]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/locking/mutex.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
214e0aed 18 * Also see Documentation/locking/mutex-design.txt.
6053ee3b
IM
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
174cd4b1 22#include <linux/sched/signal.h>
8bd75c77 23#include <linux/sched/rt.h>
84f001e1 24#include <linux/sched/wake_q.h>
b17b0153 25#include <linux/sched/debug.h>
9984de1a 26#include <linux/export.h>
6053ee3b
IM
27#include <linux/spinlock.h>
28#include <linux/interrupt.h>
9a11b49a 29#include <linux/debug_locks.h>
7a215f89 30#include <linux/osq_lock.h>
6053ee3b 31
6053ee3b
IM
32#ifdef CONFIG_DEBUG_MUTEXES
33# include "mutex-debug.h"
6053ee3b
IM
34#else
35# include "mutex.h"
6053ee3b
IM
36#endif
37
ef5d4707
IM
38void
39__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b 40{
3ca0ff57 41 atomic_long_set(&lock->owner, 0);
6053ee3b
IM
42 spin_lock_init(&lock->wait_lock);
43 INIT_LIST_HEAD(&lock->wait_list);
2bd2c92c 44#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 45 osq_lock_init(&lock->osq);
2bd2c92c 46#endif
6053ee3b 47
ef5d4707 48 debug_mutex_init(lock, name, key);
6053ee3b 49}
6053ee3b
IM
50EXPORT_SYMBOL(__mutex_init);
51
3ca0ff57
PZ
52/*
53 * @owner: contains: 'struct task_struct *' to the current lock owner,
54 * NULL means not owned. Since task_struct pointers are aligned at
e274795e 55 * at least L1_CACHE_BYTES, we have low bits to store extra state.
3ca0ff57
PZ
56 *
57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
9d659ae1 58 * Bit1 indicates unlock needs to hand the lock to the top-waiter
e274795e 59 * Bit2 indicates handoff has been done and we're waiting for pickup.
3ca0ff57
PZ
60 */
61#define MUTEX_FLAG_WAITERS 0x01
9d659ae1 62#define MUTEX_FLAG_HANDOFF 0x02
e274795e 63#define MUTEX_FLAG_PICKUP 0x04
3ca0ff57 64
e274795e 65#define MUTEX_FLAGS 0x07
3ca0ff57
PZ
66
67static inline struct task_struct *__owner_task(unsigned long owner)
68{
69 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
70}
71
72static inline unsigned long __owner_flags(unsigned long owner)
73{
74 return owner & MUTEX_FLAGS;
75}
76
77/*
e274795e 78 * Trylock variant that retuns the owning task on failure.
3ca0ff57 79 */
e274795e 80static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
3ca0ff57
PZ
81{
82 unsigned long owner, curr = (unsigned long)current;
83
84 owner = atomic_long_read(&lock->owner);
85 for (;;) { /* must loop, can race against a flag */
9d659ae1 86 unsigned long old, flags = __owner_flags(owner);
e274795e 87 unsigned long task = owner & ~MUTEX_FLAGS;
9d659ae1 88
e274795e
PZ
89 if (task) {
90 if (likely(task != curr))
91 break;
3ca0ff57 92
e274795e
PZ
93 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
94 break;
9d659ae1 95
e274795e
PZ
96 flags &= ~MUTEX_FLAG_PICKUP;
97 } else {
98#ifdef CONFIG_DEBUG_MUTEXES
99 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
100#endif
9d659ae1
PZ
101 }
102
103 /*
104 * We set the HANDOFF bit, we must make sure it doesn't live
105 * past the point where we acquire it. This would be possible
106 * if we (accidentally) set the bit on an unlocked mutex.
107 */
e274795e 108 flags &= ~MUTEX_FLAG_HANDOFF;
3ca0ff57 109
9d659ae1 110 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
3ca0ff57 111 if (old == owner)
e274795e 112 return NULL;
3ca0ff57
PZ
113
114 owner = old;
115 }
e274795e
PZ
116
117 return __owner_task(owner);
118}
119
120/*
121 * Actual trylock that will work on any unlocked state.
122 */
123static inline bool __mutex_trylock(struct mutex *lock)
124{
125 return !__mutex_trylock_or_owner(lock);
3ca0ff57
PZ
126}
127
128#ifndef CONFIG_DEBUG_LOCK_ALLOC
129/*
130 * Lockdep annotations are contained to the slow paths for simplicity.
131 * There is nothing that would stop spreading the lockdep annotations outwards
132 * except more code.
133 */
134
135/*
136 * Optimistic trylock that only works in the uncontended case. Make sure to
137 * follow with a __mutex_trylock() before failing.
138 */
139static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
140{
141 unsigned long curr = (unsigned long)current;
142
143 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
144 return true;
145
146 return false;
147}
148
149static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
150{
151 unsigned long curr = (unsigned long)current;
152
153 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
154 return true;
155
156 return false;
157}
158#endif
159
160static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
161{
162 atomic_long_or(flag, &lock->owner);
163}
164
165static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
166{
167 atomic_long_andnot(flag, &lock->owner);
168}
169
9d659ae1
PZ
170static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
171{
172 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
173}
174
175/*
176 * Give up ownership to a specific task, when @task = NULL, this is equivalent
e274795e
PZ
177 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
178 * WAITERS. Provides RELEASE semantics like a regular unlock, the
179 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
9d659ae1
PZ
180 */
181static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
182{
183 unsigned long owner = atomic_long_read(&lock->owner);
184
185 for (;;) {
186 unsigned long old, new;
187
188#ifdef CONFIG_DEBUG_MUTEXES
189 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
e274795e 190 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
9d659ae1
PZ
191#endif
192
193 new = (owner & MUTEX_FLAG_WAITERS);
194 new |= (unsigned long)task;
e274795e
PZ
195 if (task)
196 new |= MUTEX_FLAG_PICKUP;
9d659ae1
PZ
197
198 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
199 if (old == owner)
200 break;
201
202 owner = old;
203 }
204}
205
e4564f79 206#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
207/*
208 * We split the mutex lock/unlock logic into separate fastpath and
209 * slowpath functions, to reduce the register pressure on the fastpath.
210 * We also put the fastpath first in the kernel image, to make sure the
211 * branch is predicted by the CPU as default-untaken.
212 */
3ca0ff57 213static void __sched __mutex_lock_slowpath(struct mutex *lock);
6053ee3b 214
ef5dc121 215/**
6053ee3b
IM
216 * mutex_lock - acquire the mutex
217 * @lock: the mutex to be acquired
218 *
219 * Lock the mutex exclusively for this task. If the mutex is not
220 * available right now, it will sleep until it can get it.
221 *
222 * The mutex must later on be released by the same task that
223 * acquired it. Recursive locking is not allowed. The task
224 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 225 * memory where the mutex resides must not be freed with
6053ee3b
IM
226 * the mutex still locked. The mutex must first be initialized
227 * (or statically defined) before it can be locked. memset()-ing
228 * the mutex to 0 is not allowed.
229 *
230 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
231 * checks that will enforce the restrictions and will also do
232 * deadlock debugging. )
233 *
234 * This function is similar to (but not equivalent to) down().
235 */
b09d2501 236void __sched mutex_lock(struct mutex *lock)
6053ee3b 237{
c544bdb1 238 might_sleep();
6053ee3b 239
3ca0ff57
PZ
240 if (!__mutex_trylock_fast(lock))
241 __mutex_lock_slowpath(lock);
242}
6053ee3b 243EXPORT_SYMBOL(mutex_lock);
e4564f79 244#endif
6053ee3b 245
427b1820
PZ
246static __always_inline void
247ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
76916515
DB
248{
249#ifdef CONFIG_DEBUG_MUTEXES
250 /*
251 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
252 * but released with a normal mutex_unlock in this call.
253 *
254 * This should never happen, always use ww_mutex_unlock.
255 */
256 DEBUG_LOCKS_WARN_ON(ww->ctx);
257
258 /*
259 * Not quite done after calling ww_acquire_done() ?
260 */
261 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
262
263 if (ww_ctx->contending_lock) {
264 /*
265 * After -EDEADLK you tried to
266 * acquire a different ww_mutex? Bad!
267 */
268 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
269
270 /*
271 * You called ww_mutex_lock after receiving -EDEADLK,
272 * but 'forgot' to unlock everything else first?
273 */
274 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
275 ww_ctx->contending_lock = NULL;
276 }
277
278 /*
279 * Naughty, using a different class will lead to undefined behavior!
280 */
281 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
282#endif
283 ww_ctx->acquired++;
284}
285
3822da3e
NH
286static inline bool __sched
287__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
288{
289 return a->stamp - b->stamp <= LONG_MAX &&
290 (a->stamp != b->stamp || a > b);
291}
292
659cf9f5
NH
293/*
294 * Wake up any waiters that may have to back off when the lock is held by the
295 * given context.
296 *
297 * Due to the invariants on the wait list, this can only affect the first
298 * waiter with a context.
299 *
300 * The current task must not be on the wait list.
301 */
302static void __sched
303__ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
304{
305 struct mutex_waiter *cur;
306
307 lockdep_assert_held(&lock->wait_lock);
308
309 list_for_each_entry(cur, &lock->wait_list, list) {
310 if (!cur->ww_ctx)
311 continue;
312
313 if (cur->ww_ctx->acquired > 0 &&
314 __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) {
315 debug_mutex_wake_waiter(lock, cur);
316 wake_up_process(cur->task);
317 }
318
319 break;
320 }
321}
322
76916515 323/*
4bd19084 324 * After acquiring lock with fastpath or when we lost out in contested
76916515 325 * slowpath, set ctx and wake up any waiters so they can recheck.
76916515
DB
326 */
327static __always_inline void
427b1820 328ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
76916515 329{
76916515
DB
330 ww_mutex_lock_acquired(lock, ctx);
331
332 lock->ctx = ctx;
333
334 /*
335 * The lock->ctx update should be visible on all cores before
336 * the atomic read is done, otherwise contended waiters might be
337 * missed. The contended waiters will either see ww_ctx == NULL
338 * and keep spinning, or it will acquire wait_lock, add itself
339 * to waiter list and sleep.
340 */
341 smp_mb(); /* ^^^ */
342
343 /*
344 * Check if lock is contended, if not there is nobody to wake up
345 */
3ca0ff57 346 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
76916515
DB
347 return;
348
349 /*
350 * Uh oh, we raced in fastpath, wake up everyone in this case,
351 * so they can see the new lock->ctx.
352 */
b9c16a0e 353 spin_lock(&lock->base.wait_lock);
659cf9f5 354 __ww_mutex_wakeup_for_backoff(&lock->base, ctx);
b9c16a0e 355 spin_unlock(&lock->base.wait_lock);
76916515
DB
356}
357
4bd19084 358/*
659cf9f5
NH
359 * After acquiring lock in the slowpath set ctx.
360 *
361 * Unlike for the fast path, the caller ensures that waiters are woken up where
362 * necessary.
4bd19084
DB
363 *
364 * Callers must hold the mutex wait_lock.
365 */
366static __always_inline void
427b1820 367ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
4bd19084 368{
4bd19084
DB
369 ww_mutex_lock_acquired(lock, ctx);
370 lock->ctx = ctx;
4bd19084 371}
76916515 372
41fcb9f2 373#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
c516df97
NH
374
375static inline
376bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
377 struct mutex_waiter *waiter)
378{
379 struct ww_mutex *ww;
380
381 ww = container_of(lock, struct ww_mutex, base);
4bd19084
DB
382
383 /*
c516df97
NH
384 * If ww->ctx is set the contents are undefined, only
385 * by acquiring wait_lock there is a guarantee that
386 * they are not invalid when reading.
387 *
388 * As such, when deadlock detection needs to be
389 * performed the optimistic spinning cannot be done.
390 *
391 * Check this in every inner iteration because we may
392 * be racing against another thread's ww_mutex_lock.
4bd19084 393 */
c516df97
NH
394 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
395 return false;
396
397 /*
398 * If we aren't on the wait list yet, cancel the spin
399 * if there are waiters. We want to avoid stealing the
400 * lock from a waiter with an earlier stamp, since the
401 * other thread may already own a lock that we also
402 * need.
403 */
404 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
405 return false;
406
407 /*
408 * Similarly, stop spinning if we are no longer the
409 * first waiter.
410 */
411 if (waiter && !__mutex_waiter_is_first(lock, waiter))
412 return false;
413
414 return true;
4bd19084 415}
76916515 416
41fcb9f2 417/*
25f13b40
NH
418 * Look out! "owner" is an entirely speculative pointer access and not
419 * reliable.
420 *
421 * "noinline" so that this function shows up on perf profiles.
41fcb9f2
WL
422 */
423static noinline
25f13b40 424bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
c516df97 425 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
41fcb9f2 426{
01ac33c1 427 bool ret = true;
be1f7bf2 428
41fcb9f2 429 rcu_read_lock();
3ca0ff57 430 while (__mutex_owner(lock) == owner) {
be1f7bf2
JL
431 /*
432 * Ensure we emit the owner->on_cpu, dereference _after_
01ac33c1
JL
433 * checking lock->owner still matches owner. If that fails,
434 * owner might point to freed memory. If it still matches,
be1f7bf2
JL
435 * the rcu_read_lock() ensures the memory stays valid.
436 */
437 barrier();
438
05ffc951
PX
439 /*
440 * Use vcpu_is_preempted to detect lock holder preemption issue.
441 */
442 if (!owner->on_cpu || need_resched() ||
443 vcpu_is_preempted(task_cpu(owner))) {
be1f7bf2
JL
444 ret = false;
445 break;
446 }
41fcb9f2 447
c516df97
NH
448 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
449 ret = false;
450 break;
25f13b40
NH
451 }
452
f2f09a4c 453 cpu_relax();
41fcb9f2
WL
454 }
455 rcu_read_unlock();
456
be1f7bf2 457 return ret;
41fcb9f2 458}
2bd2c92c
WL
459
460/*
461 * Initial check for entering the mutex spinning loop
462 */
463static inline int mutex_can_spin_on_owner(struct mutex *lock)
464{
1e40c2ed 465 struct task_struct *owner;
2bd2c92c
WL
466 int retval = 1;
467
46af29e4
JL
468 if (need_resched())
469 return 0;
470
2bd2c92c 471 rcu_read_lock();
3ca0ff57 472 owner = __mutex_owner(lock);
05ffc951
PX
473
474 /*
475 * As lock holder preemption issue, we both skip spinning if task is not
476 * on cpu or its cpu is preempted
477 */
1e40c2ed 478 if (owner)
05ffc951 479 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
2bd2c92c 480 rcu_read_unlock();
3ca0ff57 481
2bd2c92c 482 /*
3ca0ff57
PZ
483 * If lock->owner is not set, the mutex has been released. Return true
484 * such that we'll trylock in the spin path, which is a faster option
485 * than the blocking slow path.
2bd2c92c
WL
486 */
487 return retval;
488}
76916515 489
76916515
DB
490/*
491 * Optimistic spinning.
492 *
493 * We try to spin for acquisition when we find that the lock owner
494 * is currently running on a (different) CPU and while we don't
495 * need to reschedule. The rationale is that if the lock owner is
496 * running, it is likely to release the lock soon.
497 *
76916515
DB
498 * The mutex spinners are queued up using MCS lock so that only one
499 * spinner can compete for the mutex. However, if mutex spinning isn't
500 * going to happen, there is no point in going through the lock/unlock
501 * overhead.
502 *
503 * Returns true when the lock was taken, otherwise false, indicating
504 * that we need to jump to the slowpath and sleep.
b341afb3
WL
505 *
506 * The waiter flag is set to true if the spinner is a waiter in the wait
507 * queue. The waiter-spinner will spin on the lock directly and concurrently
508 * with the spinner at the head of the OSQ, if present, until the owner is
509 * changed to itself.
76916515 510 */
427b1820
PZ
511static __always_inline bool
512mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
c516df97 513 const bool use_ww_ctx, struct mutex_waiter *waiter)
76916515 514{
b341afb3
WL
515 if (!waiter) {
516 /*
517 * The purpose of the mutex_can_spin_on_owner() function is
518 * to eliminate the overhead of osq_lock() and osq_unlock()
519 * in case spinning isn't possible. As a waiter-spinner
520 * is not going to take OSQ lock anyway, there is no need
521 * to call mutex_can_spin_on_owner().
522 */
523 if (!mutex_can_spin_on_owner(lock))
524 goto fail;
76916515 525
b341afb3
WL
526 /*
527 * In order to avoid a stampede of mutex spinners trying to
528 * acquire the mutex all at once, the spinners need to take a
529 * MCS (queued) lock first before spinning on the owner field.
530 */
531 if (!osq_lock(&lock->osq))
532 goto fail;
533 }
76916515 534
b341afb3 535 for (;;) {
76916515
DB
536 struct task_struct *owner;
537
e274795e
PZ
538 /* Try to acquire the mutex... */
539 owner = __mutex_trylock_or_owner(lock);
540 if (!owner)
541 break;
76916515
DB
542
543 /*
e274795e 544 * There's an owner, wait for it to either
76916515
DB
545 * release the lock or go to sleep.
546 */
c516df97 547 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
e274795e 548 goto fail_unlock;
b341afb3 549
76916515
DB
550 /*
551 * The cpu_relax() call is a compiler barrier which forces
552 * everything in this loop to be re-loaded. We don't need
553 * memory barriers as we'll eventually observe the right
554 * values at the cost of a few extra spins.
555 */
f2f09a4c 556 cpu_relax();
76916515
DB
557 }
558
b341afb3
WL
559 if (!waiter)
560 osq_unlock(&lock->osq);
561
562 return true;
563
564
565fail_unlock:
566 if (!waiter)
567 osq_unlock(&lock->osq);
568
569fail:
76916515
DB
570 /*
571 * If we fell out of the spin path because of need_resched(),
572 * reschedule now, before we try-lock the mutex. This avoids getting
573 * scheduled out right after we obtained the mutex.
574 */
6f942a1f
PZ
575 if (need_resched()) {
576 /*
577 * We _should_ have TASK_RUNNING here, but just in case
578 * we do not, make it so, otherwise we might get stuck.
579 */
580 __set_current_state(TASK_RUNNING);
76916515 581 schedule_preempt_disabled();
6f942a1f 582 }
76916515
DB
583
584 return false;
585}
586#else
427b1820
PZ
587static __always_inline bool
588mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
c516df97 589 const bool use_ww_ctx, struct mutex_waiter *waiter)
76916515
DB
590{
591 return false;
592}
41fcb9f2
WL
593#endif
594
3ca0ff57 595static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
6053ee3b 596
ef5dc121 597/**
6053ee3b
IM
598 * mutex_unlock - release the mutex
599 * @lock: the mutex to be released
600 *
601 * Unlock a mutex that has been locked by this task previously.
602 *
603 * This function must not be used in interrupt context. Unlocking
604 * of a not locked mutex is not allowed.
605 *
606 * This function is similar to (but not equivalent to) up().
607 */
7ad5b3a5 608void __sched mutex_unlock(struct mutex *lock)
6053ee3b 609{
3ca0ff57
PZ
610#ifndef CONFIG_DEBUG_LOCK_ALLOC
611 if (__mutex_unlock_fast(lock))
612 return;
0d66bf6d 613#endif
3ca0ff57 614 __mutex_unlock_slowpath(lock, _RET_IP_);
6053ee3b 615}
6053ee3b
IM
616EXPORT_SYMBOL(mutex_unlock);
617
040a0a37
ML
618/**
619 * ww_mutex_unlock - release the w/w mutex
620 * @lock: the mutex to be released
621 *
622 * Unlock a mutex that has been locked by this task previously with any of the
623 * ww_mutex_lock* functions (with or without an acquire context). It is
624 * forbidden to release the locks after releasing the acquire context.
625 *
626 * This function must not be used in interrupt context. Unlocking
627 * of a unlocked mutex is not allowed.
628 */
629void __sched ww_mutex_unlock(struct ww_mutex *lock)
630{
631 /*
632 * The unlocking fastpath is the 0->1 transition from 'locked'
633 * into 'unlocked' state:
634 */
635 if (lock->ctx) {
636#ifdef CONFIG_DEBUG_MUTEXES
637 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
638#endif
639 if (lock->ctx->acquired > 0)
640 lock->ctx->acquired--;
641 lock->ctx = NULL;
642 }
643
3ca0ff57 644 mutex_unlock(&lock->base);
040a0a37
ML
645}
646EXPORT_SYMBOL(ww_mutex_unlock);
647
648static inline int __sched
200b1874
NH
649__ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter,
650 struct ww_acquire_ctx *ctx)
040a0a37
ML
651{
652 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4d3199e4 653 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
200b1874 654 struct mutex_waiter *cur;
040a0a37 655
200b1874
NH
656 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
657 goto deadlock;
040a0a37 658
200b1874
NH
659 /*
660 * If there is a waiter in front of us that has a context, then its
661 * stamp is earlier than ours and we must back off.
662 */
663 cur = waiter;
664 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
665 if (cur->ww_ctx)
666 goto deadlock;
040a0a37
ML
667 }
668
669 return 0;
200b1874
NH
670
671deadlock:
672#ifdef CONFIG_DEBUG_MUTEXES
673 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
674 ctx->contending_lock = ww;
675#endif
676 return -EDEADLK;
040a0a37
ML
677}
678
6baa5c60
NH
679static inline int __sched
680__ww_mutex_add_waiter(struct mutex_waiter *waiter,
681 struct mutex *lock,
682 struct ww_acquire_ctx *ww_ctx)
683{
684 struct mutex_waiter *cur;
685 struct list_head *pos;
686
687 if (!ww_ctx) {
688 list_add_tail(&waiter->list, &lock->wait_list);
040a0a37 689 return 0;
6baa5c60 690 }
040a0a37 691
6baa5c60
NH
692 /*
693 * Add the waiter before the first waiter with a higher stamp.
694 * Waiters without a context are skipped to avoid starving
695 * them.
696 */
697 pos = &lock->wait_list;
698 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
699 if (!cur->ww_ctx)
700 continue;
701
702 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
703 /* Back off immediately if necessary. */
704 if (ww_ctx->acquired > 0) {
040a0a37 705#ifdef CONFIG_DEBUG_MUTEXES
6baa5c60
NH
706 struct ww_mutex *ww;
707
708 ww = container_of(lock, struct ww_mutex, base);
709 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
710 ww_ctx->contending_lock = ww;
040a0a37 711#endif
6baa5c60
NH
712 return -EDEADLK;
713 }
714
715 break;
716 }
717
718 pos = &cur->list;
200b1874
NH
719
720 /*
721 * Wake up the waiter so that it gets a chance to back
722 * off.
723 */
724 if (cur->ww_ctx->acquired > 0) {
725 debug_mutex_wake_waiter(lock, cur);
726 wake_up_process(cur->task);
727 }
040a0a37
ML
728 }
729
6baa5c60 730 list_add_tail(&waiter->list, pos);
040a0a37
ML
731 return 0;
732}
733
6053ee3b
IM
734/*
735 * Lock a mutex (possibly interruptible), slowpath:
736 */
040a0a37 737static __always_inline int __sched
e4564f79 738__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 739 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 740 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b 741{
6053ee3b 742 struct mutex_waiter waiter;
9d659ae1 743 bool first = false;
a40ca565 744 struct ww_mutex *ww;
040a0a37 745 int ret;
6053ee3b 746
427b1820 747 might_sleep();
ea9e0fb8 748
427b1820 749 ww = container_of(lock, struct ww_mutex, base);
ea9e0fb8 750 if (use_ww_ctx && ww_ctx) {
0422e83d
CW
751 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
752 return -EALREADY;
753 }
754
41719b03 755 preempt_disable();
e4c70a66 756 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 757
e274795e 758 if (__mutex_trylock(lock) ||
c516df97 759 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
76916515 760 /* got the lock, yay! */
3ca0ff57 761 lock_acquired(&lock->dep_map, ip);
ea9e0fb8 762 if (use_ww_ctx && ww_ctx)
3ca0ff57 763 ww_mutex_set_context_fastpath(ww, ww_ctx);
76916515
DB
764 preempt_enable();
765 return 0;
0d66bf6d 766 }
76916515 767
b9c16a0e 768 spin_lock(&lock->wait_lock);
1e820c96 769 /*
3ca0ff57 770 * After waiting to acquire the wait_lock, try again.
1e820c96 771 */
659cf9f5
NH
772 if (__mutex_trylock(lock)) {
773 if (use_ww_ctx && ww_ctx)
774 __ww_mutex_wakeup_for_backoff(lock, ww_ctx);
775
ec83f425 776 goto skip_wait;
659cf9f5 777 }
ec83f425 778
9a11b49a 779 debug_mutex_lock_common(lock, &waiter);
d269a8b8 780 debug_mutex_add_waiter(lock, &waiter, current);
6053ee3b 781
6baa5c60
NH
782 lock_contended(&lock->dep_map, ip);
783
784 if (!use_ww_ctx) {
785 /* add waiting tasks to the end of the waitqueue (FIFO): */
786 list_add_tail(&waiter.list, &lock->wait_list);
977625a6
NH
787
788#ifdef CONFIG_DEBUG_MUTEXES
789 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
790#endif
6baa5c60
NH
791 } else {
792 /* Add in stamp order, waking up waiters that must back off. */
793 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
794 if (ret)
795 goto err_early_backoff;
796
797 waiter.ww_ctx = ww_ctx;
798 }
799
d269a8b8 800 waiter.task = current;
6053ee3b 801
9d659ae1 802 if (__mutex_waiter_is_first(lock, &waiter))
3ca0ff57
PZ
803 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
804
642fa448 805 set_current_state(state);
6053ee3b 806 for (;;) {
5bbd7e64
PZ
807 /*
808 * Once we hold wait_lock, we're serialized against
809 * mutex_unlock() handing the lock off to us, do a trylock
810 * before testing the error conditions to make sure we pick up
811 * the handoff.
812 */
e274795e 813 if (__mutex_trylock(lock))
5bbd7e64 814 goto acquired;
6053ee3b
IM
815
816 /*
5bbd7e64
PZ
817 * Check for signals and wound conditions while holding
818 * wait_lock. This ensures the lock cancellation is ordered
819 * against mutex_unlock() and wake-ups do not go missing.
6053ee3b 820 */
d269a8b8 821 if (unlikely(signal_pending_state(state, current))) {
040a0a37
ML
822 ret = -EINTR;
823 goto err;
824 }
6053ee3b 825
ea9e0fb8 826 if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
200b1874 827 ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);
040a0a37
ML
828 if (ret)
829 goto err;
6053ee3b 830 }
040a0a37 831
b9c16a0e 832 spin_unlock(&lock->wait_lock);
bd2f5536 833 schedule_preempt_disabled();
9d659ae1 834
6baa5c60
NH
835 /*
836 * ww_mutex needs to always recheck its position since its waiter
837 * list is not FIFO ordered.
838 */
839 if ((use_ww_ctx && ww_ctx) || !first) {
840 first = __mutex_waiter_is_first(lock, &waiter);
841 if (first)
842 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
9d659ae1 843 }
5bbd7e64 844
642fa448 845 set_current_state(state);
5bbd7e64
PZ
846 /*
847 * Here we order against unlock; we must either see it change
848 * state back to RUNNING and fall through the next schedule(),
849 * or we must see its unlock and acquire.
850 */
e274795e 851 if (__mutex_trylock(lock) ||
c516df97 852 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
5bbd7e64
PZ
853 break;
854
b9c16a0e 855 spin_lock(&lock->wait_lock);
6053ee3b 856 }
b9c16a0e 857 spin_lock(&lock->wait_lock);
5bbd7e64 858acquired:
642fa448 859 __set_current_state(TASK_RUNNING);
51587bcf 860
d269a8b8 861 mutex_remove_waiter(lock, &waiter, current);
ec83f425 862 if (likely(list_empty(&lock->wait_list)))
9d659ae1 863 __mutex_clear_flag(lock, MUTEX_FLAGS);
3ca0ff57 864
ec83f425 865 debug_mutex_free_waiter(&waiter);
6053ee3b 866
ec83f425
DB
867skip_wait:
868 /* got the lock - cleanup and rejoice! */
c7e78cff 869 lock_acquired(&lock->dep_map, ip);
6053ee3b 870
ea9e0fb8 871 if (use_ww_ctx && ww_ctx)
4bd19084 872 ww_mutex_set_context_slowpath(ww, ww_ctx);
040a0a37 873
b9c16a0e 874 spin_unlock(&lock->wait_lock);
41719b03 875 preempt_enable();
6053ee3b 876 return 0;
040a0a37
ML
877
878err:
642fa448 879 __set_current_state(TASK_RUNNING);
d269a8b8 880 mutex_remove_waiter(lock, &waiter, current);
6baa5c60 881err_early_backoff:
b9c16a0e 882 spin_unlock(&lock->wait_lock);
040a0a37
ML
883 debug_mutex_free_waiter(&waiter);
884 mutex_release(&lock->dep_map, 1, ip);
885 preempt_enable();
886 return ret;
6053ee3b
IM
887}
888
427b1820
PZ
889static int __sched
890__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
891 struct lockdep_map *nest_lock, unsigned long ip)
892{
893 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
894}
895
896static int __sched
897__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
898 struct lockdep_map *nest_lock, unsigned long ip,
899 struct ww_acquire_ctx *ww_ctx)
900{
901 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
902}
903
ef5d4707
IM
904#ifdef CONFIG_DEBUG_LOCK_ALLOC
905void __sched
906mutex_lock_nested(struct mutex *lock, unsigned int subclass)
907{
427b1820 908 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
ef5d4707
IM
909}
910
911EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 912
e4c70a66
PZ
913void __sched
914_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
915{
427b1820 916 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
e4c70a66 917}
e4c70a66
PZ
918EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
919
ad776537
LH
920int __sched
921mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
922{
427b1820 923 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
ad776537
LH
924}
925EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
926
d63a5a74
N
927int __sched
928mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
929{
427b1820 930 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
d63a5a74 931}
d63a5a74 932EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 933
1460cb65
TH
934void __sched
935mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
936{
937 int token;
938
939 might_sleep();
940
941 token = io_schedule_prepare();
942 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
943 subclass, NULL, _RET_IP_, NULL, 0);
944 io_schedule_finish(token);
945}
946EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
947
23010027
DV
948static inline int
949ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
950{
951#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
952 unsigned tmp;
953
954 if (ctx->deadlock_inject_countdown-- == 0) {
955 tmp = ctx->deadlock_inject_interval;
956 if (tmp > UINT_MAX/4)
957 tmp = UINT_MAX;
958 else
959 tmp = tmp*2 + tmp + tmp/2;
960
961 ctx->deadlock_inject_interval = tmp;
962 ctx->deadlock_inject_countdown = tmp;
963 ctx->contending_lock = lock;
964
965 ww_mutex_unlock(lock);
966
967 return -EDEADLK;
968 }
969#endif
970
971 return 0;
972}
040a0a37
ML
973
974int __sched
c5470b22 975ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 976{
23010027
DV
977 int ret;
978
040a0a37 979 might_sleep();
427b1820
PZ
980 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
981 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
982 ctx);
ea9e0fb8 983 if (!ret && ctx && ctx->acquired > 1)
23010027
DV
984 return ww_mutex_deadlock_injection(lock, ctx);
985
986 return ret;
040a0a37 987}
c5470b22 988EXPORT_SYMBOL_GPL(ww_mutex_lock);
040a0a37
ML
989
990int __sched
c5470b22 991ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 992{
23010027
DV
993 int ret;
994
040a0a37 995 might_sleep();
427b1820
PZ
996 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
997 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
998 ctx);
23010027 999
ea9e0fb8 1000 if (!ret && ctx && ctx->acquired > 1)
23010027
DV
1001 return ww_mutex_deadlock_injection(lock, ctx);
1002
1003 return ret;
040a0a37 1004}
c5470b22 1005EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
040a0a37 1006
ef5d4707
IM
1007#endif
1008
6053ee3b
IM
1009/*
1010 * Release the lock, slowpath:
1011 */
3ca0ff57 1012static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
6053ee3b 1013{
9d659ae1 1014 struct task_struct *next = NULL;
194a6b5b 1015 DEFINE_WAKE_Q(wake_q);
b9c16a0e 1016 unsigned long owner;
6053ee3b 1017
3ca0ff57
PZ
1018 mutex_release(&lock->dep_map, 1, ip);
1019
6053ee3b 1020 /*
9d659ae1
PZ
1021 * Release the lock before (potentially) taking the spinlock such that
1022 * other contenders can get on with things ASAP.
1023 *
1024 * Except when HANDOFF, in that case we must not clear the owner field,
1025 * but instead set it to the top waiter.
6053ee3b 1026 */
9d659ae1
PZ
1027 owner = atomic_long_read(&lock->owner);
1028 for (;;) {
1029 unsigned long old;
1030
1031#ifdef CONFIG_DEBUG_MUTEXES
1032 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
e274795e 1033 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
9d659ae1
PZ
1034#endif
1035
1036 if (owner & MUTEX_FLAG_HANDOFF)
1037 break;
1038
1039 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1040 __owner_flags(owner));
1041 if (old == owner) {
1042 if (owner & MUTEX_FLAG_WAITERS)
1043 break;
1044
1045 return;
1046 }
1047
1048 owner = old;
1049 }
6053ee3b 1050
b9c16a0e 1051 spin_lock(&lock->wait_lock);
1d8fe7dc 1052 debug_mutex_unlock(lock);
6053ee3b
IM
1053 if (!list_empty(&lock->wait_list)) {
1054 /* get the first entry from the wait-list: */
1055 struct mutex_waiter *waiter =
9d659ae1
PZ
1056 list_first_entry(&lock->wait_list,
1057 struct mutex_waiter, list);
1058
1059 next = waiter->task;
6053ee3b
IM
1060
1061 debug_mutex_wake_waiter(lock, waiter);
9d659ae1 1062 wake_q_add(&wake_q, next);
6053ee3b
IM
1063 }
1064
9d659ae1
PZ
1065 if (owner & MUTEX_FLAG_HANDOFF)
1066 __mutex_handoff(lock, next);
1067
b9c16a0e 1068 spin_unlock(&lock->wait_lock);
9d659ae1 1069
1329ce6f 1070 wake_up_q(&wake_q);
6053ee3b
IM
1071}
1072
e4564f79 1073#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
1074/*
1075 * Here come the less common (and hence less performance-critical) APIs:
1076 * mutex_lock_interruptible() and mutex_trylock().
1077 */
7ad5b3a5 1078static noinline int __sched
a41b56ef 1079__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 1080
7ad5b3a5 1081static noinline int __sched
a41b56ef 1082__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 1083
ef5dc121
RD
1084/**
1085 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
1086 * @lock: the mutex to be acquired
1087 *
1088 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
1089 * been acquired or sleep until the mutex becomes available. If a
1090 * signal arrives while waiting for the lock then this function
1091 * returns -EINTR.
1092 *
1093 * This function is similar to (but not equivalent to) down_interruptible().
1094 */
7ad5b3a5 1095int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 1096{
c544bdb1 1097 might_sleep();
3ca0ff57
PZ
1098
1099 if (__mutex_trylock_fast(lock))
a41b56ef 1100 return 0;
3ca0ff57
PZ
1101
1102 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
1103}
1104
1105EXPORT_SYMBOL(mutex_lock_interruptible);
1106
7ad5b3a5 1107int __sched mutex_lock_killable(struct mutex *lock)
ad776537
LH
1108{
1109 might_sleep();
3ca0ff57
PZ
1110
1111 if (__mutex_trylock_fast(lock))
a41b56ef 1112 return 0;
3ca0ff57
PZ
1113
1114 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
1115}
1116EXPORT_SYMBOL(mutex_lock_killable);
1117
1460cb65
TH
1118void __sched mutex_lock_io(struct mutex *lock)
1119{
1120 int token;
1121
1122 token = io_schedule_prepare();
1123 mutex_lock(lock);
1124 io_schedule_finish(token);
1125}
1126EXPORT_SYMBOL_GPL(mutex_lock_io);
1127
3ca0ff57
PZ
1128static noinline void __sched
1129__mutex_lock_slowpath(struct mutex *lock)
e4564f79 1130{
427b1820 1131 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
e4564f79
PZ
1132}
1133
7ad5b3a5 1134static noinline int __sched
a41b56ef 1135__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 1136{
427b1820 1137 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
ad776537
LH
1138}
1139
7ad5b3a5 1140static noinline int __sched
a41b56ef 1141__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 1142{
427b1820 1143 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
040a0a37
ML
1144}
1145
1146static noinline int __sched
1147__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1148{
427b1820
PZ
1149 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1150 _RET_IP_, ctx);
6053ee3b 1151}
040a0a37
ML
1152
1153static noinline int __sched
1154__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1155 struct ww_acquire_ctx *ctx)
1156{
427b1820
PZ
1157 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1158 _RET_IP_, ctx);
040a0a37
ML
1159}
1160
e4564f79 1161#endif
6053ee3b 1162
ef5dc121
RD
1163/**
1164 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
1165 * @lock: the mutex to be acquired
1166 *
1167 * Try to acquire the mutex atomically. Returns 1 if the mutex
1168 * has been acquired successfully, and 0 on contention.
1169 *
1170 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 1171 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
1172 * about this when converting semaphore users to mutexes.
1173 *
1174 * This function must not be used in interrupt context. The
1175 * mutex must be released by the same task that acquired it.
1176 */
7ad5b3a5 1177int __sched mutex_trylock(struct mutex *lock)
6053ee3b 1178{
e274795e 1179 bool locked = __mutex_trylock(lock);
0d66bf6d 1180
3ca0ff57
PZ
1181 if (locked)
1182 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
0d66bf6d 1183
3ca0ff57 1184 return locked;
6053ee3b 1185}
6053ee3b 1186EXPORT_SYMBOL(mutex_trylock);
a511e3f9 1187
040a0a37
ML
1188#ifndef CONFIG_DEBUG_LOCK_ALLOC
1189int __sched
c5470b22 1190ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1191{
040a0a37
ML
1192 might_sleep();
1193
3ca0ff57 1194 if (__mutex_trylock_fast(&lock->base)) {
ea9e0fb8
NH
1195 if (ctx)
1196 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1197 return 0;
1198 }
1199
1200 return __ww_mutex_lock_slowpath(lock, ctx);
040a0a37 1201}
c5470b22 1202EXPORT_SYMBOL(ww_mutex_lock);
040a0a37
ML
1203
1204int __sched
c5470b22 1205ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1206{
040a0a37
ML
1207 might_sleep();
1208
3ca0ff57 1209 if (__mutex_trylock_fast(&lock->base)) {
ea9e0fb8
NH
1210 if (ctx)
1211 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1212 return 0;
1213 }
1214
1215 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
040a0a37 1216}
c5470b22 1217EXPORT_SYMBOL(ww_mutex_lock_interruptible);
040a0a37
ML
1218
1219#endif
1220
a511e3f9
AM
1221/**
1222 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1223 * @cnt: the atomic which we are to dec
1224 * @lock: the mutex to return holding if we dec to 0
1225 *
1226 * return true and hold lock if we dec to 0, return false otherwise
1227 */
1228int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1229{
1230 /* dec if we can't possibly hit 0 */
1231 if (atomic_add_unless(cnt, -1, 1))
1232 return 0;
1233 /* we might hit 0, so take the lock */
1234 mutex_lock(lock);
1235 if (!atomic_dec_and_test(cnt)) {
1236 /* when we actually did the dec, we didn't hit 0 */
1237 mutex_unlock(lock);
1238 return 0;
1239 }
1240 /* we hit 0, and we hold the lock */
1241 return 1;
1242}
1243EXPORT_SYMBOL(atomic_dec_and_mutex_lock);