]>
Commit | Line | Data |
---|---|---|
dc009d92 EB |
1 | /* |
2 | * kexec.c - kexec system call | |
3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
dc009d92 EB |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
8c5a1cf0 | 15 | #include <linux/mutex.h> |
dc009d92 EB |
16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
dc009d92 | 20 | #include <linux/ioport.h> |
6e274d14 | 21 | #include <linux/hardirq.h> |
85916f81 MD |
22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> | |
fd59d231 KO |
24 | #include <linux/utsrelease.h> |
25 | #include <linux/utsname.h> | |
26 | #include <linux/numa.h> | |
3ab83521 HY |
27 | #include <linux/suspend.h> |
28 | #include <linux/device.h> | |
89081d17 HY |
29 | #include <linux/freezer.h> |
30 | #include <linux/pm.h> | |
31 | #include <linux/cpu.h> | |
32 | #include <linux/console.h> | |
5f41b8cd | 33 | #include <linux/vmalloc.h> |
6e274d14 | 34 | |
dc009d92 EB |
35 | #include <asm/page.h> |
36 | #include <asm/uaccess.h> | |
37 | #include <asm/io.h> | |
38 | #include <asm/system.h> | |
fd59d231 | 39 | #include <asm/sections.h> |
dc009d92 | 40 | |
cc571658 VG |
41 | /* Per cpu memory for storing cpu states in case of system crash. */ |
42 | note_buf_t* crash_notes; | |
43 | ||
fd59d231 | 44 | /* vmcoreinfo stuff */ |
edb79a21 | 45 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
fd59d231 | 46 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
d768281e KO |
47 | size_t vmcoreinfo_size; |
48 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
fd59d231 | 49 | |
dc009d92 EB |
50 | /* Location of the reserved area for the crash kernel */ |
51 | struct resource crashk_res = { | |
52 | .name = "Crash kernel", | |
53 | .start = 0, | |
54 | .end = 0, | |
55 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | |
56 | }; | |
57 | ||
6e274d14 AN |
58 | int kexec_should_crash(struct task_struct *p) |
59 | { | |
b460cbc5 | 60 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
6e274d14 AN |
61 | return 1; |
62 | return 0; | |
63 | } | |
64 | ||
dc009d92 EB |
65 | /* |
66 | * When kexec transitions to the new kernel there is a one-to-one | |
67 | * mapping between physical and virtual addresses. On processors | |
68 | * where you can disable the MMU this is trivial, and easy. For | |
69 | * others it is still a simple predictable page table to setup. | |
70 | * | |
71 | * In that environment kexec copies the new kernel to its final | |
72 | * resting place. This means I can only support memory whose | |
73 | * physical address can fit in an unsigned long. In particular | |
74 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
75 | * If the assembly stub has more restrictive requirements | |
76 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
77 | * defined more restrictively in <asm/kexec.h>. | |
78 | * | |
79 | * The code for the transition from the current kernel to the | |
80 | * the new kernel is placed in the control_code_buffer, whose size | |
163f6876 | 81 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
dc009d92 EB |
82 | * page of memory is necessary, but some architectures require more. |
83 | * Because this memory must be identity mapped in the transition from | |
84 | * virtual to physical addresses it must live in the range | |
85 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
86 | * modifiable. | |
87 | * | |
88 | * The assembly stub in the control code buffer is passed a linked list | |
89 | * of descriptor pages detailing the source pages of the new kernel, | |
90 | * and the destination addresses of those source pages. As this data | |
91 | * structure is not used in the context of the current OS, it must | |
92 | * be self-contained. | |
93 | * | |
94 | * The code has been made to work with highmem pages and will use a | |
95 | * destination page in its final resting place (if it happens | |
96 | * to allocate it). The end product of this is that most of the | |
97 | * physical address space, and most of RAM can be used. | |
98 | * | |
99 | * Future directions include: | |
100 | * - allocating a page table with the control code buffer identity | |
101 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
102 | * reliable. | |
103 | */ | |
104 | ||
105 | /* | |
106 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
107 | * allocating pages whose destination address we do not care about. | |
108 | */ | |
109 | #define KIMAGE_NO_DEST (-1UL) | |
110 | ||
72414d3f MS |
111 | static int kimage_is_destination_range(struct kimage *image, |
112 | unsigned long start, unsigned long end); | |
113 | static struct page *kimage_alloc_page(struct kimage *image, | |
9796fdd8 | 114 | gfp_t gfp_mask, |
72414d3f | 115 | unsigned long dest); |
dc009d92 EB |
116 | |
117 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
118 | unsigned long nr_segments, |
119 | struct kexec_segment __user *segments) | |
dc009d92 EB |
120 | { |
121 | size_t segment_bytes; | |
122 | struct kimage *image; | |
123 | unsigned long i; | |
124 | int result; | |
125 | ||
126 | /* Allocate a controlling structure */ | |
127 | result = -ENOMEM; | |
4668edc3 | 128 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
72414d3f | 129 | if (!image) |
dc009d92 | 130 | goto out; |
72414d3f | 131 | |
dc009d92 EB |
132 | image->head = 0; |
133 | image->entry = &image->head; | |
134 | image->last_entry = &image->head; | |
135 | image->control_page = ~0; /* By default this does not apply */ | |
136 | image->start = entry; | |
137 | image->type = KEXEC_TYPE_DEFAULT; | |
138 | ||
139 | /* Initialize the list of control pages */ | |
140 | INIT_LIST_HEAD(&image->control_pages); | |
141 | ||
142 | /* Initialize the list of destination pages */ | |
143 | INIT_LIST_HEAD(&image->dest_pages); | |
144 | ||
145 | /* Initialize the list of unuseable pages */ | |
146 | INIT_LIST_HEAD(&image->unuseable_pages); | |
147 | ||
148 | /* Read in the segments */ | |
149 | image->nr_segments = nr_segments; | |
150 | segment_bytes = nr_segments * sizeof(*segments); | |
151 | result = copy_from_user(image->segment, segments, segment_bytes); | |
152 | if (result) | |
153 | goto out; | |
154 | ||
155 | /* | |
156 | * Verify we have good destination addresses. The caller is | |
157 | * responsible for making certain we don't attempt to load | |
158 | * the new image into invalid or reserved areas of RAM. This | |
159 | * just verifies it is an address we can use. | |
160 | * | |
161 | * Since the kernel does everything in page size chunks ensure | |
162 | * the destination addreses are page aligned. Too many | |
163 | * special cases crop of when we don't do this. The most | |
164 | * insidious is getting overlapping destination addresses | |
165 | * simply because addresses are changed to page size | |
166 | * granularity. | |
167 | */ | |
168 | result = -EADDRNOTAVAIL; | |
169 | for (i = 0; i < nr_segments; i++) { | |
170 | unsigned long mstart, mend; | |
72414d3f | 171 | |
dc009d92 EB |
172 | mstart = image->segment[i].mem; |
173 | mend = mstart + image->segment[i].memsz; | |
174 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
175 | goto out; | |
176 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
177 | goto out; | |
178 | } | |
179 | ||
180 | /* Verify our destination addresses do not overlap. | |
181 | * If we alloed overlapping destination addresses | |
182 | * through very weird things can happen with no | |
183 | * easy explanation as one segment stops on another. | |
184 | */ | |
185 | result = -EINVAL; | |
72414d3f | 186 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
187 | unsigned long mstart, mend; |
188 | unsigned long j; | |
72414d3f | 189 | |
dc009d92 EB |
190 | mstart = image->segment[i].mem; |
191 | mend = mstart + image->segment[i].memsz; | |
72414d3f | 192 | for (j = 0; j < i; j++) { |
dc009d92 EB |
193 | unsigned long pstart, pend; |
194 | pstart = image->segment[j].mem; | |
195 | pend = pstart + image->segment[j].memsz; | |
196 | /* Do the segments overlap ? */ | |
197 | if ((mend > pstart) && (mstart < pend)) | |
198 | goto out; | |
199 | } | |
200 | } | |
201 | ||
202 | /* Ensure our buffer sizes are strictly less than | |
203 | * our memory sizes. This should always be the case, | |
204 | * and it is easier to check up front than to be surprised | |
205 | * later on. | |
206 | */ | |
207 | result = -EINVAL; | |
72414d3f | 208 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
209 | if (image->segment[i].bufsz > image->segment[i].memsz) |
210 | goto out; | |
211 | } | |
212 | ||
dc009d92 | 213 | result = 0; |
72414d3f MS |
214 | out: |
215 | if (result == 0) | |
dc009d92 | 216 | *rimage = image; |
72414d3f | 217 | else |
dc009d92 | 218 | kfree(image); |
72414d3f | 219 | |
dc009d92 EB |
220 | return result; |
221 | ||
222 | } | |
223 | ||
224 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
225 | unsigned long nr_segments, |
226 | struct kexec_segment __user *segments) | |
dc009d92 EB |
227 | { |
228 | int result; | |
229 | struct kimage *image; | |
230 | ||
231 | /* Allocate and initialize a controlling structure */ | |
232 | image = NULL; | |
233 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 234 | if (result) |
dc009d92 | 235 | goto out; |
72414d3f | 236 | |
dc009d92 EB |
237 | *rimage = image; |
238 | ||
239 | /* | |
240 | * Find a location for the control code buffer, and add it | |
241 | * the vector of segments so that it's pages will also be | |
242 | * counted as destination pages. | |
243 | */ | |
244 | result = -ENOMEM; | |
245 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 246 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
247 | if (!image->control_code_page) { |
248 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
249 | goto out; | |
250 | } | |
251 | ||
3ab83521 HY |
252 | image->swap_page = kimage_alloc_control_pages(image, 0); |
253 | if (!image->swap_page) { | |
254 | printk(KERN_ERR "Could not allocate swap buffer\n"); | |
255 | goto out; | |
256 | } | |
257 | ||
dc009d92 EB |
258 | result = 0; |
259 | out: | |
72414d3f | 260 | if (result == 0) |
dc009d92 | 261 | *rimage = image; |
72414d3f | 262 | else |
dc009d92 | 263 | kfree(image); |
72414d3f | 264 | |
dc009d92 EB |
265 | return result; |
266 | } | |
267 | ||
268 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f | 269 | unsigned long nr_segments, |
314b6a4d | 270 | struct kexec_segment __user *segments) |
dc009d92 EB |
271 | { |
272 | int result; | |
273 | struct kimage *image; | |
274 | unsigned long i; | |
275 | ||
276 | image = NULL; | |
277 | /* Verify we have a valid entry point */ | |
278 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | |
279 | result = -EADDRNOTAVAIL; | |
280 | goto out; | |
281 | } | |
282 | ||
283 | /* Allocate and initialize a controlling structure */ | |
284 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 285 | if (result) |
dc009d92 | 286 | goto out; |
dc009d92 EB |
287 | |
288 | /* Enable the special crash kernel control page | |
289 | * allocation policy. | |
290 | */ | |
291 | image->control_page = crashk_res.start; | |
292 | image->type = KEXEC_TYPE_CRASH; | |
293 | ||
294 | /* | |
295 | * Verify we have good destination addresses. Normally | |
296 | * the caller is responsible for making certain we don't | |
297 | * attempt to load the new image into invalid or reserved | |
298 | * areas of RAM. But crash kernels are preloaded into a | |
299 | * reserved area of ram. We must ensure the addresses | |
300 | * are in the reserved area otherwise preloading the | |
301 | * kernel could corrupt things. | |
302 | */ | |
303 | result = -EADDRNOTAVAIL; | |
304 | for (i = 0; i < nr_segments; i++) { | |
305 | unsigned long mstart, mend; | |
72414d3f | 306 | |
dc009d92 | 307 | mstart = image->segment[i].mem; |
50cccc69 | 308 | mend = mstart + image->segment[i].memsz - 1; |
dc009d92 EB |
309 | /* Ensure we are within the crash kernel limits */ |
310 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | |
311 | goto out; | |
312 | } | |
313 | ||
dc009d92 EB |
314 | /* |
315 | * Find a location for the control code buffer, and add | |
316 | * the vector of segments so that it's pages will also be | |
317 | * counted as destination pages. | |
318 | */ | |
319 | result = -ENOMEM; | |
320 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 321 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
322 | if (!image->control_code_page) { |
323 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
324 | goto out; | |
325 | } | |
326 | ||
327 | result = 0; | |
72414d3f MS |
328 | out: |
329 | if (result == 0) | |
dc009d92 | 330 | *rimage = image; |
72414d3f | 331 | else |
dc009d92 | 332 | kfree(image); |
72414d3f | 333 | |
dc009d92 EB |
334 | return result; |
335 | } | |
336 | ||
72414d3f MS |
337 | static int kimage_is_destination_range(struct kimage *image, |
338 | unsigned long start, | |
339 | unsigned long end) | |
dc009d92 EB |
340 | { |
341 | unsigned long i; | |
342 | ||
343 | for (i = 0; i < image->nr_segments; i++) { | |
344 | unsigned long mstart, mend; | |
72414d3f | 345 | |
dc009d92 | 346 | mstart = image->segment[i].mem; |
72414d3f MS |
347 | mend = mstart + image->segment[i].memsz; |
348 | if ((end > mstart) && (start < mend)) | |
dc009d92 | 349 | return 1; |
dc009d92 | 350 | } |
72414d3f | 351 | |
dc009d92 EB |
352 | return 0; |
353 | } | |
354 | ||
9796fdd8 | 355 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
dc009d92 EB |
356 | { |
357 | struct page *pages; | |
72414d3f | 358 | |
dc009d92 EB |
359 | pages = alloc_pages(gfp_mask, order); |
360 | if (pages) { | |
361 | unsigned int count, i; | |
362 | pages->mapping = NULL; | |
4c21e2f2 | 363 | set_page_private(pages, order); |
dc009d92 | 364 | count = 1 << order; |
72414d3f | 365 | for (i = 0; i < count; i++) |
dc009d92 | 366 | SetPageReserved(pages + i); |
dc009d92 | 367 | } |
72414d3f | 368 | |
dc009d92 EB |
369 | return pages; |
370 | } | |
371 | ||
372 | static void kimage_free_pages(struct page *page) | |
373 | { | |
374 | unsigned int order, count, i; | |
72414d3f | 375 | |
4c21e2f2 | 376 | order = page_private(page); |
dc009d92 | 377 | count = 1 << order; |
72414d3f | 378 | for (i = 0; i < count; i++) |
dc009d92 | 379 | ClearPageReserved(page + i); |
dc009d92 EB |
380 | __free_pages(page, order); |
381 | } | |
382 | ||
383 | static void kimage_free_page_list(struct list_head *list) | |
384 | { | |
385 | struct list_head *pos, *next; | |
72414d3f | 386 | |
dc009d92 EB |
387 | list_for_each_safe(pos, next, list) { |
388 | struct page *page; | |
389 | ||
390 | page = list_entry(pos, struct page, lru); | |
391 | list_del(&page->lru); | |
dc009d92 EB |
392 | kimage_free_pages(page); |
393 | } | |
394 | } | |
395 | ||
72414d3f MS |
396 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
397 | unsigned int order) | |
dc009d92 EB |
398 | { |
399 | /* Control pages are special, they are the intermediaries | |
400 | * that are needed while we copy the rest of the pages | |
401 | * to their final resting place. As such they must | |
402 | * not conflict with either the destination addresses | |
403 | * or memory the kernel is already using. | |
404 | * | |
405 | * The only case where we really need more than one of | |
406 | * these are for architectures where we cannot disable | |
407 | * the MMU and must instead generate an identity mapped | |
408 | * page table for all of the memory. | |
409 | * | |
410 | * At worst this runs in O(N) of the image size. | |
411 | */ | |
412 | struct list_head extra_pages; | |
413 | struct page *pages; | |
414 | unsigned int count; | |
415 | ||
416 | count = 1 << order; | |
417 | INIT_LIST_HEAD(&extra_pages); | |
418 | ||
419 | /* Loop while I can allocate a page and the page allocated | |
420 | * is a destination page. | |
421 | */ | |
422 | do { | |
423 | unsigned long pfn, epfn, addr, eaddr; | |
72414d3f | 424 | |
dc009d92 EB |
425 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
426 | if (!pages) | |
427 | break; | |
428 | pfn = page_to_pfn(pages); | |
429 | epfn = pfn + count; | |
430 | addr = pfn << PAGE_SHIFT; | |
431 | eaddr = epfn << PAGE_SHIFT; | |
432 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
72414d3f | 433 | kimage_is_destination_range(image, addr, eaddr)) { |
dc009d92 EB |
434 | list_add(&pages->lru, &extra_pages); |
435 | pages = NULL; | |
436 | } | |
72414d3f MS |
437 | } while (!pages); |
438 | ||
dc009d92 EB |
439 | if (pages) { |
440 | /* Remember the allocated page... */ | |
441 | list_add(&pages->lru, &image->control_pages); | |
442 | ||
443 | /* Because the page is already in it's destination | |
444 | * location we will never allocate another page at | |
445 | * that address. Therefore kimage_alloc_pages | |
446 | * will not return it (again) and we don't need | |
447 | * to give it an entry in image->segment[]. | |
448 | */ | |
449 | } | |
450 | /* Deal with the destination pages I have inadvertently allocated. | |
451 | * | |
452 | * Ideally I would convert multi-page allocations into single | |
453 | * page allocations, and add everyting to image->dest_pages. | |
454 | * | |
455 | * For now it is simpler to just free the pages. | |
456 | */ | |
457 | kimage_free_page_list(&extra_pages); | |
dc009d92 | 458 | |
72414d3f | 459 | return pages; |
dc009d92 EB |
460 | } |
461 | ||
72414d3f MS |
462 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
463 | unsigned int order) | |
dc009d92 EB |
464 | { |
465 | /* Control pages are special, they are the intermediaries | |
466 | * that are needed while we copy the rest of the pages | |
467 | * to their final resting place. As such they must | |
468 | * not conflict with either the destination addresses | |
469 | * or memory the kernel is already using. | |
470 | * | |
471 | * Control pages are also the only pags we must allocate | |
472 | * when loading a crash kernel. All of the other pages | |
473 | * are specified by the segments and we just memcpy | |
474 | * into them directly. | |
475 | * | |
476 | * The only case where we really need more than one of | |
477 | * these are for architectures where we cannot disable | |
478 | * the MMU and must instead generate an identity mapped | |
479 | * page table for all of the memory. | |
480 | * | |
481 | * Given the low demand this implements a very simple | |
482 | * allocator that finds the first hole of the appropriate | |
483 | * size in the reserved memory region, and allocates all | |
484 | * of the memory up to and including the hole. | |
485 | */ | |
486 | unsigned long hole_start, hole_end, size; | |
487 | struct page *pages; | |
72414d3f | 488 | |
dc009d92 EB |
489 | pages = NULL; |
490 | size = (1 << order) << PAGE_SHIFT; | |
491 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
492 | hole_end = hole_start + size - 1; | |
72414d3f | 493 | while (hole_end <= crashk_res.end) { |
dc009d92 | 494 | unsigned long i; |
72414d3f MS |
495 | |
496 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | |
dc009d92 | 497 | break; |
72414d3f | 498 | if (hole_end > crashk_res.end) |
dc009d92 | 499 | break; |
dc009d92 | 500 | /* See if I overlap any of the segments */ |
72414d3f | 501 | for (i = 0; i < image->nr_segments; i++) { |
dc009d92 | 502 | unsigned long mstart, mend; |
72414d3f | 503 | |
dc009d92 EB |
504 | mstart = image->segment[i].mem; |
505 | mend = mstart + image->segment[i].memsz - 1; | |
506 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
507 | /* Advance the hole to the end of the segment */ | |
508 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
509 | hole_end = hole_start + size - 1; | |
510 | break; | |
511 | } | |
512 | } | |
513 | /* If I don't overlap any segments I have found my hole! */ | |
514 | if (i == image->nr_segments) { | |
515 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
516 | break; | |
517 | } | |
518 | } | |
72414d3f | 519 | if (pages) |
dc009d92 | 520 | image->control_page = hole_end; |
72414d3f | 521 | |
dc009d92 EB |
522 | return pages; |
523 | } | |
524 | ||
525 | ||
72414d3f MS |
526 | struct page *kimage_alloc_control_pages(struct kimage *image, |
527 | unsigned int order) | |
dc009d92 EB |
528 | { |
529 | struct page *pages = NULL; | |
72414d3f MS |
530 | |
531 | switch (image->type) { | |
dc009d92 EB |
532 | case KEXEC_TYPE_DEFAULT: |
533 | pages = kimage_alloc_normal_control_pages(image, order); | |
534 | break; | |
535 | case KEXEC_TYPE_CRASH: | |
536 | pages = kimage_alloc_crash_control_pages(image, order); | |
537 | break; | |
538 | } | |
72414d3f | 539 | |
dc009d92 EB |
540 | return pages; |
541 | } | |
542 | ||
543 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
544 | { | |
72414d3f | 545 | if (*image->entry != 0) |
dc009d92 | 546 | image->entry++; |
72414d3f | 547 | |
dc009d92 EB |
548 | if (image->entry == image->last_entry) { |
549 | kimage_entry_t *ind_page; | |
550 | struct page *page; | |
72414d3f | 551 | |
dc009d92 | 552 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
72414d3f | 553 | if (!page) |
dc009d92 | 554 | return -ENOMEM; |
72414d3f | 555 | |
dc009d92 EB |
556 | ind_page = page_address(page); |
557 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
558 | image->entry = ind_page; | |
72414d3f MS |
559 | image->last_entry = ind_page + |
560 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
dc009d92 EB |
561 | } |
562 | *image->entry = entry; | |
563 | image->entry++; | |
564 | *image->entry = 0; | |
72414d3f | 565 | |
dc009d92 EB |
566 | return 0; |
567 | } | |
568 | ||
72414d3f MS |
569 | static int kimage_set_destination(struct kimage *image, |
570 | unsigned long destination) | |
dc009d92 EB |
571 | { |
572 | int result; | |
573 | ||
574 | destination &= PAGE_MASK; | |
575 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
72414d3f | 576 | if (result == 0) |
dc009d92 | 577 | image->destination = destination; |
72414d3f | 578 | |
dc009d92 EB |
579 | return result; |
580 | } | |
581 | ||
582 | ||
583 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
584 | { | |
585 | int result; | |
586 | ||
587 | page &= PAGE_MASK; | |
588 | result = kimage_add_entry(image, page | IND_SOURCE); | |
72414d3f | 589 | if (result == 0) |
dc009d92 | 590 | image->destination += PAGE_SIZE; |
72414d3f | 591 | |
dc009d92 EB |
592 | return result; |
593 | } | |
594 | ||
595 | ||
596 | static void kimage_free_extra_pages(struct kimage *image) | |
597 | { | |
598 | /* Walk through and free any extra destination pages I may have */ | |
599 | kimage_free_page_list(&image->dest_pages); | |
600 | ||
601 | /* Walk through and free any unuseable pages I have cached */ | |
602 | kimage_free_page_list(&image->unuseable_pages); | |
603 | ||
604 | } | |
7fccf032 | 605 | static void kimage_terminate(struct kimage *image) |
dc009d92 | 606 | { |
72414d3f | 607 | if (*image->entry != 0) |
dc009d92 | 608 | image->entry++; |
72414d3f | 609 | |
dc009d92 | 610 | *image->entry = IND_DONE; |
dc009d92 EB |
611 | } |
612 | ||
613 | #define for_each_kimage_entry(image, ptr, entry) \ | |
614 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
615 | ptr = (entry & IND_INDIRECTION)? \ | |
616 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | |
617 | ||
618 | static void kimage_free_entry(kimage_entry_t entry) | |
619 | { | |
620 | struct page *page; | |
621 | ||
622 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
623 | kimage_free_pages(page); | |
624 | } | |
625 | ||
626 | static void kimage_free(struct kimage *image) | |
627 | { | |
628 | kimage_entry_t *ptr, entry; | |
629 | kimage_entry_t ind = 0; | |
630 | ||
631 | if (!image) | |
632 | return; | |
72414d3f | 633 | |
dc009d92 EB |
634 | kimage_free_extra_pages(image); |
635 | for_each_kimage_entry(image, ptr, entry) { | |
636 | if (entry & IND_INDIRECTION) { | |
637 | /* Free the previous indirection page */ | |
72414d3f | 638 | if (ind & IND_INDIRECTION) |
dc009d92 | 639 | kimage_free_entry(ind); |
dc009d92 EB |
640 | /* Save this indirection page until we are |
641 | * done with it. | |
642 | */ | |
643 | ind = entry; | |
644 | } | |
72414d3f | 645 | else if (entry & IND_SOURCE) |
dc009d92 | 646 | kimage_free_entry(entry); |
dc009d92 EB |
647 | } |
648 | /* Free the final indirection page */ | |
72414d3f | 649 | if (ind & IND_INDIRECTION) |
dc009d92 | 650 | kimage_free_entry(ind); |
dc009d92 EB |
651 | |
652 | /* Handle any machine specific cleanup */ | |
653 | machine_kexec_cleanup(image); | |
654 | ||
655 | /* Free the kexec control pages... */ | |
656 | kimage_free_page_list(&image->control_pages); | |
657 | kfree(image); | |
658 | } | |
659 | ||
72414d3f MS |
660 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
661 | unsigned long page) | |
dc009d92 EB |
662 | { |
663 | kimage_entry_t *ptr, entry; | |
664 | unsigned long destination = 0; | |
665 | ||
666 | for_each_kimage_entry(image, ptr, entry) { | |
72414d3f | 667 | if (entry & IND_DESTINATION) |
dc009d92 | 668 | destination = entry & PAGE_MASK; |
dc009d92 | 669 | else if (entry & IND_SOURCE) { |
72414d3f | 670 | if (page == destination) |
dc009d92 | 671 | return ptr; |
dc009d92 EB |
672 | destination += PAGE_SIZE; |
673 | } | |
674 | } | |
72414d3f | 675 | |
314b6a4d | 676 | return NULL; |
dc009d92 EB |
677 | } |
678 | ||
72414d3f | 679 | static struct page *kimage_alloc_page(struct kimage *image, |
9796fdd8 | 680 | gfp_t gfp_mask, |
72414d3f | 681 | unsigned long destination) |
dc009d92 EB |
682 | { |
683 | /* | |
684 | * Here we implement safeguards to ensure that a source page | |
685 | * is not copied to its destination page before the data on | |
686 | * the destination page is no longer useful. | |
687 | * | |
688 | * To do this we maintain the invariant that a source page is | |
689 | * either its own destination page, or it is not a | |
690 | * destination page at all. | |
691 | * | |
692 | * That is slightly stronger than required, but the proof | |
693 | * that no problems will not occur is trivial, and the | |
694 | * implementation is simply to verify. | |
695 | * | |
696 | * When allocating all pages normally this algorithm will run | |
697 | * in O(N) time, but in the worst case it will run in O(N^2) | |
698 | * time. If the runtime is a problem the data structures can | |
699 | * be fixed. | |
700 | */ | |
701 | struct page *page; | |
702 | unsigned long addr; | |
703 | ||
704 | /* | |
705 | * Walk through the list of destination pages, and see if I | |
706 | * have a match. | |
707 | */ | |
708 | list_for_each_entry(page, &image->dest_pages, lru) { | |
709 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
710 | if (addr == destination) { | |
711 | list_del(&page->lru); | |
712 | return page; | |
713 | } | |
714 | } | |
715 | page = NULL; | |
716 | while (1) { | |
717 | kimage_entry_t *old; | |
718 | ||
719 | /* Allocate a page, if we run out of memory give up */ | |
720 | page = kimage_alloc_pages(gfp_mask, 0); | |
72414d3f | 721 | if (!page) |
314b6a4d | 722 | return NULL; |
dc009d92 | 723 | /* If the page cannot be used file it away */ |
72414d3f MS |
724 | if (page_to_pfn(page) > |
725 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
dc009d92 EB |
726 | list_add(&page->lru, &image->unuseable_pages); |
727 | continue; | |
728 | } | |
729 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
730 | ||
731 | /* If it is the destination page we want use it */ | |
732 | if (addr == destination) | |
733 | break; | |
734 | ||
735 | /* If the page is not a destination page use it */ | |
72414d3f MS |
736 | if (!kimage_is_destination_range(image, addr, |
737 | addr + PAGE_SIZE)) | |
dc009d92 EB |
738 | break; |
739 | ||
740 | /* | |
741 | * I know that the page is someones destination page. | |
742 | * See if there is already a source page for this | |
743 | * destination page. And if so swap the source pages. | |
744 | */ | |
745 | old = kimage_dst_used(image, addr); | |
746 | if (old) { | |
747 | /* If so move it */ | |
748 | unsigned long old_addr; | |
749 | struct page *old_page; | |
750 | ||
751 | old_addr = *old & PAGE_MASK; | |
752 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
753 | copy_highpage(page, old_page); | |
754 | *old = addr | (*old & ~PAGE_MASK); | |
755 | ||
756 | /* The old page I have found cannot be a | |
f9092f35 JS |
757 | * destination page, so return it if it's |
758 | * gfp_flags honor the ones passed in. | |
dc009d92 | 759 | */ |
f9092f35 JS |
760 | if (!(gfp_mask & __GFP_HIGHMEM) && |
761 | PageHighMem(old_page)) { | |
762 | kimage_free_pages(old_page); | |
763 | continue; | |
764 | } | |
dc009d92 EB |
765 | addr = old_addr; |
766 | page = old_page; | |
767 | break; | |
768 | } | |
769 | else { | |
770 | /* Place the page on the destination list I | |
771 | * will use it later. | |
772 | */ | |
773 | list_add(&page->lru, &image->dest_pages); | |
774 | } | |
775 | } | |
72414d3f | 776 | |
dc009d92 EB |
777 | return page; |
778 | } | |
779 | ||
780 | static int kimage_load_normal_segment(struct kimage *image, | |
72414d3f | 781 | struct kexec_segment *segment) |
dc009d92 EB |
782 | { |
783 | unsigned long maddr; | |
784 | unsigned long ubytes, mbytes; | |
785 | int result; | |
314b6a4d | 786 | unsigned char __user *buf; |
dc009d92 EB |
787 | |
788 | result = 0; | |
789 | buf = segment->buf; | |
790 | ubytes = segment->bufsz; | |
791 | mbytes = segment->memsz; | |
792 | maddr = segment->mem; | |
793 | ||
794 | result = kimage_set_destination(image, maddr); | |
72414d3f | 795 | if (result < 0) |
dc009d92 | 796 | goto out; |
72414d3f MS |
797 | |
798 | while (mbytes) { | |
dc009d92 EB |
799 | struct page *page; |
800 | char *ptr; | |
801 | size_t uchunk, mchunk; | |
72414d3f | 802 | |
dc009d92 | 803 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
c80544dc | 804 | if (!page) { |
dc009d92 EB |
805 | result = -ENOMEM; |
806 | goto out; | |
807 | } | |
72414d3f MS |
808 | result = kimage_add_page(image, page_to_pfn(page) |
809 | << PAGE_SHIFT); | |
810 | if (result < 0) | |
dc009d92 | 811 | goto out; |
72414d3f | 812 | |
dc009d92 EB |
813 | ptr = kmap(page); |
814 | /* Start with a clear page */ | |
815 | memset(ptr, 0, PAGE_SIZE); | |
816 | ptr += maddr & ~PAGE_MASK; | |
817 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 818 | if (mchunk > mbytes) |
dc009d92 | 819 | mchunk = mbytes; |
72414d3f | 820 | |
dc009d92 | 821 | uchunk = mchunk; |
72414d3f | 822 | if (uchunk > ubytes) |
dc009d92 | 823 | uchunk = ubytes; |
72414d3f | 824 | |
dc009d92 EB |
825 | result = copy_from_user(ptr, buf, uchunk); |
826 | kunmap(page); | |
827 | if (result) { | |
828 | result = (result < 0) ? result : -EIO; | |
829 | goto out; | |
830 | } | |
831 | ubytes -= uchunk; | |
832 | maddr += mchunk; | |
833 | buf += mchunk; | |
834 | mbytes -= mchunk; | |
835 | } | |
72414d3f | 836 | out: |
dc009d92 EB |
837 | return result; |
838 | } | |
839 | ||
840 | static int kimage_load_crash_segment(struct kimage *image, | |
72414d3f | 841 | struct kexec_segment *segment) |
dc009d92 EB |
842 | { |
843 | /* For crash dumps kernels we simply copy the data from | |
844 | * user space to it's destination. | |
845 | * We do things a page at a time for the sake of kmap. | |
846 | */ | |
847 | unsigned long maddr; | |
848 | unsigned long ubytes, mbytes; | |
849 | int result; | |
314b6a4d | 850 | unsigned char __user *buf; |
dc009d92 EB |
851 | |
852 | result = 0; | |
853 | buf = segment->buf; | |
854 | ubytes = segment->bufsz; | |
855 | mbytes = segment->memsz; | |
856 | maddr = segment->mem; | |
72414d3f | 857 | while (mbytes) { |
dc009d92 EB |
858 | struct page *page; |
859 | char *ptr; | |
860 | size_t uchunk, mchunk; | |
72414d3f | 861 | |
dc009d92 | 862 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
c80544dc | 863 | if (!page) { |
dc009d92 EB |
864 | result = -ENOMEM; |
865 | goto out; | |
866 | } | |
867 | ptr = kmap(page); | |
868 | ptr += maddr & ~PAGE_MASK; | |
869 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 870 | if (mchunk > mbytes) |
dc009d92 | 871 | mchunk = mbytes; |
72414d3f | 872 | |
dc009d92 EB |
873 | uchunk = mchunk; |
874 | if (uchunk > ubytes) { | |
875 | uchunk = ubytes; | |
876 | /* Zero the trailing part of the page */ | |
877 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
878 | } | |
879 | result = copy_from_user(ptr, buf, uchunk); | |
a7956113 | 880 | kexec_flush_icache_page(page); |
dc009d92 EB |
881 | kunmap(page); |
882 | if (result) { | |
883 | result = (result < 0) ? result : -EIO; | |
884 | goto out; | |
885 | } | |
886 | ubytes -= uchunk; | |
887 | maddr += mchunk; | |
888 | buf += mchunk; | |
889 | mbytes -= mchunk; | |
890 | } | |
72414d3f | 891 | out: |
dc009d92 EB |
892 | return result; |
893 | } | |
894 | ||
895 | static int kimage_load_segment(struct kimage *image, | |
72414d3f | 896 | struct kexec_segment *segment) |
dc009d92 EB |
897 | { |
898 | int result = -ENOMEM; | |
72414d3f MS |
899 | |
900 | switch (image->type) { | |
dc009d92 EB |
901 | case KEXEC_TYPE_DEFAULT: |
902 | result = kimage_load_normal_segment(image, segment); | |
903 | break; | |
904 | case KEXEC_TYPE_CRASH: | |
905 | result = kimage_load_crash_segment(image, segment); | |
906 | break; | |
907 | } | |
72414d3f | 908 | |
dc009d92 EB |
909 | return result; |
910 | } | |
911 | ||
912 | /* | |
913 | * Exec Kernel system call: for obvious reasons only root may call it. | |
914 | * | |
915 | * This call breaks up into three pieces. | |
916 | * - A generic part which loads the new kernel from the current | |
917 | * address space, and very carefully places the data in the | |
918 | * allocated pages. | |
919 | * | |
920 | * - A generic part that interacts with the kernel and tells all of | |
921 | * the devices to shut down. Preventing on-going dmas, and placing | |
922 | * the devices in a consistent state so a later kernel can | |
923 | * reinitialize them. | |
924 | * | |
925 | * - A machine specific part that includes the syscall number | |
926 | * and the copies the image to it's final destination. And | |
927 | * jumps into the image at entry. | |
928 | * | |
929 | * kexec does not sync, or unmount filesystems so if you need | |
930 | * that to happen you need to do that yourself. | |
931 | */ | |
c330dda9 JM |
932 | struct kimage *kexec_image; |
933 | struct kimage *kexec_crash_image; | |
8c5a1cf0 AM |
934 | |
935 | static DEFINE_MUTEX(kexec_mutex); | |
dc009d92 | 936 | |
754fe8d2 HC |
937 | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, |
938 | struct kexec_segment __user *, segments, unsigned long, flags) | |
dc009d92 EB |
939 | { |
940 | struct kimage **dest_image, *image; | |
dc009d92 EB |
941 | int result; |
942 | ||
943 | /* We only trust the superuser with rebooting the system. */ | |
944 | if (!capable(CAP_SYS_BOOT)) | |
945 | return -EPERM; | |
946 | ||
947 | /* | |
948 | * Verify we have a legal set of flags | |
949 | * This leaves us room for future extensions. | |
950 | */ | |
951 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | |
952 | return -EINVAL; | |
953 | ||
954 | /* Verify we are on the appropriate architecture */ | |
955 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | |
956 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | |
dc009d92 | 957 | return -EINVAL; |
dc009d92 EB |
958 | |
959 | /* Put an artificial cap on the number | |
960 | * of segments passed to kexec_load. | |
961 | */ | |
962 | if (nr_segments > KEXEC_SEGMENT_MAX) | |
963 | return -EINVAL; | |
964 | ||
965 | image = NULL; | |
966 | result = 0; | |
967 | ||
968 | /* Because we write directly to the reserved memory | |
969 | * region when loading crash kernels we need a mutex here to | |
970 | * prevent multiple crash kernels from attempting to load | |
971 | * simultaneously, and to prevent a crash kernel from loading | |
972 | * over the top of a in use crash kernel. | |
973 | * | |
974 | * KISS: always take the mutex. | |
975 | */ | |
8c5a1cf0 | 976 | if (!mutex_trylock(&kexec_mutex)) |
dc009d92 | 977 | return -EBUSY; |
72414d3f | 978 | |
dc009d92 | 979 | dest_image = &kexec_image; |
72414d3f | 980 | if (flags & KEXEC_ON_CRASH) |
dc009d92 | 981 | dest_image = &kexec_crash_image; |
dc009d92 EB |
982 | if (nr_segments > 0) { |
983 | unsigned long i; | |
72414d3f | 984 | |
dc009d92 | 985 | /* Loading another kernel to reboot into */ |
72414d3f MS |
986 | if ((flags & KEXEC_ON_CRASH) == 0) |
987 | result = kimage_normal_alloc(&image, entry, | |
988 | nr_segments, segments); | |
dc009d92 EB |
989 | /* Loading another kernel to switch to if this one crashes */ |
990 | else if (flags & KEXEC_ON_CRASH) { | |
991 | /* Free any current crash dump kernel before | |
992 | * we corrupt it. | |
993 | */ | |
994 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
72414d3f MS |
995 | result = kimage_crash_alloc(&image, entry, |
996 | nr_segments, segments); | |
dc009d92 | 997 | } |
72414d3f | 998 | if (result) |
dc009d92 | 999 | goto out; |
72414d3f | 1000 | |
3ab83521 HY |
1001 | if (flags & KEXEC_PRESERVE_CONTEXT) |
1002 | image->preserve_context = 1; | |
dc009d92 | 1003 | result = machine_kexec_prepare(image); |
72414d3f | 1004 | if (result) |
dc009d92 | 1005 | goto out; |
72414d3f MS |
1006 | |
1007 | for (i = 0; i < nr_segments; i++) { | |
dc009d92 | 1008 | result = kimage_load_segment(image, &image->segment[i]); |
72414d3f | 1009 | if (result) |
dc009d92 | 1010 | goto out; |
dc009d92 | 1011 | } |
7fccf032 | 1012 | kimage_terminate(image); |
dc009d92 EB |
1013 | } |
1014 | /* Install the new kernel, and Uninstall the old */ | |
1015 | image = xchg(dest_image, image); | |
1016 | ||
72414d3f | 1017 | out: |
8c5a1cf0 | 1018 | mutex_unlock(&kexec_mutex); |
dc009d92 | 1019 | kimage_free(image); |
72414d3f | 1020 | |
dc009d92 EB |
1021 | return result; |
1022 | } | |
1023 | ||
1024 | #ifdef CONFIG_COMPAT | |
1025 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | |
72414d3f MS |
1026 | unsigned long nr_segments, |
1027 | struct compat_kexec_segment __user *segments, | |
1028 | unsigned long flags) | |
dc009d92 EB |
1029 | { |
1030 | struct compat_kexec_segment in; | |
1031 | struct kexec_segment out, __user *ksegments; | |
1032 | unsigned long i, result; | |
1033 | ||
1034 | /* Don't allow clients that don't understand the native | |
1035 | * architecture to do anything. | |
1036 | */ | |
72414d3f | 1037 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
dc009d92 | 1038 | return -EINVAL; |
dc009d92 | 1039 | |
72414d3f | 1040 | if (nr_segments > KEXEC_SEGMENT_MAX) |
dc009d92 | 1041 | return -EINVAL; |
dc009d92 EB |
1042 | |
1043 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | |
1044 | for (i=0; i < nr_segments; i++) { | |
1045 | result = copy_from_user(&in, &segments[i], sizeof(in)); | |
72414d3f | 1046 | if (result) |
dc009d92 | 1047 | return -EFAULT; |
dc009d92 EB |
1048 | |
1049 | out.buf = compat_ptr(in.buf); | |
1050 | out.bufsz = in.bufsz; | |
1051 | out.mem = in.mem; | |
1052 | out.memsz = in.memsz; | |
1053 | ||
1054 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | |
72414d3f | 1055 | if (result) |
dc009d92 | 1056 | return -EFAULT; |
dc009d92 EB |
1057 | } |
1058 | ||
1059 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | |
1060 | } | |
1061 | #endif | |
1062 | ||
6e274d14 | 1063 | void crash_kexec(struct pt_regs *regs) |
dc009d92 | 1064 | { |
8c5a1cf0 | 1065 | /* Take the kexec_mutex here to prevent sys_kexec_load |
dc009d92 EB |
1066 | * running on one cpu from replacing the crash kernel |
1067 | * we are using after a panic on a different cpu. | |
1068 | * | |
1069 | * If the crash kernel was not located in a fixed area | |
1070 | * of memory the xchg(&kexec_crash_image) would be | |
1071 | * sufficient. But since I reuse the memory... | |
1072 | */ | |
8c5a1cf0 | 1073 | if (mutex_trylock(&kexec_mutex)) { |
c0ce7d08 | 1074 | if (kexec_crash_image) { |
e996e581 VG |
1075 | struct pt_regs fixed_regs; |
1076 | crash_setup_regs(&fixed_regs, regs); | |
fd59d231 | 1077 | crash_save_vmcoreinfo(); |
e996e581 | 1078 | machine_crash_shutdown(&fixed_regs); |
c0ce7d08 | 1079 | machine_kexec(kexec_crash_image); |
dc009d92 | 1080 | } |
8c5a1cf0 | 1081 | mutex_unlock(&kexec_mutex); |
dc009d92 EB |
1082 | } |
1083 | } | |
cc571658 | 1084 | |
85916f81 MD |
1085 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1086 | size_t data_len) | |
1087 | { | |
1088 | struct elf_note note; | |
1089 | ||
1090 | note.n_namesz = strlen(name) + 1; | |
1091 | note.n_descsz = data_len; | |
1092 | note.n_type = type; | |
1093 | memcpy(buf, ¬e, sizeof(note)); | |
1094 | buf += (sizeof(note) + 3)/4; | |
1095 | memcpy(buf, name, note.n_namesz); | |
1096 | buf += (note.n_namesz + 3)/4; | |
1097 | memcpy(buf, data, note.n_descsz); | |
1098 | buf += (note.n_descsz + 3)/4; | |
1099 | ||
1100 | return buf; | |
1101 | } | |
1102 | ||
1103 | static void final_note(u32 *buf) | |
1104 | { | |
1105 | struct elf_note note; | |
1106 | ||
1107 | note.n_namesz = 0; | |
1108 | note.n_descsz = 0; | |
1109 | note.n_type = 0; | |
1110 | memcpy(buf, ¬e, sizeof(note)); | |
1111 | } | |
1112 | ||
1113 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1114 | { | |
1115 | struct elf_prstatus prstatus; | |
1116 | u32 *buf; | |
1117 | ||
4f4b6c1a | 1118 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
85916f81 MD |
1119 | return; |
1120 | ||
1121 | /* Using ELF notes here is opportunistic. | |
1122 | * I need a well defined structure format | |
1123 | * for the data I pass, and I need tags | |
1124 | * on the data to indicate what information I have | |
1125 | * squirrelled away. ELF notes happen to provide | |
1126 | * all of that, so there is no need to invent something new. | |
1127 | */ | |
1128 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | |
1129 | if (!buf) | |
1130 | return; | |
1131 | memset(&prstatus, 0, sizeof(prstatus)); | |
1132 | prstatus.pr_pid = current->pid; | |
6cd61c0b | 1133 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
6672f76a SH |
1134 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1135 | &prstatus, sizeof(prstatus)); | |
85916f81 MD |
1136 | final_note(buf); |
1137 | } | |
1138 | ||
cc571658 VG |
1139 | static int __init crash_notes_memory_init(void) |
1140 | { | |
1141 | /* Allocate memory for saving cpu registers. */ | |
1142 | crash_notes = alloc_percpu(note_buf_t); | |
1143 | if (!crash_notes) { | |
1144 | printk("Kexec: Memory allocation for saving cpu register" | |
1145 | " states failed\n"); | |
1146 | return -ENOMEM; | |
1147 | } | |
1148 | return 0; | |
1149 | } | |
1150 | module_init(crash_notes_memory_init) | |
fd59d231 | 1151 | |
cba63c30 BW |
1152 | |
1153 | /* | |
1154 | * parsing the "crashkernel" commandline | |
1155 | * | |
1156 | * this code is intended to be called from architecture specific code | |
1157 | */ | |
1158 | ||
1159 | ||
1160 | /* | |
1161 | * This function parses command lines in the format | |
1162 | * | |
1163 | * crashkernel=ramsize-range:size[,...][@offset] | |
1164 | * | |
1165 | * The function returns 0 on success and -EINVAL on failure. | |
1166 | */ | |
1167 | static int __init parse_crashkernel_mem(char *cmdline, | |
1168 | unsigned long long system_ram, | |
1169 | unsigned long long *crash_size, | |
1170 | unsigned long long *crash_base) | |
1171 | { | |
1172 | char *cur = cmdline, *tmp; | |
1173 | ||
1174 | /* for each entry of the comma-separated list */ | |
1175 | do { | |
1176 | unsigned long long start, end = ULLONG_MAX, size; | |
1177 | ||
1178 | /* get the start of the range */ | |
1179 | start = memparse(cur, &tmp); | |
1180 | if (cur == tmp) { | |
1181 | pr_warning("crashkernel: Memory value expected\n"); | |
1182 | return -EINVAL; | |
1183 | } | |
1184 | cur = tmp; | |
1185 | if (*cur != '-') { | |
1186 | pr_warning("crashkernel: '-' expected\n"); | |
1187 | return -EINVAL; | |
1188 | } | |
1189 | cur++; | |
1190 | ||
1191 | /* if no ':' is here, than we read the end */ | |
1192 | if (*cur != ':') { | |
1193 | end = memparse(cur, &tmp); | |
1194 | if (cur == tmp) { | |
1195 | pr_warning("crashkernel: Memory " | |
1196 | "value expected\n"); | |
1197 | return -EINVAL; | |
1198 | } | |
1199 | cur = tmp; | |
1200 | if (end <= start) { | |
1201 | pr_warning("crashkernel: end <= start\n"); | |
1202 | return -EINVAL; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | if (*cur != ':') { | |
1207 | pr_warning("crashkernel: ':' expected\n"); | |
1208 | return -EINVAL; | |
1209 | } | |
1210 | cur++; | |
1211 | ||
1212 | size = memparse(cur, &tmp); | |
1213 | if (cur == tmp) { | |
1214 | pr_warning("Memory value expected\n"); | |
1215 | return -EINVAL; | |
1216 | } | |
1217 | cur = tmp; | |
1218 | if (size >= system_ram) { | |
1219 | pr_warning("crashkernel: invalid size\n"); | |
1220 | return -EINVAL; | |
1221 | } | |
1222 | ||
1223 | /* match ? */ | |
be089d79 | 1224 | if (system_ram >= start && system_ram < end) { |
cba63c30 BW |
1225 | *crash_size = size; |
1226 | break; | |
1227 | } | |
1228 | } while (*cur++ == ','); | |
1229 | ||
1230 | if (*crash_size > 0) { | |
1231 | while (*cur != ' ' && *cur != '@') | |
1232 | cur++; | |
1233 | if (*cur == '@') { | |
1234 | cur++; | |
1235 | *crash_base = memparse(cur, &tmp); | |
1236 | if (cur == tmp) { | |
1237 | pr_warning("Memory value expected " | |
1238 | "after '@'\n"); | |
1239 | return -EINVAL; | |
1240 | } | |
1241 | } | |
1242 | } | |
1243 | ||
1244 | return 0; | |
1245 | } | |
1246 | ||
1247 | /* | |
1248 | * That function parses "simple" (old) crashkernel command lines like | |
1249 | * | |
1250 | * crashkernel=size[@offset] | |
1251 | * | |
1252 | * It returns 0 on success and -EINVAL on failure. | |
1253 | */ | |
1254 | static int __init parse_crashkernel_simple(char *cmdline, | |
1255 | unsigned long long *crash_size, | |
1256 | unsigned long long *crash_base) | |
1257 | { | |
1258 | char *cur = cmdline; | |
1259 | ||
1260 | *crash_size = memparse(cmdline, &cur); | |
1261 | if (cmdline == cur) { | |
1262 | pr_warning("crashkernel: memory value expected\n"); | |
1263 | return -EINVAL; | |
1264 | } | |
1265 | ||
1266 | if (*cur == '@') | |
1267 | *crash_base = memparse(cur+1, &cur); | |
1268 | ||
1269 | return 0; | |
1270 | } | |
1271 | ||
1272 | /* | |
1273 | * That function is the entry point for command line parsing and should be | |
1274 | * called from the arch-specific code. | |
1275 | */ | |
1276 | int __init parse_crashkernel(char *cmdline, | |
1277 | unsigned long long system_ram, | |
1278 | unsigned long long *crash_size, | |
1279 | unsigned long long *crash_base) | |
1280 | { | |
1281 | char *p = cmdline, *ck_cmdline = NULL; | |
1282 | char *first_colon, *first_space; | |
1283 | ||
1284 | BUG_ON(!crash_size || !crash_base); | |
1285 | *crash_size = 0; | |
1286 | *crash_base = 0; | |
1287 | ||
1288 | /* find crashkernel and use the last one if there are more */ | |
1289 | p = strstr(p, "crashkernel="); | |
1290 | while (p) { | |
1291 | ck_cmdline = p; | |
1292 | p = strstr(p+1, "crashkernel="); | |
1293 | } | |
1294 | ||
1295 | if (!ck_cmdline) | |
1296 | return -EINVAL; | |
1297 | ||
1298 | ck_cmdline += 12; /* strlen("crashkernel=") */ | |
1299 | ||
1300 | /* | |
1301 | * if the commandline contains a ':', then that's the extended | |
1302 | * syntax -- if not, it must be the classic syntax | |
1303 | */ | |
1304 | first_colon = strchr(ck_cmdline, ':'); | |
1305 | first_space = strchr(ck_cmdline, ' '); | |
1306 | if (first_colon && (!first_space || first_colon < first_space)) | |
1307 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1308 | crash_size, crash_base); | |
1309 | else | |
1310 | return parse_crashkernel_simple(ck_cmdline, crash_size, | |
1311 | crash_base); | |
1312 | ||
1313 | return 0; | |
1314 | } | |
1315 | ||
1316 | ||
1317 | ||
fd59d231 KO |
1318 | void crash_save_vmcoreinfo(void) |
1319 | { | |
1320 | u32 *buf; | |
1321 | ||
1322 | if (!vmcoreinfo_size) | |
1323 | return; | |
1324 | ||
d768281e | 1325 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); |
fd59d231 KO |
1326 | |
1327 | buf = (u32 *)vmcoreinfo_note; | |
1328 | ||
1329 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | |
1330 | vmcoreinfo_size); | |
1331 | ||
1332 | final_note(buf); | |
1333 | } | |
1334 | ||
1335 | void vmcoreinfo_append_str(const char *fmt, ...) | |
1336 | { | |
1337 | va_list args; | |
1338 | char buf[0x50]; | |
1339 | int r; | |
1340 | ||
1341 | va_start(args, fmt); | |
1342 | r = vsnprintf(buf, sizeof(buf), fmt, args); | |
1343 | va_end(args); | |
1344 | ||
1345 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | |
1346 | r = vmcoreinfo_max_size - vmcoreinfo_size; | |
1347 | ||
1348 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1349 | ||
1350 | vmcoreinfo_size += r; | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * provide an empty default implementation here -- architecture | |
1355 | * code may override this | |
1356 | */ | |
1357 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | |
1358 | {} | |
1359 | ||
1360 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | |
1361 | { | |
1362 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1363 | } | |
1364 | ||
1365 | static int __init crash_save_vmcoreinfo_init(void) | |
1366 | { | |
bba1f603 KO |
1367 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1368 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
fd59d231 | 1369 | |
bcbba6c1 KO |
1370 | VMCOREINFO_SYMBOL(init_uts_ns); |
1371 | VMCOREINFO_SYMBOL(node_online_map); | |
1372 | VMCOREINFO_SYMBOL(swapper_pg_dir); | |
1373 | VMCOREINFO_SYMBOL(_stext); | |
acd99dbf | 1374 | VMCOREINFO_SYMBOL(vmlist); |
fd59d231 KO |
1375 | |
1376 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
bcbba6c1 KO |
1377 | VMCOREINFO_SYMBOL(mem_map); |
1378 | VMCOREINFO_SYMBOL(contig_page_data); | |
fd59d231 KO |
1379 | #endif |
1380 | #ifdef CONFIG_SPARSEMEM | |
bcbba6c1 KO |
1381 | VMCOREINFO_SYMBOL(mem_section); |
1382 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
c76f860c | 1383 | VMCOREINFO_STRUCT_SIZE(mem_section); |
bcbba6c1 | 1384 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
fd59d231 | 1385 | #endif |
c76f860c KO |
1386 | VMCOREINFO_STRUCT_SIZE(page); |
1387 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1388 | VMCOREINFO_STRUCT_SIZE(zone); | |
1389 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1390 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1391 | VMCOREINFO_SIZE(nodemask_t); | |
bcbba6c1 KO |
1392 | VMCOREINFO_OFFSET(page, flags); |
1393 | VMCOREINFO_OFFSET(page, _count); | |
1394 | VMCOREINFO_OFFSET(page, mapping); | |
1395 | VMCOREINFO_OFFSET(page, lru); | |
1396 | VMCOREINFO_OFFSET(pglist_data, node_zones); | |
1397 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
fd59d231 | 1398 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bcbba6c1 | 1399 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
fd59d231 | 1400 | #endif |
bcbba6c1 KO |
1401 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1402 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1403 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1404 | VMCOREINFO_OFFSET(zone, free_area); | |
1405 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1406 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1407 | VMCOREINFO_OFFSET(free_area, free_list); | |
1408 | VMCOREINFO_OFFSET(list_head, next); | |
1409 | VMCOREINFO_OFFSET(list_head, prev); | |
acd99dbf | 1410 | VMCOREINFO_OFFSET(vm_struct, addr); |
bcbba6c1 | 1411 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
04d491ab | 1412 | log_buf_kexec_setup(); |
83a08e7c | 1413 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
bcbba6c1 | 1414 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
122c7a59 KO |
1415 | VMCOREINFO_NUMBER(PG_lru); |
1416 | VMCOREINFO_NUMBER(PG_private); | |
1417 | VMCOREINFO_NUMBER(PG_swapcache); | |
fd59d231 KO |
1418 | |
1419 | arch_crash_save_vmcoreinfo(); | |
1420 | ||
1421 | return 0; | |
1422 | } | |
1423 | ||
1424 | module_init(crash_save_vmcoreinfo_init) | |
3ab83521 | 1425 | |
7ade3fcc HY |
1426 | /* |
1427 | * Move into place and start executing a preloaded standalone | |
1428 | * executable. If nothing was preloaded return an error. | |
3ab83521 HY |
1429 | */ |
1430 | int kernel_kexec(void) | |
1431 | { | |
1432 | int error = 0; | |
1433 | ||
8c5a1cf0 | 1434 | if (!mutex_trylock(&kexec_mutex)) |
3ab83521 HY |
1435 | return -EBUSY; |
1436 | if (!kexec_image) { | |
1437 | error = -EINVAL; | |
1438 | goto Unlock; | |
1439 | } | |
1440 | ||
3ab83521 | 1441 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1442 | if (kexec_image->preserve_context) { |
89081d17 HY |
1443 | mutex_lock(&pm_mutex); |
1444 | pm_prepare_console(); | |
1445 | error = freeze_processes(); | |
1446 | if (error) { | |
1447 | error = -EBUSY; | |
1448 | goto Restore_console; | |
1449 | } | |
1450 | suspend_console(); | |
1451 | error = device_suspend(PMSG_FREEZE); | |
1452 | if (error) | |
1453 | goto Resume_console; | |
89081d17 HY |
1454 | /* At this point, device_suspend() has been called, |
1455 | * but *not* device_power_down(). We *must* | |
1456 | * device_power_down() now. Otherwise, drivers for | |
1457 | * some devices (e.g. interrupt controllers) become | |
1458 | * desynchronized with the actual state of the | |
1459 | * hardware at resume time, and evil weirdness ensues. | |
1460 | */ | |
1461 | error = device_power_down(PMSG_FREEZE); | |
1462 | if (error) | |
749b0afc RW |
1463 | goto Resume_devices; |
1464 | error = disable_nonboot_cpus(); | |
1465 | if (error) | |
1466 | goto Enable_cpus; | |
2ed8d2b3 | 1467 | local_irq_disable(); |
770824bd RW |
1468 | /* Suspend system devices */ |
1469 | error = sysdev_suspend(PMSG_FREEZE); | |
1470 | if (error) | |
749b0afc | 1471 | goto Enable_irqs; |
7ade3fcc | 1472 | } else |
3ab83521 | 1473 | #endif |
7ade3fcc | 1474 | { |
ca195b7f | 1475 | kernel_restart_prepare(NULL); |
3ab83521 HY |
1476 | printk(KERN_EMERG "Starting new kernel\n"); |
1477 | machine_shutdown(); | |
1478 | } | |
1479 | ||
1480 | machine_kexec(kexec_image); | |
1481 | ||
3ab83521 | 1482 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1483 | if (kexec_image->preserve_context) { |
770824bd | 1484 | sysdev_resume(); |
749b0afc | 1485 | Enable_irqs: |
3ab83521 | 1486 | local_irq_enable(); |
749b0afc | 1487 | Enable_cpus: |
89081d17 | 1488 | enable_nonboot_cpus(); |
749b0afc | 1489 | device_power_up(PMSG_RESTORE); |
89081d17 HY |
1490 | Resume_devices: |
1491 | device_resume(PMSG_RESTORE); | |
1492 | Resume_console: | |
1493 | resume_console(); | |
1494 | thaw_processes(); | |
1495 | Restore_console: | |
1496 | pm_restore_console(); | |
1497 | mutex_unlock(&pm_mutex); | |
3ab83521 | 1498 | } |
7ade3fcc | 1499 | #endif |
3ab83521 HY |
1500 | |
1501 | Unlock: | |
8c5a1cf0 | 1502 | mutex_unlock(&kexec_mutex); |
3ab83521 HY |
1503 | return error; |
1504 | } |