtimer_on_stack(&t.timer);
1588 return ret;
10c94ec1
TG
1589}
1590
58fd3aa2
HC
1591SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1592 struct timespec __user *, rmtp)
6ba1b912 1593{
080344b9 1594 struct timespec tu;
6ba1b912
TG
1595
1596 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1597 return -EFAULT;
1598
1599 if (!timespec_valid(&tu))
1600 return -EINVAL;
1601
080344b9 1602 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1603}
1604
c0a31329
TG
1605/*
1606 * Functions related to boot-time initialization:
1607 */
0ec160dd 1608static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1609{
3c8aa39d 1610 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1611 int i;
1612
ecb49d1a 1613 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d 1614
998adc3d 1615 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1616 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1617 timerqueue_init_head(&cpu_base->clock_base[i].active);
1618 }
3c8aa39d 1619
54cdfdb4 1620 hrtimer_init_hres(cpu_base);
c0a31329
TG
1621}
1622
1623#ifdef CONFIG_HOTPLUG_CPU
1624
ca109491 1625static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1626 struct hrtimer_clock_base *new_base)
c0a31329
TG
1627{
1628 struct hrtimer *timer;
998adc3d 1629 struct timerqueue_node *node;
c0a31329 1630
998adc3d
JS
1631 while ((node = timerqueue_getnext(&old_base->active))) {
1632 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1633 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1634 debug_deactivate(timer);
b00c1a99
TG
1635
1636 /*
1637 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1638 * timer could be seen as !active and just vanish away
1639 * under us on another CPU
1640 */
1641 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1642 timer->base = new_base;
54cdfdb4 1643 /*
e3f1d883
TG
1644 * Enqueue the timers on the new cpu. This does not
1645 * reprogram the event device in case the timer
1646 * expires before the earliest on this CPU, but we run
1647 * hrtimer_interrupt after we migrated everything to
1648 * sort out already expired timers and reprogram the
1649 * event device.
54cdfdb4 1650 */
a6037b61 1651 enqueue_hrtimer(timer, new_base);
41e1022e 1652
b00c1a99
TG
1653 /* Clear the migration state bit */
1654 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1655 }
1656}
1657
d5fd43c4 1658static void migrate_hrtimers(int scpu)
c0a31329 1659{
3c8aa39d 1660 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1661 int i;
c0a31329 1662
37810659 1663 BUG_ON(cpu_online(scpu));
37810659 1664 tick_cancel_sched_timer(scpu);
731a55ba
TG
1665
1666 local_irq_disable();
1667 old_base = &per_cpu(hrtimer_bases, scpu);
1668 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1669 /*
1670 * The caller is globally serialized and nobody else
1671 * takes two locks at once, deadlock is not possible.
1672 */
ecb49d1a
TG
1673 raw_spin_lock(&new_base->lock);
1674 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1675
3c8aa39d 1676 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1677 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1678 &new_base->clock_base[i]);
c0a31329
TG
1679 }
1680
ecb49d1a
TG
1681 raw_spin_unlock(&old_base->lock);
1682 raw_spin_unlock(&new_base->lock);
37810659 1683
731a55ba
TG
1684 /* Check, if we got expired work to do */
1685 __hrtimer_peek_ahead_timers();
1686 local_irq_enable();
c0a31329 1687}
37810659 1688
c0a31329
TG
1689#endif /* CONFIG_HOTPLUG_CPU */
1690
8c78f307 1691static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1692 unsigned long action, void *hcpu)
1693{
b2e3c0ad 1694 int scpu = (long)hcpu;
c0a31329
TG
1695
1696 switch (action) {
1697
1698 case CPU_UP_PREPARE:
8bb78442 1699 case CPU_UP_PREPARE_FROZEN:
37810659 1700 init_hrtimers_cpu(scpu);
c0a31329
TG
1701 break;
1702
1703#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1704 case CPU_DYING:
1705 case CPU_DYING_FROZEN:
1706 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1707 break;
c0a31329 1708 case CPU_DEAD:
8bb78442 1709 case CPU_DEAD_FROZEN:
b2e3c0ad 1710 {
37810659 1711 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1712 migrate_hrtimers(scpu);
c0a31329 1713 break;
b2e3c0ad 1714 }
c0a31329
TG
1715#endif
1716
1717 default:
1718 break;
1719 }
1720
1721 return NOTIFY_OK;
1722}
1723
8c78f307 1724static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1725 .notifier_call = hrtimer_cpu_notify,
1726};
1727
1728void __init hrtimers_init(void)
1729{
1730 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1731 (void *)(long)smp_processor_id());
1732 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1733#ifdef CONFIG_HIGH_RES_TIMERS
1734 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1735#endif
c0a31329
TG
1736}
1737
7bb67439 1738/**
351b3f7a 1739 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1740 * @expires: timeout value (ktime_t)
654c8e0b 1741 * @delta: slack in expires timeout (ktime_t)
7bb67439 1742 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1743 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1744 */
351b3f7a
CE
1745int __sched
1746schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1747 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1748{
1749 struct hrtimer_sleeper t;
1750
1751 /*
1752 * Optimize when a zero timeout value is given. It does not
1753 * matter whether this is an absolute or a relative time.
1754 */
1755 if (expires && !expires->tv64) {
1756 __set_current_state(TASK_RUNNING);
1757 return 0;
1758 }
1759
1760 /*
43b21013 1761 * A NULL parameter means "infinite"
7bb67439
AV
1762 */
1763 if (!expires) {
1764 schedule();
1765 __set_current_state(TASK_RUNNING);
1766 return -EINTR;
1767 }
1768
351b3f7a 1769 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1770 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1771
1772 hrtimer_init_sleeper(&t, current);
1773
cc584b21 1774 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1775 if (!hrtimer_active(&t.timer))
1776 t.task = NULL;
1777
1778 if (likely(t.task))
1779 schedule();
1780
1781 hrtimer_cancel(&t.timer);
1782 destroy_hrtimer_on_stack(&t.timer);
1783
1784 __set_current_state(TASK_RUNNING);
1785
1786 return !t.task ? 0 : -EINTR;
1787}
351b3f7a
CE
1788
1789/**
1790 * schedule_hrtimeout_range - sleep until timeout
1791 * @expires: timeout value (ktime_t)
1792 * @delta: slack in expires timeout (ktime_t)
1793 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794 *
1795 * Make the current task sleep until the given expiry time has
1796 * elapsed. The routine will return immediately unless
1797 * the current task state has been set (see set_current_state()).
1798 *
1799 * The @delta argument gives the kernel the freedom to schedule the
1800 * actual wakeup to a time that is both power and performance friendly.
1801 * The kernel give the normal best effort behavior for "@expires+@delta",
1802 * but may decide to fire the timer earlier, but no earlier than @expires.
1803 *
1804 * You can set the task state as follows -
1805 *
1806 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1807 * pass before the routine returns.
1808 *
1809 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1810 * delivered to the current task.
1811 *
1812 * The current task state is guaranteed to be TASK_RUNNING when this
1813 * routine returns.
1814 *
1815 * Returns 0 when the timer has expired otherwise -EINTR
1816 */
1817int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1818 const enum hrtimer_mode mode)
1819{
1820 return schedule_hrtimeout_range_clock(expires, delta, mode,
1821 CLOCK_MONOTONIC);
1822}
654c8e0b
AV
1823EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1824
1825/**
1826 * schedule_hrtimeout - sleep until timeout
1827 * @expires: timeout value (ktime_t)
1828 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1829 *
1830 * Make the current task sleep until the given expiry time has
1831 * elapsed. The routine will return immediately unless
1832 * the current task state has been set (see set_current_state()).
1833 *
1834 * You can set the task state as follows -
1835 *
1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837 * pass before the routine returns.
1838 *
1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840 * delivered to the current task.
1841 *
1842 * The current task state is guaranteed to be TASK_RUNNING when this
1843 * routine returns.
1844 *
1845 * Returns 0 when the timer has expired otherwise -EINTR
1846 */
1847int __sched schedule_hrtimeout(ktime_t *expires,
1848 const enum hrtimer_mode mode)
1849{
1850 return schedule_hrtimeout_range(expires, 0, mode);
1851}
7bb67439 1852EXPORT_SYMBOL_GPL(schedule_hrtimeout);