]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/kexec_core.c
kdump: arrange for paddr_vmcoreinfo_note() to return phys_addr_t
[mirror_ubuntu-bionic-kernel.git] / kernel / kexec_core.c
CommitLineData
2965faa5
DY
1/*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
de90a6bc 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2965faa5
DY
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
22#include <linux/ioport.h>
23#include <linux/hardirq.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/utsname.h>
27#include <linux/numa.h>
28#include <linux/suspend.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/uaccess.h>
34#include <linux/io.h>
35#include <linux/console.h>
36#include <linux/vmalloc.h>
37#include <linux/swap.h>
38#include <linux/syscore_ops.h>
39#include <linux/compiler.h>
40#include <linux/hugetlb.h>
41
42#include <asm/page.h>
43#include <asm/sections.h>
44
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47#include "kexec_internal.h"
48
49DEFINE_MUTEX(kexec_mutex);
50
51/* Per cpu memory for storing cpu states in case of system crash. */
52note_buf_t __percpu *crash_notes;
53
54/* vmcoreinfo stuff */
55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57size_t vmcoreinfo_size;
58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
59
60/* Flag to indicate we are going to kexec a new kernel */
61bool kexec_in_progress = false;
62
63
64/* Location of the reserved area for the crash kernel */
65struct resource crashk_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
1a085d07
TK
69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
71};
72struct resource crashk_low_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
1a085d07
TK
76 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
77 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
78};
79
80int kexec_should_crash(struct task_struct *p)
81{
82 /*
83 * If crash_kexec_post_notifiers is enabled, don't run
84 * crash_kexec() here yet, which must be run after panic
85 * notifiers in panic().
86 */
87 if (crash_kexec_post_notifiers)
88 return 0;
89 /*
90 * There are 4 panic() calls in do_exit() path, each of which
91 * corresponds to each of these 4 conditions.
92 */
93 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
94 return 1;
95 return 0;
96}
97
98/*
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
103 *
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
111 *
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
120 *
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
126 *
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
131 *
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
136 */
137
138/*
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
141 */
142#define KIMAGE_NO_DEST (-1UL)
143
144static struct page *kimage_alloc_page(struct kimage *image,
145 gfp_t gfp_mask,
146 unsigned long dest);
147
148int sanity_check_segment_list(struct kimage *image)
149{
4caf9615 150 int i;
2965faa5
DY
151 unsigned long nr_segments = image->nr_segments;
152
153 /*
154 * Verify we have good destination addresses. The caller is
155 * responsible for making certain we don't attempt to load
156 * the new image into invalid or reserved areas of RAM. This
157 * just verifies it is an address we can use.
158 *
159 * Since the kernel does everything in page size chunks ensure
160 * the destination addresses are page aligned. Too many
161 * special cases crop of when we don't do this. The most
162 * insidious is getting overlapping destination addresses
163 * simply because addresses are changed to page size
164 * granularity.
165 */
2965faa5
DY
166 for (i = 0; i < nr_segments; i++) {
167 unsigned long mstart, mend;
168
169 mstart = image->segment[i].mem;
170 mend = mstart + image->segment[i].memsz;
465d3777
RK
171 if (mstart > mend)
172 return -EADDRNOTAVAIL;
2965faa5 173 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
4caf9615 174 return -EADDRNOTAVAIL;
2965faa5 175 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
4caf9615 176 return -EADDRNOTAVAIL;
2965faa5
DY
177 }
178
179 /* Verify our destination addresses do not overlap.
180 * If we alloed overlapping destination addresses
181 * through very weird things can happen with no
182 * easy explanation as one segment stops on another.
183 */
2965faa5
DY
184 for (i = 0; i < nr_segments; i++) {
185 unsigned long mstart, mend;
186 unsigned long j;
187
188 mstart = image->segment[i].mem;
189 mend = mstart + image->segment[i].memsz;
190 for (j = 0; j < i; j++) {
191 unsigned long pstart, pend;
192
193 pstart = image->segment[j].mem;
194 pend = pstart + image->segment[j].memsz;
195 /* Do the segments overlap ? */
196 if ((mend > pstart) && (mstart < pend))
4caf9615 197 return -EINVAL;
2965faa5
DY
198 }
199 }
200
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
204 * later on.
205 */
2965faa5
DY
206 for (i = 0; i < nr_segments; i++) {
207 if (image->segment[i].bufsz > image->segment[i].memsz)
4caf9615 208 return -EINVAL;
2965faa5
DY
209 }
210
211 /*
212 * Verify we have good destination addresses. Normally
213 * the caller is responsible for making certain we don't
214 * attempt to load the new image into invalid or reserved
215 * areas of RAM. But crash kernels are preloaded into a
216 * reserved area of ram. We must ensure the addresses
217 * are in the reserved area otherwise preloading the
218 * kernel could corrupt things.
219 */
220
221 if (image->type == KEXEC_TYPE_CRASH) {
2965faa5
DY
222 for (i = 0; i < nr_segments; i++) {
223 unsigned long mstart, mend;
224
225 mstart = image->segment[i].mem;
226 mend = mstart + image->segment[i].memsz - 1;
227 /* Ensure we are within the crash kernel limits */
228 if ((mstart < crashk_res.start) ||
229 (mend > crashk_res.end))
4caf9615 230 return -EADDRNOTAVAIL;
2965faa5
DY
231 }
232 }
233
234 return 0;
235}
236
237struct kimage *do_kimage_alloc_init(void)
238{
239 struct kimage *image;
240
241 /* Allocate a controlling structure */
242 image = kzalloc(sizeof(*image), GFP_KERNEL);
243 if (!image)
244 return NULL;
245
246 image->head = 0;
247 image->entry = &image->head;
248 image->last_entry = &image->head;
249 image->control_page = ~0; /* By default this does not apply */
250 image->type = KEXEC_TYPE_DEFAULT;
251
252 /* Initialize the list of control pages */
253 INIT_LIST_HEAD(&image->control_pages);
254
255 /* Initialize the list of destination pages */
256 INIT_LIST_HEAD(&image->dest_pages);
257
258 /* Initialize the list of unusable pages */
259 INIT_LIST_HEAD(&image->unusable_pages);
260
261 return image;
262}
263
264int kimage_is_destination_range(struct kimage *image,
265 unsigned long start,
266 unsigned long end)
267{
268 unsigned long i;
269
270 for (i = 0; i < image->nr_segments; i++) {
271 unsigned long mstart, mend;
272
273 mstart = image->segment[i].mem;
274 mend = mstart + image->segment[i].memsz;
275 if ((end > mstart) && (start < mend))
276 return 1;
277 }
278
279 return 0;
280}
281
282static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
283{
284 struct page *pages;
285
286 pages = alloc_pages(gfp_mask, order);
287 if (pages) {
288 unsigned int count, i;
289
290 pages->mapping = NULL;
291 set_page_private(pages, order);
292 count = 1 << order;
293 for (i = 0; i < count; i++)
294 SetPageReserved(pages + i);
295 }
296
297 return pages;
298}
299
300static void kimage_free_pages(struct page *page)
301{
302 unsigned int order, count, i;
303
304 order = page_private(page);
305 count = 1 << order;
306 for (i = 0; i < count; i++)
307 ClearPageReserved(page + i);
308 __free_pages(page, order);
309}
310
311void kimage_free_page_list(struct list_head *list)
312{
2b24692b 313 struct page *page, *next;
2965faa5 314
2b24692b 315 list_for_each_entry_safe(page, next, list, lru) {
2965faa5
DY
316 list_del(&page->lru);
317 kimage_free_pages(page);
318 }
319}
320
321static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
322 unsigned int order)
323{
324 /* Control pages are special, they are the intermediaries
325 * that are needed while we copy the rest of the pages
326 * to their final resting place. As such they must
327 * not conflict with either the destination addresses
328 * or memory the kernel is already using.
329 *
330 * The only case where we really need more than one of
331 * these are for architectures where we cannot disable
332 * the MMU and must instead generate an identity mapped
333 * page table for all of the memory.
334 *
335 * At worst this runs in O(N) of the image size.
336 */
337 struct list_head extra_pages;
338 struct page *pages;
339 unsigned int count;
340
341 count = 1 << order;
342 INIT_LIST_HEAD(&extra_pages);
343
344 /* Loop while I can allocate a page and the page allocated
345 * is a destination page.
346 */
347 do {
348 unsigned long pfn, epfn, addr, eaddr;
349
350 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
351 if (!pages)
352 break;
353 pfn = page_to_pfn(pages);
354 epfn = pfn + count;
355 addr = pfn << PAGE_SHIFT;
356 eaddr = epfn << PAGE_SHIFT;
357 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
358 kimage_is_destination_range(image, addr, eaddr)) {
359 list_add(&pages->lru, &extra_pages);
360 pages = NULL;
361 }
362 } while (!pages);
363
364 if (pages) {
365 /* Remember the allocated page... */
366 list_add(&pages->lru, &image->control_pages);
367
368 /* Because the page is already in it's destination
369 * location we will never allocate another page at
370 * that address. Therefore kimage_alloc_pages
371 * will not return it (again) and we don't need
372 * to give it an entry in image->segment[].
373 */
374 }
375 /* Deal with the destination pages I have inadvertently allocated.
376 *
377 * Ideally I would convert multi-page allocations into single
378 * page allocations, and add everything to image->dest_pages.
379 *
380 * For now it is simpler to just free the pages.
381 */
382 kimage_free_page_list(&extra_pages);
383
384 return pages;
385}
386
387static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
388 unsigned int order)
389{
390 /* Control pages are special, they are the intermediaries
391 * that are needed while we copy the rest of the pages
392 * to their final resting place. As such they must
393 * not conflict with either the destination addresses
394 * or memory the kernel is already using.
395 *
396 * Control pages are also the only pags we must allocate
397 * when loading a crash kernel. All of the other pages
398 * are specified by the segments and we just memcpy
399 * into them directly.
400 *
401 * The only case where we really need more than one of
402 * these are for architectures where we cannot disable
403 * the MMU and must instead generate an identity mapped
404 * page table for all of the memory.
405 *
406 * Given the low demand this implements a very simple
407 * allocator that finds the first hole of the appropriate
408 * size in the reserved memory region, and allocates all
409 * of the memory up to and including the hole.
410 */
411 unsigned long hole_start, hole_end, size;
412 struct page *pages;
413
414 pages = NULL;
415 size = (1 << order) << PAGE_SHIFT;
416 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
417 hole_end = hole_start + size - 1;
418 while (hole_end <= crashk_res.end) {
419 unsigned long i;
420
421 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
422 break;
423 /* See if I overlap any of the segments */
424 for (i = 0; i < image->nr_segments; i++) {
425 unsigned long mstart, mend;
426
427 mstart = image->segment[i].mem;
428 mend = mstart + image->segment[i].memsz - 1;
429 if ((hole_end >= mstart) && (hole_start <= mend)) {
430 /* Advance the hole to the end of the segment */
431 hole_start = (mend + (size - 1)) & ~(size - 1);
432 hole_end = hole_start + size - 1;
433 break;
434 }
435 }
436 /* If I don't overlap any segments I have found my hole! */
437 if (i == image->nr_segments) {
438 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
04e9949b 439 image->control_page = hole_end;
2965faa5
DY
440 break;
441 }
442 }
2965faa5
DY
443
444 return pages;
445}
446
447
448struct page *kimage_alloc_control_pages(struct kimage *image,
449 unsigned int order)
450{
451 struct page *pages = NULL;
452
453 switch (image->type) {
454 case KEXEC_TYPE_DEFAULT:
455 pages = kimage_alloc_normal_control_pages(image, order);
456 break;
457 case KEXEC_TYPE_CRASH:
458 pages = kimage_alloc_crash_control_pages(image, order);
459 break;
460 }
461
462 return pages;
463}
464
465static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
466{
467 if (*image->entry != 0)
468 image->entry++;
469
470 if (image->entry == image->last_entry) {
471 kimage_entry_t *ind_page;
472 struct page *page;
473
474 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
475 if (!page)
476 return -ENOMEM;
477
478 ind_page = page_address(page);
479 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
480 image->entry = ind_page;
481 image->last_entry = ind_page +
482 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
483 }
484 *image->entry = entry;
485 image->entry++;
486 *image->entry = 0;
487
488 return 0;
489}
490
491static int kimage_set_destination(struct kimage *image,
492 unsigned long destination)
493{
494 int result;
495
496 destination &= PAGE_MASK;
497 result = kimage_add_entry(image, destination | IND_DESTINATION);
498
499 return result;
500}
501
502
503static int kimage_add_page(struct kimage *image, unsigned long page)
504{
505 int result;
506
507 page &= PAGE_MASK;
508 result = kimage_add_entry(image, page | IND_SOURCE);
509
510 return result;
511}
512
513
514static void kimage_free_extra_pages(struct kimage *image)
515{
516 /* Walk through and free any extra destination pages I may have */
517 kimage_free_page_list(&image->dest_pages);
518
519 /* Walk through and free any unusable pages I have cached */
520 kimage_free_page_list(&image->unusable_pages);
521
522}
523void kimage_terminate(struct kimage *image)
524{
525 if (*image->entry != 0)
526 image->entry++;
527
528 *image->entry = IND_DONE;
529}
530
531#define for_each_kimage_entry(image, ptr, entry) \
532 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
533 ptr = (entry & IND_INDIRECTION) ? \
534 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
535
536static void kimage_free_entry(kimage_entry_t entry)
537{
538 struct page *page;
539
540 page = pfn_to_page(entry >> PAGE_SHIFT);
541 kimage_free_pages(page);
542}
543
544void kimage_free(struct kimage *image)
545{
546 kimage_entry_t *ptr, entry;
547 kimage_entry_t ind = 0;
548
549 if (!image)
550 return;
551
552 kimage_free_extra_pages(image);
553 for_each_kimage_entry(image, ptr, entry) {
554 if (entry & IND_INDIRECTION) {
555 /* Free the previous indirection page */
556 if (ind & IND_INDIRECTION)
557 kimage_free_entry(ind);
558 /* Save this indirection page until we are
559 * done with it.
560 */
561 ind = entry;
562 } else if (entry & IND_SOURCE)
563 kimage_free_entry(entry);
564 }
565 /* Free the final indirection page */
566 if (ind & IND_INDIRECTION)
567 kimage_free_entry(ind);
568
569 /* Handle any machine specific cleanup */
570 machine_kexec_cleanup(image);
571
572 /* Free the kexec control pages... */
573 kimage_free_page_list(&image->control_pages);
574
575 /*
576 * Free up any temporary buffers allocated. This might hit if
577 * error occurred much later after buffer allocation.
578 */
579 if (image->file_mode)
580 kimage_file_post_load_cleanup(image);
581
582 kfree(image);
583}
584
585static kimage_entry_t *kimage_dst_used(struct kimage *image,
586 unsigned long page)
587{
588 kimage_entry_t *ptr, entry;
589 unsigned long destination = 0;
590
591 for_each_kimage_entry(image, ptr, entry) {
592 if (entry & IND_DESTINATION)
593 destination = entry & PAGE_MASK;
594 else if (entry & IND_SOURCE) {
595 if (page == destination)
596 return ptr;
597 destination += PAGE_SIZE;
598 }
599 }
600
601 return NULL;
602}
603
604static struct page *kimage_alloc_page(struct kimage *image,
605 gfp_t gfp_mask,
606 unsigned long destination)
607{
608 /*
609 * Here we implement safeguards to ensure that a source page
610 * is not copied to its destination page before the data on
611 * the destination page is no longer useful.
612 *
613 * To do this we maintain the invariant that a source page is
614 * either its own destination page, or it is not a
615 * destination page at all.
616 *
617 * That is slightly stronger than required, but the proof
618 * that no problems will not occur is trivial, and the
619 * implementation is simply to verify.
620 *
621 * When allocating all pages normally this algorithm will run
622 * in O(N) time, but in the worst case it will run in O(N^2)
623 * time. If the runtime is a problem the data structures can
624 * be fixed.
625 */
626 struct page *page;
627 unsigned long addr;
628
629 /*
630 * Walk through the list of destination pages, and see if I
631 * have a match.
632 */
633 list_for_each_entry(page, &image->dest_pages, lru) {
634 addr = page_to_pfn(page) << PAGE_SHIFT;
635 if (addr == destination) {
636 list_del(&page->lru);
637 return page;
638 }
639 }
640 page = NULL;
641 while (1) {
642 kimage_entry_t *old;
643
644 /* Allocate a page, if we run out of memory give up */
645 page = kimage_alloc_pages(gfp_mask, 0);
646 if (!page)
647 return NULL;
648 /* If the page cannot be used file it away */
649 if (page_to_pfn(page) >
650 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
651 list_add(&page->lru, &image->unusable_pages);
652 continue;
653 }
654 addr = page_to_pfn(page) << PAGE_SHIFT;
655
656 /* If it is the destination page we want use it */
657 if (addr == destination)
658 break;
659
660 /* If the page is not a destination page use it */
661 if (!kimage_is_destination_range(image, addr,
662 addr + PAGE_SIZE))
663 break;
664
665 /*
666 * I know that the page is someones destination page.
667 * See if there is already a source page for this
668 * destination page. And if so swap the source pages.
669 */
670 old = kimage_dst_used(image, addr);
671 if (old) {
672 /* If so move it */
673 unsigned long old_addr;
674 struct page *old_page;
675
676 old_addr = *old & PAGE_MASK;
677 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
678 copy_highpage(page, old_page);
679 *old = addr | (*old & ~PAGE_MASK);
680
681 /* The old page I have found cannot be a
682 * destination page, so return it if it's
683 * gfp_flags honor the ones passed in.
684 */
685 if (!(gfp_mask & __GFP_HIGHMEM) &&
686 PageHighMem(old_page)) {
687 kimage_free_pages(old_page);
688 continue;
689 }
690 addr = old_addr;
691 page = old_page;
692 break;
693 }
694 /* Place the page on the destination list, to be used later */
695 list_add(&page->lru, &image->dest_pages);
696 }
697
698 return page;
699}
700
701static int kimage_load_normal_segment(struct kimage *image,
702 struct kexec_segment *segment)
703{
704 unsigned long maddr;
705 size_t ubytes, mbytes;
706 int result;
707 unsigned char __user *buf = NULL;
708 unsigned char *kbuf = NULL;
709
710 result = 0;
711 if (image->file_mode)
712 kbuf = segment->kbuf;
713 else
714 buf = segment->buf;
715 ubytes = segment->bufsz;
716 mbytes = segment->memsz;
717 maddr = segment->mem;
718
719 result = kimage_set_destination(image, maddr);
720 if (result < 0)
721 goto out;
722
723 while (mbytes) {
724 struct page *page;
725 char *ptr;
726 size_t uchunk, mchunk;
727
728 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
729 if (!page) {
730 result = -ENOMEM;
731 goto out;
732 }
733 result = kimage_add_page(image, page_to_pfn(page)
734 << PAGE_SHIFT);
735 if (result < 0)
736 goto out;
737
738 ptr = kmap(page);
739 /* Start with a clear page */
740 clear_page(ptr);
741 ptr += maddr & ~PAGE_MASK;
742 mchunk = min_t(size_t, mbytes,
743 PAGE_SIZE - (maddr & ~PAGE_MASK));
744 uchunk = min(ubytes, mchunk);
745
746 /* For file based kexec, source pages are in kernel memory */
747 if (image->file_mode)
748 memcpy(ptr, kbuf, uchunk);
749 else
750 result = copy_from_user(ptr, buf, uchunk);
751 kunmap(page);
752 if (result) {
753 result = -EFAULT;
754 goto out;
755 }
756 ubytes -= uchunk;
757 maddr += mchunk;
758 if (image->file_mode)
759 kbuf += mchunk;
760 else
761 buf += mchunk;
762 mbytes -= mchunk;
763 }
764out:
765 return result;
766}
767
768static int kimage_load_crash_segment(struct kimage *image,
769 struct kexec_segment *segment)
770{
771 /* For crash dumps kernels we simply copy the data from
772 * user space to it's destination.
773 * We do things a page at a time for the sake of kmap.
774 */
775 unsigned long maddr;
776 size_t ubytes, mbytes;
777 int result;
778 unsigned char __user *buf = NULL;
779 unsigned char *kbuf = NULL;
780
781 result = 0;
782 if (image->file_mode)
783 kbuf = segment->kbuf;
784 else
785 buf = segment->buf;
786 ubytes = segment->bufsz;
787 mbytes = segment->memsz;
788 maddr = segment->mem;
789 while (mbytes) {
790 struct page *page;
791 char *ptr;
792 size_t uchunk, mchunk;
793
794 page = pfn_to_page(maddr >> PAGE_SHIFT);
795 if (!page) {
796 result = -ENOMEM;
797 goto out;
798 }
799 ptr = kmap(page);
800 ptr += maddr & ~PAGE_MASK;
801 mchunk = min_t(size_t, mbytes,
802 PAGE_SIZE - (maddr & ~PAGE_MASK));
803 uchunk = min(ubytes, mchunk);
804 if (mchunk > uchunk) {
805 /* Zero the trailing part of the page */
806 memset(ptr + uchunk, 0, mchunk - uchunk);
807 }
808
809 /* For file based kexec, source pages are in kernel memory */
810 if (image->file_mode)
811 memcpy(ptr, kbuf, uchunk);
812 else
813 result = copy_from_user(ptr, buf, uchunk);
814 kexec_flush_icache_page(page);
815 kunmap(page);
816 if (result) {
817 result = -EFAULT;
818 goto out;
819 }
820 ubytes -= uchunk;
821 maddr += mchunk;
822 if (image->file_mode)
823 kbuf += mchunk;
824 else
825 buf += mchunk;
826 mbytes -= mchunk;
827 }
828out:
829 return result;
830}
831
832int kimage_load_segment(struct kimage *image,
833 struct kexec_segment *segment)
834{
835 int result = -ENOMEM;
836
837 switch (image->type) {
838 case KEXEC_TYPE_DEFAULT:
839 result = kimage_load_normal_segment(image, segment);
840 break;
841 case KEXEC_TYPE_CRASH:
842 result = kimage_load_crash_segment(image, segment);
843 break;
844 }
845
846 return result;
847}
848
849struct kimage *kexec_image;
850struct kimage *kexec_crash_image;
851int kexec_load_disabled;
852
7bbee5ca
HK
853/*
854 * No panic_cpu check version of crash_kexec(). This function is called
855 * only when panic_cpu holds the current CPU number; this is the only CPU
856 * which processes crash_kexec routines.
857 */
858void __crash_kexec(struct pt_regs *regs)
2965faa5
DY
859{
860 /* Take the kexec_mutex here to prevent sys_kexec_load
861 * running on one cpu from replacing the crash kernel
862 * we are using after a panic on a different cpu.
863 *
864 * If the crash kernel was not located in a fixed area
865 * of memory the xchg(&kexec_crash_image) would be
866 * sufficient. But since I reuse the memory...
867 */
868 if (mutex_trylock(&kexec_mutex)) {
869 if (kexec_crash_image) {
870 struct pt_regs fixed_regs;
871
872 crash_setup_regs(&fixed_regs, regs);
873 crash_save_vmcoreinfo();
874 machine_crash_shutdown(&fixed_regs);
875 machine_kexec(kexec_crash_image);
876 }
877 mutex_unlock(&kexec_mutex);
878 }
879}
880
7bbee5ca
HK
881void crash_kexec(struct pt_regs *regs)
882{
883 int old_cpu, this_cpu;
884
885 /*
886 * Only one CPU is allowed to execute the crash_kexec() code as with
887 * panic(). Otherwise parallel calls of panic() and crash_kexec()
888 * may stop each other. To exclude them, we use panic_cpu here too.
889 */
890 this_cpu = raw_smp_processor_id();
891 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
892 if (old_cpu == PANIC_CPU_INVALID) {
893 /* This is the 1st CPU which comes here, so go ahead. */
cf9b1106 894 printk_nmi_flush_on_panic();
7bbee5ca
HK
895 __crash_kexec(regs);
896
897 /*
898 * Reset panic_cpu to allow another panic()/crash_kexec()
899 * call.
900 */
901 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
902 }
903}
904
2965faa5
DY
905size_t crash_get_memory_size(void)
906{
907 size_t size = 0;
908
909 mutex_lock(&kexec_mutex);
910 if (crashk_res.end != crashk_res.start)
911 size = resource_size(&crashk_res);
912 mutex_unlock(&kexec_mutex);
913 return size;
914}
915
916void __weak crash_free_reserved_phys_range(unsigned long begin,
917 unsigned long end)
918{
919 unsigned long addr;
920
921 for (addr = begin; addr < end; addr += PAGE_SIZE)
922 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
923}
924
925int crash_shrink_memory(unsigned long new_size)
926{
927 int ret = 0;
928 unsigned long start, end;
929 unsigned long old_size;
930 struct resource *ram_res;
931
932 mutex_lock(&kexec_mutex);
933
934 if (kexec_crash_image) {
935 ret = -ENOENT;
936 goto unlock;
937 }
938 start = crashk_res.start;
939 end = crashk_res.end;
940 old_size = (end == 0) ? 0 : end - start + 1;
941 if (new_size >= old_size) {
942 ret = (new_size == old_size) ? 0 : -EINVAL;
943 goto unlock;
944 }
945
946 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
947 if (!ram_res) {
948 ret = -ENOMEM;
949 goto unlock;
950 }
951
952 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
953 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
954
2965faa5
DY
955 crash_free_reserved_phys_range(end, crashk_res.end);
956
957 if ((start == end) && (crashk_res.parent != NULL))
958 release_resource(&crashk_res);
959
960 ram_res->start = end;
961 ram_res->end = crashk_res.end;
1a085d07 962 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2965faa5
DY
963 ram_res->name = "System RAM";
964
965 crashk_res.end = end - 1;
966
967 insert_resource(&iomem_resource, ram_res);
2965faa5
DY
968
969unlock:
970 mutex_unlock(&kexec_mutex);
971 return ret;
972}
973
974static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
975 size_t data_len)
976{
977 struct elf_note note;
978
979 note.n_namesz = strlen(name) + 1;
980 note.n_descsz = data_len;
981 note.n_type = type;
982 memcpy(buf, &note, sizeof(note));
983 buf += (sizeof(note) + 3)/4;
984 memcpy(buf, name, note.n_namesz);
985 buf += (note.n_namesz + 3)/4;
986 memcpy(buf, data, note.n_descsz);
987 buf += (note.n_descsz + 3)/4;
988
989 return buf;
990}
991
992static void final_note(u32 *buf)
993{
994 struct elf_note note;
995
996 note.n_namesz = 0;
997 note.n_descsz = 0;
998 note.n_type = 0;
999 memcpy(buf, &note, sizeof(note));
1000}
1001
1002void crash_save_cpu(struct pt_regs *regs, int cpu)
1003{
1004 struct elf_prstatus prstatus;
1005 u32 *buf;
1006
1007 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1008 return;
1009
1010 /* Using ELF notes here is opportunistic.
1011 * I need a well defined structure format
1012 * for the data I pass, and I need tags
1013 * on the data to indicate what information I have
1014 * squirrelled away. ELF notes happen to provide
1015 * all of that, so there is no need to invent something new.
1016 */
1017 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1018 if (!buf)
1019 return;
1020 memset(&prstatus, 0, sizeof(prstatus));
1021 prstatus.pr_pid = current->pid;
1022 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1023 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1024 &prstatus, sizeof(prstatus));
1025 final_note(buf);
1026}
1027
1028static int __init crash_notes_memory_init(void)
1029{
1030 /* Allocate memory for saving cpu registers. */
bbb78b8f
BH
1031 size_t size, align;
1032
1033 /*
1034 * crash_notes could be allocated across 2 vmalloc pages when percpu
1035 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1036 * pages are also on 2 continuous physical pages. In this case the
1037 * 2nd part of crash_notes in 2nd page could be lost since only the
1038 * starting address and size of crash_notes are exported through sysfs.
1039 * Here round up the size of crash_notes to the nearest power of two
1040 * and pass it to __alloc_percpu as align value. This can make sure
1041 * crash_notes is allocated inside one physical page.
1042 */
1043 size = sizeof(note_buf_t);
1044 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1045
1046 /*
1047 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1048 * definitely will be in 2 pages with that.
1049 */
1050 BUILD_BUG_ON(size > PAGE_SIZE);
1051
1052 crash_notes = __alloc_percpu(size, align);
2965faa5 1053 if (!crash_notes) {
de90a6bc 1054 pr_warn("Memory allocation for saving cpu register states failed\n");
2965faa5
DY
1055 return -ENOMEM;
1056 }
1057 return 0;
1058}
1059subsys_initcall(crash_notes_memory_init);
1060
1061
1062/*
1063 * parsing the "crashkernel" commandline
1064 *
1065 * this code is intended to be called from architecture specific code
1066 */
1067
1068
1069/*
1070 * This function parses command lines in the format
1071 *
1072 * crashkernel=ramsize-range:size[,...][@offset]
1073 *
1074 * The function returns 0 on success and -EINVAL on failure.
1075 */
1076static int __init parse_crashkernel_mem(char *cmdline,
1077 unsigned long long system_ram,
1078 unsigned long long *crash_size,
1079 unsigned long long *crash_base)
1080{
1081 char *cur = cmdline, *tmp;
1082
1083 /* for each entry of the comma-separated list */
1084 do {
1085 unsigned long long start, end = ULLONG_MAX, size;
1086
1087 /* get the start of the range */
1088 start = memparse(cur, &tmp);
1089 if (cur == tmp) {
1090 pr_warn("crashkernel: Memory value expected\n");
1091 return -EINVAL;
1092 }
1093 cur = tmp;
1094 if (*cur != '-') {
1095 pr_warn("crashkernel: '-' expected\n");
1096 return -EINVAL;
1097 }
1098 cur++;
1099
1100 /* if no ':' is here, than we read the end */
1101 if (*cur != ':') {
1102 end = memparse(cur, &tmp);
1103 if (cur == tmp) {
1104 pr_warn("crashkernel: Memory value expected\n");
1105 return -EINVAL;
1106 }
1107 cur = tmp;
1108 if (end <= start) {
1109 pr_warn("crashkernel: end <= start\n");
1110 return -EINVAL;
1111 }
1112 }
1113
1114 if (*cur != ':') {
1115 pr_warn("crashkernel: ':' expected\n");
1116 return -EINVAL;
1117 }
1118 cur++;
1119
1120 size = memparse(cur, &tmp);
1121 if (cur == tmp) {
1122 pr_warn("Memory value expected\n");
1123 return -EINVAL;
1124 }
1125 cur = tmp;
1126 if (size >= system_ram) {
1127 pr_warn("crashkernel: invalid size\n");
1128 return -EINVAL;
1129 }
1130
1131 /* match ? */
1132 if (system_ram >= start && system_ram < end) {
1133 *crash_size = size;
1134 break;
1135 }
1136 } while (*cur++ == ',');
1137
1138 if (*crash_size > 0) {
1139 while (*cur && *cur != ' ' && *cur != '@')
1140 cur++;
1141 if (*cur == '@') {
1142 cur++;
1143 *crash_base = memparse(cur, &tmp);
1144 if (cur == tmp) {
1145 pr_warn("Memory value expected after '@'\n");
1146 return -EINVAL;
1147 }
1148 }
1149 }
1150
1151 return 0;
1152}
1153
1154/*
1155 * That function parses "simple" (old) crashkernel command lines like
1156 *
1157 * crashkernel=size[@offset]
1158 *
1159 * It returns 0 on success and -EINVAL on failure.
1160 */
1161static int __init parse_crashkernel_simple(char *cmdline,
1162 unsigned long long *crash_size,
1163 unsigned long long *crash_base)
1164{
1165 char *cur = cmdline;
1166
1167 *crash_size = memparse(cmdline, &cur);
1168 if (cmdline == cur) {
1169 pr_warn("crashkernel: memory value expected\n");
1170 return -EINVAL;
1171 }
1172
1173 if (*cur == '@')
1174 *crash_base = memparse(cur+1, &cur);
1175 else if (*cur != ' ' && *cur != '\0') {
53b90c0c 1176 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1177 return -EINVAL;
1178 }
1179
1180 return 0;
1181}
1182
1183#define SUFFIX_HIGH 0
1184#define SUFFIX_LOW 1
1185#define SUFFIX_NULL 2
1186static __initdata char *suffix_tbl[] = {
1187 [SUFFIX_HIGH] = ",high",
1188 [SUFFIX_LOW] = ",low",
1189 [SUFFIX_NULL] = NULL,
1190};
1191
1192/*
1193 * That function parses "suffix" crashkernel command lines like
1194 *
1195 * crashkernel=size,[high|low]
1196 *
1197 * It returns 0 on success and -EINVAL on failure.
1198 */
1199static int __init parse_crashkernel_suffix(char *cmdline,
1200 unsigned long long *crash_size,
1201 const char *suffix)
1202{
1203 char *cur = cmdline;
1204
1205 *crash_size = memparse(cmdline, &cur);
1206 if (cmdline == cur) {
1207 pr_warn("crashkernel: memory value expected\n");
1208 return -EINVAL;
1209 }
1210
1211 /* check with suffix */
1212 if (strncmp(cur, suffix, strlen(suffix))) {
53b90c0c 1213 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1214 return -EINVAL;
1215 }
1216 cur += strlen(suffix);
1217 if (*cur != ' ' && *cur != '\0') {
53b90c0c 1218 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1219 return -EINVAL;
1220 }
1221
1222 return 0;
1223}
1224
1225static __init char *get_last_crashkernel(char *cmdline,
1226 const char *name,
1227 const char *suffix)
1228{
1229 char *p = cmdline, *ck_cmdline = NULL;
1230
1231 /* find crashkernel and use the last one if there are more */
1232 p = strstr(p, name);
1233 while (p) {
1234 char *end_p = strchr(p, ' ');
1235 char *q;
1236
1237 if (!end_p)
1238 end_p = p + strlen(p);
1239
1240 if (!suffix) {
1241 int i;
1242
1243 /* skip the one with any known suffix */
1244 for (i = 0; suffix_tbl[i]; i++) {
1245 q = end_p - strlen(suffix_tbl[i]);
1246 if (!strncmp(q, suffix_tbl[i],
1247 strlen(suffix_tbl[i])))
1248 goto next;
1249 }
1250 ck_cmdline = p;
1251 } else {
1252 q = end_p - strlen(suffix);
1253 if (!strncmp(q, suffix, strlen(suffix)))
1254 ck_cmdline = p;
1255 }
1256next:
1257 p = strstr(p+1, name);
1258 }
1259
1260 if (!ck_cmdline)
1261 return NULL;
1262
1263 return ck_cmdline;
1264}
1265
1266static int __init __parse_crashkernel(char *cmdline,
1267 unsigned long long system_ram,
1268 unsigned long long *crash_size,
1269 unsigned long long *crash_base,
1270 const char *name,
1271 const char *suffix)
1272{
1273 char *first_colon, *first_space;
1274 char *ck_cmdline;
1275
1276 BUG_ON(!crash_size || !crash_base);
1277 *crash_size = 0;
1278 *crash_base = 0;
1279
1280 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1281
1282 if (!ck_cmdline)
1283 return -EINVAL;
1284
1285 ck_cmdline += strlen(name);
1286
1287 if (suffix)
1288 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1289 suffix);
1290 /*
1291 * if the commandline contains a ':', then that's the extended
1292 * syntax -- if not, it must be the classic syntax
1293 */
1294 first_colon = strchr(ck_cmdline, ':');
1295 first_space = strchr(ck_cmdline, ' ');
1296 if (first_colon && (!first_space || first_colon < first_space))
1297 return parse_crashkernel_mem(ck_cmdline, system_ram,
1298 crash_size, crash_base);
1299
1300 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1301}
1302
1303/*
1304 * That function is the entry point for command line parsing and should be
1305 * called from the arch-specific code.
1306 */
1307int __init parse_crashkernel(char *cmdline,
1308 unsigned long long system_ram,
1309 unsigned long long *crash_size,
1310 unsigned long long *crash_base)
1311{
1312 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1313 "crashkernel=", NULL);
1314}
1315
1316int __init parse_crashkernel_high(char *cmdline,
1317 unsigned long long system_ram,
1318 unsigned long long *crash_size,
1319 unsigned long long *crash_base)
1320{
1321 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1322 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1323}
1324
1325int __init parse_crashkernel_low(char *cmdline,
1326 unsigned long long system_ram,
1327 unsigned long long *crash_size,
1328 unsigned long long *crash_base)
1329{
1330 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1331 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1332}
1333
1334static void update_vmcoreinfo_note(void)
1335{
1336 u32 *buf = vmcoreinfo_note;
1337
1338 if (!vmcoreinfo_size)
1339 return;
1340 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1341 vmcoreinfo_size);
1342 final_note(buf);
1343}
1344
1345void crash_save_vmcoreinfo(void)
1346{
1347 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1348 update_vmcoreinfo_note();
1349}
1350
1351void vmcoreinfo_append_str(const char *fmt, ...)
1352{
1353 va_list args;
1354 char buf[0x50];
1355 size_t r;
1356
1357 va_start(args, fmt);
1358 r = vscnprintf(buf, sizeof(buf), fmt, args);
1359 va_end(args);
1360
1361 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1362
1363 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1364
1365 vmcoreinfo_size += r;
1366}
1367
1368/*
1369 * provide an empty default implementation here -- architecture
1370 * code may override this
1371 */
1372void __weak arch_crash_save_vmcoreinfo(void)
1373{}
1374
dae28018 1375phys_addr_t __weak paddr_vmcoreinfo_note(void)
2965faa5
DY
1376{
1377 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1378}
1379
1380static int __init crash_save_vmcoreinfo_init(void)
1381{
1382 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1383 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1384
1385 VMCOREINFO_SYMBOL(init_uts_ns);
1386 VMCOREINFO_SYMBOL(node_online_map);
1387#ifdef CONFIG_MMU
1388 VMCOREINFO_SYMBOL(swapper_pg_dir);
1389#endif
1390 VMCOREINFO_SYMBOL(_stext);
1391 VMCOREINFO_SYMBOL(vmap_area_list);
1392
1393#ifndef CONFIG_NEED_MULTIPLE_NODES
1394 VMCOREINFO_SYMBOL(mem_map);
1395 VMCOREINFO_SYMBOL(contig_page_data);
1396#endif
1397#ifdef CONFIG_SPARSEMEM
1398 VMCOREINFO_SYMBOL(mem_section);
1399 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1400 VMCOREINFO_STRUCT_SIZE(mem_section);
1401 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1402#endif
1403 VMCOREINFO_STRUCT_SIZE(page);
1404 VMCOREINFO_STRUCT_SIZE(pglist_data);
1405 VMCOREINFO_STRUCT_SIZE(zone);
1406 VMCOREINFO_STRUCT_SIZE(free_area);
1407 VMCOREINFO_STRUCT_SIZE(list_head);
1408 VMCOREINFO_SIZE(nodemask_t);
1409 VMCOREINFO_OFFSET(page, flags);
0139aa7b 1410 VMCOREINFO_OFFSET(page, _refcount);
2965faa5
DY
1411 VMCOREINFO_OFFSET(page, mapping);
1412 VMCOREINFO_OFFSET(page, lru);
1413 VMCOREINFO_OFFSET(page, _mapcount);
1414 VMCOREINFO_OFFSET(page, private);
8639a847
AK
1415 VMCOREINFO_OFFSET(page, compound_dtor);
1416 VMCOREINFO_OFFSET(page, compound_order);
d7f53518 1417 VMCOREINFO_OFFSET(page, compound_head);
2965faa5
DY
1418 VMCOREINFO_OFFSET(pglist_data, node_zones);
1419 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1420#ifdef CONFIG_FLAT_NODE_MEM_MAP
1421 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1422#endif
1423 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1424 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1425 VMCOREINFO_OFFSET(pglist_data, node_id);
1426 VMCOREINFO_OFFSET(zone, free_area);
1427 VMCOREINFO_OFFSET(zone, vm_stat);
1428 VMCOREINFO_OFFSET(zone, spanned_pages);
1429 VMCOREINFO_OFFSET(free_area, free_list);
1430 VMCOREINFO_OFFSET(list_head, next);
1431 VMCOREINFO_OFFSET(list_head, prev);
1432 VMCOREINFO_OFFSET(vmap_area, va_start);
1433 VMCOREINFO_OFFSET(vmap_area, list);
1434 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1435 log_buf_kexec_setup();
1436 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1437 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1438 VMCOREINFO_NUMBER(PG_lru);
1439 VMCOREINFO_NUMBER(PG_private);
1440 VMCOREINFO_NUMBER(PG_swapcache);
1441 VMCOREINFO_NUMBER(PG_slab);
1442#ifdef CONFIG_MEMORY_FAILURE
1443 VMCOREINFO_NUMBER(PG_hwpoison);
1444#endif
1445 VMCOREINFO_NUMBER(PG_head_mask);
1446 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1303a27c
BH
1447#ifdef CONFIG_X86
1448 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1449#endif
8639a847
AK
1450#ifdef CONFIG_HUGETLB_PAGE
1451 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
2965faa5
DY
1452#endif
1453
1454 arch_crash_save_vmcoreinfo();
1455 update_vmcoreinfo_note();
1456
1457 return 0;
1458}
1459
1460subsys_initcall(crash_save_vmcoreinfo_init);
1461
1462/*
1463 * Move into place and start executing a preloaded standalone
1464 * executable. If nothing was preloaded return an error.
1465 */
1466int kernel_kexec(void)
1467{
1468 int error = 0;
1469
1470 if (!mutex_trylock(&kexec_mutex))
1471 return -EBUSY;
1472 if (!kexec_image) {
1473 error = -EINVAL;
1474 goto Unlock;
1475 }
1476
1477#ifdef CONFIG_KEXEC_JUMP
1478 if (kexec_image->preserve_context) {
1479 lock_system_sleep();
1480 pm_prepare_console();
1481 error = freeze_processes();
1482 if (error) {
1483 error = -EBUSY;
1484 goto Restore_console;
1485 }
1486 suspend_console();
1487 error = dpm_suspend_start(PMSG_FREEZE);
1488 if (error)
1489 goto Resume_console;
1490 /* At this point, dpm_suspend_start() has been called,
1491 * but *not* dpm_suspend_end(). We *must* call
1492 * dpm_suspend_end() now. Otherwise, drivers for
1493 * some devices (e.g. interrupt controllers) become
1494 * desynchronized with the actual state of the
1495 * hardware at resume time, and evil weirdness ensues.
1496 */
1497 error = dpm_suspend_end(PMSG_FREEZE);
1498 if (error)
1499 goto Resume_devices;
1500 error = disable_nonboot_cpus();
1501 if (error)
1502 goto Enable_cpus;
1503 local_irq_disable();
1504 error = syscore_suspend();
1505 if (error)
1506 goto Enable_irqs;
1507 } else
1508#endif
1509 {
1510 kexec_in_progress = true;
1511 kernel_restart_prepare(NULL);
1512 migrate_to_reboot_cpu();
1513
1514 /*
1515 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1516 * no further code needs to use CPU hotplug (which is true in
1517 * the reboot case). However, the kexec path depends on using
1518 * CPU hotplug again; so re-enable it here.
1519 */
1520 cpu_hotplug_enable();
1521 pr_emerg("Starting new kernel\n");
1522 machine_shutdown();
1523 }
1524
1525 machine_kexec(kexec_image);
1526
1527#ifdef CONFIG_KEXEC_JUMP
1528 if (kexec_image->preserve_context) {
1529 syscore_resume();
1530 Enable_irqs:
1531 local_irq_enable();
1532 Enable_cpus:
1533 enable_nonboot_cpus();
1534 dpm_resume_start(PMSG_RESTORE);
1535 Resume_devices:
1536 dpm_resume_end(PMSG_RESTORE);
1537 Resume_console:
1538 resume_console();
1539 thaw_processes();
1540 Restore_console:
1541 pm_restore_console();
1542 unlock_system_sleep();
1543 }
1544#endif
1545
1546 Unlock:
1547 mutex_unlock(&kexec_mutex);
1548 return error;
1549}
1550
1551/*
7a0058ec
XP
1552 * Protection mechanism for crashkernel reserved memory after
1553 * the kdump kernel is loaded.
2965faa5
DY
1554 *
1555 * Provide an empty default implementation here -- architecture
1556 * code may override this
1557 */
9b492cf5
XP
1558void __weak arch_kexec_protect_crashkres(void)
1559{}
1560
1561void __weak arch_kexec_unprotect_crashkres(void)
1562{}