]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/kexec_core.c
ata: ahci_brcm: Allow using driver or DSL SoCs
[mirror_ubuntu-bionic-kernel.git] / kernel / kexec_core.c
CommitLineData
2965faa5
DY
1/*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
de90a6bc 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2965faa5
DY
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
22#include <linux/ioport.h>
23#include <linux/hardirq.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/utsname.h>
27#include <linux/numa.h>
28#include <linux/suspend.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/uaccess.h>
34#include <linux/io.h>
35#include <linux/console.h>
36#include <linux/vmalloc.h>
37#include <linux/swap.h>
38#include <linux/syscore_ops.h>
39#include <linux/compiler.h>
40#include <linux/hugetlb.h>
c207aee4 41#include <linux/frame.h>
2965faa5
DY
42
43#include <asm/page.h>
44#include <asm/sections.h>
45
46#include <crypto/hash.h>
47#include <crypto/sha.h>
48#include "kexec_internal.h"
49
50DEFINE_MUTEX(kexec_mutex);
51
52/* Per cpu memory for storing cpu states in case of system crash. */
53note_buf_t __percpu *crash_notes;
54
2965faa5
DY
55/* Flag to indicate we are going to kexec a new kernel */
56bool kexec_in_progress = false;
57
58
59/* Location of the reserved area for the crash kernel */
60struct resource crashk_res = {
61 .name = "Crash kernel",
62 .start = 0,
63 .end = 0,
1a085d07
TK
64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
66};
67struct resource crashk_low_res = {
68 .name = "Crash kernel",
69 .start = 0,
70 .end = 0,
1a085d07
TK
71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
73};
74
75int kexec_should_crash(struct task_struct *p)
76{
77 /*
78 * If crash_kexec_post_notifiers is enabled, don't run
79 * crash_kexec() here yet, which must be run after panic
80 * notifiers in panic().
81 */
82 if (crash_kexec_post_notifiers)
83 return 0;
84 /*
85 * There are 4 panic() calls in do_exit() path, each of which
86 * corresponds to each of these 4 conditions.
87 */
88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 return 1;
90 return 0;
91}
92
21db79e8
PT
93int kexec_crash_loaded(void)
94{
95 return !!kexec_crash_image;
96}
97EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98
2965faa5
DY
99/*
100 * When kexec transitions to the new kernel there is a one-to-one
101 * mapping between physical and virtual addresses. On processors
102 * where you can disable the MMU this is trivial, and easy. For
103 * others it is still a simple predictable page table to setup.
104 *
105 * In that environment kexec copies the new kernel to its final
106 * resting place. This means I can only support memory whose
107 * physical address can fit in an unsigned long. In particular
108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109 * If the assembly stub has more restrictive requirements
110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111 * defined more restrictively in <asm/kexec.h>.
112 *
113 * The code for the transition from the current kernel to the
114 * the new kernel is placed in the control_code_buffer, whose size
115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
116 * page of memory is necessary, but some architectures require more.
117 * Because this memory must be identity mapped in the transition from
118 * virtual to physical addresses it must live in the range
119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120 * modifiable.
121 *
122 * The assembly stub in the control code buffer is passed a linked list
123 * of descriptor pages detailing the source pages of the new kernel,
124 * and the destination addresses of those source pages. As this data
125 * structure is not used in the context of the current OS, it must
126 * be self-contained.
127 *
128 * The code has been made to work with highmem pages and will use a
129 * destination page in its final resting place (if it happens
130 * to allocate it). The end product of this is that most of the
131 * physical address space, and most of RAM can be used.
132 *
133 * Future directions include:
134 * - allocating a page table with the control code buffer identity
135 * mapped, to simplify machine_kexec and make kexec_on_panic more
136 * reliable.
137 */
138
139/*
140 * KIMAGE_NO_DEST is an impossible destination address..., for
141 * allocating pages whose destination address we do not care about.
142 */
143#define KIMAGE_NO_DEST (-1UL)
1730f146 144#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
2965faa5
DY
145
146static struct page *kimage_alloc_page(struct kimage *image,
147 gfp_t gfp_mask,
148 unsigned long dest);
149
150int sanity_check_segment_list(struct kimage *image)
151{
4caf9615 152 int i;
2965faa5 153 unsigned long nr_segments = image->nr_segments;
1730f146 154 unsigned long total_pages = 0;
2965faa5
DY
155
156 /*
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
161 *
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addresses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
167 * granularity.
168 */
2965faa5
DY
169 for (i = 0; i < nr_segments; i++) {
170 unsigned long mstart, mend;
171
172 mstart = image->segment[i].mem;
173 mend = mstart + image->segment[i].memsz;
465d3777
RK
174 if (mstart > mend)
175 return -EADDRNOTAVAIL;
2965faa5 176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
4caf9615 177 return -EADDRNOTAVAIL;
2965faa5 178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
4caf9615 179 return -EADDRNOTAVAIL;
2965faa5
DY
180 }
181
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
186 */
2965faa5
DY
187 for (i = 0; i < nr_segments; i++) {
188 unsigned long mstart, mend;
189 unsigned long j;
190
191 mstart = image->segment[i].mem;
192 mend = mstart + image->segment[i].memsz;
193 for (j = 0; j < i; j++) {
194 unsigned long pstart, pend;
195
196 pstart = image->segment[j].mem;
197 pend = pstart + image->segment[j].memsz;
198 /* Do the segments overlap ? */
199 if ((mend > pstart) && (mstart < pend))
4caf9615 200 return -EINVAL;
2965faa5
DY
201 }
202 }
203
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
207 * later on.
208 */
2965faa5
DY
209 for (i = 0; i < nr_segments; i++) {
210 if (image->segment[i].bufsz > image->segment[i].memsz)
4caf9615 211 return -EINVAL;
2965faa5
DY
212 }
213
1730f146 214 /*
215 * Verify that no more than half of memory will be consumed. If the
216 * request from userspace is too large, a large amount of time will be
217 * wasted allocating pages, which can cause a soft lockup.
218 */
219 for (i = 0; i < nr_segments; i++) {
220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 return -EINVAL;
222
223 total_pages += PAGE_COUNT(image->segment[i].memsz);
224 }
225
226 if (total_pages > totalram_pages / 2)
227 return -EINVAL;
228
2965faa5
DY
229 /*
230 * Verify we have good destination addresses. Normally
231 * the caller is responsible for making certain we don't
232 * attempt to load the new image into invalid or reserved
233 * areas of RAM. But crash kernels are preloaded into a
234 * reserved area of ram. We must ensure the addresses
235 * are in the reserved area otherwise preloading the
236 * kernel could corrupt things.
237 */
238
239 if (image->type == KEXEC_TYPE_CRASH) {
2965faa5
DY
240 for (i = 0; i < nr_segments; i++) {
241 unsigned long mstart, mend;
242
243 mstart = image->segment[i].mem;
244 mend = mstart + image->segment[i].memsz - 1;
245 /* Ensure we are within the crash kernel limits */
43546d86
RK
246 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 (mend > phys_to_boot_phys(crashk_res.end)))
4caf9615 248 return -EADDRNOTAVAIL;
2965faa5
DY
249 }
250 }
251
252 return 0;
253}
254
255struct kimage *do_kimage_alloc_init(void)
256{
257 struct kimage *image;
258
259 /* Allocate a controlling structure */
260 image = kzalloc(sizeof(*image), GFP_KERNEL);
261 if (!image)
262 return NULL;
263
264 image->head = 0;
265 image->entry = &image->head;
266 image->last_entry = &image->head;
267 image->control_page = ~0; /* By default this does not apply */
268 image->type = KEXEC_TYPE_DEFAULT;
269
270 /* Initialize the list of control pages */
271 INIT_LIST_HEAD(&image->control_pages);
272
273 /* Initialize the list of destination pages */
274 INIT_LIST_HEAD(&image->dest_pages);
275
276 /* Initialize the list of unusable pages */
277 INIT_LIST_HEAD(&image->unusable_pages);
278
279 return image;
280}
281
282int kimage_is_destination_range(struct kimage *image,
283 unsigned long start,
284 unsigned long end)
285{
286 unsigned long i;
287
288 for (i = 0; i < image->nr_segments; i++) {
289 unsigned long mstart, mend;
290
291 mstart = image->segment[i].mem;
292 mend = mstart + image->segment[i].memsz;
293 if ((end > mstart) && (start < mend))
294 return 1;
295 }
296
297 return 0;
298}
299
300static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301{
302 struct page *pages;
303
70835ff8
TH
304 if (fatal_signal_pending(current))
305 return NULL;
bba4ed01 306 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
2965faa5
DY
307 if (pages) {
308 unsigned int count, i;
309
310 pages->mapping = NULL;
311 set_page_private(pages, order);
312 count = 1 << order;
313 for (i = 0; i < count; i++)
314 SetPageReserved(pages + i);
bba4ed01
TL
315
316 arch_kexec_post_alloc_pages(page_address(pages), count,
317 gfp_mask);
318
319 if (gfp_mask & __GFP_ZERO)
320 for (i = 0; i < count; i++)
321 clear_highpage(pages + i);
2965faa5
DY
322 }
323
324 return pages;
325}
326
327static void kimage_free_pages(struct page *page)
328{
329 unsigned int order, count, i;
330
331 order = page_private(page);
332 count = 1 << order;
bba4ed01
TL
333
334 arch_kexec_pre_free_pages(page_address(page), count);
335
2965faa5
DY
336 for (i = 0; i < count; i++)
337 ClearPageReserved(page + i);
338 __free_pages(page, order);
339}
340
341void kimage_free_page_list(struct list_head *list)
342{
2b24692b 343 struct page *page, *next;
2965faa5 344
2b24692b 345 list_for_each_entry_safe(page, next, list, lru) {
2965faa5
DY
346 list_del(&page->lru);
347 kimage_free_pages(page);
348 }
349}
350
351static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 unsigned int order)
353{
354 /* Control pages are special, they are the intermediaries
355 * that are needed while we copy the rest of the pages
356 * to their final resting place. As such they must
357 * not conflict with either the destination addresses
358 * or memory the kernel is already using.
359 *
360 * The only case where we really need more than one of
361 * these are for architectures where we cannot disable
362 * the MMU and must instead generate an identity mapped
363 * page table for all of the memory.
364 *
365 * At worst this runs in O(N) of the image size.
366 */
367 struct list_head extra_pages;
368 struct page *pages;
369 unsigned int count;
370
371 count = 1 << order;
372 INIT_LIST_HEAD(&extra_pages);
373
374 /* Loop while I can allocate a page and the page allocated
375 * is a destination page.
376 */
377 do {
378 unsigned long pfn, epfn, addr, eaddr;
379
380 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 if (!pages)
382 break;
43546d86 383 pfn = page_to_boot_pfn(pages);
2965faa5
DY
384 epfn = pfn + count;
385 addr = pfn << PAGE_SHIFT;
386 eaddr = epfn << PAGE_SHIFT;
387 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 kimage_is_destination_range(image, addr, eaddr)) {
389 list_add(&pages->lru, &extra_pages);
390 pages = NULL;
391 }
392 } while (!pages);
393
394 if (pages) {
395 /* Remember the allocated page... */
396 list_add(&pages->lru, &image->control_pages);
397
398 /* Because the page is already in it's destination
399 * location we will never allocate another page at
400 * that address. Therefore kimage_alloc_pages
401 * will not return it (again) and we don't need
402 * to give it an entry in image->segment[].
403 */
404 }
405 /* Deal with the destination pages I have inadvertently allocated.
406 *
407 * Ideally I would convert multi-page allocations into single
408 * page allocations, and add everything to image->dest_pages.
409 *
410 * For now it is simpler to just free the pages.
411 */
412 kimage_free_page_list(&extra_pages);
413
414 return pages;
415}
416
417static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 unsigned int order)
419{
420 /* Control pages are special, they are the intermediaries
421 * that are needed while we copy the rest of the pages
422 * to their final resting place. As such they must
423 * not conflict with either the destination addresses
424 * or memory the kernel is already using.
425 *
426 * Control pages are also the only pags we must allocate
427 * when loading a crash kernel. All of the other pages
428 * are specified by the segments and we just memcpy
429 * into them directly.
430 *
431 * The only case where we really need more than one of
432 * these are for architectures where we cannot disable
433 * the MMU and must instead generate an identity mapped
434 * page table for all of the memory.
435 *
436 * Given the low demand this implements a very simple
437 * allocator that finds the first hole of the appropriate
438 * size in the reserved memory region, and allocates all
439 * of the memory up to and including the hole.
440 */
441 unsigned long hole_start, hole_end, size;
442 struct page *pages;
443
444 pages = NULL;
445 size = (1 << order) << PAGE_SHIFT;
446 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 hole_end = hole_start + size - 1;
448 while (hole_end <= crashk_res.end) {
449 unsigned long i;
450
8e53c073 451 cond_resched();
452
2965faa5
DY
453 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 break;
455 /* See if I overlap any of the segments */
456 for (i = 0; i < image->nr_segments; i++) {
457 unsigned long mstart, mend;
458
459 mstart = image->segment[i].mem;
460 mend = mstart + image->segment[i].memsz - 1;
461 if ((hole_end >= mstart) && (hole_start <= mend)) {
462 /* Advance the hole to the end of the segment */
463 hole_start = (mend + (size - 1)) & ~(size - 1);
464 hole_end = hole_start + size - 1;
465 break;
466 }
467 }
468 /* If I don't overlap any segments I have found my hole! */
469 if (i == image->nr_segments) {
470 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
04e9949b 471 image->control_page = hole_end;
2965faa5
DY
472 break;
473 }
474 }
2965faa5
DY
475
476 return pages;
477}
478
479
480struct page *kimage_alloc_control_pages(struct kimage *image,
481 unsigned int order)
482{
483 struct page *pages = NULL;
484
485 switch (image->type) {
486 case KEXEC_TYPE_DEFAULT:
487 pages = kimage_alloc_normal_control_pages(image, order);
488 break;
489 case KEXEC_TYPE_CRASH:
490 pages = kimage_alloc_crash_control_pages(image, order);
491 break;
492 }
493
494 return pages;
495}
496
1229384f
XP
497int kimage_crash_copy_vmcoreinfo(struct kimage *image)
498{
499 struct page *vmcoreinfo_page;
500 void *safecopy;
501
502 if (image->type != KEXEC_TYPE_CRASH)
503 return 0;
504
505 /*
506 * For kdump, allocate one vmcoreinfo safe copy from the
507 * crash memory. as we have arch_kexec_protect_crashkres()
508 * after kexec syscall, we naturally protect it from write
509 * (even read) access under kernel direct mapping. But on
510 * the other hand, we still need to operate it when crash
511 * happens to generate vmcoreinfo note, hereby we rely on
512 * vmap for this purpose.
513 */
514 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
515 if (!vmcoreinfo_page) {
516 pr_warn("Could not allocate vmcoreinfo buffer\n");
517 return -ENOMEM;
518 }
519 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
520 if (!safecopy) {
521 pr_warn("Could not vmap vmcoreinfo buffer\n");
522 return -ENOMEM;
523 }
524
525 image->vmcoreinfo_data_copy = safecopy;
526 crash_update_vmcoreinfo_safecopy(safecopy);
527
528 return 0;
529}
530
2965faa5
DY
531static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
532{
533 if (*image->entry != 0)
534 image->entry++;
535
536 if (image->entry == image->last_entry) {
537 kimage_entry_t *ind_page;
538 struct page *page;
539
540 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
541 if (!page)
542 return -ENOMEM;
543
544 ind_page = page_address(page);
43546d86 545 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
2965faa5
DY
546 image->entry = ind_page;
547 image->last_entry = ind_page +
548 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
549 }
550 *image->entry = entry;
551 image->entry++;
552 *image->entry = 0;
553
554 return 0;
555}
556
557static int kimage_set_destination(struct kimage *image,
558 unsigned long destination)
559{
560 int result;
561
562 destination &= PAGE_MASK;
563 result = kimage_add_entry(image, destination | IND_DESTINATION);
564
565 return result;
566}
567
568
569static int kimage_add_page(struct kimage *image, unsigned long page)
570{
571 int result;
572
573 page &= PAGE_MASK;
574 result = kimage_add_entry(image, page | IND_SOURCE);
575
576 return result;
577}
578
579
580static void kimage_free_extra_pages(struct kimage *image)
581{
582 /* Walk through and free any extra destination pages I may have */
583 kimage_free_page_list(&image->dest_pages);
584
585 /* Walk through and free any unusable pages I have cached */
586 kimage_free_page_list(&image->unusable_pages);
587
588}
589void kimage_terminate(struct kimage *image)
590{
591 if (*image->entry != 0)
592 image->entry++;
593
594 *image->entry = IND_DONE;
595}
596
597#define for_each_kimage_entry(image, ptr, entry) \
598 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
599 ptr = (entry & IND_INDIRECTION) ? \
43546d86 600 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
2965faa5
DY
601
602static void kimage_free_entry(kimage_entry_t entry)
603{
604 struct page *page;
605
43546d86 606 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
2965faa5
DY
607 kimage_free_pages(page);
608}
609
610void kimage_free(struct kimage *image)
611{
612 kimage_entry_t *ptr, entry;
613 kimage_entry_t ind = 0;
614
615 if (!image)
616 return;
617
1229384f
XP
618 if (image->vmcoreinfo_data_copy) {
619 crash_update_vmcoreinfo_safecopy(NULL);
620 vunmap(image->vmcoreinfo_data_copy);
621 }
622
2965faa5
DY
623 kimage_free_extra_pages(image);
624 for_each_kimage_entry(image, ptr, entry) {
625 if (entry & IND_INDIRECTION) {
626 /* Free the previous indirection page */
627 if (ind & IND_INDIRECTION)
628 kimage_free_entry(ind);
629 /* Save this indirection page until we are
630 * done with it.
631 */
632 ind = entry;
633 } else if (entry & IND_SOURCE)
634 kimage_free_entry(entry);
635 }
636 /* Free the final indirection page */
637 if (ind & IND_INDIRECTION)
638 kimage_free_entry(ind);
639
640 /* Handle any machine specific cleanup */
641 machine_kexec_cleanup(image);
642
643 /* Free the kexec control pages... */
644 kimage_free_page_list(&image->control_pages);
645
646 /*
647 * Free up any temporary buffers allocated. This might hit if
648 * error occurred much later after buffer allocation.
649 */
650 if (image->file_mode)
651 kimage_file_post_load_cleanup(image);
652
653 kfree(image);
654}
655
656static kimage_entry_t *kimage_dst_used(struct kimage *image,
657 unsigned long page)
658{
659 kimage_entry_t *ptr, entry;
660 unsigned long destination = 0;
661
662 for_each_kimage_entry(image, ptr, entry) {
663 if (entry & IND_DESTINATION)
664 destination = entry & PAGE_MASK;
665 else if (entry & IND_SOURCE) {
666 if (page == destination)
667 return ptr;
668 destination += PAGE_SIZE;
669 }
670 }
671
672 return NULL;
673}
674
675static struct page *kimage_alloc_page(struct kimage *image,
676 gfp_t gfp_mask,
677 unsigned long destination)
678{
679 /*
680 * Here we implement safeguards to ensure that a source page
681 * is not copied to its destination page before the data on
682 * the destination page is no longer useful.
683 *
684 * To do this we maintain the invariant that a source page is
685 * either its own destination page, or it is not a
686 * destination page at all.
687 *
688 * That is slightly stronger than required, but the proof
689 * that no problems will not occur is trivial, and the
690 * implementation is simply to verify.
691 *
692 * When allocating all pages normally this algorithm will run
693 * in O(N) time, but in the worst case it will run in O(N^2)
694 * time. If the runtime is a problem the data structures can
695 * be fixed.
696 */
697 struct page *page;
698 unsigned long addr;
699
700 /*
701 * Walk through the list of destination pages, and see if I
702 * have a match.
703 */
704 list_for_each_entry(page, &image->dest_pages, lru) {
43546d86 705 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2965faa5
DY
706 if (addr == destination) {
707 list_del(&page->lru);
708 return page;
709 }
710 }
711 page = NULL;
712 while (1) {
713 kimage_entry_t *old;
714
715 /* Allocate a page, if we run out of memory give up */
716 page = kimage_alloc_pages(gfp_mask, 0);
717 if (!page)
718 return NULL;
719 /* If the page cannot be used file it away */
43546d86 720 if (page_to_boot_pfn(page) >
2965faa5
DY
721 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
722 list_add(&page->lru, &image->unusable_pages);
723 continue;
724 }
43546d86 725 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2965faa5
DY
726
727 /* If it is the destination page we want use it */
728 if (addr == destination)
729 break;
730
731 /* If the page is not a destination page use it */
732 if (!kimage_is_destination_range(image, addr,
733 addr + PAGE_SIZE))
734 break;
735
736 /*
737 * I know that the page is someones destination page.
738 * See if there is already a source page for this
739 * destination page. And if so swap the source pages.
740 */
741 old = kimage_dst_used(image, addr);
742 if (old) {
743 /* If so move it */
744 unsigned long old_addr;
745 struct page *old_page;
746
747 old_addr = *old & PAGE_MASK;
43546d86 748 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
2965faa5
DY
749 copy_highpage(page, old_page);
750 *old = addr | (*old & ~PAGE_MASK);
751
752 /* The old page I have found cannot be a
753 * destination page, so return it if it's
754 * gfp_flags honor the ones passed in.
755 */
756 if (!(gfp_mask & __GFP_HIGHMEM) &&
757 PageHighMem(old_page)) {
758 kimage_free_pages(old_page);
759 continue;
760 }
761 addr = old_addr;
762 page = old_page;
763 break;
764 }
765 /* Place the page on the destination list, to be used later */
766 list_add(&page->lru, &image->dest_pages);
767 }
768
769 return page;
770}
771
772static int kimage_load_normal_segment(struct kimage *image,
773 struct kexec_segment *segment)
774{
775 unsigned long maddr;
776 size_t ubytes, mbytes;
777 int result;
778 unsigned char __user *buf = NULL;
779 unsigned char *kbuf = NULL;
780
781 result = 0;
782 if (image->file_mode)
783 kbuf = segment->kbuf;
784 else
785 buf = segment->buf;
786 ubytes = segment->bufsz;
787 mbytes = segment->memsz;
788 maddr = segment->mem;
789
790 result = kimage_set_destination(image, maddr);
791 if (result < 0)
792 goto out;
793
794 while (mbytes) {
795 struct page *page;
796 char *ptr;
797 size_t uchunk, mchunk;
798
799 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
800 if (!page) {
801 result = -ENOMEM;
802 goto out;
803 }
43546d86 804 result = kimage_add_page(image, page_to_boot_pfn(page)
2965faa5
DY
805 << PAGE_SHIFT);
806 if (result < 0)
807 goto out;
808
809 ptr = kmap(page);
810 /* Start with a clear page */
811 clear_page(ptr);
812 ptr += maddr & ~PAGE_MASK;
813 mchunk = min_t(size_t, mbytes,
814 PAGE_SIZE - (maddr & ~PAGE_MASK));
815 uchunk = min(ubytes, mchunk);
816
817 /* For file based kexec, source pages are in kernel memory */
818 if (image->file_mode)
819 memcpy(ptr, kbuf, uchunk);
820 else
821 result = copy_from_user(ptr, buf, uchunk);
822 kunmap(page);
823 if (result) {
824 result = -EFAULT;
825 goto out;
826 }
827 ubytes -= uchunk;
828 maddr += mchunk;
829 if (image->file_mode)
830 kbuf += mchunk;
831 else
832 buf += mchunk;
833 mbytes -= mchunk;
834 }
835out:
836 return result;
837}
838
839static int kimage_load_crash_segment(struct kimage *image,
840 struct kexec_segment *segment)
841{
842 /* For crash dumps kernels we simply copy the data from
843 * user space to it's destination.
844 * We do things a page at a time for the sake of kmap.
845 */
846 unsigned long maddr;
847 size_t ubytes, mbytes;
848 int result;
849 unsigned char __user *buf = NULL;
850 unsigned char *kbuf = NULL;
851
852 result = 0;
853 if (image->file_mode)
854 kbuf = segment->kbuf;
855 else
856 buf = segment->buf;
857 ubytes = segment->bufsz;
858 mbytes = segment->memsz;
859 maddr = segment->mem;
860 while (mbytes) {
861 struct page *page;
862 char *ptr;
863 size_t uchunk, mchunk;
864
43546d86 865 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
2965faa5
DY
866 if (!page) {
867 result = -ENOMEM;
868 goto out;
869 }
870 ptr = kmap(page);
871 ptr += maddr & ~PAGE_MASK;
872 mchunk = min_t(size_t, mbytes,
873 PAGE_SIZE - (maddr & ~PAGE_MASK));
874 uchunk = min(ubytes, mchunk);
875 if (mchunk > uchunk) {
876 /* Zero the trailing part of the page */
877 memset(ptr + uchunk, 0, mchunk - uchunk);
878 }
879
880 /* For file based kexec, source pages are in kernel memory */
881 if (image->file_mode)
882 memcpy(ptr, kbuf, uchunk);
883 else
884 result = copy_from_user(ptr, buf, uchunk);
885 kexec_flush_icache_page(page);
886 kunmap(page);
887 if (result) {
888 result = -EFAULT;
889 goto out;
890 }
891 ubytes -= uchunk;
892 maddr += mchunk;
893 if (image->file_mode)
894 kbuf += mchunk;
895 else
896 buf += mchunk;
897 mbytes -= mchunk;
898 }
899out:
900 return result;
901}
902
903int kimage_load_segment(struct kimage *image,
904 struct kexec_segment *segment)
905{
906 int result = -ENOMEM;
907
908 switch (image->type) {
909 case KEXEC_TYPE_DEFAULT:
910 result = kimage_load_normal_segment(image, segment);
911 break;
912 case KEXEC_TYPE_CRASH:
913 result = kimage_load_crash_segment(image, segment);
914 break;
915 }
916
917 return result;
918}
919
920struct kimage *kexec_image;
921struct kimage *kexec_crash_image;
922int kexec_load_disabled;
923
7bbee5ca
HK
924/*
925 * No panic_cpu check version of crash_kexec(). This function is called
926 * only when panic_cpu holds the current CPU number; this is the only CPU
927 * which processes crash_kexec routines.
928 */
c207aee4 929void __noclone __crash_kexec(struct pt_regs *regs)
2965faa5
DY
930{
931 /* Take the kexec_mutex here to prevent sys_kexec_load
932 * running on one cpu from replacing the crash kernel
933 * we are using after a panic on a different cpu.
934 *
935 * If the crash kernel was not located in a fixed area
936 * of memory the xchg(&kexec_crash_image) would be
937 * sufficient. But since I reuse the memory...
938 */
939 if (mutex_trylock(&kexec_mutex)) {
940 if (kexec_crash_image) {
941 struct pt_regs fixed_regs;
942
943 crash_setup_regs(&fixed_regs, regs);
944 crash_save_vmcoreinfo();
945 machine_crash_shutdown(&fixed_regs);
946 machine_kexec(kexec_crash_image);
947 }
948 mutex_unlock(&kexec_mutex);
949 }
950}
c207aee4 951STACK_FRAME_NON_STANDARD(__crash_kexec);
2965faa5 952
7bbee5ca
HK
953void crash_kexec(struct pt_regs *regs)
954{
955 int old_cpu, this_cpu;
956
957 /*
958 * Only one CPU is allowed to execute the crash_kexec() code as with
959 * panic(). Otherwise parallel calls of panic() and crash_kexec()
960 * may stop each other. To exclude them, we use panic_cpu here too.
961 */
962 this_cpu = raw_smp_processor_id();
963 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
964 if (old_cpu == PANIC_CPU_INVALID) {
965 /* This is the 1st CPU which comes here, so go ahead. */
f92bac3b 966 printk_safe_flush_on_panic();
7bbee5ca
HK
967 __crash_kexec(regs);
968
969 /*
970 * Reset panic_cpu to allow another panic()/crash_kexec()
971 * call.
972 */
973 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
974 }
975}
976
2965faa5
DY
977size_t crash_get_memory_size(void)
978{
979 size_t size = 0;
980
981 mutex_lock(&kexec_mutex);
982 if (crashk_res.end != crashk_res.start)
983 size = resource_size(&crashk_res);
984 mutex_unlock(&kexec_mutex);
985 return size;
986}
987
988void __weak crash_free_reserved_phys_range(unsigned long begin,
989 unsigned long end)
990{
991 unsigned long addr;
992
993 for (addr = begin; addr < end; addr += PAGE_SIZE)
43546d86 994 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
2965faa5
DY
995}
996
997int crash_shrink_memory(unsigned long new_size)
998{
999 int ret = 0;
1000 unsigned long start, end;
1001 unsigned long old_size;
1002 struct resource *ram_res;
1003
1004 mutex_lock(&kexec_mutex);
1005
1006 if (kexec_crash_image) {
1007 ret = -ENOENT;
1008 goto unlock;
1009 }
1010 start = crashk_res.start;
1011 end = crashk_res.end;
1012 old_size = (end == 0) ? 0 : end - start + 1;
1013 if (new_size >= old_size) {
1014 ret = (new_size == old_size) ? 0 : -EINVAL;
1015 goto unlock;
1016 }
1017
1018 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1019 if (!ram_res) {
1020 ret = -ENOMEM;
1021 goto unlock;
1022 }
1023
1024 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1025 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1026
2965faa5
DY
1027 crash_free_reserved_phys_range(end, crashk_res.end);
1028
1029 if ((start == end) && (crashk_res.parent != NULL))
1030 release_resource(&crashk_res);
1031
1032 ram_res->start = end;
1033 ram_res->end = crashk_res.end;
1a085d07 1034 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2965faa5
DY
1035 ram_res->name = "System RAM";
1036
1037 crashk_res.end = end - 1;
1038
1039 insert_resource(&iomem_resource, ram_res);
2965faa5
DY
1040
1041unlock:
1042 mutex_unlock(&kexec_mutex);
1043 return ret;
1044}
1045
2965faa5
DY
1046void crash_save_cpu(struct pt_regs *regs, int cpu)
1047{
1048 struct elf_prstatus prstatus;
1049 u32 *buf;
1050
1051 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1052 return;
1053
1054 /* Using ELF notes here is opportunistic.
1055 * I need a well defined structure format
1056 * for the data I pass, and I need tags
1057 * on the data to indicate what information I have
1058 * squirrelled away. ELF notes happen to provide
1059 * all of that, so there is no need to invent something new.
1060 */
1061 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1062 if (!buf)
1063 return;
1064 memset(&prstatus, 0, sizeof(prstatus));
1065 prstatus.pr_pid = current->pid;
1066 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1067 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1068 &prstatus, sizeof(prstatus));
1069 final_note(buf);
1070}
1071
1072static int __init crash_notes_memory_init(void)
1073{
1074 /* Allocate memory for saving cpu registers. */
bbb78b8f
BH
1075 size_t size, align;
1076
1077 /*
1078 * crash_notes could be allocated across 2 vmalloc pages when percpu
1079 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1080 * pages are also on 2 continuous physical pages. In this case the
1081 * 2nd part of crash_notes in 2nd page could be lost since only the
1082 * starting address and size of crash_notes are exported through sysfs.
1083 * Here round up the size of crash_notes to the nearest power of two
1084 * and pass it to __alloc_percpu as align value. This can make sure
1085 * crash_notes is allocated inside one physical page.
1086 */
1087 size = sizeof(note_buf_t);
1088 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1089
1090 /*
1091 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1092 * definitely will be in 2 pages with that.
1093 */
1094 BUILD_BUG_ON(size > PAGE_SIZE);
1095
1096 crash_notes = __alloc_percpu(size, align);
2965faa5 1097 if (!crash_notes) {
de90a6bc 1098 pr_warn("Memory allocation for saving cpu register states failed\n");
2965faa5
DY
1099 return -ENOMEM;
1100 }
1101 return 0;
1102}
1103subsys_initcall(crash_notes_memory_init);
1104
1105
2965faa5
DY
1106/*
1107 * Move into place and start executing a preloaded standalone
1108 * executable. If nothing was preloaded return an error.
1109 */
1110int kernel_kexec(void)
1111{
1112 int error = 0;
1113
1114 if (!mutex_trylock(&kexec_mutex))
1115 return -EBUSY;
1116 if (!kexec_image) {
1117 error = -EINVAL;
1118 goto Unlock;
1119 }
1120
1121#ifdef CONFIG_KEXEC_JUMP
1122 if (kexec_image->preserve_context) {
1123 lock_system_sleep();
1124 pm_prepare_console();
1125 error = freeze_processes();
1126 if (error) {
1127 error = -EBUSY;
1128 goto Restore_console;
1129 }
1130 suspend_console();
1131 error = dpm_suspend_start(PMSG_FREEZE);
1132 if (error)
1133 goto Resume_console;
1134 /* At this point, dpm_suspend_start() has been called,
1135 * but *not* dpm_suspend_end(). We *must* call
1136 * dpm_suspend_end() now. Otherwise, drivers for
1137 * some devices (e.g. interrupt controllers) become
1138 * desynchronized with the actual state of the
1139 * hardware at resume time, and evil weirdness ensues.
1140 */
1141 error = dpm_suspend_end(PMSG_FREEZE);
1142 if (error)
1143 goto Resume_devices;
1144 error = disable_nonboot_cpus();
1145 if (error)
1146 goto Enable_cpus;
1147 local_irq_disable();
1148 error = syscore_suspend();
1149 if (error)
1150 goto Enable_irqs;
1151 } else
1152#endif
1153 {
1154 kexec_in_progress = true;
1155 kernel_restart_prepare(NULL);
1156 migrate_to_reboot_cpu();
1157
1158 /*
1159 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1160 * no further code needs to use CPU hotplug (which is true in
1161 * the reboot case). However, the kexec path depends on using
1162 * CPU hotplug again; so re-enable it here.
1163 */
1164 cpu_hotplug_enable();
1165 pr_emerg("Starting new kernel\n");
1166 machine_shutdown();
1167 }
1168
1169 machine_kexec(kexec_image);
1170
1171#ifdef CONFIG_KEXEC_JUMP
1172 if (kexec_image->preserve_context) {
1173 syscore_resume();
1174 Enable_irqs:
1175 local_irq_enable();
1176 Enable_cpus:
1177 enable_nonboot_cpus();
1178 dpm_resume_start(PMSG_RESTORE);
1179 Resume_devices:
1180 dpm_resume_end(PMSG_RESTORE);
1181 Resume_console:
1182 resume_console();
1183 thaw_processes();
1184 Restore_console:
1185 pm_restore_console();
1186 unlock_system_sleep();
1187 }
1188#endif
1189
1190 Unlock:
1191 mutex_unlock(&kexec_mutex);
1192 return error;
1193}
1194
1195/*
7a0058ec
XP
1196 * Protection mechanism for crashkernel reserved memory after
1197 * the kdump kernel is loaded.
2965faa5
DY
1198 *
1199 * Provide an empty default implementation here -- architecture
1200 * code may override this
1201 */
9b492cf5
XP
1202void __weak arch_kexec_protect_crashkres(void)
1203{}
1204
1205void __weak arch_kexec_unprotect_crashkres(void)
1206{}