]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/kexec_file.c
UBUNTU: SAUCE: (efi-lockdown) kexec_file: split KEXEC_VERIFY_SIG into KEXEC_SIG and...
[mirror_ubuntu-eoan-kernel.git] / kernel / kexec_file.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
a43cac0d
DY
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
a43cac0d
DY
8 */
9
de90a6bc
MH
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
a43cac0d
DY
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
735c2f90 17#include <linux/memblock.h>
a43cac0d
DY
18#include <linux/mutex.h>
19#include <linux/list.h>
b804defe 20#include <linux/fs.h>
7b8589cc 21#include <linux/ima.h>
a43cac0d
DY
22#include <crypto/hash.h>
23#include <crypto/sha.h>
babac4a8
AT
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
a43cac0d
DY
27#include <linux/syscalls.h>
28#include <linux/vmalloc.h>
29#include "kexec_internal.h"
30
a43cac0d
DY
31static int kexec_calculate_store_digests(struct kimage *image);
32
9ec4ecef
AT
33/*
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
37 */
38int kexec_image_probe_default(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 const struct kexec_file_ops * const *fops;
42 int ret = -ENOEXEC;
43
44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 ret = (*fops)->probe(buf, buf_len);
46 if (!ret) {
47 image->fops = *fops;
48 return ret;
49 }
50 }
51
52 return ret;
53}
54
a43cac0d
DY
55/* Architectures can provide this probe function */
56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 unsigned long buf_len)
58{
9ec4ecef
AT
59 return kexec_image_probe_default(image, buf, buf_len);
60}
61
62static void *kexec_image_load_default(struct kimage *image)
63{
64 if (!image->fops || !image->fops->load)
65 return ERR_PTR(-ENOEXEC);
66
67 return image->fops->load(image, image->kernel_buf,
68 image->kernel_buf_len, image->initrd_buf,
69 image->initrd_buf_len, image->cmdline_buf,
70 image->cmdline_buf_len);
a43cac0d
DY
71}
72
73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74{
9ec4ecef
AT
75 return kexec_image_load_default(image);
76}
77
92a98a2b 78int kexec_image_post_load_cleanup_default(struct kimage *image)
9ec4ecef
AT
79{
80 if (!image->fops || !image->fops->cleanup)
81 return 0;
82
83 return image->fops->cleanup(image->image_loader_data);
a43cac0d
DY
84}
85
86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87{
9ec4ecef 88 return kexec_image_post_load_cleanup_default(image);
a43cac0d
DY
89}
90
3c80b721 91#ifdef CONFIG_KEXEC_SIG
9ec4ecef
AT
92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 unsigned long buf_len)
94{
95 if (!image->fops || !image->fops->verify_sig) {
96 pr_debug("kernel loader does not support signature verification.\n");
97 return -EKEYREJECTED;
98 }
99
100 return image->fops->verify_sig(buf, buf_len);
101}
102
a43cac0d
DY
103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 unsigned long buf_len)
105{
9ec4ecef 106 return kexec_image_verify_sig_default(image, buf, buf_len);
a43cac0d 107}
978e30c9 108#endif
a43cac0d 109
8aec395b
PR
110/*
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
116 *
117 * Return: 0 on success, negative errno on error.
118 */
a43cac0d 119int __weak
8aec395b
PR
120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
122{
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
125}
126
8aec395b
PR
127/*
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
133 *
134 * Return: 0 on success, negative errno on error.
135 */
a43cac0d 136int __weak
8aec395b
PR
137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
139{
140 pr_err("REL relocation unsupported.\n");
141 return -ENOEXEC;
142}
143
144/*
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
148 */
149void kimage_file_post_load_cleanup(struct kimage *image)
150{
151 struct purgatory_info *pi = &image->purgatory_info;
152
153 vfree(image->kernel_buf);
154 image->kernel_buf = NULL;
155
156 vfree(image->initrd_buf);
157 image->initrd_buf = NULL;
158
159 kfree(image->cmdline_buf);
160 image->cmdline_buf = NULL;
161
162 vfree(pi->purgatory_buf);
163 pi->purgatory_buf = NULL;
164
165 vfree(pi->sechdrs);
166 pi->sechdrs = NULL;
167
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image);
170
171 /*
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
175 */
176 kfree(image->image_loader_data);
177 image->image_loader_data = NULL;
178}
179
180/*
181 * In file mode list of segments is prepared by kernel. Copy relevant
182 * data from user space, do error checking, prepare segment list
183 */
184static int
185kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
186 const char __user *cmdline_ptr,
187 unsigned long cmdline_len, unsigned flags)
188{
3c80b721
JB
189 const char *reason;
190 int ret;
a43cac0d 191 void *ldata;
b804defe 192 loff_t size;
a43cac0d 193
b804defe
MZ
194 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
195 &size, INT_MAX, READING_KEXEC_IMAGE);
a43cac0d
DY
196 if (ret)
197 return ret;
b804defe 198 image->kernel_buf_len = size;
a43cac0d
DY
199
200 /* Call arch image probe handlers */
201 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
202 image->kernel_buf_len);
a43cac0d
DY
203 if (ret)
204 goto out;
205
3c80b721 206#ifdef CONFIG_KEXEC_SIG
a43cac0d
DY
207 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
208 image->kernel_buf_len);
3c80b721
JB
209#else
210 ret = -ENODATA;
211#endif
212
213 switch (ret) {
214 case 0:
215 break;
216
217 /* Certain verification errors are non-fatal if we're not
218 * checking errors, provided we aren't mandating that there
219 * must be a valid signature.
220 */
221 case -ENODATA:
222 reason = "kexec of unsigned image";
223 goto decide;
224 case -ENOPKG:
225 reason = "kexec of image with unsupported crypto";
226 goto decide;
227 case -ENOKEY:
228 reason = "kexec of image with unavailable key";
229 decide:
230 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
231 pr_notice("%s rejected\n", reason);
232 ret = -EKEYREJECTED;
233 goto out;
234 }
235
236 ret = 0;
237 break;
238
239 /* All other errors are fatal, including nomem, unparseable
240 * signatures and signature check failures - even if signatures
241 * aren't required.
242 */
243 default:
244 pr_notice("kernel signature verification failed (%d).\n", ret);
a43cac0d
DY
245 goto out;
246 }
3c80b721 247
a43cac0d
DY
248 /* It is possible that there no initramfs is being loaded */
249 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
b804defe
MZ
250 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
251 &size, INT_MAX,
252 READING_KEXEC_INITRAMFS);
a43cac0d
DY
253 if (ret)
254 goto out;
b804defe 255 image->initrd_buf_len = size;
a43cac0d
DY
256 }
257
258 if (cmdline_len) {
a9bd8dfa
AV
259 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
260 if (IS_ERR(image->cmdline_buf)) {
261 ret = PTR_ERR(image->cmdline_buf);
262 image->cmdline_buf = NULL;
a43cac0d
DY
263 goto out;
264 }
265
266 image->cmdline_buf_len = cmdline_len;
267
268 /* command line should be a string with last byte null */
269 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
270 ret = -EINVAL;
271 goto out;
272 }
6a31fcd4
PS
273
274 ima_kexec_cmdline(image->cmdline_buf,
275 image->cmdline_buf_len - 1);
a43cac0d
DY
276 }
277
6a31fcd4
PS
278 /* IMA needs to pass the measurement list to the next kernel. */
279 ima_add_kexec_buffer(image);
280
a43cac0d
DY
281 /* Call arch image load handlers */
282 ldata = arch_kexec_kernel_image_load(image);
283
284 if (IS_ERR(ldata)) {
285 ret = PTR_ERR(ldata);
286 goto out;
287 }
288
289 image->image_loader_data = ldata;
290out:
291 /* In case of error, free up all allocated memory in this function */
292 if (ret)
293 kimage_file_post_load_cleanup(image);
294 return ret;
295}
296
297static int
298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
299 int initrd_fd, const char __user *cmdline_ptr,
300 unsigned long cmdline_len, unsigned long flags)
301{
302 int ret;
303 struct kimage *image;
304 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
305
306 image = do_kimage_alloc_init();
307 if (!image)
308 return -ENOMEM;
309
310 image->file_mode = 1;
311
312 if (kexec_on_panic) {
313 /* Enable special crash kernel control page alloc policy. */
314 image->control_page = crashk_res.start;
315 image->type = KEXEC_TYPE_CRASH;
316 }
317
318 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
319 cmdline_ptr, cmdline_len, flags);
320 if (ret)
321 goto out_free_image;
322
323 ret = sanity_check_segment_list(image);
324 if (ret)
325 goto out_free_post_load_bufs;
326
327 ret = -ENOMEM;
328 image->control_code_page = kimage_alloc_control_pages(image,
329 get_order(KEXEC_CONTROL_PAGE_SIZE));
330 if (!image->control_code_page) {
331 pr_err("Could not allocate control_code_buffer\n");
332 goto out_free_post_load_bufs;
333 }
334
335 if (!kexec_on_panic) {
336 image->swap_page = kimage_alloc_control_pages(image, 0);
337 if (!image->swap_page) {
338 pr_err("Could not allocate swap buffer\n");
339 goto out_free_control_pages;
340 }
341 }
342
343 *rimage = image;
344 return 0;
345out_free_control_pages:
346 kimage_free_page_list(&image->control_pages);
347out_free_post_load_bufs:
348 kimage_file_post_load_cleanup(image);
349out_free_image:
350 kfree(image);
351 return ret;
352}
353
354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
355 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
356 unsigned long, flags)
357{
358 int ret = 0, i;
359 struct kimage **dest_image, *image;
360
361 /* We only trust the superuser with rebooting the system. */
362 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
363 return -EPERM;
364
365 /* Make sure we have a legal set of flags */
366 if (flags != (flags & KEXEC_FILE_FLAGS))
367 return -EINVAL;
368
369 image = NULL;
370
371 if (!mutex_trylock(&kexec_mutex))
372 return -EBUSY;
373
374 dest_image = &kexec_image;
9b492cf5 375 if (flags & KEXEC_FILE_ON_CRASH) {
a43cac0d 376 dest_image = &kexec_crash_image;
9b492cf5
XP
377 if (kexec_crash_image)
378 arch_kexec_unprotect_crashkres();
379 }
a43cac0d
DY
380
381 if (flags & KEXEC_FILE_UNLOAD)
382 goto exchange;
383
384 /*
385 * In case of crash, new kernel gets loaded in reserved region. It is
386 * same memory where old crash kernel might be loaded. Free any
387 * current crash dump kernel before we corrupt it.
388 */
389 if (flags & KEXEC_FILE_ON_CRASH)
390 kimage_free(xchg(&kexec_crash_image, NULL));
391
392 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
393 cmdline_len, flags);
394 if (ret)
395 goto out;
396
397 ret = machine_kexec_prepare(image);
398 if (ret)
399 goto out;
400
1229384f
XP
401 /*
402 * Some architecture(like S390) may touch the crash memory before
403 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
404 */
405 ret = kimage_crash_copy_vmcoreinfo(image);
406 if (ret)
407 goto out;
408
a43cac0d
DY
409 ret = kexec_calculate_store_digests(image);
410 if (ret)
411 goto out;
412
413 for (i = 0; i < image->nr_segments; i++) {
414 struct kexec_segment *ksegment;
415
416 ksegment = &image->segment[i];
417 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
418 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
419 ksegment->memsz);
420
421 ret = kimage_load_segment(image, &image->segment[i]);
422 if (ret)
423 goto out;
424 }
425
426 kimage_terminate(image);
427
428 /*
429 * Free up any temporary buffers allocated which are not needed
430 * after image has been loaded
431 */
432 kimage_file_post_load_cleanup(image);
433exchange:
434 image = xchg(dest_image, image);
435out:
9b492cf5
XP
436 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
437 arch_kexec_protect_crashkres();
438
a43cac0d
DY
439 mutex_unlock(&kexec_mutex);
440 kimage_free(image);
441 return ret;
442}
443
444static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
445 struct kexec_buf *kbuf)
446{
447 struct kimage *image = kbuf->image;
448 unsigned long temp_start, temp_end;
449
450 temp_end = min(end, kbuf->buf_max);
451 temp_start = temp_end - kbuf->memsz;
452
453 do {
454 /* align down start */
455 temp_start = temp_start & (~(kbuf->buf_align - 1));
456
457 if (temp_start < start || temp_start < kbuf->buf_min)
458 return 0;
459
460 temp_end = temp_start + kbuf->memsz - 1;
461
462 /*
463 * Make sure this does not conflict with any of existing
464 * segments
465 */
466 if (kimage_is_destination_range(image, temp_start, temp_end)) {
467 temp_start = temp_start - PAGE_SIZE;
468 continue;
469 }
470
471 /* We found a suitable memory range */
472 break;
473 } while (1);
474
475 /* If we are here, we found a suitable memory range */
476 kbuf->mem = temp_start;
477
478 /* Success, stop navigating through remaining System RAM ranges */
479 return 1;
480}
481
482static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
483 struct kexec_buf *kbuf)
484{
485 struct kimage *image = kbuf->image;
486 unsigned long temp_start, temp_end;
487
488 temp_start = max(start, kbuf->buf_min);
489
490 do {
491 temp_start = ALIGN(temp_start, kbuf->buf_align);
492 temp_end = temp_start + kbuf->memsz - 1;
493
494 if (temp_end > end || temp_end > kbuf->buf_max)
495 return 0;
496 /*
497 * Make sure this does not conflict with any of existing
498 * segments
499 */
500 if (kimage_is_destination_range(image, temp_start, temp_end)) {
501 temp_start = temp_start + PAGE_SIZE;
502 continue;
503 }
504
505 /* We found a suitable memory range */
506 break;
507 } while (1);
508
509 /* If we are here, we found a suitable memory range */
510 kbuf->mem = temp_start;
511
512 /* Success, stop navigating through remaining System RAM ranges */
513 return 1;
514}
515
1d2e733b 516static int locate_mem_hole_callback(struct resource *res, void *arg)
a43cac0d
DY
517{
518 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
1d2e733b 519 u64 start = res->start, end = res->end;
a43cac0d
DY
520 unsigned long sz = end - start + 1;
521
522 /* Returning 0 will take to next memory range */
523 if (sz < kbuf->memsz)
524 return 0;
525
526 if (end < kbuf->buf_min || start > kbuf->buf_max)
527 return 0;
528
529 /*
530 * Allocate memory top down with-in ram range. Otherwise bottom up
531 * allocation.
532 */
533 if (kbuf->top_down)
534 return locate_mem_hole_top_down(start, end, kbuf);
535 return locate_mem_hole_bottom_up(start, end, kbuf);
536}
537
350e88ba 538#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
735c2f90
AT
539static int kexec_walk_memblock(struct kexec_buf *kbuf,
540 int (*func)(struct resource *, void *))
541{
542 int ret = 0;
543 u64 i;
544 phys_addr_t mstart, mend;
545 struct resource res = { };
546
497e1858
AT
547 if (kbuf->image->type == KEXEC_TYPE_CRASH)
548 return func(&crashk_res, kbuf);
549
735c2f90 550 if (kbuf->top_down) {
497e1858 551 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
735c2f90
AT
552 &mstart, &mend, NULL) {
553 /*
554 * In memblock, end points to the first byte after the
555 * range while in kexec, end points to the last byte
556 * in the range.
557 */
558 res.start = mstart;
559 res.end = mend - 1;
560 ret = func(&res, kbuf);
561 if (ret)
562 break;
563 }
564 } else {
497e1858
AT
565 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
566 &mstart, &mend, NULL) {
735c2f90
AT
567 /*
568 * In memblock, end points to the first byte after the
569 * range while in kexec, end points to the last byte
570 * in the range.
571 */
572 res.start = mstart;
573 res.end = mend - 1;
574 ret = func(&res, kbuf);
575 if (ret)
576 break;
577 }
578 }
579
580 return ret;
581}
350e88ba
MR
582#else
583static int kexec_walk_memblock(struct kexec_buf *kbuf,
584 int (*func)(struct resource *, void *))
585{
586 return 0;
587}
735c2f90
AT
588#endif
589
60fe3910 590/**
735c2f90 591 * kexec_walk_resources - call func(data) on free memory regions
60fe3910
TJB
592 * @kbuf: Context info for the search. Also passed to @func.
593 * @func: Function to call for each memory region.
594 *
595 * Return: The memory walk will stop when func returns a non-zero value
596 * and that value will be returned. If all free regions are visited without
597 * func returning non-zero, then zero will be returned.
598 */
735c2f90
AT
599static int kexec_walk_resources(struct kexec_buf *kbuf,
600 int (*func)(struct resource *, void *))
60fe3910
TJB
601{
602 if (kbuf->image->type == KEXEC_TYPE_CRASH)
603 return walk_iomem_res_desc(crashk_res.desc,
604 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
605 crashk_res.start, crashk_res.end,
606 kbuf, func);
607 else
608 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
609}
610
e2e806f9
TJB
611/**
612 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
613 * @kbuf: Parameters for the memory search.
614 *
615 * On success, kbuf->mem will have the start address of the memory region found.
616 *
617 * Return: 0 on success, negative errno on error.
618 */
619int kexec_locate_mem_hole(struct kexec_buf *kbuf)
620{
621 int ret;
622
b6664ba4
AT
623 /* Arch knows where to place */
624 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
625 return 0;
626
350e88ba 627 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
735c2f90
AT
628 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
629 else
630 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
e2e806f9
TJB
631
632 return ret == 1 ? 0 : -EADDRNOTAVAIL;
633}
634
ec2b9bfa
TJB
635/**
636 * kexec_add_buffer - place a buffer in a kexec segment
637 * @kbuf: Buffer contents and memory parameters.
638 *
639 * This function assumes that kexec_mutex is held.
640 * On successful return, @kbuf->mem will have the physical address of
641 * the buffer in memory.
642 *
643 * Return: 0 on success, negative errno on error.
a43cac0d 644 */
ec2b9bfa 645int kexec_add_buffer(struct kexec_buf *kbuf)
a43cac0d
DY
646{
647
648 struct kexec_segment *ksegment;
a43cac0d
DY
649 int ret;
650
651 /* Currently adding segment this way is allowed only in file mode */
ec2b9bfa 652 if (!kbuf->image->file_mode)
a43cac0d
DY
653 return -EINVAL;
654
ec2b9bfa 655 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
a43cac0d
DY
656 return -EINVAL;
657
658 /*
659 * Make sure we are not trying to add buffer after allocating
660 * control pages. All segments need to be placed first before
661 * any control pages are allocated. As control page allocation
662 * logic goes through list of segments to make sure there are
663 * no destination overlaps.
664 */
ec2b9bfa 665 if (!list_empty(&kbuf->image->control_pages)) {
a43cac0d
DY
666 WARN_ON(1);
667 return -EINVAL;
668 }
669
ec2b9bfa
TJB
670 /* Ensure minimum alignment needed for segments. */
671 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
672 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
a43cac0d
DY
673
674 /* Walk the RAM ranges and allocate a suitable range for the buffer */
e2e806f9
TJB
675 ret = kexec_locate_mem_hole(kbuf);
676 if (ret)
677 return ret;
a43cac0d
DY
678
679 /* Found a suitable memory range */
ec2b9bfa 680 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
a43cac0d
DY
681 ksegment->kbuf = kbuf->buffer;
682 ksegment->bufsz = kbuf->bufsz;
683 ksegment->mem = kbuf->mem;
684 ksegment->memsz = kbuf->memsz;
ec2b9bfa 685 kbuf->image->nr_segments++;
a43cac0d
DY
686 return 0;
687}
688
689/* Calculate and store the digest of segments */
690static int kexec_calculate_store_digests(struct kimage *image)
691{
692 struct crypto_shash *tfm;
693 struct shash_desc *desc;
694 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
695 size_t desc_size, nullsz;
696 char *digest;
697 void *zero_buf;
698 struct kexec_sha_region *sha_regions;
699 struct purgatory_info *pi = &image->purgatory_info;
700
b799a09f
AT
701 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
702 return 0;
703
a43cac0d
DY
704 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
705 zero_buf_sz = PAGE_SIZE;
706
707 tfm = crypto_alloc_shash("sha256", 0, 0);
708 if (IS_ERR(tfm)) {
709 ret = PTR_ERR(tfm);
710 goto out;
711 }
712
713 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
714 desc = kzalloc(desc_size, GFP_KERNEL);
715 if (!desc) {
716 ret = -ENOMEM;
717 goto out_free_tfm;
718 }
719
720 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
721 sha_regions = vzalloc(sha_region_sz);
722 if (!sha_regions)
723 goto out_free_desc;
724
725 desc->tfm = tfm;
a43cac0d
DY
726
727 ret = crypto_shash_init(desc);
728 if (ret < 0)
729 goto out_free_sha_regions;
730
731 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
732 if (!digest) {
733 ret = -ENOMEM;
734 goto out_free_sha_regions;
735 }
736
737 for (j = i = 0; i < image->nr_segments; i++) {
738 struct kexec_segment *ksegment;
739
740 ksegment = &image->segment[i];
741 /*
742 * Skip purgatory as it will be modified once we put digest
743 * info in purgatory.
744 */
745 if (ksegment->kbuf == pi->purgatory_buf)
746 continue;
747
748 ret = crypto_shash_update(desc, ksegment->kbuf,
749 ksegment->bufsz);
750 if (ret)
751 break;
752
753 /*
754 * Assume rest of the buffer is filled with zero and
755 * update digest accordingly.
756 */
757 nullsz = ksegment->memsz - ksegment->bufsz;
758 while (nullsz) {
759 unsigned long bytes = nullsz;
760
761 if (bytes > zero_buf_sz)
762 bytes = zero_buf_sz;
763 ret = crypto_shash_update(desc, zero_buf, bytes);
764 if (ret)
765 break;
766 nullsz -= bytes;
767 }
768
769 if (ret)
770 break;
771
772 sha_regions[j].start = ksegment->mem;
773 sha_regions[j].len = ksegment->memsz;
774 j++;
775 }
776
777 if (!ret) {
778 ret = crypto_shash_final(desc, digest);
779 if (ret)
780 goto out_free_digest;
40c50c1f
TG
781 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
782 sha_regions, sha_region_sz, 0);
a43cac0d
DY
783 if (ret)
784 goto out_free_digest;
785
40c50c1f
TG
786 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
787 digest, SHA256_DIGEST_SIZE, 0);
a43cac0d
DY
788 if (ret)
789 goto out_free_digest;
790 }
791
792out_free_digest:
793 kfree(digest);
794out_free_sha_regions:
795 vfree(sha_regions);
796out_free_desc:
797 kfree(desc);
798out_free_tfm:
799 kfree(tfm);
800out:
801 return ret;
802}
803
b799a09f 804#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
93045705
PR
805/*
806 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
807 * @pi: Purgatory to be loaded.
808 * @kbuf: Buffer to setup.
809 *
810 * Allocates the memory needed for the buffer. Caller is responsible to free
811 * the memory after use.
812 *
813 * Return: 0 on success, negative errno on error.
814 */
815static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
816 struct kexec_buf *kbuf)
a43cac0d 817{
93045705
PR
818 const Elf_Shdr *sechdrs;
819 unsigned long bss_align;
820 unsigned long bss_sz;
821 unsigned long align;
822 int i, ret;
a43cac0d 823
93045705 824 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
3be3f61d
PR
825 kbuf->buf_align = bss_align = 1;
826 kbuf->bufsz = bss_sz = 0;
93045705
PR
827
828 for (i = 0; i < pi->ehdr->e_shnum; i++) {
829 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
830 continue;
831
832 align = sechdrs[i].sh_addralign;
833 if (sechdrs[i].sh_type != SHT_NOBITS) {
834 if (kbuf->buf_align < align)
835 kbuf->buf_align = align;
836 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
837 kbuf->bufsz += sechdrs[i].sh_size;
838 } else {
839 if (bss_align < align)
840 bss_align = align;
841 bss_sz = ALIGN(bss_sz, align);
842 bss_sz += sechdrs[i].sh_size;
843 }
844 }
845 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
846 kbuf->memsz = kbuf->bufsz + bss_sz;
847 if (kbuf->buf_align < bss_align)
848 kbuf->buf_align = bss_align;
849
850 kbuf->buffer = vzalloc(kbuf->bufsz);
851 if (!kbuf->buffer)
852 return -ENOMEM;
853 pi->purgatory_buf = kbuf->buffer;
854
855 ret = kexec_add_buffer(kbuf);
856 if (ret)
857 goto out;
93045705
PR
858
859 return 0;
860out:
861 vfree(pi->purgatory_buf);
862 pi->purgatory_buf = NULL;
863 return ret;
864}
865
866/*
867 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
868 * @pi: Purgatory to be loaded.
869 * @kbuf: Buffer prepared to store purgatory.
870 *
871 * Allocates the memory needed for the buffer. Caller is responsible to free
872 * the memory after use.
873 *
874 * Return: 0 on success, negative errno on error.
875 */
876static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
877 struct kexec_buf *kbuf)
878{
93045705
PR
879 unsigned long bss_addr;
880 unsigned long offset;
93045705 881 Elf_Shdr *sechdrs;
93045705 882 int i;
a43cac0d 883
8da0b724
PR
884 /*
885 * The section headers in kexec_purgatory are read-only. In order to
886 * have them modifiable make a temporary copy.
887 */
fad953ce 888 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
a43cac0d
DY
889 if (!sechdrs)
890 return -ENOMEM;
93045705
PR
891 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
892 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
893 pi->sechdrs = sechdrs;
a43cac0d 894
620f697c
PR
895 offset = 0;
896 bss_addr = kbuf->mem + kbuf->bufsz;
f1b1cca3 897 kbuf->image->start = pi->ehdr->e_entry;
a43cac0d
DY
898
899 for (i = 0; i < pi->ehdr->e_shnum; i++) {
93045705 900 unsigned long align;
620f697c 901 void *src, *dst;
93045705 902
a43cac0d
DY
903 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
904 continue;
905
906 align = sechdrs[i].sh_addralign;
f1b1cca3 907 if (sechdrs[i].sh_type == SHT_NOBITS) {
a43cac0d
DY
908 bss_addr = ALIGN(bss_addr, align);
909 sechdrs[i].sh_addr = bss_addr;
910 bss_addr += sechdrs[i].sh_size;
f1b1cca3
PR
911 continue;
912 }
913
620f697c 914 offset = ALIGN(offset, align);
f1b1cca3
PR
915 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
916 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
917 pi->ehdr->e_entry < (sechdrs[i].sh_addr
918 + sechdrs[i].sh_size)) {
919 kbuf->image->start -= sechdrs[i].sh_addr;
620f697c 920 kbuf->image->start += kbuf->mem + offset;
a43cac0d 921 }
a43cac0d 922
8da0b724 923 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
620f697c
PR
924 dst = pi->purgatory_buf + offset;
925 memcpy(dst, src, sechdrs[i].sh_size);
926
927 sechdrs[i].sh_addr = kbuf->mem + offset;
8da0b724 928 sechdrs[i].sh_offset = offset;
620f697c 929 offset += sechdrs[i].sh_size;
f1b1cca3 930 }
a43cac0d 931
93045705 932 return 0;
a43cac0d
DY
933}
934
935static int kexec_apply_relocations(struct kimage *image)
936{
937 int i, ret;
938 struct purgatory_info *pi = &image->purgatory_info;
8aec395b
PR
939 const Elf_Shdr *sechdrs;
940
941 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
a43cac0d 942
a43cac0d 943 for (i = 0; i < pi->ehdr->e_shnum; i++) {
8aec395b
PR
944 const Elf_Shdr *relsec;
945 const Elf_Shdr *symtab;
946 Elf_Shdr *section;
947
948 relsec = sechdrs + i;
a43cac0d 949
8aec395b
PR
950 if (relsec->sh_type != SHT_RELA &&
951 relsec->sh_type != SHT_REL)
a43cac0d
DY
952 continue;
953
954 /*
955 * For section of type SHT_RELA/SHT_REL,
956 * ->sh_link contains section header index of associated
957 * symbol table. And ->sh_info contains section header
958 * index of section to which relocations apply.
959 */
8aec395b
PR
960 if (relsec->sh_info >= pi->ehdr->e_shnum ||
961 relsec->sh_link >= pi->ehdr->e_shnum)
a43cac0d
DY
962 return -ENOEXEC;
963
8aec395b
PR
964 section = pi->sechdrs + relsec->sh_info;
965 symtab = sechdrs + relsec->sh_link;
a43cac0d
DY
966
967 if (!(section->sh_flags & SHF_ALLOC))
968 continue;
969
970 /*
971 * symtab->sh_link contain section header index of associated
972 * string table.
973 */
974 if (symtab->sh_link >= pi->ehdr->e_shnum)
975 /* Invalid section number? */
976 continue;
977
978 /*
979 * Respective architecture needs to provide support for applying
980 * relocations of type SHT_RELA/SHT_REL.
981 */
8aec395b
PR
982 if (relsec->sh_type == SHT_RELA)
983 ret = arch_kexec_apply_relocations_add(pi, section,
984 relsec, symtab);
985 else if (relsec->sh_type == SHT_REL)
986 ret = arch_kexec_apply_relocations(pi, section,
987 relsec, symtab);
a43cac0d
DY
988 if (ret)
989 return ret;
990 }
991
992 return 0;
993}
994
3be3f61d
PR
995/*
996 * kexec_load_purgatory - Load and relocate the purgatory object.
997 * @image: Image to add the purgatory to.
998 * @kbuf: Memory parameters to use.
999 *
1000 * Allocates the memory needed for image->purgatory_info.sechdrs and
1001 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1002 * to free the memory after use.
1003 *
1004 * Return: 0 on success, negative errno on error.
1005 */
1006int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
a43cac0d
DY
1007{
1008 struct purgatory_info *pi = &image->purgatory_info;
1009 int ret;
1010
1011 if (kexec_purgatory_size <= 0)
1012 return -EINVAL;
1013
65c225d3 1014 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
a43cac0d 1015
3be3f61d 1016 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
a43cac0d
DY
1017 if (ret)
1018 return ret;
1019
3be3f61d 1020 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
93045705
PR
1021 if (ret)
1022 goto out_free_kbuf;
1023
a43cac0d
DY
1024 ret = kexec_apply_relocations(image);
1025 if (ret)
1026 goto out;
1027
a43cac0d
DY
1028 return 0;
1029out:
1030 vfree(pi->sechdrs);
070c43ee 1031 pi->sechdrs = NULL;
93045705 1032out_free_kbuf:
a43cac0d 1033 vfree(pi->purgatory_buf);
070c43ee 1034 pi->purgatory_buf = NULL;
a43cac0d
DY
1035 return ret;
1036}
1037
961d921a
PR
1038/*
1039 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1040 * @pi: Purgatory to search in.
1041 * @name: Name of the symbol.
1042 *
1043 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1044 */
1045static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1046 const char *name)
a43cac0d 1047{
961d921a 1048 const Elf_Shdr *sechdrs;
65c225d3 1049 const Elf_Ehdr *ehdr;
961d921a 1050 const Elf_Sym *syms;
a43cac0d 1051 const char *strtab;
961d921a 1052 int i, k;
a43cac0d 1053
961d921a 1054 if (!pi->ehdr)
a43cac0d
DY
1055 return NULL;
1056
a43cac0d 1057 ehdr = pi->ehdr;
961d921a 1058 sechdrs = (void *)ehdr + ehdr->e_shoff;
a43cac0d
DY
1059
1060 for (i = 0; i < ehdr->e_shnum; i++) {
1061 if (sechdrs[i].sh_type != SHT_SYMTAB)
1062 continue;
1063
1064 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1065 /* Invalid strtab section number */
1066 continue;
961d921a
PR
1067 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1068 syms = (void *)ehdr + sechdrs[i].sh_offset;
a43cac0d
DY
1069
1070 /* Go through symbols for a match */
1071 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1072 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1073 continue;
1074
1075 if (strcmp(strtab + syms[k].st_name, name) != 0)
1076 continue;
1077
1078 if (syms[k].st_shndx == SHN_UNDEF ||
1079 syms[k].st_shndx >= ehdr->e_shnum) {
1080 pr_debug("Symbol: %s has bad section index %d.\n",
1081 name, syms[k].st_shndx);
1082 return NULL;
1083 }
1084
1085 /* Found the symbol we are looking for */
1086 return &syms[k];
1087 }
1088 }
1089
1090 return NULL;
1091}
1092
1093void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1094{
1095 struct purgatory_info *pi = &image->purgatory_info;
961d921a 1096 const Elf_Sym *sym;
a43cac0d
DY
1097 Elf_Shdr *sechdr;
1098
1099 sym = kexec_purgatory_find_symbol(pi, name);
1100 if (!sym)
1101 return ERR_PTR(-EINVAL);
1102
1103 sechdr = &pi->sechdrs[sym->st_shndx];
1104
1105 /*
1106 * Returns the address where symbol will finally be loaded after
1107 * kexec_load_segment()
1108 */
1109 return (void *)(sechdr->sh_addr + sym->st_value);
1110}
1111
1112/*
1113 * Get or set value of a symbol. If "get_value" is true, symbol value is
1114 * returned in buf otherwise symbol value is set based on value in buf.
1115 */
1116int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1117 void *buf, unsigned int size, bool get_value)
1118{
a43cac0d 1119 struct purgatory_info *pi = &image->purgatory_info;
961d921a
PR
1120 const Elf_Sym *sym;
1121 Elf_Shdr *sec;
a43cac0d
DY
1122 char *sym_buf;
1123
1124 sym = kexec_purgatory_find_symbol(pi, name);
1125 if (!sym)
1126 return -EINVAL;
1127
1128 if (sym->st_size != size) {
1129 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1130 name, (unsigned long)sym->st_size, size);
1131 return -EINVAL;
1132 }
1133
961d921a 1134 sec = pi->sechdrs + sym->st_shndx;
a43cac0d 1135
961d921a 1136 if (sec->sh_type == SHT_NOBITS) {
a43cac0d
DY
1137 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1138 get_value ? "get" : "set");
1139 return -EINVAL;
1140 }
1141
8da0b724 1142 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
a43cac0d
DY
1143
1144 if (get_value)
1145 memcpy((void *)buf, sym_buf, size);
1146 else
1147 memcpy((void *)sym_buf, buf, size);
1148
1149 return 0;
1150}
b799a09f 1151#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
babac4a8
AT
1152
1153int crash_exclude_mem_range(struct crash_mem *mem,
1154 unsigned long long mstart, unsigned long long mend)
1155{
1156 int i, j;
1157 unsigned long long start, end;
1158 struct crash_mem_range temp_range = {0, 0};
1159
1160 for (i = 0; i < mem->nr_ranges; i++) {
1161 start = mem->ranges[i].start;
1162 end = mem->ranges[i].end;
1163
1164 if (mstart > end || mend < start)
1165 continue;
1166
1167 /* Truncate any area outside of range */
1168 if (mstart < start)
1169 mstart = start;
1170 if (mend > end)
1171 mend = end;
1172
1173 /* Found completely overlapping range */
1174 if (mstart == start && mend == end) {
1175 mem->ranges[i].start = 0;
1176 mem->ranges[i].end = 0;
1177 if (i < mem->nr_ranges - 1) {
1178 /* Shift rest of the ranges to left */
1179 for (j = i; j < mem->nr_ranges - 1; j++) {
1180 mem->ranges[j].start =
1181 mem->ranges[j+1].start;
1182 mem->ranges[j].end =
1183 mem->ranges[j+1].end;
1184 }
1185 }
1186 mem->nr_ranges--;
1187 return 0;
1188 }
1189
1190 if (mstart > start && mend < end) {
1191 /* Split original range */
1192 mem->ranges[i].end = mstart - 1;
1193 temp_range.start = mend + 1;
1194 temp_range.end = end;
1195 } else if (mstart != start)
1196 mem->ranges[i].end = mstart - 1;
1197 else
1198 mem->ranges[i].start = mend + 1;
1199 break;
1200 }
1201
1202 /* If a split happened, add the split to array */
1203 if (!temp_range.end)
1204 return 0;
1205
1206 /* Split happened */
1207 if (i == mem->max_nr_ranges - 1)
1208 return -ENOMEM;
1209
1210 /* Location where new range should go */
1211 j = i + 1;
1212 if (j < mem->nr_ranges) {
1213 /* Move over all ranges one slot towards the end */
1214 for (i = mem->nr_ranges - 1; i >= j; i--)
1215 mem->ranges[i + 1] = mem->ranges[i];
1216 }
1217
1218 mem->ranges[j].start = temp_range.start;
1219 mem->ranges[j].end = temp_range.end;
1220 mem->nr_ranges++;
1221 return 0;
1222}
1223
1224int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1225 void **addr, unsigned long *sz)
1226{
1227 Elf64_Ehdr *ehdr;
1228 Elf64_Phdr *phdr;
1229 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1230 unsigned char *buf;
1231 unsigned int cpu, i;
1232 unsigned long long notes_addr;
1233 unsigned long mstart, mend;
1234
1235 /* extra phdr for vmcoreinfo elf note */
1236 nr_phdr = nr_cpus + 1;
1237 nr_phdr += mem->nr_ranges;
1238
1239 /*
1240 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1241 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1242 * I think this is required by tools like gdb. So same physical
1243 * memory will be mapped in two elf headers. One will contain kernel
1244 * text virtual addresses and other will have __va(physical) addresses.
1245 */
1246
1247 nr_phdr++;
1248 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1249 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1250
1251 buf = vzalloc(elf_sz);
1252 if (!buf)
1253 return -ENOMEM;
1254
1255 ehdr = (Elf64_Ehdr *)buf;
1256 phdr = (Elf64_Phdr *)(ehdr + 1);
1257 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1258 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1259 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1260 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1261 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1262 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1263 ehdr->e_type = ET_CORE;
1264 ehdr->e_machine = ELF_ARCH;
1265 ehdr->e_version = EV_CURRENT;
1266 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1267 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1268 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1269
1270 /* Prepare one phdr of type PT_NOTE for each present cpu */
1271 for_each_present_cpu(cpu) {
1272 phdr->p_type = PT_NOTE;
1273 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1274 phdr->p_offset = phdr->p_paddr = notes_addr;
1275 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1276 (ehdr->e_phnum)++;
1277 phdr++;
1278 }
1279
1280 /* Prepare one PT_NOTE header for vmcoreinfo */
1281 phdr->p_type = PT_NOTE;
1282 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1283 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1284 (ehdr->e_phnum)++;
1285 phdr++;
1286
1287 /* Prepare PT_LOAD type program header for kernel text region */
1288 if (kernel_map) {
1289 phdr->p_type = PT_LOAD;
1290 phdr->p_flags = PF_R|PF_W|PF_X;
1291 phdr->p_vaddr = (Elf64_Addr)_text;
1292 phdr->p_filesz = phdr->p_memsz = _end - _text;
1293 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1294 ehdr->e_phnum++;
1295 phdr++;
1296 }
1297
1298 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1299 for (i = 0; i < mem->nr_ranges; i++) {
1300 mstart = mem->ranges[i].start;
1301 mend = mem->ranges[i].end;
1302
1303 phdr->p_type = PT_LOAD;
1304 phdr->p_flags = PF_R|PF_W|PF_X;
1305 phdr->p_offset = mstart;
1306
1307 phdr->p_paddr = mstart;
1308 phdr->p_vaddr = (unsigned long long) __va(mstart);
1309 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1310 phdr->p_align = 0;
1311 ehdr->e_phnum++;
1312 phdr++;
1313 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1314 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1315 ehdr->e_phnum, phdr->p_offset);
1316 }
1317
1318 *addr = buf;
1319 *sz = elf_sz;
1320 return 0;
1321}