]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/kexec_file.c
UBUNTU: SAUCE: (efi-lockdown) lockdown: Print current->comm in restriction messages
[mirror_ubuntu-eoan-kernel.git] / kernel / kexec_file.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
a43cac0d
DY
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
a43cac0d
DY
8 */
9
de90a6bc
MH
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
a43cac0d
DY
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
735c2f90 17#include <linux/memblock.h>
a43cac0d
DY
18#include <linux/mutex.h>
19#include <linux/list.h>
b804defe 20#include <linux/fs.h>
7b8589cc 21#include <linux/ima.h>
a43cac0d
DY
22#include <crypto/hash.h>
23#include <crypto/sha.h>
babac4a8
AT
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
a43cac0d
DY
27#include <linux/syscalls.h>
28#include <linux/vmalloc.h>
29#include "kexec_internal.h"
30
a43cac0d
DY
31static int kexec_calculate_store_digests(struct kimage *image);
32
9ec4ecef
AT
33/*
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
37 */
38int kexec_image_probe_default(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 const struct kexec_file_ops * const *fops;
42 int ret = -ENOEXEC;
43
44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 ret = (*fops)->probe(buf, buf_len);
46 if (!ret) {
47 image->fops = *fops;
48 return ret;
49 }
50 }
51
52 return ret;
53}
54
a43cac0d
DY
55/* Architectures can provide this probe function */
56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 unsigned long buf_len)
58{
9ec4ecef
AT
59 return kexec_image_probe_default(image, buf, buf_len);
60}
61
62static void *kexec_image_load_default(struct kimage *image)
63{
64 if (!image->fops || !image->fops->load)
65 return ERR_PTR(-ENOEXEC);
66
67 return image->fops->load(image, image->kernel_buf,
68 image->kernel_buf_len, image->initrd_buf,
69 image->initrd_buf_len, image->cmdline_buf,
70 image->cmdline_buf_len);
a43cac0d
DY
71}
72
73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74{
9ec4ecef
AT
75 return kexec_image_load_default(image);
76}
77
92a98a2b 78int kexec_image_post_load_cleanup_default(struct kimage *image)
9ec4ecef
AT
79{
80 if (!image->fops || !image->fops->cleanup)
81 return 0;
82
83 return image->fops->cleanup(image->image_loader_data);
a43cac0d
DY
84}
85
86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87{
9ec4ecef 88 return kexec_image_post_load_cleanup_default(image);
a43cac0d
DY
89}
90
3c80b721 91#ifdef CONFIG_KEXEC_SIG
9ec4ecef
AT
92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 unsigned long buf_len)
94{
95 if (!image->fops || !image->fops->verify_sig) {
96 pr_debug("kernel loader does not support signature verification.\n");
97 return -EKEYREJECTED;
98 }
99
100 return image->fops->verify_sig(buf, buf_len);
101}
102
a43cac0d
DY
103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 unsigned long buf_len)
105{
9ec4ecef 106 return kexec_image_verify_sig_default(image, buf, buf_len);
a43cac0d 107}
978e30c9 108#endif
a43cac0d 109
8aec395b
PR
110/*
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
116 *
117 * Return: 0 on success, negative errno on error.
118 */
a43cac0d 119int __weak
8aec395b
PR
120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
122{
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
125}
126
8aec395b
PR
127/*
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
133 *
134 * Return: 0 on success, negative errno on error.
135 */
a43cac0d 136int __weak
8aec395b
PR
137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
139{
140 pr_err("REL relocation unsupported.\n");
141 return -ENOEXEC;
142}
143
144/*
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
148 */
149void kimage_file_post_load_cleanup(struct kimage *image)
150{
151 struct purgatory_info *pi = &image->purgatory_info;
152
153 vfree(image->kernel_buf);
154 image->kernel_buf = NULL;
155
156 vfree(image->initrd_buf);
157 image->initrd_buf = NULL;
158
159 kfree(image->cmdline_buf);
160 image->cmdline_buf = NULL;
161
162 vfree(pi->purgatory_buf);
163 pi->purgatory_buf = NULL;
164
165 vfree(pi->sechdrs);
166 pi->sechdrs = NULL;
167
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image);
170
171 /*
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
175 */
176 kfree(image->image_loader_data);
177 image->image_loader_data = NULL;
178}
179
180/*
181 * In file mode list of segments is prepared by kernel. Copy relevant
182 * data from user space, do error checking, prepare segment list
183 */
184static int
185kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
186 const char __user *cmdline_ptr,
187 unsigned long cmdline_len, unsigned flags)
188{
3c80b721
JB
189 const char *reason;
190 int ret;
a43cac0d 191 void *ldata;
b804defe 192 loff_t size;
a43cac0d 193
b804defe
MZ
194 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
195 &size, INT_MAX, READING_KEXEC_IMAGE);
a43cac0d
DY
196 if (ret)
197 return ret;
b804defe 198 image->kernel_buf_len = size;
a43cac0d
DY
199
200 /* Call arch image probe handlers */
201 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
202 image->kernel_buf_len);
a43cac0d
DY
203 if (ret)
204 goto out;
205
3c80b721 206#ifdef CONFIG_KEXEC_SIG
a43cac0d
DY
207 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
208 image->kernel_buf_len);
3c80b721
JB
209#else
210 ret = -ENODATA;
211#endif
212
213 switch (ret) {
214 case 0:
215 break;
216
217 /* Certain verification errors are non-fatal if we're not
218 * checking errors, provided we aren't mandating that there
219 * must be a valid signature.
220 */
221 case -ENODATA:
222 reason = "kexec of unsigned image";
223 goto decide;
224 case -ENOPKG:
225 reason = "kexec of image with unsupported crypto";
226 goto decide;
227 case -ENOKEY:
228 reason = "kexec of image with unavailable key";
229 decide:
230 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
231 pr_notice("%s rejected\n", reason);
232 ret = -EKEYREJECTED;
233 goto out;
234 }
235
236 ret = 0;
b1d997a2
JB
237
238 if (kernel_is_locked_down(reason)) {
239 ret = -EPERM;
240 goto out;
241 }
242
3c80b721
JB
243 break;
244
245 /* All other errors are fatal, including nomem, unparseable
246 * signatures and signature check failures - even if signatures
247 * aren't required.
248 */
249 default:
250 pr_notice("kernel signature verification failed (%d).\n", ret);
a43cac0d
DY
251 goto out;
252 }
3c80b721 253
a43cac0d
DY
254 /* It is possible that there no initramfs is being loaded */
255 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
b804defe
MZ
256 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
257 &size, INT_MAX,
258 READING_KEXEC_INITRAMFS);
a43cac0d
DY
259 if (ret)
260 goto out;
b804defe 261 image->initrd_buf_len = size;
a43cac0d
DY
262 }
263
264 if (cmdline_len) {
a9bd8dfa
AV
265 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
266 if (IS_ERR(image->cmdline_buf)) {
267 ret = PTR_ERR(image->cmdline_buf);
268 image->cmdline_buf = NULL;
a43cac0d
DY
269 goto out;
270 }
271
272 image->cmdline_buf_len = cmdline_len;
273
274 /* command line should be a string with last byte null */
275 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
276 ret = -EINVAL;
277 goto out;
278 }
6a31fcd4
PS
279
280 ima_kexec_cmdline(image->cmdline_buf,
281 image->cmdline_buf_len - 1);
a43cac0d
DY
282 }
283
6a31fcd4
PS
284 /* IMA needs to pass the measurement list to the next kernel. */
285 ima_add_kexec_buffer(image);
286
a43cac0d
DY
287 /* Call arch image load handlers */
288 ldata = arch_kexec_kernel_image_load(image);
289
290 if (IS_ERR(ldata)) {
291 ret = PTR_ERR(ldata);
292 goto out;
293 }
294
295 image->image_loader_data = ldata;
296out:
297 /* In case of error, free up all allocated memory in this function */
298 if (ret)
299 kimage_file_post_load_cleanup(image);
300 return ret;
301}
302
303static int
304kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
305 int initrd_fd, const char __user *cmdline_ptr,
306 unsigned long cmdline_len, unsigned long flags)
307{
308 int ret;
309 struct kimage *image;
310 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
311
312 image = do_kimage_alloc_init();
313 if (!image)
314 return -ENOMEM;
315
316 image->file_mode = 1;
317
318 if (kexec_on_panic) {
319 /* Enable special crash kernel control page alloc policy. */
320 image->control_page = crashk_res.start;
321 image->type = KEXEC_TYPE_CRASH;
322 }
323
324 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
325 cmdline_ptr, cmdline_len, flags);
326 if (ret)
327 goto out_free_image;
328
329 ret = sanity_check_segment_list(image);
330 if (ret)
331 goto out_free_post_load_bufs;
332
333 ret = -ENOMEM;
334 image->control_code_page = kimage_alloc_control_pages(image,
335 get_order(KEXEC_CONTROL_PAGE_SIZE));
336 if (!image->control_code_page) {
337 pr_err("Could not allocate control_code_buffer\n");
338 goto out_free_post_load_bufs;
339 }
340
341 if (!kexec_on_panic) {
342 image->swap_page = kimage_alloc_control_pages(image, 0);
343 if (!image->swap_page) {
344 pr_err("Could not allocate swap buffer\n");
345 goto out_free_control_pages;
346 }
347 }
348
349 *rimage = image;
350 return 0;
351out_free_control_pages:
352 kimage_free_page_list(&image->control_pages);
353out_free_post_load_bufs:
354 kimage_file_post_load_cleanup(image);
355out_free_image:
356 kfree(image);
357 return ret;
358}
359
360SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
361 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
362 unsigned long, flags)
363{
364 int ret = 0, i;
365 struct kimage **dest_image, *image;
366
367 /* We only trust the superuser with rebooting the system. */
368 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
369 return -EPERM;
370
371 /* Make sure we have a legal set of flags */
372 if (flags != (flags & KEXEC_FILE_FLAGS))
373 return -EINVAL;
374
375 image = NULL;
376
377 if (!mutex_trylock(&kexec_mutex))
378 return -EBUSY;
379
380 dest_image = &kexec_image;
9b492cf5 381 if (flags & KEXEC_FILE_ON_CRASH) {
a43cac0d 382 dest_image = &kexec_crash_image;
9b492cf5
XP
383 if (kexec_crash_image)
384 arch_kexec_unprotect_crashkres();
385 }
a43cac0d
DY
386
387 if (flags & KEXEC_FILE_UNLOAD)
388 goto exchange;
389
390 /*
391 * In case of crash, new kernel gets loaded in reserved region. It is
392 * same memory where old crash kernel might be loaded. Free any
393 * current crash dump kernel before we corrupt it.
394 */
395 if (flags & KEXEC_FILE_ON_CRASH)
396 kimage_free(xchg(&kexec_crash_image, NULL));
397
398 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
399 cmdline_len, flags);
400 if (ret)
401 goto out;
402
403 ret = machine_kexec_prepare(image);
404 if (ret)
405 goto out;
406
1229384f
XP
407 /*
408 * Some architecture(like S390) may touch the crash memory before
409 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
410 */
411 ret = kimage_crash_copy_vmcoreinfo(image);
412 if (ret)
413 goto out;
414
a43cac0d
DY
415 ret = kexec_calculate_store_digests(image);
416 if (ret)
417 goto out;
418
419 for (i = 0; i < image->nr_segments; i++) {
420 struct kexec_segment *ksegment;
421
422 ksegment = &image->segment[i];
423 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
424 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
425 ksegment->memsz);
426
427 ret = kimage_load_segment(image, &image->segment[i]);
428 if (ret)
429 goto out;
430 }
431
432 kimage_terminate(image);
433
434 /*
435 * Free up any temporary buffers allocated which are not needed
436 * after image has been loaded
437 */
438 kimage_file_post_load_cleanup(image);
439exchange:
440 image = xchg(dest_image, image);
441out:
9b492cf5
XP
442 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
443 arch_kexec_protect_crashkres();
444
a43cac0d
DY
445 mutex_unlock(&kexec_mutex);
446 kimage_free(image);
447 return ret;
448}
449
450static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
451 struct kexec_buf *kbuf)
452{
453 struct kimage *image = kbuf->image;
454 unsigned long temp_start, temp_end;
455
456 temp_end = min(end, kbuf->buf_max);
457 temp_start = temp_end - kbuf->memsz;
458
459 do {
460 /* align down start */
461 temp_start = temp_start & (~(kbuf->buf_align - 1));
462
463 if (temp_start < start || temp_start < kbuf->buf_min)
464 return 0;
465
466 temp_end = temp_start + kbuf->memsz - 1;
467
468 /*
469 * Make sure this does not conflict with any of existing
470 * segments
471 */
472 if (kimage_is_destination_range(image, temp_start, temp_end)) {
473 temp_start = temp_start - PAGE_SIZE;
474 continue;
475 }
476
477 /* We found a suitable memory range */
478 break;
479 } while (1);
480
481 /* If we are here, we found a suitable memory range */
482 kbuf->mem = temp_start;
483
484 /* Success, stop navigating through remaining System RAM ranges */
485 return 1;
486}
487
488static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
489 struct kexec_buf *kbuf)
490{
491 struct kimage *image = kbuf->image;
492 unsigned long temp_start, temp_end;
493
494 temp_start = max(start, kbuf->buf_min);
495
496 do {
497 temp_start = ALIGN(temp_start, kbuf->buf_align);
498 temp_end = temp_start + kbuf->memsz - 1;
499
500 if (temp_end > end || temp_end > kbuf->buf_max)
501 return 0;
502 /*
503 * Make sure this does not conflict with any of existing
504 * segments
505 */
506 if (kimage_is_destination_range(image, temp_start, temp_end)) {
507 temp_start = temp_start + PAGE_SIZE;
508 continue;
509 }
510
511 /* We found a suitable memory range */
512 break;
513 } while (1);
514
515 /* If we are here, we found a suitable memory range */
516 kbuf->mem = temp_start;
517
518 /* Success, stop navigating through remaining System RAM ranges */
519 return 1;
520}
521
1d2e733b 522static int locate_mem_hole_callback(struct resource *res, void *arg)
a43cac0d
DY
523{
524 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
1d2e733b 525 u64 start = res->start, end = res->end;
a43cac0d
DY
526 unsigned long sz = end - start + 1;
527
528 /* Returning 0 will take to next memory range */
529 if (sz < kbuf->memsz)
530 return 0;
531
532 if (end < kbuf->buf_min || start > kbuf->buf_max)
533 return 0;
534
535 /*
536 * Allocate memory top down with-in ram range. Otherwise bottom up
537 * allocation.
538 */
539 if (kbuf->top_down)
540 return locate_mem_hole_top_down(start, end, kbuf);
541 return locate_mem_hole_bottom_up(start, end, kbuf);
542}
543
350e88ba 544#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
735c2f90
AT
545static int kexec_walk_memblock(struct kexec_buf *kbuf,
546 int (*func)(struct resource *, void *))
547{
548 int ret = 0;
549 u64 i;
550 phys_addr_t mstart, mend;
551 struct resource res = { };
552
497e1858
AT
553 if (kbuf->image->type == KEXEC_TYPE_CRASH)
554 return func(&crashk_res, kbuf);
555
735c2f90 556 if (kbuf->top_down) {
497e1858 557 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
735c2f90
AT
558 &mstart, &mend, NULL) {
559 /*
560 * In memblock, end points to the first byte after the
561 * range while in kexec, end points to the last byte
562 * in the range.
563 */
564 res.start = mstart;
565 res.end = mend - 1;
566 ret = func(&res, kbuf);
567 if (ret)
568 break;
569 }
570 } else {
497e1858
AT
571 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
572 &mstart, &mend, NULL) {
735c2f90
AT
573 /*
574 * In memblock, end points to the first byte after the
575 * range while in kexec, end points to the last byte
576 * in the range.
577 */
578 res.start = mstart;
579 res.end = mend - 1;
580 ret = func(&res, kbuf);
581 if (ret)
582 break;
583 }
584 }
585
586 return ret;
587}
350e88ba
MR
588#else
589static int kexec_walk_memblock(struct kexec_buf *kbuf,
590 int (*func)(struct resource *, void *))
591{
592 return 0;
593}
735c2f90
AT
594#endif
595
60fe3910 596/**
735c2f90 597 * kexec_walk_resources - call func(data) on free memory regions
60fe3910
TJB
598 * @kbuf: Context info for the search. Also passed to @func.
599 * @func: Function to call for each memory region.
600 *
601 * Return: The memory walk will stop when func returns a non-zero value
602 * and that value will be returned. If all free regions are visited without
603 * func returning non-zero, then zero will be returned.
604 */
735c2f90
AT
605static int kexec_walk_resources(struct kexec_buf *kbuf,
606 int (*func)(struct resource *, void *))
60fe3910
TJB
607{
608 if (kbuf->image->type == KEXEC_TYPE_CRASH)
609 return walk_iomem_res_desc(crashk_res.desc,
610 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
611 crashk_res.start, crashk_res.end,
612 kbuf, func);
613 else
614 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
615}
616
e2e806f9
TJB
617/**
618 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
619 * @kbuf: Parameters for the memory search.
620 *
621 * On success, kbuf->mem will have the start address of the memory region found.
622 *
623 * Return: 0 on success, negative errno on error.
624 */
625int kexec_locate_mem_hole(struct kexec_buf *kbuf)
626{
627 int ret;
628
b6664ba4
AT
629 /* Arch knows where to place */
630 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
631 return 0;
632
350e88ba 633 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
735c2f90
AT
634 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
635 else
636 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
e2e806f9
TJB
637
638 return ret == 1 ? 0 : -EADDRNOTAVAIL;
639}
640
ec2b9bfa
TJB
641/**
642 * kexec_add_buffer - place a buffer in a kexec segment
643 * @kbuf: Buffer contents and memory parameters.
644 *
645 * This function assumes that kexec_mutex is held.
646 * On successful return, @kbuf->mem will have the physical address of
647 * the buffer in memory.
648 *
649 * Return: 0 on success, negative errno on error.
a43cac0d 650 */
ec2b9bfa 651int kexec_add_buffer(struct kexec_buf *kbuf)
a43cac0d
DY
652{
653
654 struct kexec_segment *ksegment;
a43cac0d
DY
655 int ret;
656
657 /* Currently adding segment this way is allowed only in file mode */
ec2b9bfa 658 if (!kbuf->image->file_mode)
a43cac0d
DY
659 return -EINVAL;
660
ec2b9bfa 661 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
a43cac0d
DY
662 return -EINVAL;
663
664 /*
665 * Make sure we are not trying to add buffer after allocating
666 * control pages. All segments need to be placed first before
667 * any control pages are allocated. As control page allocation
668 * logic goes through list of segments to make sure there are
669 * no destination overlaps.
670 */
ec2b9bfa 671 if (!list_empty(&kbuf->image->control_pages)) {
a43cac0d
DY
672 WARN_ON(1);
673 return -EINVAL;
674 }
675
ec2b9bfa
TJB
676 /* Ensure minimum alignment needed for segments. */
677 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
678 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
a43cac0d
DY
679
680 /* Walk the RAM ranges and allocate a suitable range for the buffer */
e2e806f9
TJB
681 ret = kexec_locate_mem_hole(kbuf);
682 if (ret)
683 return ret;
a43cac0d
DY
684
685 /* Found a suitable memory range */
ec2b9bfa 686 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
a43cac0d
DY
687 ksegment->kbuf = kbuf->buffer;
688 ksegment->bufsz = kbuf->bufsz;
689 ksegment->mem = kbuf->mem;
690 ksegment->memsz = kbuf->memsz;
ec2b9bfa 691 kbuf->image->nr_segments++;
a43cac0d
DY
692 return 0;
693}
694
695/* Calculate and store the digest of segments */
696static int kexec_calculate_store_digests(struct kimage *image)
697{
698 struct crypto_shash *tfm;
699 struct shash_desc *desc;
700 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
701 size_t desc_size, nullsz;
702 char *digest;
703 void *zero_buf;
704 struct kexec_sha_region *sha_regions;
705 struct purgatory_info *pi = &image->purgatory_info;
706
b799a09f
AT
707 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
708 return 0;
709
a43cac0d
DY
710 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
711 zero_buf_sz = PAGE_SIZE;
712
713 tfm = crypto_alloc_shash("sha256", 0, 0);
714 if (IS_ERR(tfm)) {
715 ret = PTR_ERR(tfm);
716 goto out;
717 }
718
719 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
720 desc = kzalloc(desc_size, GFP_KERNEL);
721 if (!desc) {
722 ret = -ENOMEM;
723 goto out_free_tfm;
724 }
725
726 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
727 sha_regions = vzalloc(sha_region_sz);
728 if (!sha_regions)
729 goto out_free_desc;
730
731 desc->tfm = tfm;
a43cac0d
DY
732
733 ret = crypto_shash_init(desc);
734 if (ret < 0)
735 goto out_free_sha_regions;
736
737 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
738 if (!digest) {
739 ret = -ENOMEM;
740 goto out_free_sha_regions;
741 }
742
743 for (j = i = 0; i < image->nr_segments; i++) {
744 struct kexec_segment *ksegment;
745
746 ksegment = &image->segment[i];
747 /*
748 * Skip purgatory as it will be modified once we put digest
749 * info in purgatory.
750 */
751 if (ksegment->kbuf == pi->purgatory_buf)
752 continue;
753
754 ret = crypto_shash_update(desc, ksegment->kbuf,
755 ksegment->bufsz);
756 if (ret)
757 break;
758
759 /*
760 * Assume rest of the buffer is filled with zero and
761 * update digest accordingly.
762 */
763 nullsz = ksegment->memsz - ksegment->bufsz;
764 while (nullsz) {
765 unsigned long bytes = nullsz;
766
767 if (bytes > zero_buf_sz)
768 bytes = zero_buf_sz;
769 ret = crypto_shash_update(desc, zero_buf, bytes);
770 if (ret)
771 break;
772 nullsz -= bytes;
773 }
774
775 if (ret)
776 break;
777
778 sha_regions[j].start = ksegment->mem;
779 sha_regions[j].len = ksegment->memsz;
780 j++;
781 }
782
783 if (!ret) {
784 ret = crypto_shash_final(desc, digest);
785 if (ret)
786 goto out_free_digest;
40c50c1f
TG
787 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
788 sha_regions, sha_region_sz, 0);
a43cac0d
DY
789 if (ret)
790 goto out_free_digest;
791
40c50c1f
TG
792 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
793 digest, SHA256_DIGEST_SIZE, 0);
a43cac0d
DY
794 if (ret)
795 goto out_free_digest;
796 }
797
798out_free_digest:
799 kfree(digest);
800out_free_sha_regions:
801 vfree(sha_regions);
802out_free_desc:
803 kfree(desc);
804out_free_tfm:
805 kfree(tfm);
806out:
807 return ret;
808}
809
b799a09f 810#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
93045705
PR
811/*
812 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
813 * @pi: Purgatory to be loaded.
814 * @kbuf: Buffer to setup.
815 *
816 * Allocates the memory needed for the buffer. Caller is responsible to free
817 * the memory after use.
818 *
819 * Return: 0 on success, negative errno on error.
820 */
821static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
822 struct kexec_buf *kbuf)
a43cac0d 823{
93045705
PR
824 const Elf_Shdr *sechdrs;
825 unsigned long bss_align;
826 unsigned long bss_sz;
827 unsigned long align;
828 int i, ret;
a43cac0d 829
93045705 830 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
3be3f61d
PR
831 kbuf->buf_align = bss_align = 1;
832 kbuf->bufsz = bss_sz = 0;
93045705
PR
833
834 for (i = 0; i < pi->ehdr->e_shnum; i++) {
835 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
836 continue;
837
838 align = sechdrs[i].sh_addralign;
839 if (sechdrs[i].sh_type != SHT_NOBITS) {
840 if (kbuf->buf_align < align)
841 kbuf->buf_align = align;
842 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
843 kbuf->bufsz += sechdrs[i].sh_size;
844 } else {
845 if (bss_align < align)
846 bss_align = align;
847 bss_sz = ALIGN(bss_sz, align);
848 bss_sz += sechdrs[i].sh_size;
849 }
850 }
851 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
852 kbuf->memsz = kbuf->bufsz + bss_sz;
853 if (kbuf->buf_align < bss_align)
854 kbuf->buf_align = bss_align;
855
856 kbuf->buffer = vzalloc(kbuf->bufsz);
857 if (!kbuf->buffer)
858 return -ENOMEM;
859 pi->purgatory_buf = kbuf->buffer;
860
861 ret = kexec_add_buffer(kbuf);
862 if (ret)
863 goto out;
93045705
PR
864
865 return 0;
866out:
867 vfree(pi->purgatory_buf);
868 pi->purgatory_buf = NULL;
869 return ret;
870}
871
872/*
873 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
874 * @pi: Purgatory to be loaded.
875 * @kbuf: Buffer prepared to store purgatory.
876 *
877 * Allocates the memory needed for the buffer. Caller is responsible to free
878 * the memory after use.
879 *
880 * Return: 0 on success, negative errno on error.
881 */
882static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
883 struct kexec_buf *kbuf)
884{
93045705
PR
885 unsigned long bss_addr;
886 unsigned long offset;
93045705 887 Elf_Shdr *sechdrs;
93045705 888 int i;
a43cac0d 889
8da0b724
PR
890 /*
891 * The section headers in kexec_purgatory are read-only. In order to
892 * have them modifiable make a temporary copy.
893 */
fad953ce 894 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
a43cac0d
DY
895 if (!sechdrs)
896 return -ENOMEM;
93045705
PR
897 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
898 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
899 pi->sechdrs = sechdrs;
a43cac0d 900
620f697c
PR
901 offset = 0;
902 bss_addr = kbuf->mem + kbuf->bufsz;
f1b1cca3 903 kbuf->image->start = pi->ehdr->e_entry;
a43cac0d
DY
904
905 for (i = 0; i < pi->ehdr->e_shnum; i++) {
93045705 906 unsigned long align;
620f697c 907 void *src, *dst;
93045705 908
a43cac0d
DY
909 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
910 continue;
911
912 align = sechdrs[i].sh_addralign;
f1b1cca3 913 if (sechdrs[i].sh_type == SHT_NOBITS) {
a43cac0d
DY
914 bss_addr = ALIGN(bss_addr, align);
915 sechdrs[i].sh_addr = bss_addr;
916 bss_addr += sechdrs[i].sh_size;
f1b1cca3
PR
917 continue;
918 }
919
620f697c 920 offset = ALIGN(offset, align);
f1b1cca3
PR
921 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
922 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
923 pi->ehdr->e_entry < (sechdrs[i].sh_addr
924 + sechdrs[i].sh_size)) {
925 kbuf->image->start -= sechdrs[i].sh_addr;
620f697c 926 kbuf->image->start += kbuf->mem + offset;
a43cac0d 927 }
a43cac0d 928
8da0b724 929 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
620f697c
PR
930 dst = pi->purgatory_buf + offset;
931 memcpy(dst, src, sechdrs[i].sh_size);
932
933 sechdrs[i].sh_addr = kbuf->mem + offset;
8da0b724 934 sechdrs[i].sh_offset = offset;
620f697c 935 offset += sechdrs[i].sh_size;
f1b1cca3 936 }
a43cac0d 937
93045705 938 return 0;
a43cac0d
DY
939}
940
941static int kexec_apply_relocations(struct kimage *image)
942{
943 int i, ret;
944 struct purgatory_info *pi = &image->purgatory_info;
8aec395b
PR
945 const Elf_Shdr *sechdrs;
946
947 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
a43cac0d 948
a43cac0d 949 for (i = 0; i < pi->ehdr->e_shnum; i++) {
8aec395b
PR
950 const Elf_Shdr *relsec;
951 const Elf_Shdr *symtab;
952 Elf_Shdr *section;
953
954 relsec = sechdrs + i;
a43cac0d 955
8aec395b
PR
956 if (relsec->sh_type != SHT_RELA &&
957 relsec->sh_type != SHT_REL)
a43cac0d
DY
958 continue;
959
960 /*
961 * For section of type SHT_RELA/SHT_REL,
962 * ->sh_link contains section header index of associated
963 * symbol table. And ->sh_info contains section header
964 * index of section to which relocations apply.
965 */
8aec395b
PR
966 if (relsec->sh_info >= pi->ehdr->e_shnum ||
967 relsec->sh_link >= pi->ehdr->e_shnum)
a43cac0d
DY
968 return -ENOEXEC;
969
8aec395b
PR
970 section = pi->sechdrs + relsec->sh_info;
971 symtab = sechdrs + relsec->sh_link;
a43cac0d
DY
972
973 if (!(section->sh_flags & SHF_ALLOC))
974 continue;
975
976 /*
977 * symtab->sh_link contain section header index of associated
978 * string table.
979 */
980 if (symtab->sh_link >= pi->ehdr->e_shnum)
981 /* Invalid section number? */
982 continue;
983
984 /*
985 * Respective architecture needs to provide support for applying
986 * relocations of type SHT_RELA/SHT_REL.
987 */
8aec395b
PR
988 if (relsec->sh_type == SHT_RELA)
989 ret = arch_kexec_apply_relocations_add(pi, section,
990 relsec, symtab);
991 else if (relsec->sh_type == SHT_REL)
992 ret = arch_kexec_apply_relocations(pi, section,
993 relsec, symtab);
a43cac0d
DY
994 if (ret)
995 return ret;
996 }
997
998 return 0;
999}
1000
3be3f61d
PR
1001/*
1002 * kexec_load_purgatory - Load and relocate the purgatory object.
1003 * @image: Image to add the purgatory to.
1004 * @kbuf: Memory parameters to use.
1005 *
1006 * Allocates the memory needed for image->purgatory_info.sechdrs and
1007 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1008 * to free the memory after use.
1009 *
1010 * Return: 0 on success, negative errno on error.
1011 */
1012int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
a43cac0d
DY
1013{
1014 struct purgatory_info *pi = &image->purgatory_info;
1015 int ret;
1016
1017 if (kexec_purgatory_size <= 0)
1018 return -EINVAL;
1019
65c225d3 1020 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
a43cac0d 1021
3be3f61d 1022 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
a43cac0d
DY
1023 if (ret)
1024 return ret;
1025
3be3f61d 1026 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
93045705
PR
1027 if (ret)
1028 goto out_free_kbuf;
1029
a43cac0d
DY
1030 ret = kexec_apply_relocations(image);
1031 if (ret)
1032 goto out;
1033
a43cac0d
DY
1034 return 0;
1035out:
1036 vfree(pi->sechdrs);
070c43ee 1037 pi->sechdrs = NULL;
93045705 1038out_free_kbuf:
a43cac0d 1039 vfree(pi->purgatory_buf);
070c43ee 1040 pi->purgatory_buf = NULL;
a43cac0d
DY
1041 return ret;
1042}
1043
961d921a
PR
1044/*
1045 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1046 * @pi: Purgatory to search in.
1047 * @name: Name of the symbol.
1048 *
1049 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1050 */
1051static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1052 const char *name)
a43cac0d 1053{
961d921a 1054 const Elf_Shdr *sechdrs;
65c225d3 1055 const Elf_Ehdr *ehdr;
961d921a 1056 const Elf_Sym *syms;
a43cac0d 1057 const char *strtab;
961d921a 1058 int i, k;
a43cac0d 1059
961d921a 1060 if (!pi->ehdr)
a43cac0d
DY
1061 return NULL;
1062
a43cac0d 1063 ehdr = pi->ehdr;
961d921a 1064 sechdrs = (void *)ehdr + ehdr->e_shoff;
a43cac0d
DY
1065
1066 for (i = 0; i < ehdr->e_shnum; i++) {
1067 if (sechdrs[i].sh_type != SHT_SYMTAB)
1068 continue;
1069
1070 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1071 /* Invalid strtab section number */
1072 continue;
961d921a
PR
1073 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1074 syms = (void *)ehdr + sechdrs[i].sh_offset;
a43cac0d
DY
1075
1076 /* Go through symbols for a match */
1077 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1078 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1079 continue;
1080
1081 if (strcmp(strtab + syms[k].st_name, name) != 0)
1082 continue;
1083
1084 if (syms[k].st_shndx == SHN_UNDEF ||
1085 syms[k].st_shndx >= ehdr->e_shnum) {
1086 pr_debug("Symbol: %s has bad section index %d.\n",
1087 name, syms[k].st_shndx);
1088 return NULL;
1089 }
1090
1091 /* Found the symbol we are looking for */
1092 return &syms[k];
1093 }
1094 }
1095
1096 return NULL;
1097}
1098
1099void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1100{
1101 struct purgatory_info *pi = &image->purgatory_info;
961d921a 1102 const Elf_Sym *sym;
a43cac0d
DY
1103 Elf_Shdr *sechdr;
1104
1105 sym = kexec_purgatory_find_symbol(pi, name);
1106 if (!sym)
1107 return ERR_PTR(-EINVAL);
1108
1109 sechdr = &pi->sechdrs[sym->st_shndx];
1110
1111 /*
1112 * Returns the address where symbol will finally be loaded after
1113 * kexec_load_segment()
1114 */
1115 return (void *)(sechdr->sh_addr + sym->st_value);
1116}
1117
1118/*
1119 * Get or set value of a symbol. If "get_value" is true, symbol value is
1120 * returned in buf otherwise symbol value is set based on value in buf.
1121 */
1122int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1123 void *buf, unsigned int size, bool get_value)
1124{
a43cac0d 1125 struct purgatory_info *pi = &image->purgatory_info;
961d921a
PR
1126 const Elf_Sym *sym;
1127 Elf_Shdr *sec;
a43cac0d
DY
1128 char *sym_buf;
1129
1130 sym = kexec_purgatory_find_symbol(pi, name);
1131 if (!sym)
1132 return -EINVAL;
1133
1134 if (sym->st_size != size) {
1135 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1136 name, (unsigned long)sym->st_size, size);
1137 return -EINVAL;
1138 }
1139
961d921a 1140 sec = pi->sechdrs + sym->st_shndx;
a43cac0d 1141
961d921a 1142 if (sec->sh_type == SHT_NOBITS) {
a43cac0d
DY
1143 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1144 get_value ? "get" : "set");
1145 return -EINVAL;
1146 }
1147
8da0b724 1148 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
a43cac0d
DY
1149
1150 if (get_value)
1151 memcpy((void *)buf, sym_buf, size);
1152 else
1153 memcpy((void *)sym_buf, buf, size);
1154
1155 return 0;
1156}
b799a09f 1157#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
babac4a8
AT
1158
1159int crash_exclude_mem_range(struct crash_mem *mem,
1160 unsigned long long mstart, unsigned long long mend)
1161{
1162 int i, j;
1163 unsigned long long start, end;
1164 struct crash_mem_range temp_range = {0, 0};
1165
1166 for (i = 0; i < mem->nr_ranges; i++) {
1167 start = mem->ranges[i].start;
1168 end = mem->ranges[i].end;
1169
1170 if (mstart > end || mend < start)
1171 continue;
1172
1173 /* Truncate any area outside of range */
1174 if (mstart < start)
1175 mstart = start;
1176 if (mend > end)
1177 mend = end;
1178
1179 /* Found completely overlapping range */
1180 if (mstart == start && mend == end) {
1181 mem->ranges[i].start = 0;
1182 mem->ranges[i].end = 0;
1183 if (i < mem->nr_ranges - 1) {
1184 /* Shift rest of the ranges to left */
1185 for (j = i; j < mem->nr_ranges - 1; j++) {
1186 mem->ranges[j].start =
1187 mem->ranges[j+1].start;
1188 mem->ranges[j].end =
1189 mem->ranges[j+1].end;
1190 }
1191 }
1192 mem->nr_ranges--;
1193 return 0;
1194 }
1195
1196 if (mstart > start && mend < end) {
1197 /* Split original range */
1198 mem->ranges[i].end = mstart - 1;
1199 temp_range.start = mend + 1;
1200 temp_range.end = end;
1201 } else if (mstart != start)
1202 mem->ranges[i].end = mstart - 1;
1203 else
1204 mem->ranges[i].start = mend + 1;
1205 break;
1206 }
1207
1208 /* If a split happened, add the split to array */
1209 if (!temp_range.end)
1210 return 0;
1211
1212 /* Split happened */
1213 if (i == mem->max_nr_ranges - 1)
1214 return -ENOMEM;
1215
1216 /* Location where new range should go */
1217 j = i + 1;
1218 if (j < mem->nr_ranges) {
1219 /* Move over all ranges one slot towards the end */
1220 for (i = mem->nr_ranges - 1; i >= j; i--)
1221 mem->ranges[i + 1] = mem->ranges[i];
1222 }
1223
1224 mem->ranges[j].start = temp_range.start;
1225 mem->ranges[j].end = temp_range.end;
1226 mem->nr_ranges++;
1227 return 0;
1228}
1229
1230int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1231 void **addr, unsigned long *sz)
1232{
1233 Elf64_Ehdr *ehdr;
1234 Elf64_Phdr *phdr;
1235 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1236 unsigned char *buf;
1237 unsigned int cpu, i;
1238 unsigned long long notes_addr;
1239 unsigned long mstart, mend;
1240
1241 /* extra phdr for vmcoreinfo elf note */
1242 nr_phdr = nr_cpus + 1;
1243 nr_phdr += mem->nr_ranges;
1244
1245 /*
1246 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1247 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1248 * I think this is required by tools like gdb. So same physical
1249 * memory will be mapped in two elf headers. One will contain kernel
1250 * text virtual addresses and other will have __va(physical) addresses.
1251 */
1252
1253 nr_phdr++;
1254 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1255 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1256
1257 buf = vzalloc(elf_sz);
1258 if (!buf)
1259 return -ENOMEM;
1260
1261 ehdr = (Elf64_Ehdr *)buf;
1262 phdr = (Elf64_Phdr *)(ehdr + 1);
1263 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1264 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1265 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1266 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1267 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1268 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1269 ehdr->e_type = ET_CORE;
1270 ehdr->e_machine = ELF_ARCH;
1271 ehdr->e_version = EV_CURRENT;
1272 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1273 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1274 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1275
1276 /* Prepare one phdr of type PT_NOTE for each present cpu */
1277 for_each_present_cpu(cpu) {
1278 phdr->p_type = PT_NOTE;
1279 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1280 phdr->p_offset = phdr->p_paddr = notes_addr;
1281 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1282 (ehdr->e_phnum)++;
1283 phdr++;
1284 }
1285
1286 /* Prepare one PT_NOTE header for vmcoreinfo */
1287 phdr->p_type = PT_NOTE;
1288 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1289 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1290 (ehdr->e_phnum)++;
1291 phdr++;
1292
1293 /* Prepare PT_LOAD type program header for kernel text region */
1294 if (kernel_map) {
1295 phdr->p_type = PT_LOAD;
1296 phdr->p_flags = PF_R|PF_W|PF_X;
1297 phdr->p_vaddr = (Elf64_Addr)_text;
1298 phdr->p_filesz = phdr->p_memsz = _end - _text;
1299 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1300 ehdr->e_phnum++;
1301 phdr++;
1302 }
1303
1304 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1305 for (i = 0; i < mem->nr_ranges; i++) {
1306 mstart = mem->ranges[i].start;
1307 mend = mem->ranges[i].end;
1308
1309 phdr->p_type = PT_LOAD;
1310 phdr->p_flags = PF_R|PF_W|PF_X;
1311 phdr->p_offset = mstart;
1312
1313 phdr->p_paddr = mstart;
1314 phdr->p_vaddr = (unsigned long long) __va(mstart);
1315 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1316 phdr->p_align = 0;
1317 ehdr->e_phnum++;
1318 phdr++;
1319 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1320 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1321 ehdr->e_phnum, phdr->p_offset);
1322 }
1323
1324 *addr = buf;
1325 *sz = elf_sz;
1326 return 0;
1327}