]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/locking/mutex.c
locking/osq: Break out of spin-wait busy waiting loop for a preempted vCPU in osq_lock()
[mirror_ubuntu-artful-kernel.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
214e0aed 18 * Also see Documentation/locking/mutex-design.txt.
6053ee3b
IM
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
7a215f89 28#include <linux/osq_lock.h>
6053ee3b 29
6053ee3b
IM
30#ifdef CONFIG_DEBUG_MUTEXES
31# include "mutex-debug.h"
6053ee3b
IM
32#else
33# include "mutex.h"
6053ee3b
IM
34#endif
35
ef5d4707
IM
36void
37__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b 38{
3ca0ff57 39 atomic_long_set(&lock->owner, 0);
6053ee3b
IM
40 spin_lock_init(&lock->wait_lock);
41 INIT_LIST_HEAD(&lock->wait_list);
2bd2c92c 42#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 43 osq_lock_init(&lock->osq);
2bd2c92c 44#endif
6053ee3b 45
ef5d4707 46 debug_mutex_init(lock, name, key);
6053ee3b 47}
6053ee3b
IM
48EXPORT_SYMBOL(__mutex_init);
49
3ca0ff57
PZ
50/*
51 * @owner: contains: 'struct task_struct *' to the current lock owner,
52 * NULL means not owned. Since task_struct pointers are aligned at
53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54 * bits to store extra state.
55 *
56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
9d659ae1 57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
3ca0ff57
PZ
58 */
59#define MUTEX_FLAG_WAITERS 0x01
9d659ae1 60#define MUTEX_FLAG_HANDOFF 0x02
3ca0ff57
PZ
61
62#define MUTEX_FLAGS 0x03
63
64static inline struct task_struct *__owner_task(unsigned long owner)
65{
66 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67}
68
69static inline unsigned long __owner_flags(unsigned long owner)
70{
71 return owner & MUTEX_FLAGS;
72}
73
74/*
75 * Actual trylock that will work on any unlocked state.
9d659ae1
PZ
76 *
77 * When setting the owner field, we must preserve the low flag bits.
78 *
79 * Be careful with @handoff, only set that in a wait-loop (where you set
80 * HANDOFF) to avoid recursive lock attempts.
3ca0ff57 81 */
9d659ae1 82static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
3ca0ff57
PZ
83{
84 unsigned long owner, curr = (unsigned long)current;
85
86 owner = atomic_long_read(&lock->owner);
87 for (;;) { /* must loop, can race against a flag */
9d659ae1
PZ
88 unsigned long old, flags = __owner_flags(owner);
89
90 if (__owner_task(owner)) {
91 if (handoff && unlikely(__owner_task(owner) == current)) {
92 /*
93 * Provide ACQUIRE semantics for the lock-handoff.
94 *
95 * We cannot easily use load-acquire here, since
96 * the actual load is a failed cmpxchg, which
97 * doesn't imply any barriers.
98 *
99 * Also, this is a fairly unlikely scenario, and
100 * this contains the cost.
101 */
102 smp_mb(); /* ACQUIRE */
103 return true;
104 }
3ca0ff57 105
3ca0ff57 106 return false;
9d659ae1
PZ
107 }
108
109 /*
110 * We set the HANDOFF bit, we must make sure it doesn't live
111 * past the point where we acquire it. This would be possible
112 * if we (accidentally) set the bit on an unlocked mutex.
113 */
114 if (handoff)
115 flags &= ~MUTEX_FLAG_HANDOFF;
3ca0ff57 116
9d659ae1 117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
3ca0ff57
PZ
118 if (old == owner)
119 return true;
120
121 owner = old;
122 }
123}
124
125#ifndef CONFIG_DEBUG_LOCK_ALLOC
126/*
127 * Lockdep annotations are contained to the slow paths for simplicity.
128 * There is nothing that would stop spreading the lockdep annotations outwards
129 * except more code.
130 */
131
132/*
133 * Optimistic trylock that only works in the uncontended case. Make sure to
134 * follow with a __mutex_trylock() before failing.
135 */
136static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137{
138 unsigned long curr = (unsigned long)current;
139
140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 return true;
142
143 return false;
144}
145
146static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147{
148 unsigned long curr = (unsigned long)current;
149
150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 return true;
152
153 return false;
154}
155#endif
156
157static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158{
159 atomic_long_or(flag, &lock->owner);
160}
161
162static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163{
164 atomic_long_andnot(flag, &lock->owner);
165}
166
9d659ae1
PZ
167static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168{
169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170}
171
172/*
173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175 * semantics like a regular unlock, the __mutex_trylock() provides matching
176 * ACQUIRE semantics for the handoff.
177 */
178static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179{
180 unsigned long owner = atomic_long_read(&lock->owner);
181
182 for (;;) {
183 unsigned long old, new;
184
185#ifdef CONFIG_DEBUG_MUTEXES
186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187#endif
188
189 new = (owner & MUTEX_FLAG_WAITERS);
190 new |= (unsigned long)task;
191
192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 if (old == owner)
194 break;
195
196 owner = old;
197 }
198}
199
e4564f79 200#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
201/*
202 * We split the mutex lock/unlock logic into separate fastpath and
203 * slowpath functions, to reduce the register pressure on the fastpath.
204 * We also put the fastpath first in the kernel image, to make sure the
205 * branch is predicted by the CPU as default-untaken.
206 */
3ca0ff57 207static void __sched __mutex_lock_slowpath(struct mutex *lock);
6053ee3b 208
ef5dc121 209/**
6053ee3b
IM
210 * mutex_lock - acquire the mutex
211 * @lock: the mutex to be acquired
212 *
213 * Lock the mutex exclusively for this task. If the mutex is not
214 * available right now, it will sleep until it can get it.
215 *
216 * The mutex must later on be released by the same task that
217 * acquired it. Recursive locking is not allowed. The task
218 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 219 * memory where the mutex resides must not be freed with
6053ee3b
IM
220 * the mutex still locked. The mutex must first be initialized
221 * (or statically defined) before it can be locked. memset()-ing
222 * the mutex to 0 is not allowed.
223 *
224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225 * checks that will enforce the restrictions and will also do
226 * deadlock debugging. )
227 *
228 * This function is similar to (but not equivalent to) down().
229 */
b09d2501 230void __sched mutex_lock(struct mutex *lock)
6053ee3b 231{
c544bdb1 232 might_sleep();
6053ee3b 233
3ca0ff57
PZ
234 if (!__mutex_trylock_fast(lock))
235 __mutex_lock_slowpath(lock);
236}
6053ee3b 237EXPORT_SYMBOL(mutex_lock);
e4564f79 238#endif
6053ee3b 239
76916515
DB
240static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 struct ww_acquire_ctx *ww_ctx)
242{
243#ifdef CONFIG_DEBUG_MUTEXES
244 /*
245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 * but released with a normal mutex_unlock in this call.
247 *
248 * This should never happen, always use ww_mutex_unlock.
249 */
250 DEBUG_LOCKS_WARN_ON(ww->ctx);
251
252 /*
253 * Not quite done after calling ww_acquire_done() ?
254 */
255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256
257 if (ww_ctx->contending_lock) {
258 /*
259 * After -EDEADLK you tried to
260 * acquire a different ww_mutex? Bad!
261 */
262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263
264 /*
265 * You called ww_mutex_lock after receiving -EDEADLK,
266 * but 'forgot' to unlock everything else first?
267 */
268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 ww_ctx->contending_lock = NULL;
270 }
271
272 /*
273 * Naughty, using a different class will lead to undefined behavior!
274 */
275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276#endif
277 ww_ctx->acquired++;
278}
279
280/*
4bd19084 281 * After acquiring lock with fastpath or when we lost out in contested
76916515 282 * slowpath, set ctx and wake up any waiters so they can recheck.
76916515
DB
283 */
284static __always_inline void
285ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 struct ww_acquire_ctx *ctx)
287{
288 unsigned long flags;
289 struct mutex_waiter *cur;
290
291 ww_mutex_lock_acquired(lock, ctx);
292
293 lock->ctx = ctx;
294
295 /*
296 * The lock->ctx update should be visible on all cores before
297 * the atomic read is done, otherwise contended waiters might be
298 * missed. The contended waiters will either see ww_ctx == NULL
299 * and keep spinning, or it will acquire wait_lock, add itself
300 * to waiter list and sleep.
301 */
302 smp_mb(); /* ^^^ */
303
304 /*
305 * Check if lock is contended, if not there is nobody to wake up
306 */
3ca0ff57 307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
76916515
DB
308 return;
309
310 /*
311 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 * so they can see the new lock->ctx.
313 */
314 spin_lock_mutex(&lock->base.wait_lock, flags);
315 list_for_each_entry(cur, &lock->base.wait_list, list) {
316 debug_mutex_wake_waiter(&lock->base, cur);
317 wake_up_process(cur->task);
318 }
319 spin_unlock_mutex(&lock->base.wait_lock, flags);
320}
321
4bd19084
DB
322/*
323 * After acquiring lock in the slowpath set ctx and wake up any
324 * waiters so they can recheck.
325 *
326 * Callers must hold the mutex wait_lock.
327 */
328static __always_inline void
329ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 struct ww_acquire_ctx *ctx)
331{
332 struct mutex_waiter *cur;
333
334 ww_mutex_lock_acquired(lock, ctx);
335 lock->ctx = ctx;
336
337 /*
338 * Give any possible sleeping processes the chance to wake up,
339 * so they can recheck if they have to back off.
340 */
341 list_for_each_entry(cur, &lock->base.wait_list, list) {
342 debug_mutex_wake_waiter(&lock->base, cur);
343 wake_up_process(cur->task);
344 }
345}
76916515 346
41fcb9f2 347#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
41fcb9f2
WL
348/*
349 * Look out! "owner" is an entirely speculative pointer
350 * access and not reliable.
351 */
352static noinline
be1f7bf2 353bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
41fcb9f2 354{
01ac33c1 355 bool ret = true;
be1f7bf2 356
41fcb9f2 357 rcu_read_lock();
3ca0ff57 358 while (__mutex_owner(lock) == owner) {
be1f7bf2
JL
359 /*
360 * Ensure we emit the owner->on_cpu, dereference _after_
01ac33c1
JL
361 * checking lock->owner still matches owner. If that fails,
362 * owner might point to freed memory. If it still matches,
be1f7bf2
JL
363 * the rcu_read_lock() ensures the memory stays valid.
364 */
365 barrier();
366
367 if (!owner->on_cpu || need_resched()) {
368 ret = false;
369 break;
370 }
41fcb9f2 371
f2f09a4c 372 cpu_relax();
41fcb9f2
WL
373 }
374 rcu_read_unlock();
375
be1f7bf2 376 return ret;
41fcb9f2 377}
2bd2c92c
WL
378
379/*
380 * Initial check for entering the mutex spinning loop
381 */
382static inline int mutex_can_spin_on_owner(struct mutex *lock)
383{
1e40c2ed 384 struct task_struct *owner;
2bd2c92c
WL
385 int retval = 1;
386
46af29e4
JL
387 if (need_resched())
388 return 0;
389
2bd2c92c 390 rcu_read_lock();
3ca0ff57 391 owner = __mutex_owner(lock);
1e40c2ed
PZ
392 if (owner)
393 retval = owner->on_cpu;
2bd2c92c 394 rcu_read_unlock();
3ca0ff57 395
2bd2c92c 396 /*
3ca0ff57
PZ
397 * If lock->owner is not set, the mutex has been released. Return true
398 * such that we'll trylock in the spin path, which is a faster option
399 * than the blocking slow path.
2bd2c92c
WL
400 */
401 return retval;
402}
76916515 403
76916515
DB
404/*
405 * Optimistic spinning.
406 *
407 * We try to spin for acquisition when we find that the lock owner
408 * is currently running on a (different) CPU and while we don't
409 * need to reschedule. The rationale is that if the lock owner is
410 * running, it is likely to release the lock soon.
411 *
76916515
DB
412 * The mutex spinners are queued up using MCS lock so that only one
413 * spinner can compete for the mutex. However, if mutex spinning isn't
414 * going to happen, there is no point in going through the lock/unlock
415 * overhead.
416 *
417 * Returns true when the lock was taken, otherwise false, indicating
418 * that we need to jump to the slowpath and sleep.
b341afb3
WL
419 *
420 * The waiter flag is set to true if the spinner is a waiter in the wait
421 * queue. The waiter-spinner will spin on the lock directly and concurrently
422 * with the spinner at the head of the OSQ, if present, until the owner is
423 * changed to itself.
76916515
DB
424 */
425static bool mutex_optimistic_spin(struct mutex *lock,
b341afb3
WL
426 struct ww_acquire_ctx *ww_ctx,
427 const bool use_ww_ctx, const bool waiter)
76916515
DB
428{
429 struct task_struct *task = current;
430
b341afb3
WL
431 if (!waiter) {
432 /*
433 * The purpose of the mutex_can_spin_on_owner() function is
434 * to eliminate the overhead of osq_lock() and osq_unlock()
435 * in case spinning isn't possible. As a waiter-spinner
436 * is not going to take OSQ lock anyway, there is no need
437 * to call mutex_can_spin_on_owner().
438 */
439 if (!mutex_can_spin_on_owner(lock))
440 goto fail;
76916515 441
b341afb3
WL
442 /*
443 * In order to avoid a stampede of mutex spinners trying to
444 * acquire the mutex all at once, the spinners need to take a
445 * MCS (queued) lock first before spinning on the owner field.
446 */
447 if (!osq_lock(&lock->osq))
448 goto fail;
449 }
76916515 450
b341afb3 451 for (;;) {
76916515
DB
452 struct task_struct *owner;
453
454 if (use_ww_ctx && ww_ctx->acquired > 0) {
455 struct ww_mutex *ww;
456
457 ww = container_of(lock, struct ww_mutex, base);
458 /*
459 * If ww->ctx is set the contents are undefined, only
460 * by acquiring wait_lock there is a guarantee that
461 * they are not invalid when reading.
462 *
463 * As such, when deadlock detection needs to be
464 * performed the optimistic spinning cannot be done.
465 */
4d3199e4 466 if (READ_ONCE(ww->ctx))
b341afb3 467 goto fail_unlock;
76916515
DB
468 }
469
470 /*
471 * If there's an owner, wait for it to either
472 * release the lock or go to sleep.
473 */
3ca0ff57 474 owner = __mutex_owner(lock);
b341afb3
WL
475 if (owner) {
476 if (waiter && owner == task) {
477 smp_mb(); /* ACQUIRE */
478 break;
479 }
76916515 480
b341afb3
WL
481 if (!mutex_spin_on_owner(lock, owner))
482 goto fail_unlock;
76916515
DB
483 }
484
b341afb3
WL
485 /* Try to acquire the mutex if it is unlocked. */
486 if (__mutex_trylock(lock, waiter))
487 break;
488
76916515
DB
489 /*
490 * The cpu_relax() call is a compiler barrier which forces
491 * everything in this loop to be re-loaded. We don't need
492 * memory barriers as we'll eventually observe the right
493 * values at the cost of a few extra spins.
494 */
f2f09a4c 495 cpu_relax();
76916515
DB
496 }
497
b341afb3
WL
498 if (!waiter)
499 osq_unlock(&lock->osq);
500
501 return true;
502
503
504fail_unlock:
505 if (!waiter)
506 osq_unlock(&lock->osq);
507
508fail:
76916515
DB
509 /*
510 * If we fell out of the spin path because of need_resched(),
511 * reschedule now, before we try-lock the mutex. This avoids getting
512 * scheduled out right after we obtained the mutex.
513 */
6f942a1f
PZ
514 if (need_resched()) {
515 /*
516 * We _should_ have TASK_RUNNING here, but just in case
517 * we do not, make it so, otherwise we might get stuck.
518 */
519 __set_current_state(TASK_RUNNING);
76916515 520 schedule_preempt_disabled();
6f942a1f 521 }
76916515
DB
522
523 return false;
524}
525#else
526static bool mutex_optimistic_spin(struct mutex *lock,
b341afb3
WL
527 struct ww_acquire_ctx *ww_ctx,
528 const bool use_ww_ctx, const bool waiter)
76916515
DB
529{
530 return false;
531}
41fcb9f2
WL
532#endif
533
3ca0ff57 534static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
6053ee3b 535
ef5dc121 536/**
6053ee3b
IM
537 * mutex_unlock - release the mutex
538 * @lock: the mutex to be released
539 *
540 * Unlock a mutex that has been locked by this task previously.
541 *
542 * This function must not be used in interrupt context. Unlocking
543 * of a not locked mutex is not allowed.
544 *
545 * This function is similar to (but not equivalent to) up().
546 */
7ad5b3a5 547void __sched mutex_unlock(struct mutex *lock)
6053ee3b 548{
3ca0ff57
PZ
549#ifndef CONFIG_DEBUG_LOCK_ALLOC
550 if (__mutex_unlock_fast(lock))
551 return;
0d66bf6d 552#endif
3ca0ff57 553 __mutex_unlock_slowpath(lock, _RET_IP_);
6053ee3b 554}
6053ee3b
IM
555EXPORT_SYMBOL(mutex_unlock);
556
040a0a37
ML
557/**
558 * ww_mutex_unlock - release the w/w mutex
559 * @lock: the mutex to be released
560 *
561 * Unlock a mutex that has been locked by this task previously with any of the
562 * ww_mutex_lock* functions (with or without an acquire context). It is
563 * forbidden to release the locks after releasing the acquire context.
564 *
565 * This function must not be used in interrupt context. Unlocking
566 * of a unlocked mutex is not allowed.
567 */
568void __sched ww_mutex_unlock(struct ww_mutex *lock)
569{
570 /*
571 * The unlocking fastpath is the 0->1 transition from 'locked'
572 * into 'unlocked' state:
573 */
574 if (lock->ctx) {
575#ifdef CONFIG_DEBUG_MUTEXES
576 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
577#endif
578 if (lock->ctx->acquired > 0)
579 lock->ctx->acquired--;
580 lock->ctx = NULL;
581 }
582
3ca0ff57 583 mutex_unlock(&lock->base);
040a0a37
ML
584}
585EXPORT_SYMBOL(ww_mutex_unlock);
586
587static inline int __sched
63dc47e9 588__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37
ML
589{
590 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4d3199e4 591 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
040a0a37
ML
592
593 if (!hold_ctx)
594 return 0;
595
040a0a37
ML
596 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
597 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
598#ifdef CONFIG_DEBUG_MUTEXES
599 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
600 ctx->contending_lock = ww;
601#endif
602 return -EDEADLK;
603 }
604
605 return 0;
606}
607
6053ee3b
IM
608/*
609 * Lock a mutex (possibly interruptible), slowpath:
610 */
040a0a37 611static __always_inline int __sched
e4564f79 612__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 613 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 614 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b
IM
615{
616 struct task_struct *task = current;
617 struct mutex_waiter waiter;
1fb00c6c 618 unsigned long flags;
9d659ae1 619 bool first = false;
a40ca565 620 struct ww_mutex *ww;
040a0a37 621 int ret;
6053ee3b 622
0422e83d 623 if (use_ww_ctx) {
a40ca565 624 ww = container_of(lock, struct ww_mutex, base);
0422e83d
CW
625 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
626 return -EALREADY;
627 }
628
41719b03 629 preempt_disable();
e4c70a66 630 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 631
9d659ae1 632 if (__mutex_trylock(lock, false) ||
b341afb3 633 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
76916515 634 /* got the lock, yay! */
3ca0ff57 635 lock_acquired(&lock->dep_map, ip);
a40ca565 636 if (use_ww_ctx)
3ca0ff57 637 ww_mutex_set_context_fastpath(ww, ww_ctx);
76916515
DB
638 preempt_enable();
639 return 0;
0d66bf6d 640 }
76916515 641
1fb00c6c 642 spin_lock_mutex(&lock->wait_lock, flags);
1e820c96 643 /*
3ca0ff57 644 * After waiting to acquire the wait_lock, try again.
1e820c96 645 */
9d659ae1 646 if (__mutex_trylock(lock, false))
ec83f425
DB
647 goto skip_wait;
648
9a11b49a 649 debug_mutex_lock_common(lock, &waiter);
6720a305 650 debug_mutex_add_waiter(lock, &waiter, task);
6053ee3b
IM
651
652 /* add waiting tasks to the end of the waitqueue (FIFO): */
653 list_add_tail(&waiter.list, &lock->wait_list);
654 waiter.task = task;
655
9d659ae1 656 if (__mutex_waiter_is_first(lock, &waiter))
3ca0ff57
PZ
657 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
658
e4564f79 659 lock_contended(&lock->dep_map, ip);
4fe87745 660
5bbd7e64 661 set_task_state(task, state);
6053ee3b 662 for (;;) {
5bbd7e64
PZ
663 /*
664 * Once we hold wait_lock, we're serialized against
665 * mutex_unlock() handing the lock off to us, do a trylock
666 * before testing the error conditions to make sure we pick up
667 * the handoff.
668 */
9d659ae1 669 if (__mutex_trylock(lock, first))
5bbd7e64 670 goto acquired;
6053ee3b
IM
671
672 /*
5bbd7e64
PZ
673 * Check for signals and wound conditions while holding
674 * wait_lock. This ensures the lock cancellation is ordered
675 * against mutex_unlock() and wake-ups do not go missing.
6053ee3b 676 */
6ad36762 677 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
678 ret = -EINTR;
679 goto err;
680 }
6053ee3b 681
b0267507 682 if (use_ww_ctx && ww_ctx->acquired > 0) {
63dc47e9 683 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
040a0a37
ML
684 if (ret)
685 goto err;
6053ee3b 686 }
040a0a37 687
1fb00c6c 688 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 689 schedule_preempt_disabled();
9d659ae1
PZ
690
691 if (!first && __mutex_waiter_is_first(lock, &waiter)) {
692 first = true;
693 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
694 }
5bbd7e64
PZ
695
696 set_task_state(task, state);
697 /*
698 * Here we order against unlock; we must either see it change
699 * state back to RUNNING and fall through the next schedule(),
700 * or we must see its unlock and acquire.
701 */
b341afb3
WL
702 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
703 __mutex_trylock(lock, first))
5bbd7e64
PZ
704 break;
705
706 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 707 }
5bbd7e64
PZ
708 spin_lock_mutex(&lock->wait_lock, flags);
709acquired:
51587bcf
DB
710 __set_task_state(task, TASK_RUNNING);
711
6720a305 712 mutex_remove_waiter(lock, &waiter, task);
ec83f425 713 if (likely(list_empty(&lock->wait_list)))
9d659ae1 714 __mutex_clear_flag(lock, MUTEX_FLAGS);
3ca0ff57 715
ec83f425 716 debug_mutex_free_waiter(&waiter);
6053ee3b 717
ec83f425
DB
718skip_wait:
719 /* got the lock - cleanup and rejoice! */
c7e78cff 720 lock_acquired(&lock->dep_map, ip);
6053ee3b 721
a40ca565 722 if (use_ww_ctx)
4bd19084 723 ww_mutex_set_context_slowpath(ww, ww_ctx);
040a0a37 724
1fb00c6c 725 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 726 preempt_enable();
6053ee3b 727 return 0;
040a0a37
ML
728
729err:
5bbd7e64 730 __set_task_state(task, TASK_RUNNING);
6720a305 731 mutex_remove_waiter(lock, &waiter, task);
040a0a37
ML
732 spin_unlock_mutex(&lock->wait_lock, flags);
733 debug_mutex_free_waiter(&waiter);
734 mutex_release(&lock->dep_map, 1, ip);
735 preempt_enable();
736 return ret;
6053ee3b
IM
737}
738
ef5d4707
IM
739#ifdef CONFIG_DEBUG_LOCK_ALLOC
740void __sched
741mutex_lock_nested(struct mutex *lock, unsigned int subclass)
742{
743 might_sleep();
040a0a37 744 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 745 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
746}
747
748EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 749
e4c70a66
PZ
750void __sched
751_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
752{
753 might_sleep();
040a0a37 754 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 755 0, nest, _RET_IP_, NULL, 0);
e4c70a66 756}
e4c70a66
PZ
757EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
758
ad776537
LH
759int __sched
760mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
761{
762 might_sleep();
040a0a37 763 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 764 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
765}
766EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
767
d63a5a74
N
768int __sched
769mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
770{
771 might_sleep();
0d66bf6d 772 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 773 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74 774}
d63a5a74 775EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 776
23010027
DV
777static inline int
778ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
779{
780#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
781 unsigned tmp;
782
783 if (ctx->deadlock_inject_countdown-- == 0) {
784 tmp = ctx->deadlock_inject_interval;
785 if (tmp > UINT_MAX/4)
786 tmp = UINT_MAX;
787 else
788 tmp = tmp*2 + tmp + tmp/2;
789
790 ctx->deadlock_inject_interval = tmp;
791 ctx->deadlock_inject_countdown = tmp;
792 ctx->contending_lock = lock;
793
794 ww_mutex_unlock(lock);
795
796 return -EDEADLK;
797 }
798#endif
799
800 return 0;
801}
040a0a37
ML
802
803int __sched
804__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
805{
23010027
DV
806 int ret;
807
040a0a37 808 might_sleep();
23010027 809 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 810 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 811 if (!ret && ctx->acquired > 1)
23010027
DV
812 return ww_mutex_deadlock_injection(lock, ctx);
813
814 return ret;
040a0a37
ML
815}
816EXPORT_SYMBOL_GPL(__ww_mutex_lock);
817
818int __sched
819__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
820{
23010027
DV
821 int ret;
822
040a0a37 823 might_sleep();
23010027 824 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 825 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 826
85f48961 827 if (!ret && ctx->acquired > 1)
23010027
DV
828 return ww_mutex_deadlock_injection(lock, ctx);
829
830 return ret;
040a0a37
ML
831}
832EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
833
ef5d4707
IM
834#endif
835
6053ee3b
IM
836/*
837 * Release the lock, slowpath:
838 */
3ca0ff57 839static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
6053ee3b 840{
9d659ae1 841 struct task_struct *next = NULL;
3ca0ff57 842 unsigned long owner, flags;
194a6b5b 843 DEFINE_WAKE_Q(wake_q);
6053ee3b 844
3ca0ff57
PZ
845 mutex_release(&lock->dep_map, 1, ip);
846
6053ee3b 847 /*
9d659ae1
PZ
848 * Release the lock before (potentially) taking the spinlock such that
849 * other contenders can get on with things ASAP.
850 *
851 * Except when HANDOFF, in that case we must not clear the owner field,
852 * but instead set it to the top waiter.
6053ee3b 853 */
9d659ae1
PZ
854 owner = atomic_long_read(&lock->owner);
855 for (;;) {
856 unsigned long old;
857
858#ifdef CONFIG_DEBUG_MUTEXES
859 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
860#endif
861
862 if (owner & MUTEX_FLAG_HANDOFF)
863 break;
864
865 old = atomic_long_cmpxchg_release(&lock->owner, owner,
866 __owner_flags(owner));
867 if (old == owner) {
868 if (owner & MUTEX_FLAG_WAITERS)
869 break;
870
871 return;
872 }
873
874 owner = old;
875 }
6053ee3b 876
1d8fe7dc 877 spin_lock_mutex(&lock->wait_lock, flags);
1d8fe7dc 878 debug_mutex_unlock(lock);
6053ee3b
IM
879 if (!list_empty(&lock->wait_list)) {
880 /* get the first entry from the wait-list: */
881 struct mutex_waiter *waiter =
9d659ae1
PZ
882 list_first_entry(&lock->wait_list,
883 struct mutex_waiter, list);
884
885 next = waiter->task;
6053ee3b
IM
886
887 debug_mutex_wake_waiter(lock, waiter);
9d659ae1 888 wake_q_add(&wake_q, next);
6053ee3b
IM
889 }
890
9d659ae1
PZ
891 if (owner & MUTEX_FLAG_HANDOFF)
892 __mutex_handoff(lock, next);
893
1fb00c6c 894 spin_unlock_mutex(&lock->wait_lock, flags);
9d659ae1 895
1329ce6f 896 wake_up_q(&wake_q);
6053ee3b
IM
897}
898
e4564f79 899#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
900/*
901 * Here come the less common (and hence less performance-critical) APIs:
902 * mutex_lock_interruptible() and mutex_trylock().
903 */
7ad5b3a5 904static noinline int __sched
a41b56ef 905__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 906
7ad5b3a5 907static noinline int __sched
a41b56ef 908__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 909
ef5dc121
RD
910/**
911 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
912 * @lock: the mutex to be acquired
913 *
914 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
915 * been acquired or sleep until the mutex becomes available. If a
916 * signal arrives while waiting for the lock then this function
917 * returns -EINTR.
918 *
919 * This function is similar to (but not equivalent to) down_interruptible().
920 */
7ad5b3a5 921int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 922{
c544bdb1 923 might_sleep();
3ca0ff57
PZ
924
925 if (__mutex_trylock_fast(lock))
a41b56ef 926 return 0;
3ca0ff57
PZ
927
928 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
929}
930
931EXPORT_SYMBOL(mutex_lock_interruptible);
932
7ad5b3a5 933int __sched mutex_lock_killable(struct mutex *lock)
ad776537
LH
934{
935 might_sleep();
3ca0ff57
PZ
936
937 if (__mutex_trylock_fast(lock))
a41b56ef 938 return 0;
3ca0ff57
PZ
939
940 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
941}
942EXPORT_SYMBOL(mutex_lock_killable);
943
3ca0ff57
PZ
944static noinline void __sched
945__mutex_lock_slowpath(struct mutex *lock)
e4564f79 946{
040a0a37 947 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 948 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
949}
950
7ad5b3a5 951static noinline int __sched
a41b56ef 952__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 953{
040a0a37 954 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 955 NULL, _RET_IP_, NULL, 0);
ad776537
LH
956}
957
7ad5b3a5 958static noinline int __sched
a41b56ef 959__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 960{
040a0a37 961 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 962 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
963}
964
965static noinline int __sched
966__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
967{
968 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 969 NULL, _RET_IP_, ctx, 1);
6053ee3b 970}
040a0a37
ML
971
972static noinline int __sched
973__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
974 struct ww_acquire_ctx *ctx)
975{
976 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 977 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
978}
979
e4564f79 980#endif
6053ee3b 981
ef5dc121
RD
982/**
983 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
984 * @lock: the mutex to be acquired
985 *
986 * Try to acquire the mutex atomically. Returns 1 if the mutex
987 * has been acquired successfully, and 0 on contention.
988 *
989 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 990 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
991 * about this when converting semaphore users to mutexes.
992 *
993 * This function must not be used in interrupt context. The
994 * mutex must be released by the same task that acquired it.
995 */
7ad5b3a5 996int __sched mutex_trylock(struct mutex *lock)
6053ee3b 997{
9d659ae1 998 bool locked = __mutex_trylock(lock, false);
0d66bf6d 999
3ca0ff57
PZ
1000 if (locked)
1001 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
0d66bf6d 1002
3ca0ff57 1003 return locked;
6053ee3b 1004}
6053ee3b 1005EXPORT_SYMBOL(mutex_trylock);
a511e3f9 1006
040a0a37
ML
1007#ifndef CONFIG_DEBUG_LOCK_ALLOC
1008int __sched
1009__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1010{
040a0a37
ML
1011 might_sleep();
1012
3ca0ff57 1013 if (__mutex_trylock_fast(&lock->base)) {
040a0a37 1014 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1015 return 0;
1016 }
1017
1018 return __ww_mutex_lock_slowpath(lock, ctx);
040a0a37
ML
1019}
1020EXPORT_SYMBOL(__ww_mutex_lock);
1021
1022int __sched
1023__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1024{
040a0a37
ML
1025 might_sleep();
1026
3ca0ff57 1027 if (__mutex_trylock_fast(&lock->base)) {
040a0a37 1028 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1029 return 0;
1030 }
1031
1032 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
040a0a37
ML
1033}
1034EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1035
1036#endif
1037
a511e3f9
AM
1038/**
1039 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1040 * @cnt: the atomic which we are to dec
1041 * @lock: the mutex to return holding if we dec to 0
1042 *
1043 * return true and hold lock if we dec to 0, return false otherwise
1044 */
1045int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1046{
1047 /* dec if we can't possibly hit 0 */
1048 if (atomic_add_unless(cnt, -1, 1))
1049 return 0;
1050 /* we might hit 0, so take the lock */
1051 mutex_lock(lock);
1052 if (!atomic_dec_and_test(cnt)) {
1053 /* when we actually did the dec, we didn't hit 0 */
1054 mutex_unlock(lock);
1055 return 0;
1056 }
1057 /* we hit 0, and we hold the lock */
1058 return 1;
1059}
1060EXPORT_SYMBOL(atomic_dec_and_mutex_lock);