]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/kmod.c
Add common orderly_poweroff()
[mirror_ubuntu-zesty-kernel.git] / kernel / kmod.c
CommitLineData
1da177e4
LT
1/*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20*/
1da177e4
LT
21#include <linux/module.h>
22#include <linux/sched.h>
23#include <linux/syscalls.h>
24#include <linux/unistd.h>
25#include <linux/kmod.h>
1da177e4 26#include <linux/slab.h>
6b3286ed 27#include <linux/mnt_namespace.h>
1da177e4
LT
28#include <linux/completion.h>
29#include <linux/file.h>
30#include <linux/workqueue.h>
31#include <linux/security.h>
32#include <linux/mount.h>
33#include <linux/kernel.h>
34#include <linux/init.h>
d025c9db 35#include <linux/resource.h>
1da177e4
LT
36#include <asm/uaccess.h>
37
38extern int max_threads;
39
40static struct workqueue_struct *khelper_wq;
41
42#ifdef CONFIG_KMOD
43
44/*
45 modprobe_path is set via /proc/sys.
46*/
47char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
48
49/**
50 * request_module - try to load a kernel module
51 * @fmt: printf style format string for the name of the module
52 * @varargs: arguements as specified in the format string
53 *
54 * Load a module using the user mode module loader. The function returns
55 * zero on success or a negative errno code on failure. Note that a
56 * successful module load does not mean the module did not then unload
57 * and exit on an error of its own. Callers must check that the service
58 * they requested is now available not blindly invoke it.
59 *
60 * If module auto-loading support is disabled then this function
61 * becomes a no-operation.
62 */
63int request_module(const char *fmt, ...)
64{
65 va_list args;
66 char module_name[MODULE_NAME_LEN];
67 unsigned int max_modprobes;
68 int ret;
69 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
70 static char *envp[] = { "HOME=/",
71 "TERM=linux",
72 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
73 NULL };
74 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
75#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
76 static int kmod_loop_msg;
77
78 va_start(args, fmt);
79 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
80 va_end(args);
81 if (ret >= MODULE_NAME_LEN)
82 return -ENAMETOOLONG;
83
84 /* If modprobe needs a service that is in a module, we get a recursive
85 * loop. Limit the number of running kmod threads to max_threads/2 or
86 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
87 * would be to run the parents of this process, counting how many times
88 * kmod was invoked. That would mean accessing the internals of the
89 * process tables to get the command line, proc_pid_cmdline is static
90 * and it is not worth changing the proc code just to handle this case.
91 * KAO.
92 *
93 * "trace the ppid" is simple, but will fail if someone's
94 * parent exits. I think this is as good as it gets. --RR
95 */
96 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
97 atomic_inc(&kmod_concurrent);
98 if (atomic_read(&kmod_concurrent) > max_modprobes) {
99 /* We may be blaming an innocent here, but unlikely */
100 if (kmod_loop_msg++ < 5)
101 printk(KERN_ERR
102 "request_module: runaway loop modprobe %s\n",
103 module_name);
104 atomic_dec(&kmod_concurrent);
105 return -ENOMEM;
106 }
107
108 ret = call_usermodehelper(modprobe_path, argv, envp, 1);
109 atomic_dec(&kmod_concurrent);
110 return ret;
111}
112EXPORT_SYMBOL(request_module);
113#endif /* CONFIG_KMOD */
114
115struct subprocess_info {
65f27f38 116 struct work_struct work;
1da177e4
LT
117 struct completion *complete;
118 char *path;
119 char **argv;
120 char **envp;
7888e7ff 121 struct key *ring;
1da177e4
LT
122 int wait;
123 int retval;
e239ca54 124 struct file *stdin;
0ab4dc92 125 void (*cleanup)(char **argv, char **envp);
1da177e4
LT
126};
127
128/*
129 * This is the task which runs the usermode application
130 */
131static int ____call_usermodehelper(void *data)
132{
133 struct subprocess_info *sub_info = data;
20e1129a 134 struct key *new_session, *old_session;
1da177e4
LT
135 int retval;
136
7888e7ff 137 /* Unblock all signals and set the session keyring. */
20e1129a 138 new_session = key_get(sub_info->ring);
1da177e4 139 spin_lock_irq(&current->sighand->siglock);
20e1129a 140 old_session = __install_session_keyring(current, new_session);
1da177e4
LT
141 flush_signal_handlers(current, 1);
142 sigemptyset(&current->blocked);
143 recalc_sigpending();
144 spin_unlock_irq(&current->sighand->siglock);
145
7888e7ff
DH
146 key_put(old_session);
147
e239ca54
AK
148 /* Install input pipe when needed */
149 if (sub_info->stdin) {
150 struct files_struct *f = current->files;
151 struct fdtable *fdt;
152 /* no races because files should be private here */
153 sys_close(0);
154 fd_install(0, sub_info->stdin);
155 spin_lock(&f->file_lock);
156 fdt = files_fdtable(f);
157 FD_SET(0, fdt->open_fds);
158 FD_CLR(0, fdt->close_on_exec);
159 spin_unlock(&f->file_lock);
d025c9db
AK
160
161 /* and disallow core files too */
162 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
e239ca54
AK
163 }
164
1da177e4
LT
165 /* We can run anywhere, unlike our parent keventd(). */
166 set_cpus_allowed(current, CPU_MASK_ALL);
167
b73a7e76
JE
168 /*
169 * Our parent is keventd, which runs with elevated scheduling priority.
170 * Avoid propagating that into the userspace child.
171 */
172 set_user_nice(current, 0);
173
1da177e4
LT
174 retval = -EPERM;
175 if (current->fs->root)
67608567
AB
176 retval = kernel_execve(sub_info->path,
177 sub_info->argv, sub_info->envp);
1da177e4
LT
178
179 /* Exec failed? */
180 sub_info->retval = retval;
181 do_exit(0);
182}
183
0ab4dc92
JF
184void call_usermodehelper_freeinfo(struct subprocess_info *info)
185{
186 if (info->cleanup)
187 (*info->cleanup)(info->argv, info->envp);
188 kfree(info);
189}
190EXPORT_SYMBOL(call_usermodehelper_freeinfo);
191
1da177e4
LT
192/* Keventd can't block, but this (a child) can. */
193static int wait_for_helper(void *data)
194{
195 struct subprocess_info *sub_info = data;
196 pid_t pid;
1da177e4
LT
197
198 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
199 * populate the status, but will return -ECHILD. */
1da177e4
LT
200 allow_signal(SIGCHLD);
201
202 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
203 if (pid < 0) {
204 sub_info->retval = pid;
205 } else {
111dbe0c
BS
206 int ret;
207
1da177e4
LT
208 /*
209 * Normally it is bogus to call wait4() from in-kernel because
210 * wait4() wants to write the exit code to a userspace address.
211 * But wait_for_helper() always runs as keventd, and put_user()
212 * to a kernel address works OK for kernel threads, due to their
213 * having an mm_segment_t which spans the entire address space.
214 *
215 * Thus the __user pointer cast is valid here.
216 */
111dbe0c
BS
217 sys_wait4(pid, (int __user *)&ret, 0, NULL);
218
219 /*
220 * If ret is 0, either ____call_usermodehelper failed and the
221 * real error code is already in sub_info->retval or
222 * sub_info->retval is 0 anyway, so don't mess with it then.
223 */
224 if (ret)
225 sub_info->retval = ret;
1da177e4
LT
226 }
227
a98f0dd3 228 if (sub_info->wait < 0)
0ab4dc92 229 call_usermodehelper_freeinfo(sub_info);
a98f0dd3
AK
230 else
231 complete(sub_info->complete);
1da177e4
LT
232 return 0;
233}
234
235/* This is run by khelper thread */
65f27f38 236static void __call_usermodehelper(struct work_struct *work)
1da177e4 237{
65f27f38
DH
238 struct subprocess_info *sub_info =
239 container_of(work, struct subprocess_info, work);
1da177e4 240 pid_t pid;
e4b69aa2 241 int wait = sub_info->wait;
1da177e4
LT
242
243 /* CLONE_VFORK: wait until the usermode helper has execve'd
244 * successfully We need the data structures to stay around
245 * until that is done. */
e4b69aa2 246 if (wait)
1da177e4
LT
247 pid = kernel_thread(wait_for_helper, sub_info,
248 CLONE_FS | CLONE_FILES | SIGCHLD);
249 else
250 pid = kernel_thread(____call_usermodehelper, sub_info,
251 CLONE_VFORK | SIGCHLD);
252
a98f0dd3
AK
253 if (wait < 0)
254 return;
255
1da177e4
LT
256 if (pid < 0) {
257 sub_info->retval = pid;
258 complete(sub_info->complete);
e4b69aa2 259 } else if (!wait)
1da177e4
LT
260 complete(sub_info->complete);
261}
262
263/**
0ab4dc92
JF
264 * call_usermodehelper_setup - prepare to call a usermode helper
265 * @path - path to usermode executable
266 * @argv - arg vector for process
267 * @envp - environment for process
268 *
269 * Returns either NULL on allocation failure, or a subprocess_info
270 * structure. This should be passed to call_usermodehelper_exec to
271 * exec the process and free the structure.
272 */
273struct subprocess_info *call_usermodehelper_setup(char *path,
274 char **argv, char **envp)
275{
276 struct subprocess_info *sub_info;
277 sub_info = kzalloc(sizeof(struct subprocess_info), GFP_ATOMIC);
278 if (!sub_info)
279 goto out;
280
281 INIT_WORK(&sub_info->work, __call_usermodehelper);
282 sub_info->path = path;
283 sub_info->argv = argv;
284 sub_info->envp = envp;
285
286 out:
287 return sub_info;
288}
289EXPORT_SYMBOL(call_usermodehelper_setup);
290
291/**
292 * call_usermodehelper_setkeys - set the session keys for usermode helper
293 * @info: a subprocess_info returned by call_usermodehelper_setup
294 * @session_keyring: the session keyring for the process
295 */
296void call_usermodehelper_setkeys(struct subprocess_info *info,
297 struct key *session_keyring)
298{
299 info->ring = session_keyring;
300}
301EXPORT_SYMBOL(call_usermodehelper_setkeys);
302
303/**
304 * call_usermodehelper_setcleanup - set a cleanup function
305 * @info: a subprocess_info returned by call_usermodehelper_setup
306 * @cleanup: a cleanup function
307 *
308 * The cleanup function is just befor ethe subprocess_info is about to
309 * be freed. This can be used for freeing the argv and envp. The
310 * Function must be runnable in either a process context or the
311 * context in which call_usermodehelper_exec is called.
312 */
313void call_usermodehelper_setcleanup(struct subprocess_info *info,
314 void (*cleanup)(char **argv, char **envp))
315{
316 info->cleanup = cleanup;
317}
318EXPORT_SYMBOL(call_usermodehelper_setcleanup);
319
320/**
321 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
322 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
323 * @filp: set to the write-end of a pipe
324 *
325 * This constructs a pipe, and sets the read end to be the stdin of the
326 * subprocess, and returns the write-end in *@filp.
327 */
328int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
329 struct file **filp)
330{
331 struct file *f;
332
333 f = create_write_pipe();
334 if (IS_ERR(f))
335 return PTR_ERR(f);
336 *filp = f;
337
338 f = create_read_pipe(f);
339 if (IS_ERR(f)) {
340 free_write_pipe(*filp);
341 return PTR_ERR(f);
342 }
343 sub_info->stdin = f;
344
345 return 0;
346}
347EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
348
349/**
350 * call_usermodehelper_exec - start a usermode application
351 * @sub_info: information about the subprocessa
1da177e4 352 * @wait: wait for the application to finish and return status.
a98f0dd3
AK
353 * when -1 don't wait at all, but you get no useful error back when
354 * the program couldn't be exec'ed. This makes it safe to call
355 * from interrupt context.
1da177e4
LT
356 *
357 * Runs a user-space application. The application is started
358 * asynchronously if wait is not set, and runs as a child of keventd.
359 * (ie. it runs with full root capabilities).
1da177e4 360 */
0ab4dc92
JF
361int call_usermodehelper_exec(struct subprocess_info *sub_info,
362 int wait)
1da177e4 363{
60be6b9a 364 DECLARE_COMPLETION_ONSTACK(done);
a98f0dd3 365 int retval;
1da177e4 366
0ab4dc92
JF
367 if (sub_info->path[0] == '\0') {
368 retval = 0;
369 goto out;
370 }
1da177e4 371
0ab4dc92
JF
372 if (!khelper_wq) {
373 retval = -EBUSY;
374 goto out;
375 }
a98f0dd3 376
a98f0dd3 377 sub_info->complete = &done;
a98f0dd3
AK
378 sub_info->wait = wait;
379
380 queue_work(khelper_wq, &sub_info->work);
381 if (wait < 0) /* task has freed sub_info */
382 return 0;
1da177e4 383 wait_for_completion(&done);
a98f0dd3 384 retval = sub_info->retval;
0ab4dc92
JF
385
386 out:
387 call_usermodehelper_freeinfo(sub_info);
a98f0dd3 388 return retval;
1da177e4 389}
0ab4dc92 390EXPORT_SYMBOL(call_usermodehelper_exec);
1da177e4 391
0ab4dc92
JF
392/**
393 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
394 * @path: path to usermode executable
395 * @argv: arg vector for process
396 * @envp: environment for process
397 * @filp: set to the write-end of a pipe
398 *
399 * This is a simple wrapper which executes a usermode-helper function
400 * with a pipe as stdin. It is implemented entirely in terms of
401 * lower-level call_usermodehelper_* functions.
402 */
e239ca54
AK
403int call_usermodehelper_pipe(char *path, char **argv, char **envp,
404 struct file **filp)
405{
0ab4dc92
JF
406 struct subprocess_info *sub_info;
407 int ret;
e239ca54 408
0ab4dc92
JF
409 sub_info = call_usermodehelper_setup(path, argv, envp);
410 if (sub_info == NULL)
411 return -ENOMEM;
e239ca54 412
0ab4dc92
JF
413 ret = call_usermodehelper_stdinpipe(sub_info, filp);
414 if (ret < 0)
415 goto out;
e239ca54 416
0ab4dc92 417 return call_usermodehelper_exec(sub_info, 1);
e239ca54 418
0ab4dc92
JF
419 out:
420 call_usermodehelper_freeinfo(sub_info);
421 return ret;
e239ca54
AK
422}
423EXPORT_SYMBOL(call_usermodehelper_pipe);
424
1da177e4
LT
425void __init usermodehelper_init(void)
426{
427 khelper_wq = create_singlethread_workqueue("khelper");
428 BUG_ON(!khelper_wq);
429}